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Abstract. Representations of planar triangulations as contact graphs of a set of internally
disjoint homothetic triangles or respectively of a set of internally disjoint homothetic squares
have received quite some attention in recent years. In this paper we investigate representations
of planar triangulations as contact graphs of a set of internally disjoint homothetic pentagons.
Surprisingly such a representation exists for every triangulation whose outer face is a 5-gon.
We relate these representations to five color forests. These combinatorial structures resemble
Schnyder woods respectively transversal structures. In particular there is a bijection to certain
a-orientations and consequently a lattice structure on the set of five color forests of a given
graph. This lattice structure plays a role in an algorithm that is supposed to compute a contact
representation with pentagons for a given graph. Based on a five color forest the algorithm builds
a system of linear equations and solves it, if the solution is non-negative, it encodes distances
between corners of a pentagon representation. In this case the representation is constructed
and the algorithm terminates. Otherwise negative variables guide a change of the five color
forest and the procedure is restarted with the new five color forest. Similar algorithms have
been proposed for contact representations with homothetic triangles and with squares.

1 Introduction

A pentagon contact system S is a finite system of convex pentagons in the plane such that any
two pentagons intersect in at most one point. If all pentagons of S are regular pentagons with
a horizontal side at the bottom, we call S a regular pentagon contact representation. Note that
in this case any two pentagons of § are homothetic. The contact system is non-degenerate if
every contact involves exactly one corner of a pentagon. The contact graph G*(S) of S is the
graph that has a vertex for every pentagon and an edge for every contact of two pentagons in S.
Note that G*(S) inherits a crossing-free embedding into the plane from S. For a given plane
graph G and a pentagon contact system S with G*(S) = G we say that S is a pentagon contact
representation of G.

We will only consider the case that G is an inner triangulation of a 5-gon, i.e., the outer face
of G is a 5-gon with vertices as, ..., as in clockwise order, all inner faces are triangles, there

*The conference version of this paper has appeared in the proceedings of Eurocomb’17 (ENDM 61C, pp. 421-427)
under the title " Pentagon contact representations” .
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Figure 1: A regular pentagon contact representation of the graph shown in black.

are no loops or multiple edges, and the only edges between the vertices a1, ..., as are the five
edges of the outer face. Our interest lies in regular pentagon contact representations of G with
the additional property that a7, ..., as are represented by line segments sy, .. ., s5 which together
form a pentagon with all internal angles equal to (3/5)m. The line segment s; is always horizontal
and at the top, and sy, ..., ss is the clockwise order of the segments of the pentagon. Fig. 1
shows an example.

Triangle contact representations have been introduced by De Fraysseix et al. [5]. They observed
that Schnyder woods can be considered as combinatorial encodings of triangle contact represen-
tations of triangulations and essentially showed that any Schnyder wood can be used to construct
a corresponding triangle contact system. They also showed that the triangles can be requested
to be isosceles with a horizontal basis. Representations with homothetic triangles can degenerate
in the presence of separating triangles. Gongalves et al. [9] showed that 4-connected triangu-
lations admit contact representations with homothetic triangles. The proof is an application of
Schramm’s Convex Packing Theorem, a strong theorem which is based on his Monster Packing
Theorem. A more combinatorial approach to homothetic triangle contact representations which
aims at computing the representation as the solution of a system of linear equations related to
a Schnyder wood was described by Felsner [7]. On the basis of this approach Schrezenmaier
reproved the existence of homothetic triangle representations in his Masters thesis [15].

Representations of graphs using squares or more precisely graphs as a tool to model packings of
squares already appear in classical work of Brooks et al. [3] from 1940. Schramm [14] proved that
every b-connected inner triangulation of a 4-gon admits a square contact representation. Again
there is a combinatorial approach to this result which aims at computing the representation as
the solution of a system of linear equations, see Felsner [8]. In this instance the role of Schnyder
woods is taken by transversal structures. As in the case of homothetic triangles this approach
comes with an algorithm which works well in practice, however, the proof that the algorithm
terminates with a solution is still missing. On the basis of the non-algorithmic aspects of this
approach Schrezenmaier [15] reproved Schramm’s Squaring Theorem.

In this paper we investigate representations of planar triangulations as contact graphs of a set
of internally disjoint homothetic pentagons. From Schramm’s Convex Packing Theorem it easily
follows that such a representation exists for every triangulation whose outer face is a 5-gon. We
relate such representations to five color forests. The main part of the paper is devoted to the
study of this combinatorial structure. It will become clear that five color forests are close relatives
of Schnyder woods and transversal structures. We note in passing that Bernardi and Fusy [1] also
studied some relatives of Schnyder woods using 5 colors. Their “five color trees”, however, only
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Figure 2: Prototypes for the five outer vertices of G.

live on duals of 5-regular planar graphs.

At the end of the paper we propose an algorithm for computing homothetic pentagon rep-
resentations on the basis of systems of equations and local changes in the corresponding five
color forests. We conjecture that the algorithm always terminates. A proof of this conjecture
would imply a proof for the existence of pentagon contact representations which is independent
of Schramm's Monster Packing. The idea of looking for pentagon contact representations and a
substantial part of the work originate in the Bachelors Thesis of Steiner [16].

1.1 The existence of pentagon contact representations

The existence of regular pentagon contact representations for every inner triangulation of a 5-gon
can be shown using the following general result about contact representations by Schramm.

Theorem 1 (Convex Packing Theorem [13]) Let G be an inner triangulation of the triangle abc.
Further let C be a simple closed curve in the plane partitioned into three arcs Pa, Pp, Pc, and
for each interior vertex v of G let ‘P, be a convex set in the plane containing more than one
point. Then there exists a contact representation of a supergraph of G (on the same vertex set,
but possibly with more edges) where each interior vertex v is represented by a single point or a
homothetic copy of its prototype P, and each outer vertex w by the arc P,,.

Theorem 2 Let G be an inner triangulation of the 5-gon as, ..., as. Then there exists a regular
pentagon contact representation of G.

Proof. By adding the edges ajas and ajas in the outer face of G, it becomes a triangulation G’
with outer face ajazas. We define the arcs P,,, Pa,, Pa, to be extensions of the upper, lower
left, respectively lower right edge of a regular pentagon A with a horizontal edge at the top,
such that P, U Pa, UP,, form a triangle and therefore a simple closed curve. We define the
convex sets P,, and P, to be line segments parallel to the upper right and upper left edge of
the pentagon A (see Fig. 2). Finally, for each interior vertex v of G let P, be a regular pentagon
with a horizontal edge at the bottom.

Now we can apply the Convex Packing Theorem. The result is a contact representation of a
supergraph of G’ where a1, a3, a4 are represented by P,,, Pa,, Pa, and every inner vertex v by a
homothetic copy of P, or by a single point.

We claim that in this contact representation of G’ none of the homothetic copies of the
prototypes is degenerate to a single point. Assume there is a degenerate copy in the contact
representation. Let H be a maximal connected component of the subgraph of G’ induced by the
vertices whose pentagons are degenerate to a single point. Since the line segments corresponding
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Figure 3: The local conditions of a five color forest

to the three outer vertices are not degenerate, H has to be bounded by a cycle C of vertices
whose pentagons respectively line segments are not degenerate. In the contact representation
all vertices of H are represented by the same point and therefore all pentagons respectively line
segments representing the vertices of C have a contact with this point, i.e., they meet at the
point. But for geometric reasons at most two of these can meet in a single point. Thus C is
a 2-cycle, in contradiction to our definition of inner triangulations that does not allow multiple
edges.

After cutting the segments P,,, Pa,, and P,,, the vertices ay, ..., as are represented by a
pentagon of the required form and we obtain a regular pentagon contact representation of G. [

2 Five Color Forests

In this section G will always be a triangulation with outer face ag, ..., as in clockwise order. The
set 1,...,5 of colors is to be understood as representatives modulo 5, e.g., —1 and 4 denote the
same color.

Definition 1. A five color forest of G is an orientation and coloring of the inner edges of G in
the colors 1, ..., 5 with the following properties (see Fig. 3 for an illustration):

(F1) All edges incident to a; are oriented towards a; and colored in the color /.

(F2) For each inner vertex v the incoming edges build five (possibly empty) blocks B;, i =1,...,5,
of edges of color i and the clockwise order of these blocks is By, ..., Bs. Moreover v has
at most one outgoing edge of color / and such an edge has to be located between the
blocks B,‘+2 and B,‘_Q.

(F3) For every inner vertex and for i =1, ..., 5 the block B; is nonempty or one of the outgoing
edges of colors 1 — 2 and | + 2 exists.

The following theorem shows the key correspondence between five color forests and pentagon
contact representations.

Theorem 3 Every regular pentagon contact representation induces a five color forest on its
contact graph.

Proof. Let S be a regular pentagon contact representation of G = G*(S). We color the corners
of all pentagons of § with the colors 1, ..., 5 in clockwise order, starting with color 1 at the
corner opposite to the horizontal segment. Let e be an inner edge of G. If e corresponds to the
contact of a corner of a pentagon A and a side of a pentagon B in S, then we orient the edge e
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Figure 4: The induced five color forest and a-orientation of a pentagon contact representation.

from the vertex corresponding to A to the vertex corresponding to B and color it in the color of
the corner of A involved in the contact. A contact of two pentagon corners can be interpreted
in two ways as a corner-side contact with infinitesimal distance to the other corner. We choose
one of these interpretations and proceed as before. Hence, the five color forest induced by a
degenerate pentagon contact representation is not unique. Figure 4 shows an example.

We claim that this coloring and orientation of G fulfills the properties of a five color forest.
Property (F1) immediately follows from the construction. Now consider property (F2). It is clear
that every inner vertex has at most one outgoing edge of every color. That the incoming edges
lie in the right interval, follows from the fact that a corner-side contact between two homothetic
regular pentagons is only possible if a corner of the first pentagon touches the opposite side of
the second pentagon.

Finally we check property (F3) for the case i = 1. The other cases are symmetric. Let v
be an inner vertex of G and A the corresponding pentagon of §. Since G is a triangulation,
the pentagons corresponding to any two consecutive neighbors of v have to touch. Therefore a
pentagon B of these pentagons has to intersect the area below the horizontal side of A, and that
is only possible if the contact of A and B corresponds to a an incoming edge of v of color 1 or
an outgoing edge of color 3 or 4. ]

Schnyder [12] introduced a similar structure for inner triangulations of a triangle:

Definition 2. A Schnyder wood of an inner triangulation T of the triangle b1, by, b3 is an orien-
tation and coloring of the inner edges of T in the colors 1, 2, 3 with the following properties:

(S1) All edges incident to b; are oriented towards b; and colored in the color i.

(S2) Each inner vertex has in clockwise order exactly one outgoing edge of color 1, one outgoing
edge of color 2 and one outgoing edge of color 3, and in the interval between two outgoing
edges there are only incoming edges in the third color.

Schnyder proved that every inner triangulation of a triangle admits a Schnyder wood, and using
this result, we will show that every inner triangulation of a pentagon admits a five color forest.

Theorem 4 ([12]) Let T be an inner triangulation of a triangle. Then there exists a Schnyder
wood of T.

Theorem 5 Let G be an inner triangulation of the pentagon a1, . . ., as. Then there exists a five
color forest of G.
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Figure 5: A construction of a five color forest of a given graph using Schnyder woods.

Proof. The following construction is illustrated by Fig. 5. Contract the edge asaz to a ver-
tex bz and the edge azas to a vertex bs. In these contraction steps the maximal triangles csasas
and cpazas incident to ao, a3 and to a4, as are contracted to a single edge, in particular vertices
interior to these triangles are removed. Further let by := a;. This results in an inner triangula-
tion T of the triangle by, b3, by. Due to Theorem 4 there exists a Schnyder Wood S of T (we
use the colors 1,3, 4 instead of 1, 2, 3).

Take the colors and orientations of all inner edges not interior to cgaras or cxazas and not
incident to a> or as from T to G. Now color all inner edges incident to a» and not interior
to cgasas in color 2 and orient them towards a», and color all inner edges incident to a4 and
not interior to cragas in color 5 and orient them towards as. For the edges interior to csasas
construct another Schnyder wood where ¢s has incoming edges in color 5, az has incoming edges
in color 3, and a, has incoming edges in color 2. Analogously, construct a Schnyder wood on the
edges interior to crasas in the colors 2,4, 5.

It can easily verified that this coloring and orientation of the inner edges of G fulfills the
properties of a five color forest. In particular, for an inner vertex v not interior to csa»as or coazas
the properties are still locally fulfilled if we replace the outgoing edge of color 3 by an outgoing
edge of color 2 or the outgoing edge of color 4 by an outgoing edge of color 5. L]

2.1 «-orientations

Our goal is to connect the setting of five color forests with the well studied orientations of planar
graphs with prescribed outdegrees.

Definition 3. Let H be an undirected graph and o : V(H) — N. Then an orientation H" of H is
called an a-orientation if outdeg(v) = a(v) for all vertices v € V(H').

In a five color forest every inner vertex has outdegree at most 5. The following lemma allows
us to add edges so that the outdegree of every inner vertex becomes exactly 5. The statement of
the lemma corresponds to the geometric fact that in a regular pentagon contact representation of
a triangulation G the area between three pentagons corresponding to a face of G is a quadrilateral
with exactly one concave corner.

Lemma 1 Let G be endowed with a five color forest and let f be a face of G that is incident to
at most one outer vertex. Then in exactly one of the three interior angles of f an outgoing edge
Is missing in the cyclic order of the respective vertex.
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Figure 6: Full case distinction for Lemma 1

Proof. Since the facial cycle of f has length three, it contains an oriented path of length two.
For symmetry reasons we can assume that this path is oriented clockwise and the first edge of
this path has color 1. Then because of property (F3) the second edge of this path can only have
the colors 2 and 3. Figure 6 shows all possible cases for the orientation and coloring of the third
edge of the cycle and verifies the statement for all these cases. O]

Now we define an extension of G and a function as such that every five color forest of G can
be extended to an as-orientation of this extension.

Definition 4. The stack extension G* of G is the extension of G that contains an extra vertex
in every inner face that is incident to at most one of the outer vertices. These new vertices are
connected to all three vertices of the respective face. We call the new vertices stack vertices and
the vertices of G normal vertices.

Definition 5. An orientation of the inner edges of G* is a as-orientation if the outdegrees of the
vertices correspond to the following values:

2 if v is a stack vertex,
as(v) =<5 if vis an inner normal vertex,
0 if v is an outer normal vertex.

A five color forest of G induces an as-orientation of G* in a canonical way by keeping the
orientation of the edges of G and defining the missing edge of Lemma 1 as the unique incoming
edge for every stack vertex.

Observation 1 The coloring of the inner edges of a five color forest can be extended to a coloring
of the inner edges of the induced as-orientation that fulfills the properties of a five color forest
at all normal vertices.



2.2 Bijection between five color forests and as-orientations

Now we want to prove that the canonical mapping from five color forests to as-orientations is a
bijection. For this purpose we need to reconstruct the colors of the inner edges of G if we are
given an as-orientation. The idea of this construction will be to start with an inner edge e of G
and follow a properly defined path until it reaches one of the five outer vertices. Then the color
of this outer vertex will be the color of e. This approach is similar to the proof of the bijection
of Schnyder Woods and 3-orientations in [4].

Lemma 2 Let C be a simple cycle of length £ in G* and let all vertices of C be normal vertices,
I.e., vertices of G. Then there are exactly 24 — 5 edges pointing from C into the interior of C.

Proof. First we view C as a cycle in G. Let k be the number of vertices strictly inside C. Since G
is a triangulation there are exactly 2k 4+ £ — 2 faces and 3k + £ — 3 edges strictly inside C.

Now we view C as a cycle in G*. In addition to the 3k + £ — 3 normal edges there are 3 stack
edges in each face, hence, the number of edges in C is 9k +4£—9. At each stack vertex we see 2
starting edges and at every normal vertex 5. Therefore there are 2(2k+£—2)+5k = 9k +2£—4
edges starting at a vertex inside C. Taking the difference we find that there are 2¢ — 5 edges
pointing from a vertex of C into the interior. O

Next we will show some properties of oriented cycles in five color forests. By T; we denote
the forest consisting of all edges of color /, and by T,-_1 we denote the forest T; with all edges
reversed.

Lemma 3 The orientation T :=T; + Tij—1 + Tix1 + T,:é + 7’,er of G is acyclic.

Proof. Assume there is a simple oriented cycle C of length £ in T. Because of the symmetry of
the colors in the definition of a five color forest, it suffices to consider the case that C is oriented
clockwise and / = 1.

We define the following auxiliary function for the five colors:

m(l):=1, n(2):=0, 7(38):=2, 7(4): =1, w(5):=2.

Let e be an edge of color ¢ ending at vertex v and € an edge of color ¢’ starting at v in the
orientation 7. From Fig. 7 we can read off the following: In the angle of v on the right side
between e and the dotted red line there are 2—m(c) edges which are outgoing in the as-orientation
of G*. In the angle of v on the right side between €’ and the dotted red line there are m(c’)
outgoing edges. Hence, there are exactly m(c’) + (2 — 7(c)) edges pointing away from v in the
right angle between e and €’ (in the as-orientation of G*).

Now let eq, ..., ey be the edges of the cycle C of T and let ¢; be the color of edge ;. Then
the number of edges pointing from C into the interior (in the as-orientation of G*) is

-1
(m(cit1) —7m(c))+2)+ (m(c1) —7(c) +2) =24 .
i=1

This is in contradiction to Lemma 2. O
Proposition 1 Let C be an oriented cycle in G. Then:

(i) C uses at least 3 different colors.
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Figure 7: The possible incident edges of a vertex v in T. For an incoming edge of color ¢ below
the dotted line the red value is 2 — w(c) and counts the number of thick edges in the
counterclockwise angle from this edge to the dotted line. For an outgoing edge of
color ¢’ above the dotted line the red value is 7(c’) and counts the number of thick
edges in the clockwise angle from this edge to the dotted line. The thick edges are
exactly those that are outgoing in v in the a-orientation.

(i) If C uses exactly 3 different colors, these colors are not consecutive in the cyclic order.
(iif) C has two consecutive edges whose colors have distance at most one in the cyclic order.

Proof. The first two statements immediately follow from Lemma 3.

For the third statement assume that there is an oriented simple cycle C such that the distance
of the colors of any two consecutive edges on C is exactly 2. Because of the symmetry it suffices
to consider the case that C is oriented clockwise. Let e = uv and € = vw be two consecutive
edges on C and let / be the color of e. If the color of €' is i + 2, there is no edge pointing into
the interior of C at v. If the color of € is i — 2, there are exactly 4 edges pointing into the
interior of C at v. Therefore the total number of edges pointing into the interior of C is even, in
contradiction to Lemma 2. ]

Now we will define the paths starting with an inner edge e and ending at an outer vertex that
allow us to define the color of e. The idea is to always continue with the opposite outgoing edge,
but if we run into a stack vertex, we need to be careful. The paths we will define are not unique,
but we will see that all paths starting with the same edge e end at the same outer vertex.

Definition 6. Let e = uv be an inner edge such that v is a normal vertex. We will recursively
define a set P(e) of walks starting with e by distinguishing several cases concerning v.

e If v is an outer vertex, i.e., v = a; for some /, the set P(e) contains only one path, the
path only consisting of the edge e.

e If v is an inner normal vertex, let €’ be the opposite outgoing edge of e at v, i.e., the third
outgoing edge in clockwise or counterclockwise direction, and we define P(e) := {e+ P :
P e P(e)}.



e If v is a stack vertex, let ] = vv{ and €}, = vV} be the left and right outgoing edge of v.
Further let ef be the second outgoing edge of vi after e in counterclockwise direction
and €5 the second outgoing edge of v after €5 in clockwise direction. Note that €/ is well
defined if v/ is not an outer vertex, and that not both of v{ and vj can be outer vertices. If
both of €/ and €f are well defined, we define P(e) := {e+ej+P : P € P(e])}u{e+es+P:
P e P(ef)}. If only e is well defined, we define P(e) :={e+ e/ + P: P e P(e)}.

At the moment it is not clear that these walks are finite. If they are finite, they have to end in
an outer vertex. But we have to prove that they do not cycle. To be able to apply Lemma 2 to
these walks, we will now define the shortcut of such a walk that avoids the stack vertices.

Definition 7. Let P be a finite subwalk of a walk in P(e) for some edge e that starts and ends
with a normal vertex. Then the shortcut P’ of P is obtained from P by replacing every consecutive
pair uv, vw of edges, where v is a stack vertex, by the edge uw (note that this edge might be
oriented wu in the as-orientation). We call uw a shortcut edge.

If P is a path with designated start vertex s, then at an inner vertex v we can distinguish edges
on the right side of P and edges on the left side of P. We define r-outp(v) and l-outp(v) to be
the number of right respectively left outgoing edges from path P at vertex v.

Lemma 4 Let P’ be a shortcut walk of length £ that does not start and does not end with a
shortcut edge. Then the number of edges pointing from the interior vertices of P’ to the right
(left) of P" is2(£—1).

Proof. Since right and left are symmetric it is enough to prove the lemma for right outgoing
edges. The proof is by induction on the length £ of the walk. Let P' = vg, €1, v1,..., €, V.
If eg_1 is not a shortcut edge, the statement follows by induction, because the vertex between
two consecutive normal edges of a walk in P(e) has 2 outgoing edges on either side.

Now assume that e,_1 is a shortcut edge and let € = vy_>w, €” = wv,_1 be the corresponding
edges of the original path P. Let Q' be the subwalk of P’ starting at vg and ending at v,_» extended
by the edge v,_ow. Note that we can apply the induction hypothesis to Q' by pretending that w
is a normal vertex. Hence, we know that the number of edges pointing from Q' to the right
is 2(£ — 2).

The edges vy_ow and vp_»Vvp_1 are consecutive in the cyclic order on incident edges of vy_».
Define a sign o to be —1 if v;_»vp_1 is right of vy_ow and +1 otherwise. Let § =0 if 0 = —1
and vp_»Vp_1 is outgoing at vp_1, otherwise 6 = 1. When comparing outgoing edges at vp_» in P’
and Q' the contribution of § will account for the edge vp_»vp_1 if 0 = —1 and for the edge v;_>w
if 0 = +1. It follows that r-outp(vy_2) = r-outg(vs—2) + 0d, see Fig. 8.

Claim 1 r-outp/(v_1) =2 — 06.

Proof. If 0 = +1, then we are in the vi case of the stack vertex part in Definition 6, i.e.,
between vp_»vp_1 and vy_1vy there is one outgoing edge on the right at vp_1. The claim follows
because in this case § = 1.

If 0 = —1, then we are in the v} case of the stack vertex part in Definition 6, i.e., be-
tween vy_ovp_1 and vp_1Vvp there is one outgoing edge on the left at vp_;. Now it depends on
whether the edge vy_5v_1 is outgoing at vy_» or at vp_1. In the first case we have 6 = 0
and r-outpr(vp—1) = 2, in the second case 6 = 1 and r-outp/(v—1) = 3. In either case this is
what the claim says. A
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Figure 8: Right outgoing edges at v;_» and vp_1.

The number of right outgoing edges of P’ is obtained as the sum of those of @', which
is 2(£ — 2), with r-outpr(vp—n) — r-outg(vg—2), which is ¢d, and r-outpr(vp—1), which is 2 — gé
by Claim 1. Hence, the number of right outgoing edges of P is 2(£ — 1). ]

Lemma 5 (i) The walks P € P(e) are paths, i.e., there are no vertex repetitions in P.

(i) Let P, P> € P(e) be two paths starting with the same edge e. Then Py and P> end in the
same outer vertex.

(iii) Let v be a normal vertex and let e; = vvy, & = vv» be two different outgoing edges at v.
Further let Py € P(e1) and P> € P(ex) be two paths. Then Py and P> do not cross and
they end in different outer vertices.

Proof. For (i) assume that P cycles. Let C be a simple cycle which appears as a subwalk of the
shortcut of P, and let £ be its length. According to Lemma 4, there are at least 2(£ — 1) edges
pointing into the interior of C. This is in contradiction to Lemma 2 which states that there are
only 2¢ — 5 edges pointing into the interior of C.

For (ii) assume that P; and P, coincide up to a vertex v*, then P goes to the left and P, to
the right. Note that v* has to be a stack vertex and let v and v/ be its predecessors in Py and P,
i.e., v/, v, v* appear in this order on both paths. If P and P, start in v, we can use a dummy
edge v'v which makes sure that r-outp, (v) = l-outp,(v) = 2. For i = 1,2 let P/ be the shortcut
of .

Claim 1 r-outp(v) + l-outp(v) = 6 — 8, where 6 € {0, 1} evaluates to one if the edge vv' of Py
Is an outgoing edge at v.

Proof. Every outgoing edge of v except possibly the edge vv' is a right edge with respect to Pj
or a left edge with respect to Pj. The edges from v to v* is both, see Fig. 9 (left). A

Claim 2 If after splitting at v the two shortcut paths P| and P, meet at some vertex w which is
not an outer vertex, then the first vertex w' after w is the same on Py and Ps.

Proof. For i = 1,2 let Q' be the subpaths of P| and P} starting at v and ending at w. At the
beginning these paths are extended by an edge v'v which may come from P/, however, we need
that the edge is pointing from v/ to v. If necessary v/ may be chosen as a dummy vertex and v'v

11
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Figure 9: Overcounts at the two ends of the paths Q) and Q). Edges in the green area are
counted as right edges of Q}, those in the red area as left edges of Q5.

as a dummy edge. At the end the paths are extended by the successor wy respectively w, of w
on P;. If w;is a stack vertex, we can pretend that it is a normal vertex.

Let ¢; be the length of Q. From Lemma 4 we know that there are exactly 2(¢; — 1) edges
pointing from Q to the right and exactly 2(¢, — 1) edges pointing from Q5 to the left. Let C be
the cycle formed by the two shortcuts Q] and Q) between v and w. The length of C is 1 +4>—4
and therefore, by Lemma 2, there are exactly 2(4; + £, — 4) — 5 edges pointing into the interior
of C.

The sum of the right edges of Q) and the left edges of Q4 correctly accounts for the edges
pointing into the interior of C at all vertices except at v and w. The orientation of v'v and
Claim 1 imply that at v we overcount by exactly 5. It follows that the overcount at w is

(2081 — 1) +2(lo — 1)) — (2(41 + £ — 4) —5) —5=4 .

This means that each edge except one contributes to the overcount at w, see Fig. 9 (right).
Hence, ww; and wws have to be identical and w/ = w; = ws. A

Now suppose that P, and P end at different outer vertices a; and a;. Let v* be the last
common vertex of the two paths, v* has to be a stack vertex. Assume that P; goes to the left
at v* and P> goes to the right. Let v be the predecessor of v* in P, and P. Further let Qq
and Q2 be the subpaths of P; and P starting at v and ending at a; and a;, extended by a normal
edge v/v. Again this may be the edge from P;, however, relevant to us is that it is pointing
from v/ to v. For i = 1,2 let Q) be the shortcut of Q; and let ¢; + 1 be the length of Q.
Let 43 > 2 be the length of the path P; between a; and a; that alternates between outer and
inner normal vertices. Note that Ps has %3 inner vertices and %3 + 1 outer vertices. Let C be
the simple cycle in the union of Q}, Q5 and P;. Note that P; can have at most one common
edge with each Q. Let € € {0, 1, 2} be the number of common edges of Pz with Q] U Q5. The
length of Cis 1 + &> + 43 — 2&. If £ = 0 the edges pointing into C can be obtained by adding
the right edges of Q) and the left edges of QY subtracting 5 for the overcount at v and adding 3
for each normal vertex of P3. When Q) shares the last edge with P, then we have to disregard
the contribution of the first normal vertex w of Ps and subtract one for the edge waj;+1 which
belongs to C and is counted as a right edge of Q}. Hence, we obtain the following estimate for
the number of edges pointing into C:

3

¢
2£1+2e2—5—5+3(§3—§):2(£1+e2+e3—25)—5—§ _
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This is less than the number of edges pointing into C which is 2(£1 +£>+43—2&) —5 by Lemma 2.

For (iii) assume that P, and P> have a common vertex different from v and let w be the first
normal vertex of this kind (note that P; and P> might already meet at a stack vertex immediately
before w). Let Q1 and Q> be the subpaths of P and P> that begin with the predecessors v;
respectively v» of v and end with the successors wy respectively wo of w. As before we may
replace the true predecessors of v by dummies to have the edges oriented from v; to v and be
sure that r-outg, (v) = l-outg,(v) = 2. We also consider wy and w» as normal vertices. Let Q]
and QY be the corresponding shortcut paths, and let £; and ¢> be their lengths. Note that the
successor edge of v in Q; and Q' is the same. Let C be the cycle we get by gluing the parts of Q]
and Q) between v and w together. Let s be the number of outgoing edges of v between Q
and QY interior to C. We assume that looking from v into the interior of C the left edge of C
belongs to Q) and the right one to Q5. The number of outgoing edges between vov and vqv
is 5 — (r-outg, (v) + l-outg,(v) —s) = s+ 1. The length of C is £; 4+ £> — 4 and therefore, due
to Lemma 2, exactly 2(¢; + £> — 4) — 5 edges are pointing into the interior of C. If we add the
number of edges pointing from Q} to the right and the number of edges pointing from Q5 to the
left, we overcount by 5 — (s + 1) at v. Hence, the overcount at w must be

(2001 — 1) +2(lo—1)) = (5—(s+1)) — (281 + £» —4) —5) =5+ .

To get an overcount > 5 at w we need to have every edge in the union of the right edges of @
and left edges of Q5. In particular ww; is to the left of Q5. This implies that at least one of
the edges of Q) and Q) ending in w must be a shortcut edge. It follows that w is not an outer
vertex. Further there are exactly s outgoing edges of w between ww; and ww,. Therefore we
can inductively repeat the argument for the subpaths of P; and P> starting at w. ]

Now we are able to prove the the main result of this subsection.

Theorem 6 The canonical map from five color forests to ais-orientations is a bijection.

Proof. Let F be the set of five color forests of G and A the set of as-orientations of G*. Further
let x : F — A be the canonical map and ¥ : A — F the map that keeps the orientation of the
edges as in the az-orientation and colors every edge e in the color of the end vertex of the paths
in P(e).

Claim 1 The map ¥ : A — F is well-defined.

Proof. Lemma 5 (i) and (ii) show that % is a well-defined coloring of the edges of G. It remains
to show that this coloring fulfills the properties of a five color forest.

Property (F1) is clear from the construction.

Now consider property (F2). Because of Lemma 5 (iii) the circular order of the colors of the
outgoing edges of an inner vertex has to coincide with the order of the colors of the outer vertices.
That the incoming edges of color /i are opposite of the outgoing edge of the same color /, follows
from the construction of the paths.

For showing property (F3) assume that there is an inner vertex v with no outgoing edges of
colors 1 — 2 and /4 2 for some /. In the as-orientation these missing outgoing edges correspond
to edges ending in stack vertices. In the interval between these two outgoing edges there has to
be at least one edge e = vw with a normal vertex w. And because of property (F2) this edge
can only be an incoming edge and the color is /. A
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Claim 2 The function ¢ : A — F is injective.

Proof. We show that we can recover the edges of G* from the five color forest on G.
The orientation at normal vertices can directly be read of from the five color forest. Lemma 1
implies that the orientation at stack edges is also prescribed by the five color forest. A

Claim 3 The function x : F — A is injective.

Proof. We show that we can recover the coloring of the edges of a five color forest from the
orientations of the edges, i.e., from the as-orientation in the image of .

Clearly, the colors of the edges incident to the outer vertices are known. Moreover, because of
property (F2) the knowledge of the color of a normal edge incident to an inner normal vertex v
implies the knowledge of the colors of all edges incident to v. Since G is connected, this implies
that the colors of all edges are unique and known. A

Since A and F are finite sets, and x o is the identity map on as-orientations, we obtain from
Claims 2 and 3 that 1) and x and inverse bijections. O]

2.3 The distributive lattice of five color forests

It has been shown in [6] that the set of all a-orientations of a planar graph carries the structure
of a distributive lattice. We need some definitions to be able to describe the cover relation of
this lattice.

Definition 8. A chordal path of a simple cycle C is a directed path consisting of edges interior
to C whose first and last vertex are vertices of C. These two vertices are allowed to coincide.

Definition 9. A simple cycle C is an essential cycle if there is an a-orientation X such that C is
a directed cycle in X and has no chordal path in X.

Theorem 7 ([6]) The following relation on the set of all a-orientations of a planar graph is the
cover relation of a distributive lattice: An ac-orientation X covers an a-orientation Y if and only
if X can be obtained fromY by the reorientation of a counterclockwise oriented essential cycle
inyY.

The reorientation of a counterclockwise (clockwise) oriented essential cycle is called a flip
(flop). The following theorem gives a full characterization of the flip operation in the lattice of
five color forests.

Theorem 8 The set of all as-orientations on G* carries the structure of a distributive lattice.
The flip operation in this lattice is the reorientation of a counterclockwise oriented facial cycle.
Proof. Let X be an as-orientation and let C be an essential cycle in G* which is directed coun-
terclockwisely, i.e., ready for a flip.

Claim 1 There is no edge pointing into the interior of C.

Proof. Assume that there is an edge e pointing from a normal vertex into the interior of C.
Let P € P(e) be a directed path starting with the edge e and ending in an outer vertex of G*.

Then P has to cross C at some point and the subpath of P that ends at the first crossing vertex
with C is a chordal path of C, contradicting that C is essential.
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If e = vw is a stack edge, then v is a stack vertex and w a normal vertex. Take any outgoing
edge €’ of w, then a path P € P(€’) has to cross C. Together with e this yields a chordal
path. A

Claim 2 The cycle C contains at least one stack vertex.

Proof. Assume that C contains only normal vertices. Then according to Lemma 2 there are
exactly 24(C) — 5 # 0 edges pointing into the interior of C, in contradiction to Claim 1. A

Now let v be a stack vertex on C. Let wy be the predecessor and w» be the successor of v
on C. We know that the other outgoing edge of v has to point to the outside of C. Now,
unless C is a facial cycle the edge wyws is an interior chord of C. In either orientation the edge
forms a chordal path, hence, C is not essential. O]

Fig. 10 shows the effect of a flip in terms of contacts of pentagons, the effect on the five color
forest can be read from the figure.

Figure 10: A flip of a facial cycle in an as-orientation and its effect on contacts of pentagons.
The red segment contributes to another pentagon.

3 The Algorithm

In this section we will propose an algorithm to compute a regular pentagon contact representation
of a given graph G.

First we describe the definition of a system of linear equations related to a given five color
forest F of G. If the five color forest is induced by a regular pentagon representation, the solution
of the system allows to compute coordinates for the corners of pentagons in this representation.

Every inner vertex v of G gets a variable x, representing the side length of the corresponding
pentagon and every inner face f gets four variables xél), . ,x;4) representing the segment lengths
of the corresponding quadrilateral in clockwise order where the concave corner is located between

the edges corresponding to xﬁl) and x;2) (see Fig. 11). For the five inner faces which are incident

to two outer vertices of G we add the equation x}l) = 0 since these faces are represented by
triangles, not by quadrilaterals.

With every inner vertex v we associate five equations, one for each side. Each of these equations
states that the side length x, is equal to the sum of the lengths of the boundary segments of
faces incident to the side. More formally, for i =1,...,5, let §;(v) denote the set of faces of G
incident to v in the interval between the outgoing edges of colors i + 2 and / — 2. Then we

15



X¢

Figure 11: The variables for an inner face f.

can write these five equations as x, = Zfeé,-(v) X;j”'f") with the j, r; € {1,...,4} appropriately

chosen. For geometric reasons the three convex corners of the quadrilaterals corresponding to
the faces of G are always exactly (1/5)m. This implies the following two equations for every inner
face f

x;3) = x,gl) + d)x,gz) , x)£4) = d)x,gl) + X,EZ) . (1)

Here ¢ = HT\@ denotes the golden ratio. Finally, we add one more equation to the system which
implies that the sum of the lengths of the face edges building the line segment corresponding
to the outer vertex a; of G is exactly 1, i.e., Zfeél(al)xﬁjal’f'l) = 1 with jao, r1 €4{1,...,4}
appropriately chosen.

In the equations

Z xﬁjal’“) =1, and Z x;jv'f'f) —x,=0

fedi(ar) fes;(v)
we eliminate the variables x§3),x§4) using substitutions according to (1). The resulting system
of linear equations is denoted Agx = e, here Ar is the coefficient matrix depending on the five
color forest F and e is the first standard unit vector.

We next show that the system of linear equations is uniquely solvable. For this purpose we
need a lemma about perfect matchings in plane bipartite graphs. The lemma is well known from
the context of Pfaffian orientations, see e.g., [17], we include a proof for completeness. Let H
be a bipartite graph with vertex classes {v1, ..., v} and {wa, ..., wx}. Then a perfect matching
of H induces a permutation o € Sk by o(i) = & {v;, w;} € M. We define the sign sgn(M) of
a perfect matching M as the sign of the corresponding permutation.

Lemma 6 Let H be a bipartite graph and let M, M’ be two perfect matchings of H. If the
symmetric difference of M and M’ is the disjoint union of simple cycles Cy, ..., Cp, such that,
fori=1,...,m, the length ¢; of C; fulfills £; = 2 mod 4, then sgn(M) = sgn(M").

If H is a plane graph such that each inner face f of H is bounded by a simple cycle of
length £r = 2 mod 4, this property is fulfilled for any two perfect matchings of H.

Proof. For i = 1,...,m, there is an n;j € N with £; = 4n; + 2. Then on the vertices of C; the
permutation o corresponding to M and the permutation ¢’ corresponding to M’ differ in a cyclic
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permutation 7; of length 2n; + 1. Hence, we have 0’ = oo T; o--- 0 Ty, and therefore

sgn(") = sgn(@) - sgn(71) -+ s9n(7)
= sgn(@) - (~1)*" -+ (~1)*™ = sgn() .

In the case that H is a plane graph such that each inner face f of H is bounded by a simple
cycle of length ¢ = 2 mod 4, for each cycle of length £ with k’ vertices in its interior the
formula € + 2k’ = 2 mod 4 is valid. This can be shown by induction on the number of faces
enclosed by the cycle. Since each of the cycles Cq, ..., C, contains an even number of vertices
in its interior, this implies 4, =2 mod 4 fori=1,..., m. ]

Theorem 9 The system Arpx = ey is uniquely solvable.

Proof. We show that det(Ag) # 0. Let A be the matrix obtained from Ar by multiplying all
columns corresponding to vertices of G with —1. Since in Ag all entries in these columns are non-
positive and the entries in all other columns are non-negative, all entries of Ag are non-negative.
Further we have det(Ar) = (—1)" 5 det(Ag).

Now we want to interpret the Leibniz formula of det(AF) as the sum over the perfect matchings
of a plane auxiliary graph Hge. Let Hg be the bipartite graph whose first vertex class vq, ..., vk
consists of the variables of the equation system and whose second vertex class wy, . .., wy consists
of the equations of the equation system. There is an edge v;w; in Hf if and only if (/Z\F),-J- > 0.
Then we have

det(Ar) =Y san(0) [[(AR)ioy = D _ san(M)Puy
o i M

where the second sum goes over all perfect matchings of Hg and where Py, > 0 for all perfect
matchings M.

Next we will define an embedding of Hg into the plane. We start with a crossing-free straight-
line drawing of G. Then we put pairwise disjoint disks around the inner vertices and cut the
bordering circles into five arcs. These five arcs are the drawings of the five equation-vertices
incident to the respective vertex and each of these arcs is contained in exactly those faces of
the embedding of G which are involved in the corresponding equation. Then every inner face f
of G is intersected by exactly four of these arcs, two from one of the incident vertices and one
from the other two vertices. We denote them by Ay, ..., As in clockwise order where A; and As
come from the same vertex. We place the vertices corresponding to x}l) and xﬁz) inside f, but

outside of the disks of the three incident vertices of f. We connect x;l) to A1 and A4, and X)E2)
to A> and As. Up to this point the drawing is crossing-free. Finally we add the two intersecting

edges xM Az and x{P A, inside f. See Fig. 12 for an illustration.

Claim 1 The graph Hr has a perfect matching.

Proof. We describe an explicit construction of a perfect matching of He. The five equation-
vertices adjacent to a vertex v of G are corresponding to the five colors of the five color forest.
We always match the vertex v with the equation-vertex of color 4. The equation-vertices of
colors 2 and 3 are matched with one of the two variable-vertices of the last incident face in
clockwise order, and the equation-vertices of colors 5 and 1 are matched with one of the two
variable-vertices of the last incident face in counterclockwise order (see Fig. 13 (left)).

Now we will show that each face (except the five corner-faces) is matched exactly twice. We
call a segment of a facial quadrilateral B a short segment if it is incident to the concave corner,
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Figure 12: Embedding of Hf into the plane.

%Y
7N

!

Figure 13: Left: Cases for the construction of the perfect matching. Right: The complete perfect
matching in a small instance.

and we call it a long segment otherwise. For two adjacent segments of B we call the segment,
whose containing pentagon side ends in the contact point of the two segments, the cut segment.
Above we mentioned that the five equation-vertices of a vertex of G correspond to the five colors.
Since each segment of B is involved in exactly one of these equations, we can also associate a
color with each of the segments of B. We distinguish three cases concerning segments of color 4
(Fig. 13 (left) shows two of the cases). If B has a short segment of color 4, the other short
segment and the cut long segment are matched. If B has a long segment of color 4, the short
segment, which is neighboring the segment of color 4, and the cut segment of the two remaining
segments are matched. If B has no segment of color 4, for each pair of neighboring long and
short segments the cut segment is matched. Hence, in every case the face is matched exactly
twice.

Since each face is matched exactly twice, its two variable-vertices are matched exactly once.
It can easily be seen that each corner-face is matched exactly once, except the corner-face of
color 4 which is not matched. Finally we match the corner-face of color 4 with the equation-
vertex corresponding to the non-homogeneous equation, and obtain a perfect matching. Figure 13
(right) shows an example. A
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Let Mg be the set of perfect matchings of Hg that do not contain both edges of any pair of
crossing edges.

Claim 2 Let My, My € Mg. Then sgn(My) = sgn(M>).

Proof. The symmetric difference of M; and M5 is a disjoint union of simple cycles. Let C be one
of these cycles. Due to Lemma 6 it suffices to show that £(C) =2 mod 4.

Now consider a pair vawp, Vewy of crossing edges that are both contained in C, i.e., v, and v,
are the two variable vertices of a face and wy, wy correspond to the equations for sidelength of
different pentagons, in particular vawpvewy is a 4-cycle in Hr.

There are two paths Py, P such that C = vowpPiwyvePs. If C looked like C = vawp Prvewy Ps,
the cycle vew, P would have odd length, and that is not possible since Hr is bipartite.

Let C’ be the cycle defined by C' := vew,PiwyvsP> where P> denotes the reversed path Ps.
Note that £(C’) = £(C) and that C’ is contained in the symmetric difference of the perfect
matchings M] and M} obtained from M; and M, in the following way: In one of the matchings
we replace vowp by vawy and in the other matching vewy by vew,. Further all edges of Py switch
the matching.

The cycle C’ has one crossing less than C. By iterating this process we obtain a cycle C”
with £(C") = £(C) which is crossing-free and contained in the symmetric difference of two perfect
matchings of Hge. Since C” is crossing-free, it is also contained in a spanning subgraph Hf of Hr
that keeps all none crossing edges of Hr and exactly one of the two edges of every crossing pair.
Then Hg inherits a crossing-free drawing from Hg where every inner face is a simple cycle of
length 6 (note that every face corresponds to a corner of a pentagon in the pentagon contact
representation). Due to Lemma 6 this implies £(C"”) =2 mod 4. A

Now we will consider all perfect matchings of Hr. We divide them into equivalence classes
according to the following equivalence relation: Two perfect matchings M, M’ are equivalent if M’
can be obtained from M by exchanging pairs of crossing edges with the two non-crossing edges
on the same four vertices (we call them twin edges). Exchanges in both directions are allowed.
Note that each equivalence class contains exactly one of the matchings of Mg we considered in
Claim 2. Let My € Mg be one of these matchings and let k = k(Mp) be the number of pairs
of twin edges contained in My. Because each pair of twin edges can be exchanged independently
with the corresponding pair of crossing edges, the equivalence class Ay, of My consists of ok
matchings and for i =0, ..., k, the class contains ('f) matchings with exactly / pairs of crossing
edges. In the product Py, of entries of Ar corresponding to the edges of My we see a contribution
of ¢? for each pair of twin edges, see equations (1). The contribution for a pair of crossing edges
is 1. Therefore

k

7 sgn(M)Py =Y (6) sgn(Mo)(—1)" Pus, (;)’ = sgn(Mo) P, (1 _ dj.z)k

MGAMO i=0

and

~ 1\ kK(Mo)
det(AfF) = Z Z sgn(M) Py = Z sgn(/\ﬂo)i,\:,g <1 — ¢2>
[ —

MoeMo MEAMO MoeMo ~0
>0

Because of Claim 2 we have sgn(Mg) = sgn(M{) for any two matchings My, M € My. Finally
this implies det(Ag) # 0. [
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The following lemma will help us to prove that a non-negative solution of the system Arx = e;
leads to a regular pentagon contact representation of G.

Lemma 7 Let H be an inner triangulation of a polygon. For every inner face f of H with vertices
vi, Vo, v3 In clockwise order let T¢ be a triangle in the plane with vertices p(f, v1), p(f, v2), p(f, v3)
in clockwise order such that the following conditions are satisfied:

(i) For each inner vertex v of H with incident faces fi, ..., fx
k
> B(fiv)=2m
i=1

where B(f, v) denotes the interior angle of T¢ at p(f, v).

(ii) For each inner edge vw of H with incident faces fi, >

p(fr,v) — p(f, w) = p(f2, v) — p(f2, w)
I.e., the vector between v and w is the same in Ty, and Tg,.

Then there exists a crossing-free straight line drawing of H such that the drawing of every inner
face f can be obtained from T¢ by translation.

Proof. Let H* be the dual graph of H without the vertex corresponding to the outer face of H.
Further let S be a spanning tree of H*. Then we can glue the triangles T¢ of all inner faces f
of H together along the edges of S. We need to show that the resulting shape has no holes or
overlappings. For the edges of S we already know that the triangles of the two incident faces are
touching in the right way. For the edges of the complement S of S we still need to show this.
We consider S as a subset of the edges of H. Note that S is a forest in H. Let e be an edge of S
incident to a leaf v of this forest that is an inner vertex of H. Then for all incident edges €’ # e
of v we already know that the triangles of the two incident faces of e are touching in the right
way. But then also the two triangles of the two incident faces of e are touching in the right way
because v fulfills property (/). Since the set of edges we still need to check is still a forest, we
can iterate this process until all inner edges of H are checked. ]

Theorem 10 The unique solution of the system Arpx = ey is non-negative if and only if the five
color forest F is induced by a regular pentagon contact representation of G.

Proof. Assume there is a regular pentagon representation & of G that induces the five color
forest F. Then the edge lengths given by S define a non-negative solution of Apx = e;.

For the opposite direction, assume the solution of Arx = e; is non-negative. To be able to
apply Lemma 7 we first construct an internally triangulated extension of the skeleton graph of a
hypothetical regular pentagon contact representation with induced five color forest F. We start
with a crossing-free straight-line drawing of G. Add a subdivision vertex on each edge of G.
Moreover, for each inner vertex v draw an edge ending at a new vertex reaching into each face
with a missing outgoing edge of v. Then connect all the new adjacent vertices of v in the cyclic
order given by the drawing.

At this point inner faces of G are subdivided into four triangles and a quadrangle (shown gray in
Fig. 14). One of the vertices of the quadrangle is the new interior vertex w of the face. Connect
vertex w to the subdivision vertex diagonally in the quadrangle (shown dashed in Fig. 14).
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Figure 14: Part of a triangulation with a five color forest, the resulting skeleton graph, and a
realization.

Figure 15: The two types of sign-separating edges.

Using the edge lengths given by the solution of Agx = e; we can compute the side length of
each triangle T corresponding to an inner face f of this skeleton graph such that an application
of Lemma 7 gives us a regular pentagon contact representation of G with induced five color
forest F. ]

The algorithm first computes an arbitrary five color forest of G (this is possible in linear time
by the construction from Theorem 5 since Schnyder woods can be constructed in linear time, see
for example [2]). Based on the five color forest the algorithm generates the corresponding system
of linear equations and solves it. Since the size of the system is linear in the size of the input
graph this can be done in cubic time. If the solution is non-negative, we can construct the regular
pentagon contact representation from the edge lengths given by the solution and are done. If the
solution has negative variables, we would like to change the five color forest and proceed with the
new one.

We now show a way of changing the five color forest in the case of a solution with negative
variables.

Theorem 11 The negative and non-negative variables of the solution of the system Arx = e1 are
separated by a disjoint union of directed simple cycles in the as-orientation corresponding to F.
If there are negative variables, this union is non-empty.

Proof. We call the following two types of edges in the as-orientation sign-separating edges (see
Fig. 15 for an illustration): Edges of the first type are normal edges vw such that the abstract
pentagon of v has a sign-change at the contact point with the abstract pentagon of w, and both
abstract facial quadrilaterals incident to this touching point do not have a sign-change at this
point. Edges of the second type are stack edges vw with normal vertex v and stack vertex w
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Figure 16: Construction of the predecessors of a sign-separating edge e.

such that the abstract pentagon of v has a sign-change at the corner which is a concave corner
of the abstract quadrilateral of w.

Claim 1 /n an abstract facial quadrilateral there is either no sign-change, or there are two sign-
changes (one at a convex corner and one at the concave corner).

Proof. Let x}l) ..... X,EA') be the four variables of the facial quadrilateral as in the beginning of
this section (see Fig. 11). Then the equation system contains the two equations

x§3) = X,Sl) + dbx;z) , x;4) = qﬁxﬁl) + x§2)
where ¢ is the golden ratio. The fact that ¢ > 1 immediately implies the claim. A

Claim 2 /f there are negative variables, there exists a sign-separating edge.

Proof. Because of the inhomogeneous equation the solution always contains positive variables.
Therefore, if there are negative variables, at some point of the abstract pentagon contact repre-
sentation there has to be a sign-change.

If there is a sign-change in an abstract facial quadrilateral, there has to be a sign-change at
the concave corner of this quadrilateral (see Claim 1) and therefore a sign-separating edge of the
second type. Otherwise, two abstract facial quadrilaterals, one of them non-negative, the other
one negative, have to touch at some point. At such a point there is a sign-separating edge of
the first type. A

iFrom a sign-separating edge vw we next construct a path in the as-orientation. Assume
that x, > 0 (the other case is symmetric). The side of the abstract pentagon of v, that starts
with a negative segment at the corner corresponding to the edge vw, has to contain at least one
positive segment because the sum of its segments has to be non-negative. We look at the first
sign-change of the side and construct the predecessor path as illustrated in Fig. 16, depending
on the signs of the edges incident to the point of this sign-change.

Let E’ be the set of all edges occurring in any predecessor path, including the sign-separating
edges. Then we can interpret the predecessor assignment as an assignment from E’ to the same
set E.
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Claim 3 The predecessor assignment is a bijection of the set E’.

Proof. We show that the assignment is injective by proving that each edge e of the as-orientation
has an unique successor if it has one. Since E’ is a finite set, this implies that the assignment is
bijective.

Let e = vw be an edge ending in a stack vertex w. Then e corresponds to the concave corner
of the abstract quadrilateral B of w. Let p be the convex corner of B with a sign-change (this
corner is unique due to Claim 1), let A; be the abstract pentagon touching p with the interior
of a side, and let As be the abstract pentagon touching p with a corner. Further, for i = 1, 2,
let u; be the normal vertex corresponding to A;. If uy = v, we are in the first or the last case of
Fig. 16 and the successor of e has to be the edge wu,. Otherwise the successor of e has the be
the edge wus.

Now let e = vw be an edge ending in a normal vertex w. If e € E’, it corresponds to a
sign-change at a point p in the interior of a side of the abstract pentagon A of w. Let x, > 0
(the other case is symmetric). Then the successor of e has to be the edge corresponding to the
first corner of A that we reach when we go from p in the direction of the negative segment. A

Due to Claim 3 the edge set E’ is a disjoint union of directed simple cycles in the as-orientation
separating the negative and non-negative variables. Due to Claim 2 this union is non-empty if
there are negative variables. ]

With this theorem at hand we have a way of changing the five color forest and restart the
algorithm. We cannot prove that the iteration will eventually stop with a non-negative solution.
The following theorem, however, shows in a very special case that the change of the five color
forest can have the intended effect, i.e., change the signs of negative variables to positive.

Theorem 12 Let F be a five color forest, let g be an oriented facial cycle in the corresponding
as-orientation and let F' be the five color forest obtained from F by flipping g. Let € and &'
be the solutions of the equation systems corresponding to F and F' respectively. Let sy be the
segment surrounded by g (see Fig. 10) and let 4 and £y be the component of § respectively &'
which corresponds to sy, I.e., records the ‘length’ of s;. Then &g and &’g have different signs

orég=¢&,;=0.

Proof. Denote the equation systems corresponding to F and F' as Arx = e; and Apy = e;.

Let f be the face of G containing g. The variable corresponding to sy in the first system is xf’
with / = 1 or i = 2 and in the second system it is y;J) with j # i and j € {1,2}, ie, & is
the value of X,E') in the solution £ and 521 is the value of y,gj) in the so'lution & Let AS_-g) be the
matrix obtained from Afr by replacing the column corresponding to X,S') with e, and let AE_-g,) be
the matrix obtained from Ag by replacing the column corresponding to yﬁj) with e;. According
to Cramer’s rule we have @ @
- det(AF”) . det(AZ)
g det(AF) "y det(AF/)
It can be verified that the column of Ag corresponding to xf(-j) and the column of Ag corre-

sponding to x;/) are equal. We go through the details with the generic example shown in Fig. 17.

In this case i = 2 and j = 1. Consider the variable x}l). It naturally belongs to the equation of
color 4 of v with a coefficient of 1. Due to the substitutions, see equations (1), it also contributes
to the equations of color 5 at u and of color 2 at w, the respective coefficients are 1 and ¢. Now
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consider the variable y}z). It naturally belongs to the equation of color 5 of u with a coefficient
of 1. The substitutions also make it contribute to the equations of color 4 at v and of color 2 at
w, the respective coefficients are 1 and ¢. Hence, the columns corresponding to xﬁl) and y§2) in
their respective systems are equal.

Figure 17: The face f before and after the flip at the red segment together with the variables of
the face.

If we switch the columns corresponding to y,gi) and y

U) i Afp to get Apr, then, by the above Ar
and Ag only differ in the column corresponding to the segment Sq, whgnce Afgq) = /Z\g).

To prove the theorem it remains to show that det(Ar) and det(Ar) have different signs.
Similar to the proof of Theorem 9 we can do this by showing that a perfect matching M of Hg
and a perfect matching M’ of Hg/ that both do not contain a pair of crossing edges, have different
signs.

Let vy and v, be the vertices of Hr and Hg corresponding to face f such that v; corresponds
to sq. Note that this makes the local situations around f in Hr and Hg asymmetric (see Fig. 18).

The asymmetry corresponds to the switch of columns from Ag to Ag.

Figure 18: The local situation around f in Hr and Hg.

Let wy be the unique equation-vertex that is adjacent to v; and v, in F and F’ (in Fig. 17
vertex wy would correspond to the equation of color 2 at w). Let w, be the equation-vertex
that is adjacent to both of v; and v, only in F, and in F’ only to v» (in Fig. 17 vertex w, would
correspond to the equation of color 5 at u). Let ws be the equation-vertex belonging to the
same pentagon as w, that is adjacent to vy in F’ (in Fig. 17 vertex ws also belongs to v and
has color 1). Let wy be the equation-vertex that is adjacent to v; in F and has no adjacency
in F’ (in Fig. 17 vertex wy corresponds to the equation of color 3 at v). Finally, let ws be the
equation-vertex belonging to the same pentagon as wy that is adjacent to both of vy and v» in F/,

24



and in F only to v» (in Fig. 17 vertex ws corresponds to the equation of color 4 at v).

The non-crossing condition implies that M does not contain both of the edges viwy and vows,
and that M’ does not contain both of the edges viw; and vowy.

We distinguish two cases. In the first case, both of M and M’ contain the edge viwy. Then M
has to contain the edge vows and M’ has to contain the edge vows. In this case M’ is a
matching of Hg which contains a single crossing while M is a matching without crossing. There-
fore, sgn(M) # sgn(M’).

In the second case, at least one of the matchings M and M’ does not contain the edge vy w;.
Assume M’ contains the edge viw; with j € {3,4} and not the edge viw;. The case that M
does not contain the edge viw; is symmetric. Note that we can add the edge viw; to HFf
without creating an additional crossing and let 4 be the thus obtained graph. Then M and M’
are matchings of H. If we delete one edge of each pair of crossing edges from Hg, all inner faces
are bounded by simple cycles of length 6. Doing the same with H one of the 6-cycles is divided
into two cycles of length 4 by the edge viw;.

To argue that sgn(M) # sgn(M’) we define the graph H obtained from H by subdividing the
edge viw; into three edges viuy, uiuo, iowj. Then, if we delete one edge of each pair of cross-
ing edges from H, all inner faces are bounded by simple cycles of length 6. Let M be the
perfect matching of H obtained from M by adding the edge uiun, and let M’ be the perfect
matching of H obtained from M’ by replacing the edge viw; with the edges viup and wow;.
Then the symmetric difference of M and M’ is a disjoint union Cq, ..., Cx of simple cycles of
lengths £(C;) =2 mod 4. Let C; be the cycle containing the edges vqui, uitn, towj. Then
the symmetric difference of M and M’ is the disjoint union of the cycles Co, ..., Cy and the
cycle C obtained from C; by replacing the edges vius, uus, us, w; with the edge vaw;. There-
fore £(C1) =0 mod 4 and sgn(M) # sgn(M’). O

We cannot prove that the iterations of the algorithm lead to any kind of progress. Therefore,
it may be that the algorithm cycles and runs forever. However, similar algorithms for the com-
putation of contact representations by homothetic squares or triangles have been described in [7]
and [8]. These algorithms have been subject to extensive experiments [10, 11]. They have always
been successful. We therefore have the following conjecture.

Conjecture 1 The algorithm described above terminates with a non-negative solution for every
graph G which is an inner triangulation of a 5-gon, and for every initial five color forest F of G.

A proof of this conjecture would imply a new proof for the existence of pentagon contact
representations for these graphs. Moreover, since they only depend on the values of the solution of
a linear system of equations, the coordinates for the corners of the pentagons could be computed
exactly. If the proof would come with a polynomial bound on the number of iterations before
termination, then the algorithm would run in strongly polynomial time when doing arithmetics in
the extension field Q[v/5] of the rationals.
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