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Abstract. We consider facet-Hamiltonian cycles of polytopes, defined as cycles in their

skeleton such that every facet is visited exactly once. These cycles can be understood as

optimal watchman routes that guard the facets of a polytope. We consider the existence

of such cycles for a variety of polytopes, the facets of which have a natural combinatorial

interpretation. In particular, we prove the following results:

• Every permutahedron has a facet-Hamiltonian cycle. These cycles consist of circular

sequences of permutations of n elements, where two successive permutations differ

by a single adjacent transposition, and such that every subset of [n] appears as a
prefix in a contiguous subsequence. With these cycles we associate what we call

rhombic stripswhich encode interleaved Gray codes of the Boolean lattice, one Gray

code for each rank. These rhombic strips correspond to simple Venn diagrams.

• Every generalized associahedron has a facet-Hamiltonian cycle. This generalizes

the so-called rainbow cycles of Felsner, Kleist, Mütze, and Sering (SIDMA 2020) to

associahedra of any finite type. For typesA,B/C , andD, facets have natural inter-

pretations in terms of arcs in triangulations, and the facet-Hamiltonian cycles yield

sequences of triangulations, where two successive triangulations differ by a single

adjacent flip, and in which every arc appears and disappears exactly once. We re-

late the constructions to the Conway-Coxeter friezes and the bipartite belts of finite

type cluster algebras.

• Graph associahedra of wheels, fans, and complete split graphs have facet-Hamil-

tonian cycles. For associahedra of complete bipartite graphs and caterpillars, we

construct facet-Hamiltonian paths. Here the facets correspond to tubes, or con-

nected induced subgraphs, and we obtain a sequence of elimination trees on those

graphs such that every tube appears as a subtree exactly once. The construction

involves new insights on the combinatorics of graph tubings.

We also consider the computational complexity of deciding whether a given polytope

has a facet-Hamiltonian cycle and show that the problem is NP-complete, even when

restricted to simple 3-dimensional polytopes.
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1 Introduction

Given a graph, does it contain a cycle that visits every vertex exactly once? Such a cycle is called a

Hamiltonian cycle, in honor of Sir William Rowan Hamilton, who invented the Icosian game in 1857.

This puzzle involves finding a cycle along the edges of a dodecahedron such that every vertex is visited

exactly once, see Figure 1(a). Hamiltonicity, the property of having a Hamiltonian cycle, has since

become a fundamental theme in combinatorics and computer science, and Hamiltonicity of graphs

formed by vertices and edges of polytopes, in particular, is a well-studied topic.

(a) (b)

Figure 1: The dodecahedron with a Hamiltonian cycle (a) and a facet-Hamiltonian cycle (b).

We propose a new notion for polytopes, that we call facet-Hamiltonicity. A cycle (or path) C in the

skeleton of an n-dimensional polytope is said to be facet-Hamiltonian if it visits every facet (every

(n − 1)-dimensional face) of the polytope exactly once; this means that for every facet f , the inter-
section f ∩ C is nonempty and connected. Figure 1(b) illustrates a facet-Hamiltonian cycle of the

dodecahedron. A polytope is facet-Hamiltonian if its skeleton contains a facet-Hamiltonian cycle.

Finding facet-Hamiltonian cycles in simple polytopes can also be understood as a (perfect) watch-

man route problem where the watchman moves on the skeleton of the polytope and the polytope’s

surface has to be guarded. In the classical watchman route problem, one seeks a shortest closed tour

of some domain such that each point of the domain is visible from some point on the tour. Clearly, a

watchman route has to visit each facet at least once. For simple polytopes each newly visited vertex

contributes one extra facet. Measuring the length of the path by the number of edges, a facet-Hamil-

tonian cycle is a perfect watchman route that attains this lower bound.
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1.1 Elementary properties

Facet-Hamiltonian cycles of simple polytopes have particularly nice properties. Every vertex of a

simple n-polytope P is incident to n edges and n facets. Hence, when a path or cycle visits a new

vertex one new facet is entered, and one facet is left. The facet left in the next step must be different

from the one that was just entered, otherwise the cycle contains the same edge twice. It follows that

the length of a facet-Hamiltonian cycle of a simple polytope P equals the number of facets, unless P
has universal facets, i.e., facets which are adjacent to all other facets. If a facet-Hamiltonian cycle C
lives in the intersection of s universal facets and not more and P has k facets, then the length of C is

k − s. Indeed every facet of the simplex is universal and the n simplex has facet-Hamiltonian cycles

of all length from 3 to n+ 1. These observations are summarized below.

Observation 1. Let P be a simple n-dimensional polytope with k facets. Then a facet-Hamiltonian

cycle C of P has the following properties:

• For every facet f of P , the intersection f ∩ C contains at least one edge of P .

• The length of C equals k, unless P has s ≥ 1 universal facets, in this case the length of C is

between k − s and k.

Unsurprisingly, not all simple polytopes are facet-Hamiltonian. An example of non-facet-Hamil-

tonian polytope is given in Figure 2. To see this, let v denote the gray vertex and f the small triangle.

Any facet-Hamiltonian cycle uses two edges of the three cut edges highlighted in red; otherwise the

facets incident to v or f are not visited. By symmetry, we may assume that eℓ and er are visited.

Because they are both incident to the top facet, the facet-Hamiltonian cycle contains either the two

green or the two blue edges. This implies that either the bottom facet or f is not visited.

v

f

eℓ er

Figure 2: A three-dimensional simple polytope that is not facet-Hamiltonian.

The following question then naturally follows: What is the computational complexity of deciding

whether a given polytope has a facet-Hamiltonian cycle? We prove that this problem isNP-complete,

even when the input polytope is three-dimensional and simple.

Theorem 1. The problem of deciding whether a given simple three-dimensional polytope has a facet-

Hamiltonian cycle is NP-complete.

In what follows, we consider facet-Hamiltonicity of classical polytopes that are ubiquitous in com-

binatorics: permutahedra and associahedra.
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1.2 Permutahedra

The (n−1)-dimensional permutahedron [41] is the convex hull inRn
of the integer vectors denoting

the permutations of [n], and contained in the hyperplane of equation

∑
xi = n(n + 1)/2. Its edges

connect permutations that differ by a single adjacent transposition. The graph of the permutahedron

is therefore the Cayley graph of the symmetric group of order n for the generators consisting of

adjacent transpositions. Permutahedra are Hamiltonian, hence it is possible to list all permutations

of [n] so that successive permutations differ by a single adjacent transposition. A classical construction

of such a cycle is known as the Steinhaus–Johnson–Trotter Gray code [50, 86, 66].

The facets of the (n − 1)-dimensional permutahedron are one-to-one with proper and nonempty

subsets of [n]. Since permutahedra are simple and no facet is incident to all other facets, Observation 1

applies, and a facet-Hamiltonian cycle in a permutahedron must have length exactly 2n − 2. A facet-

Hamiltonian cycle in a permutahedron is therefore a cyclic list of 2n − 2 permutations of [n], each
differing by a single adjacent transposition from its predecessor, and such that every proper subset S
of [n] appears as a new prefix exactly once. We construct facet-Hamiltonian cycles for permutahedra.

A cycle for the case n = 4 is illustrated in Figure 3(a).

Theorem 2. The (n− 1)-dimensional permutahedron has a facet-Hamiltonian cycle for all n ≥ 3.

We give a brief outline of the proof of Theorem 2. We first prove, for every n ≥ 1, the exis-

tence of facet-Hamiltonian paths between the identity permutation 1, 2, . . . , n to the permutation

n, 1, 2, . . . , n− 1. This is achieved inductively, by using two copies, one of which is reversed, of the

facet-Hamiltonian paths obtained for n−1. The element n is appended to very permutation of the first

copy, and put in first position in every permutation of the second copy. We can then move from the

last permutation obtained from the first copy to the first permutation in the second bymoving n to the

42134123

4231
43214312

4132

3421
3241 2341

2314
32143124

1324

3412
31421342

1432

1423

1243

1234 2134

2143

2413

2431

(a)

1 2 3 4

2 1 3 4

2 3 1 4

3 2 1 4

3 1 2 4

3 1 4 2

3 4 1 2

4 3 1 2

4 3 2 1

4 2 3 1

4 2 1 3

4 1 2 3

1 4 2 3

1 2 4 3

1 2 3 4

(b) (c)

Figure 3: Facet-Hamiltonian cycles in a permutahedron (a), and an associahedron (c). Table (b) shows

the inductive structure of the facet-Hamiltonian cycle on the 3-dimensional permutahedron

in (a). The cycle is obtained by combining two copies of the facet-Hamiltonian path from

123 to 312 on the hexagon.
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front. A similar operation in the other direction closes the cycle. Details are given in Subsection 2.1.

Figure 3 shows the construction for n = 4.

Facet-Hamiltonian cycles and rhombic strips. Permutations are in bijection to maximal chains

of the Boolean lattice. Two permutations are adjacent on the permutahedron if the corresponding

maximal chains differ in exactly one element. Thus, a path on the permutahedron can be encoded

by a maximal chain for the first vertex and by adding a diamond detour (a rhombic cell) for every

subsequent vertex. We call such an encoding of a path a rhombic strip. Facet-Hamiltonian cycles

of the permutahedron correspond to cylindrically closed rhombic strips which are subdiagrams of

the Boolean lattice. Figure 4 shows the rhombic strip corresponding to a facet-Hamiltonian cycle for

n = 5. Note that the strip encodes several cycles, for example between 45231 and 54321 the cycle

may visit either 45321 or 54231.
More precisely, a rhombic strip in a graded poset P of height n+ 1 is a spanning subgraph of the

diagram of P that admits a plane drawing with the following properties:

• The vertices are placed on n + 1 horizontal lines, labeled from 0 to n from bottom to top, so

that the vertices of rank i are placed on the line of label i, and

• bounded faces are quadrilaterals.

1 2 3 4 5

12 13 14 1523 24 2534 3545

123 124 125134 135145234 235245 345

1234 123513451245 2345

1

12

123

1234

Figure 4: A cylindrically closed rhombic strip encoding facet-Hamiltonian cycles on the permutahe-

dron for n = 5.

In what follows, we will be mainly interested in rhombic strips in the Boolean lattice of subsets

of [n]. Note that in our figures we omit the vertices of rank 0 and rank n. A face with two vertices of

rank k is a rhombus of rank k. A rhombic strip is cylindrically closed if on the outer face the left and

the right path from rank 0 to rank n are identical (here we allow duplicated vertices). Alternatively a

closed rhombic strip can be seen as a drawing on the sphere where the vertices of rank 0 and rank n
are at the south and north pole respectively, the other ranks are represented by circles of latitude,

and all the faces are rhombi. In this paper we present rhombic strips in Figures 4, 11, 12, 20, 22, 29

and 35. With exception of the one shown in Figure 20 they are all closed. Furthermore, in most of

these cases the ranks represent the dimension in the face lattice of an associated polytope. In the case

of the typeA andB-permutahedra, these polytopes are the simplex and the cube respectively. In case

of the graph associahedra (Section 5), the rank k consists of the tubes containing k vertices.

Many combinatorial polytopes can be realized as generalized permutahedra [72, 71]. A (n − 1)-
dimensional generalized permutahedron is obtained from the (n − 1)-dimensional permutahedron

by translations of facet-defining hyperplanes. Hence the facets of the generalized permutahedra cor-

respond to proper subsets of [n]. Therefore the poset associated to the rhombic strips is a sub-poset

of the Boolean lattice. Vertices of generalized permutahedra which are incident to facets associated

with subsets of all cardinalities are called regular. They can be encoded by a permutation or a maximal
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chain in the Boolean lattice. We can therefore associate a closed rhombic strip with a facet-Hamil-

tonian cycle of a generalized permutahedron that only uses regular vertices.

Given the rhombic strip corresponding to a facet-Hamiltonian cycle of a generalized permutahe-

dron P we can look at the elements of rank k. There we find a list of all k-sets which define facets.

Consecutive k-sets have a symmetric difference of size 2. In other words we have a Gray code for

the k-facets of P . Since k is arbitrary we have a Gray code on each rank, and these Gray codes are

interleaved by the planarity condition.

In what follows, these regular cycles will play an important role. Many of our constructed cycles

are of this stronger form. Especially in Section 5 some constructions only use nested tubings (see

Section 5.4 for a definition), which are exactly the regular vertices.

Rhombic strips and Venn diagrams. A Venn diagram of the subsets of [n] is a collection of n
simple closed curves γ1, . . . , γn in the plane such that for every subset S ⊂ [n] the region⋂

i∈S
int(γi) ∩

⋂
i∈[n]\S

ext(γi)

is nonempty and connected. This implies that the curves cuts the plane into regions and every region

corresponds to a subset of [n]. A Venn diagram is simple if no three curves intersect in a point.

See [43, 40] for history and the survey [77] by Frank Ruskey and Mark Weston for details.

Considering a closed rhombic strip of the permutahedron of dimension n, we see all subsets of [n]
as the vertices of a plane graph drawn on the sphere. This graph is the dual of a corresponding Venn

diagram obtained as follows. For i ∈ [n], draw a curve with exactly those sets containing i above it.
To see that this is possible we draw the curve one segment at a time from left to right. Say our current

endpoint is in some rhombic face. Then the bottom of this rhombus represents a set not containing i
while the top does contain it. Depending on whether the right vertex does contain i or not we know
which edge to cross next. See Figure 5 for an illustration.

1 2 3 4 5

12 13 14 1523 24 2534 3545

123 124 125134 135145234 235245 345

1234 123513451245 2345

1

12

123

1234

Figure 5: A rhombic strip of the 5 dimensional permutahedron and its corresponding Venn diagram.

Note that the left and right side are identified as we are on the sphere.

In the other direction, any simple Venn diagram has a dual graph which is a rhombic strip. Hence

the rhombic strips of the permutahedron are in bijection to the simple Venn diagrams on the subsets

of [n]. See [52] and the figures therein for more details about simple symmetric Venn diagrams and

their connections to rhombic strips. It is an open problem whether simple symmetric (with a n-
fold rotational symmetry) Venn diagrams exist for all prime numbers n. Such Venn diagrams would

correspond to rhombic-strips which are build from one pattern repeated n times from left to right.
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1.3 Associahedra

Associahedra appear in various areas of mathematics [85, 83, 84, 51, 36, 37, 20, 1, 70]. They are known

for encoding triangulations of a convex polygon [81, 56, 47, 57, 55]. In fact, their graphs are the

flip graphs on triangulations of a convex polygon, where a flip consists of replacing the diagonal

of a quadrilateral by the other diagonal. Associahedra are known to be Hamiltonian, hence we can

list all triangulations of a convex polygon so that two successive triangulations differ only by a single

flip [58, 47]. The facets of the (n−1)-dimensional associahedron are one-to-onewith the diagonals of a

convex (n+2)-gon. The number of facets of the (n−1)-dimensional associahedron is (n+2)(n−1)/2.
From Observation 1, this is the length of any facet-Hamiltonian cycle. Finding such a cycle amounts

to finding a cyclic list of (n+ 2)(n− 1)/2 triangulations of a convex (n+ 2)-gon, each differing by

a single flip from its predecessor, and such that every diagonal of the polygon appears as a new edge

of the triangulation exactly once.

In a series of seminal papers [36, 37, 8, 38], Fomin and Zelevinsky developed the theory of cluster

algebras, a field with numerous connections to other areas of mathematics. For cluster algebras of

finite type, the so-called cluster complex is the dual of a generalized associahedron of that type, and

facets of the associahedron have a natural interpretation as cluster variables. Finding facet-Hamil-

tonian cycles or paths on associahedra can therefore be interpreted as generating cluster variables of

a finite type cluster algebra efficiently. The first geometric realization of generalized associahedra is

due to Chapoton et al. [21]. Further generalizations to Coxeter groups are known [76, 45].

The classical associahedra are generalized associahedra for Weyl groups of type A, and are there-

fore referred to as type A associahedra. Associahedra of type B/C are also known as cyclohedra, or

Bott-Taubes polytope [80, 11]. Cyclohedra have a convenient combinatorial model defined in terms of

centrally symmetric triangulations of a convex 2n-gon, in which edges are symmetric pairs of diag-

onal flips. Type D associahedra, finally, also have nice combinatorial models, involving symmetric

pseudotriangulations of a convex polygon minus a disk, as introduced by Ceballos and Pilaud [19],

or triangulations of a punctured polygon. We show that all generalized associahedra admit a facet-

Hamiltonian cycle. Note that facet-Hamiltonian cycles for associahedra of type A already appeared

in the work of Felsner et al. [31, 32] as so-called rainbow cycles.

Theorem 3. Generalized associahedra of all finite types are facet-Hamiltonian.

Figure 6 illustrates a simple construction of a facet-Hamiltonian cycle for the typeA associahedron,

in which two subsets of parallel diagonals are flipped alternatingly.

T1 T3T2 T4 T5 T6 T7 T8

Figure 6: A facet-Hamiltonian cycle on the 5-dimensional associahedron. Intermediate steps between

the depicted triangulations are omitted, and consist of flipping triples or pairs of parallel

diagonals, in any order.

Permutahedra and associahedra are closely related families of polytopes, with many common gen-

eralizations. As mentioned above, the theory of generalized permutahedra (also referred to as de-

formed permutahedra) pioneered by Postnikov [72, 71], deals exactly with the properties and applica-

tions of deformations of permutahedra, which include associahedra. We will focus on a class of gen-

eralized permutahedra called graph associahedra, studied in particular by Carr and Devadoss [18, 26].
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1.4 Graph associahedra

Graph associahedra are polytopes defined from a given graph that generalize permutahedra and as-

sociahedra. We first introduce the relevant terminology.

Let G = (V,E) be a graph. A tube t of G is a nonempty strict subset of V such that the induced

subgraph G[t] is connected. Two tubes t1 ̸= t2 are said to be (i) non-adjacent if G[t1 ∪ t2] is not
connected, and (ii) nested if either t1 ⊂ t2 or t2 ⊂ t1. We call two tubes compatible if they are

either nested or non-adjacent. Figure 23 illustrates examples of non-compatible and compatible tubes.

A tubing of G is a collection of pairwise compatible tubes. The graph associahedron A(G) of G is a

polytope whose face lattice is the inclusion poset of the tubings ofG. Its vertices are one-to-one with

inclusion maximal tubings of G, and its facets are one-to-one with tubes of G. An example is given

in Figure 7. Since A(G) is simple and its facets correspond to tubes of G, Observation 1 implies that

the length of a facet-Hamiltonian cycle is the number of tubes of G, see also Table 1.

1 2

34

1
234

1
2 3 4

Figure 7: Illustration of A(C4) and a facet-Hamiltonian cycle.

Table 1: Classes of graph associahedra and their number of vertices and facets

graph associahedra underlying graphs # vertices # facets

permutahedra Kn n! 2n − 2

associahedra Pn
1

n+1

(
2n
n

)
(n+ 2)(n− 1)/2

cyclohedra Cn

(
2n−2
n−1

)
n(n− 1)

stellohedra Sn
∑n−1

i=0 i!
(
n−1
i

)
2n−1 + n− 2

The vertices ofA(G), hence maximal tubings ofG, can also be seen to be one-to-one with elimina-

tion trees of G. An elimination tree of G is a rooted tree on the same set of vertices V as G, obtained
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by choosing any vertex r ∈ V as root, and attaching as subtrees the elimination trees obtained by

recursing on the connected components of G[V \ {r}]. The tubes of the maximal tubing are the

subsets of vertices belonging to the proper subtrees of the elimination tree. Edges of graph associ-

ahedra correspond to rotations between elimination trees, or, equivalently, to flips between pairs of

tubes [14, 10, 15]. A facet-Hamiltonian cycle in the graph associahedronA(G) is then simply a cyclic

list of elimination trees of G, each differing by a single rotation from its predecessor, and such that

every tube of G appears as a new subtree of the elimination tree exactly once.

The (n − 1)-dimensional permutahedron is the associahedron A(Kn) of the complete graph Kn

on n vertices. Elimination trees in the complete graph are one-to-one with permutations of the ver-

tices, and rotations are just adjacent transpositions. Similarly, the classical (n − 1)-dimensional as-

sociahedron is the associahedron A(Pn) of the path Pn on n vertices. In that case, the elimination

trees are the duals of the triangulations of a convex (n + 2)-gon, via a classical Catalan bijection,

and the rotations are the classical binary tree rotations. The associahedron A(Cn) of the n-vertex
cycle Cn is the cyclohedron, and also the associahedron of type B. For the n-vertex star Sn, the

associahedron A(Sn) is known as the stellohedron, whose vertices are one-to-one with partial per-

mutations (ordered subsets) of [n]. In that case, the rotations or flips correspond to either adjacent

transpositions in the partial permutation, or adding or removing an element at the end of the partial

permutation [15]. Besides being fundamental objects in algebraic and geometric combinatorics [1],

graph associahedra have found applications in data structures [10, 7, 6] and causal inference [63, 82].

Graph associahedra were shown to be Hamiltonian by Manneville and Pilaud [59]. Hence it is

possible to list all elimination trees of a graph in such a way that every tree differs by a single rotation

from its predecessor in the list. Efficient algorithms for the case of chordal graphs were given by

Cardinal, Merino, and Mütze [15]. We show that facet-Hamiltonicity also holds for several families

of graph associahedra.

Theorem 4. Graph associahedra of complete graphs, paths, cycles, stars, wheels, fans, and complete

split graphs are facet-Hamiltonian.

We give different methods for constructing facet-Hamiltonian cycles on those polytopes, and prove

a number of interesting properties of those cycles along the way. For associahedra of complete bi-

partite graphs and caterpillars, we give constructions of facet-Hamiltonian paths, which are defined

analogously.

Theorem 5. Graph associahedra of complete bipartite graphs and caterpillars have a facet-Hamiltonian

path.

Given the last result, one might wonder about the relation of facet-Hamiltonian cycles and paths.

In particular, is it always true that if a polytope is facet-Hamiltonian, then it also admits a facet-

Hamiltonian path? We show that this is indeed true for all simple 3-polytopes. However, perhaps

surprisingly, this is not the case for non-simple 3-polytopes.

Theorem 6. (i) If a simple 3-dimensional polytope P has a facet-Hamiltonian cycle, then it has a

facet-Hamiltonian path.

(ii) There exists a (non-simple) 3-polytope P which has a facet-Hamiltonian cycle but no facet-Hamil-

tonian path.

1.5 Related work

In this subsection we comment on connections between facet-Hamiltonicity and various other topics

in combinatorics and geometry.
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Hamiltonian cycles. Studies onHamiltonicity properties of graphs of polytopes are intimately tied

to the theory of planar graphs, since from Steinitz Theorem every 3-connected simple planar graph is

the graph of a 3-polytope. Classical results in the field include Tutte’s Theorem on the Hamiltonicity

of 4-connected planar graphs [87]. Barnette conjectured that simple 3-polytope whose facets have

an even number of vertices are Hamiltonian [3]. In higher dimension, a classical result of Naddef

and Pulleybank states that every 0/1 polytope is Hamiltonian [67]; see also Merino and Mütze [60].

Barnette conjectured that every simple n-polytope, for n ≥ 4, is Hamiltonian (see [39], Chapter 19).

Many Gray codes for families of combinatorial objects are actually Hamiltonian cycles or Hamiltonian

paths on graphs of polytopes, see for instance the recent survey on Gray codes from Mütze [66] and

the series of papers on various Gray codes on polytopes generated via a simple greedy algorithm [13,

15, 42, 44, 61].

Rainbow cycles. The special case of facet-Hamiltonian cycles in associahedra has been studied

previously in the guise of rainbow cycles by Felsner, Kleist, Mütze, and Sering [31, 32]. Our results

on generalized associahedra extend this to associahedra of any finite type. The original definition of

a rainbow cycle in a flip graph is a cycle in which each type of flip operation occurs exactly once.

In many settings there are several natural definitions of a flip type. The considered rainbow cycle

on permutations of [n], for instance, is a cycle such that every pair of elements is swapped exactly

once. In that case, the cycle has length

(
n
2

)
(instead of 2n − 2 in our case) and does not live on

the permutahedron. Rainbow cycles for plane spanning trees and noncrossing matchings were also

investigated in [31, 32].

Watchman routes. A watchman route of some domain is a closed tour of some domain such that

each point on of the domain is visible from some point on the tour. Usually one is interested in shortest

tours. A facet-Hamiltonian cycle of a polytope can be understood as a tour where the watchmanwalks

on the skeleton and sees each facet in a consecutive interval. For simple polytopes each newly visited

vertex contributes one extra facet. Thus, measuring the length of the path by the number of edges,

the length of each watchman tour on the skeleton is lower bounded by the number of facets. Hence,

a facet-Hamiltonian cycle is an optimal watchman route in that sense.

While the watchman route problem is polynomially solvable in simple polygons [27], it is NP-hard
in polygons with holes [22]. Mitchell [62] presents an approximation algorithm with factorO(log2 n)
and shows that, unlessNP = P, there does not exist an approximation with factor in o(log n). Watch-

man routes have been also been studied for the exterior of polygonal regions [29, 68] as well as for

lines and line segments [28]. In some variants the guards are restricted to walk on the boundary of

the polygon, see for instance [48]. Our hardness result for three-dimensional polyhedra (Theorem 1)

is completing this picture.

Hirsch conjecture. Hirsch conjectured that the diameter of a n-polytope with t facets is at most

t − n. This conjecture was refuted in 2010 by Francisco Santos [78]. A nonrevisiting path P in the

graph of a polytope has the property that the intersection of P with any facet is either empty or a

path on the skeleton of the facet. A polytope satisfies the nonrevisiting path property if there exists a

nonrevisiting path between any two vertices. It is well-known that the nonrevisiting path property

is equivalent to Hirsch’s bound on the diameter, and it was once conjectured by Klee and Wolfe that

every polytope satisfied the nonrevisiting path property [53, 54, 46, 79]. Several positive results have

been proved by Barnette [4, 5]. Nonrevisiting cycles for graphs on surfaces have been considered by

Pulapaka [75]. Our problem is a Hamiltonian counterpart of the nonrevisiting path property: Does
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there exist a nonrevisiting cycle visiting every facet?

Geodesics on graph associahedra. Several other properties of shortest paths, or geodesics, on

graph associahedra have been studied. A natural question is to bound the diameter of graph associa-

hedra, defined as the length of the longest geodesic, hence the maximal distance of two vertices in the

skeleton graph. The diameter of associahedra has been precisely nailed down only recently [81, 73].

Bounds on the diameter of several other classes of graph associahedra are known, including cyclo-

hedra [74], tree associahedra [14], and complete split and bipartite graph associahedra [16]. The

complexity of the problem of finding a shortest path between two vertices of a graph associahedron

has been studied recently [49, 17]. Nonrevisiting properties of such shortest paths have been studied

by Manneville and Pilaud [59], and Ceballos and Pilaud [19]. It is known, in particular, that stellohe-

dra do not satisfy the non-leaving face property: There exist pairs of vertices that belong to a common

facet, but between which all shortest paths leave and reenter this facet.

Visiting faces of other dimensions. It is natural to wonder whether it is possible to similarly

construct k-face-Hamiltonian cycles in the skeleton of a simple polytope for any fixed k ∈ [d − 1].
Clearly, the case k = 0 corresponds to a Hamilton cycle and the case k = d−1 to a facet-Hamiltonian

cycle. For instance, the equatorial cycle of the 3-cube visits all edges. However, there is no hope to

find such cycles for all k in well-behaving simple polytopes such as associahedra and permutahedra.

Indeed, if a simple n-polytope has a k-face-Hamiltonian cycle, then the total number of k-faces must

be divisible by

(
n−1
k

)
, the number of new k-faces seen when a new vertex is visited. The 4-cube

has 32 edges, not a multiple of 3, and the 3-dimensional associahedron has 21 edges, which is odd,

in both cases the condition is violated. The divisibility condition for k = 1 is always true for the

permutahedron, but one can show that for instance the 3-dimensional permutahedron has no 1-face-

Hamiltonian cycle.

1.6 Open problems

We now discuss a number of open problems.

Type B permutahedra. So far we only found rhombic strips for the type B permutahedra in di-

mensions 3 and 4. We believe, however, that they exist in all dimensions. This would imply the

following.

Conjecture 1. Type B permutahedra of all dimensions are facet-Hamiltonian.

Rhombic strips and truncated polytopes. We already commented in Section 1.2 on the cor-

respondence between facet-Hamiltonian cycles in type A permutahedra and rhombic strips in the

Boolean lattice. This correspondence actually holds in much more general contexts.

Let us briefly introduce a more general construction. Given a polytope P we can ask for rhom-

bic strips in the diagram of the face lattice of P . Such strips yield strongly restricted walks on the

faces of each dimension. For example the sequences of elements in the lowest and highest rank are

Hamiltonian cycles of P and its dual, respectively. We can also map such a rhombic strip to a facet-

Hamiltonian cycle of the polytope P T
obtained from P by truncating all its proper faces. Vertices

of P T
are in bijection to flags of P , hence maximal chains in the face lattice of P , and facets of P T

are in bijection to faces of P . For example, the type B permutahedron can be obtained by truncating

all proper faces of the hypercube, see Figure 8.
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Figure 8: A 3-cube Q and the 3-dimensional B-permutahedron (the truncation QT
).

We believe that rhombic strips have a lot of potential for future insights and results. They tie

together many results from this paper, for example by giving a connection between the bipartite belts

in cluster algebra (see Section 4) and the constructions for graph associahedra (from Section 5). In

fact, most paths and cycles presented here stem from a rhombic strip.

Graph associahedra. Is it true that for every connected graph G, the graph associahedron A(G)
is facet-Hamiltonian? Note that when G is a cycle, we obtained a facet-Hamiltonian cycle consisting

only of nested tubings: tubings that consist of pairwise nested tubes. Our facet-Hamiltonian cycles

for the star and the path do not have this property. This is no coincidence.

Observation 2. If the graph associahedronA(G) of graphG has a facet-Hamiltonian cycleC consisting

only of nested tubings, then G is Hamiltonian.

Proof. Because all tubings ofC are nested andC visits all facets, every vertex ofG is the kernel (a tube

consisting of this single vertex) of some tubing in C . Tracing these kernels along the facet-Hamil-

tonian cycle C gives a Hamiltonian cycle of G. This is because flipping some kernel to a different

kernel happens inside a tube of size two, which guarantees an edge in G.

The reverse statement is not true: the Hamiltonicity ofG is not sufficient for the existence of a facet-

Hamiltonian cycle consisting only of nested tubings. Consider G = K4\{e}, the complete graph on

four vertices minus an edge. While G is Hamiltonian, A(G) does not have a facet-Hamiltonian cycle

using only nested tubings as can easily be checked by hand.

The following question follows naturally: Which graph associahedra have facet-Hamiltonian cycles

or paths consisting only of nested tubings?

1.7 Plan of the paper

In Section 2, we present facet-Hamiltonian cycles for permutahedra and thus prove Theorem 2. We

also give a construction of rhombic strips, hence of facet-Hamiltonian cycle, for typeB permutahedra

of dimension 3 and 4. In Section 3, we prove Theorem 3 for generalized associahedra of typeA,B/C ,

and D. The connection between these results and known ideas in cluster algebras is developed in

Section 4, which contains a simple proof of the existence of facet-Hamiltonian cycles for associahedra
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of all finite types. This proof makes use of a classical tool in cluster algebra, known as bipartite belts,

which happen to correspond to rhombic strips for all generalized associahedra. In Section 5, we

discuss graph associahedra. In particular, we present facet-Hamiltonian cycles for associahedra of

several graph families (Theorem 4) and facet-Hamiltonian paths for complete bipartite graphs and

caterpillars (Theorem 5). In Section 6, we give the proof of Theorem 6. Finally, we establish the

NP-completeness of deciding the existence of facet-Hamiltonian cycles even for three-dimensional

polyhedra (Theorem 1) in Section 7.

2 Facet-Hamiltonian cycles in permutahedra

We discuss facet-Hamiltonian cycles in permutahedra of type A in Section 2.1 and of type B in Sec-

tion 2.2

2.1 Type A Permutahedra

We denote by A(Kn) the (n− 1)-dimensional permutahedron defined by

A(Kn) = conv{(π(1), π(2), . . . , π(n)) : π ∈ Sn},

where Sn is the set of permutations on n elements. Note that the notation A(Kn) relies on the fact

that the permutahedron is the associahedron of the complete graph, anticipating on Section 5. It is

well-known that the edges of the permutahedron are in bijection with pairs of permutations that

differ by a single adjacent transposition. Moreover, the facets of A(Kn) can be labeled by subsets

of [n] such that the facets incident to a vertex appear as a prefix in the permutation.

We now construct facet-Hamiltonian cycles in permutahedra, and give a complete proof of Theo-

rem 2. Recall the sketch and Figure 3(a) from Subsection 1.2. As our proof is by induction, we will

use the following notation to lift permutations of [n − 1] to permutations of [n]. Let π be a per-

mutation of [n − 1], then πk denotes the permutation where n is inserted at the kth position in π
for any fixed k ∈ {1, . . . , n}. Hence for π = 1, 2, . . . , n − 1, we have π1 = n, 1, 2, . . . , n − 1 and

πn = 1, 2, . . . , n− 1, n.

Lemma 1. The (n − 1)-dimensional permutahedron has a facet-Hamiltonian path from 1, . . . , n to

n, 1, . . . , n− 1 for all n ≥ 1.

Proof. We identify the facets of A(Kn) with the nontrivial subsets of [n]. We prove the existence

of the paths by induction. For n = 1 and n = 2, the statement is obvious. For the induction step,

consider n ≥ 3 and let P be a facet-Hamiltonian path in A(Kn−1) from ρ := 1, . . . , n − 1 to τ :=
n− 1, 1, . . . , n− 2. Let Pn

denote the path obtained by replacing each permutation π in P with πn.
Then Pn

is a well-defined path in A(Kn) from ρn to τn that introduces every facet not containing n
(except for the prefixes of ρn). Let Q be the path τn, τn−1, . . . , τ1, in which n is shifted to the front.

Note thatQ introduces all facets that are prefixes of τ1. Let
←−
P 1

denote the pathP in reversewhere each

permutation π is replaced by π1. Then,
←−
P 1

is a path inA(Kn) that introduces every facet containing n

(except of the prefixes of τ ). The concatenation PQ
←−
P 1

is a facet-Hamiltonian path from ρn to ρ1 as
claimed.

Theorem 2. The (n− 1)-dimensional permutahedron has a facet-Hamiltonian cycle for all n ≥ 3.
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Proof. We build the cycles from the paths defined in Lemma 1. To obtain a cycle in case n ≥ 3,
we add the path Q′ where n is shifted to the back, i.e., Q′ := ρ1, ρ2, . . . , ρn. This introduces all

facets of ρn and closes the path to the facet-Hamiltonian cycle ρn, . . . τn︸ ︷︷ ︸
Pn

, τn−1 . . . , τ1, . . . , ρ1︸ ︷︷ ︸
←−
P 1

, . . . , ρn,

see also Figure 9(a). By construction, Q′P visits all facets not containing n and Q
←−
P 1

visit all facets

containing n. Figures 3(a) and 9(b) illustrate the resulting cycle for n = 4.

nP
n− 1 n− 2. . .

1 n− 1. . .2

1
nnn

n ←−
P

1 n− 1. . .2

n− 1 n− 2. . .1

nnn

n

n

n

n

Q

1 n− 1. . .2 n

Q′

ρn

τn

τ1

ρ1

ρn

...

...

...

...Pn

←−
P 1 ...

...

(a) Notations

1 2 3 4

2 1 3 4

2 3 1 4

3 2 1 4

3 1 2 4

3 1 4 2

3 4 1 2

4 3 1 2

4 3 2 1

4 2 3 1

4 2 1 3

4 1 2 3

1 4 2 3

1 2 4 3

1 2 3 4

(b) n = 4

Figure 9: Construction of facet-Hamiltonian cycles in permutahedra.

2.2 Type B permutahedra

The type B permutahedron is defined as the convex hull of the points corresponding to signed per-

mutations, of the form (±π(1), . . . ,±π(n)) ∈ Rn
where π is a permutation of [n]. Equivalently, it is

the zonotope of the type B root system.

There is a bijection between signed permutations and maximal chains in the face lattice of the cube

or equivalently flags of the cube, see also Figure 10: Faces of the n-cube can be encoded as vectors of

length nwith entries in {0, 1, x}, the number of entries of type x is the dimension of the face. Chains

containing a face encoded by (a1, . . . , an) correspond to permutations with a suffix consisting of

the set T defined as follows: If ai = 1 then +i ∈ T , if ai = 0 then −i ∈ T , and if ai = x then

±i ̸∈ T . A maximal chain prescribes all suffices and hence a signed permutation. For example the

chain (010), (01x), (x1x) corresponds to the signed permutation (−3,−1,+2).
Signed permutations are adjacent in the skeleton of the type B permutahedron if they differ ei-

ther by an adjacent transposition preserving signs, or by the sign of the first element. The chains

corresponding to adjacent signed permutations differ by exactly one element. Hence paths on the

typeB permutahedron can be represented by rhombic strips in the face lattice of the cube. Figures 11
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Figure 10: A facet-Hamiltonian cycle on the three-dimensional type B permutahedron represented

by flags of the cube.

and 12 show such rhombic strips for the 3 and 4-dimensional type B permutahedra. This implies the

following.

Proposition 1. Type B permutahedra of dimension 3 and 4 are facet-Hamiltonian.

000 100 101 111 110 010 011 001 000000

x00 1x0 10x 1x1 11x x10 01x x11 0x1 x01 00x 0x0 x00x00

xx0 1xx x1x xx1 x0x 0xx xx0xx0

Figure 11: The facet-Hamiltonian cycle on the type B permutahedron of dimension 3 represented by

its rhombic strip. There is a unique strip up to graph isomorphisms. The two cut vertices

in the middle rank show that this strip encodes four facet-Hamiltonian cycles.

0000 0100 1100 1000 1010 1110 1111 1011 1001 1101 0101 0001 0011 0111 0110 00100000 0000

x000 0x00 x100 11x0 110x 1x00 100x 10x0 101x x010 1x10 x110 111x x111 11x1 1x11 x011 10x1 x001 1x01 x101 010x 0x01 000x 00x1 001x 0x11 01x1 011x 01x0 0x10 00x0x000 x000

xx00 x1x0 1xx0 11xx 1x0x 10xx 1x1x x01x xx10 x11x x1x1 1xx1 xx11 x0x1 xx01 x10x 0x0x x00x 00xx 0x1x 0xx1 01xx 0xx0 x0x0xx00 xx00

xxx0 1xxx xx1x x1xx xxx1 xx0x x0xx 0xxxxxx0 xxx0

Figure 12: A rhombic strip in the type B permutahedron of dimension 4.

Note that a rhombic strip for the type B permutahedron yields a collection of interleaved Gray

codes, one for each rank. On rank 0 we have a standard Gray code on binary words, and on rank

k > 0 two vectors on the alphabet 0, 1, x are adjacent if at one position an x is exchanged by 0 or 1
and at another position a 0 or 1 is made an x.

3 Facet-Hamiltonian cycles in associahedra

We now present facet-Hamiltonian cycles of associahedra of type A, B/C , and D, namely we prove

Theorem 3 for the three main Coxeter types. The three types are considered in Propositions 2, 3,

and 4, respectively.
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3.1 Type A associahedra

Facet-hamiltonicity of associahedra was first proven by Felsner, Kleist, Mütze, and Sering [31, 32,

Theorem 1]. Below we give two proofs, the second one details the proof sketched in Figure 6 in

Subsection 1.3. Both proofs have nice interpretations in triangulations and the ideas can also be used

to construct facet-Hamiltonian cycles for associahedra of type B/C and D.

We denote the (n−1)-dimensional associahedron byA(Pn) (again, anticipating on Section 5, from
the fact that the associahedron is the graph associahedron of a path on n vertices). We rely on the

well-known facts that the vertices ofA(Pn) are in bijectionwith the triangulations of a convex (n+2)-
gon, the edges are in bijection with pairs of triangulations differing by a single flip of a diagonal, and

the facets are in bijection with the diagonals.

Proposition 2. For all n ≥ 3, A(Pn) has a facet-Hamiltonian cycle.

Proof 1 – Sketch of the proof by Felsner, Kleist, Mütze, and Sering [31, 32]. We label the corners of the

convex (n+ 2)-gon clockwise by the integers 1, 2, . . . , n+ 2. Let Si denote the triangulation which

contains the diagonals {i, k} for k ∈ {i+2, . . . , n+2} and {k, n+2} for k ∈ {2, . . . , i} as illustrated
in Figure 13(a); note that the diagonals form a bi-star.
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Figure 13: Illustration for proof 1 of Proposition 2 for n = 6.

There exists a simple flip sequence Fi from Si to Si+1 where for increasing k ∈ {2, . . . , n+1− i}
the diagonal {i, i+ k} is replaced by {i+ 1, i+ k + 1}, see also Figure 13(b). Similarly, there exists

a simple flip sequence Ft from Sn, containing all diagonals of type {n + 2, k}, to S1, containing all

diagonals of type {1, k}, in which for increasing k ∈ {2, . . . , n} the diagonal {n+2, k} is replaced by
{1, k+ 1}, see also Figure 13(c). The concatenation C of F1, F2, . . . , Fn−1, Ft is a facet-Hamiltonian

cycle. To this end, note that the diagonal {i, j}, 1 < i < j, is not contained in Sk for k < i but
contained in Si. Hence it is introduced in Fi−1. Diagonals containing 1 are introduced in Ft. Quite

obviously no two triangulations in C coincide.

We now present the idea of an alternative approach.

Proof 2. A facet-Hamiltonian cycle ofA(Pn) has length
(
n+2
2

)
− (n+2) = 1

2(n+2)(n−1). The idea
is to introduce classes of parallel diagonals one after the other. For an illustration see Figure 6. Note

that the set of diagonals of the (n + 2)-gon partitions into n + 2 classes Pi of parallel slopes. Two

classes are compatible if they contain no crossing diagonals and thus yield a triangulation. It is easy to

see that for any class there exist exactly two other classes with which it is compatible. Thus, we may

consider a cyclic list P1, . . . , Pn+2 such that Pi and Pi+1 are compatible. We define the triangulation

Ti = Pi ∪ Pi+1. The triangulation Ti can be transformed into Ti+1 by removing the diagonals of Pi

and introducing the diagonals of Pi+2. Note that the flips from Ti to Ti+1 are independent and can

be performed in any order.
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Let Fi denote a flip sequence from Ti to Ti+1. Then, the concatenation of F1, F2, . . . , Fn+2 yields

a cycle C because all triangulations differ. While Fi and Fi+1 have different lengths if n is even,

|Fi| + |Fi+1| = n − 1 holds in all cases because all diagonals of Ti+2 are introduced; for odd n, we
have |Fi| = (n− 1)/2. The cycle thus has length (n− 1)(n+2)/2 as desired. Moreover, every inner

diagonal of the (n + 2)-gon appears exactly in one Pi and is thus introduced in Fi−1. Because the
cycle C has a length that equals the number of diagonals, every diagonal is introduced exactly once,

i.e., every facet is visited. Consequently, C is a facet-Hamiltonian cycle of A(Pn).

1 2 3 4

Figure 14: Illustration for a cycle that could be constructed by the proofs of Proposition 2; square

vertices are the triangulations Si in proof 1, round-hollow vertices are the triangulations

Ti from proof 2.

3.2 Type B/C associahedra

As mentioned before the associahedra of type B/C are also known as cyclohedra and Bott-Taubes

polytopes, and as the graph associahedra A(Cn) of the n-vertex cycle Cn [11, 80].

We use the fact that the vertices are in bijection with the centrally symmetric triangulations of a

convex 2n-gon, edges of the cyclohedron correspond to flipping pairs of diagonals in the triangulation
or a longest diagonal, and facets correspond to pairs of symmetric diagonals. This model allows us

to use ideas similar as in the proofs of Proposition 2. Figure 7 illustrates the flip graph and a facet-

Hamiltonian cycle for A(C4).

Proposition 3. For all n ≥ 3, A(Cn) has a facet-Hamiltonian cycle.

Proof 1. Label the vertices of the 2n-gon by 1, . . . , n, 1 . . . , n clockwise, as in Figure 15(a). Let Si de-

note the triangulation which contains the clockwise diagonals {i, k} for k ∈ {i+2, . . . , i+n} (where
n + j = j). Similar to the above, there is a simple flip sequence Fi of length n − 1 from Si to Si+1

where the (pairs of) diagonals can be introduced by increasing length see Figure 15(b). Then the

concatenation F1, F2, . . . , Fn is facet-Hamiltonian-cycle of length n(n− 1): Firstly, any two triangu-
lations are distinct as they either their longest diagonals differ, or they contain a same diagonal {i, i}
and belong to Fi. Secondly, each diagonal is contained in exactly one Si.
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Figure 15: Illustration for proof 1 of Proposition 3.

Proof 2. The idea is to introduce classes of parallel diagonals one after the other in the 2n-gon. To this
end, let P1, . . . , P2n be cyclic list of classes of parallel slopes of the 2n-gon such that Pi and Pi+1 are

compatible as in the second proof of Proposition 2. For an illustration, consider Figure 16. We define

the triangulation Ti = Pi ∪ Pi+1. As before, there is a flip sequence Fi from the triangulation Ti

to Ti+1 that removes the diagonals of Pi and introduces the diagonals of Pi+2 in pairs; however this

time, we introduce all but the longest diagonal in pairs. Thus, |Fi|+ |Fi+1| = (2n−3+1)/2 = n−1.
Then, the concatenation of F1, F2, . . . , F2n yields a facet-Hamiltonian cycle of length n(n− 1).

T1 T2 T3

n− 1

T4 T5 T6

Figure 16: Illustration for proof 2 of Proposition 3 for n = 3.

3.3 Type D associahedra

Type D associahedra allow for nice combinatorial models where the vertices correspond to triangu-

lations. Here we recall the one given by Ceballos and Pilaud [19]. (See Section 4.4 and Figure 22 for

a different model.) For the n-dimensional associahedron of type D, denoted by Asso(Dn), consider
the regular 2n-gon P , together with a diskO placed at its center, the radius of which is small enough

such thatO only intersects the long diagonals of P . As chords of P , we consider all diagonals disjoint

from O, together with two tangents from each vertex of P to O. The set of all chords is depicted in

Figure 17(a).

The vertices of Asso(Dn) are in bijection with the centrally symmetric pseudotriangulations each

of which contains exactly 2n chords. A pseudotriangulation is a partition of a convex polygon into

pseudotriangles, defined as regions with three convex corners and an arbitrary number of reflex ver-

tices. As in our setting reflex vertices can only come from O, pseudotriangles of P contain at most

one chain of reflex vertices, and 0,1, or 2 convex vertices on O. The edges of Asso(Dn) correspond to
flips of centrally symmetric pairs of chords and the facets correspond to centrally symmetric pairs of

(internal) chords. The number of facets, and thus the length of a facet-Hamiltonian cycle, is n2
.
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(a) (b) (c)

Figure 17: Illustration for associahedra of type D. (a) The set of chords of P . (b) A pseudotriangle.

(c) The zigzag pseudotriangulation T0.

While both proofs of Proposition 3 generalize straightforwardly, we present a sketch of the second.

Figure 18 depicts a flip sequence from one zigzag-triangulation to its rotated copy for the case of

n = 4.

T0 T1

Figure 18: Illustration for the proof of Proposition 4: Flip sequence from T0 to T1 in n steps for n = 4.

Proposition 4. For all n ≥ 3, Asso(Dn) has a facet-Hamiltonian cycle.

Proof sketch. We consider the zigzag triangulation T0 of P , where the long diagonal is replaced by

the four tangents as illustrated in Figure 17(c). Let Ti be obtained from T0 by a rotation of angle iπ/n.
Note that together T0, . . . , Tn−1 cover all chords. A flip sequence Fi from Ti to Ti+1 of length n can

be constructed as before, we only have to take special care of the four tangents that replace the long

diagonal. Here we use two steps in instead of one. Figure 18 illustrates an example for n = 4; the
three central triangulations illustrate the modified flips. The concatenation of F0, . . . , Fn−1 yields a
facet-Hamiltonian cycle of length n2

.

4 Facet-Hamiltonian cycles and cluster algebras

In this section, we revisit the constructions of the previous section in the framework of cluster alge-

bras. We give a unified proof of Theorem 3 relying on standard cluster algebraic tools.

4.1 Cluster algebras

Cluster algebras have been defined by Fomin and Zelevinsky in a series of foundational papers [36, 37,

8, 38]. For gentle introductions to cluster algebras and further references, we refer the reader to Felik-

son [30] and Williams [88]. Connections to the Conway-Coxeter friezes are described for instance in

the survey paper from Morier-Genoud [64]. An extensive treatment of the relation between cluster

algebras and triangulated surfaces, beyond the finite cases tackled here, is given by Fomin, Shapiro,
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and Thurston [34], and Fomin and Thurston [35]. For background on root systems and generalized

associahedra, we refer to Björner and Brenti [9], and Fomin and Reading [33].

Variables of a cluster algebra are grouped into clusters, consisting of a pair (x, B), where x =
x1, x2, . . . , xn are called the cluster variables and B = (bij) is an n × n integer matrix called the

exchange matrix. The matrix B is usually skew-symmetrizable. The initial cluster is called the seed.

A new cluster can be obtained from any cluster via a mutation in the direction k ∈ [n]. The effect

of a mutation in direction k on the cluster variables is the change of the single variable xk into x′k,
satisfying the following relation:

xkx
′
k =

∏
i

x
[bik]+
i +

∏
i

x
[−bik]+
i ,

where we use the notation [b]+ = max{b, 0}. Themutation also affects the exchangematrixB, which

then becomes B′ = (b′ij) satisfying

b′ij =

{
−bij if i = k or j = k,

bij + [bik]+[bkj ]+ − [−bik]+[−bkj ]+ otherwise.

The cluster algebra is the subring ofQ(x1, x2, . . . , xn) generated by the cluster variables of all clusters
obtained from the seed by a sequence of mutations.

When the matrix B is skew-symmetric, it can conveniently be represented as a quiver, defined as

an n-vertex directed multigraph, without loops, and without directed 2-cycles. The arcs of a quiver

are called arrows. An entry bij > 0 is then simply the number of arrows from i to j in the quiver. The

interpretation of a variable mutation in k ∈ [n] is then as follows:

xkx
′
k =

∏
arrows from k to i

xi +
∏

arrows from i to k

xi,

while the quiver mutates according to the following steps:

• for each subquiver i→ k → j, add an arrow i→ j,

• reverse all arrows incident to k,

• remove all arrows in a maximal set of pairwise disjoint directed 2-cycles.

One can check that these are indeed the same definitions as using an exchange matrix B. An

illustration of the three steps of the mutation of a quiver is given in Figure 19.
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Figure 19: The three steps of mutation of a quiver. Here the quiver on the left is transformed into the

quiver on the right by a mutation in 3. Numbers on the arrows indicate multiplicity.

20



Cluster variables are always rational functions of the seed variables. An important property of

cluster algebra is the Laurent phenomenon, that states that the cluster variables are actually always

Laurent polynomials in the seed variables.

A cluster algebra is said to be of finite type if it has only finitely many seeds, hence the number of

distinct cluster variables that can be generated is bounded. A major result of Fomin and Zelevinsky

is a classification of the cluster algebra of finite types, matching the Cartan-Killing classification of

root systems. In the following statement, the directed graph Γ(B) of the exchange matrix B has an

arc from i to j if and only if bij > 0. Dynkin diagrams are graphs arising in the classification of Lie

algebras and reflection groups.

Theorem 7 (Fomin-Zelevinsky [37]). A cluster algebra is of finite type if and only if it has a seed (x, B)
such that Γ(B) is an orientation of a finite type Dynkin diagram.

The finite type Dynkin diagrams are well-known and correspond to the four infinite families and

the five exceptional irreducible root systems. We therefore obtain cluster algebras for all finite types

An, Bn, Cn, Dn and the exceptional types E6, E7, E8, F4, G2. The main motivation for introducing

cluster algebras of finite type is that they provide a definition of generalized associahedra for all finite

types. In cluster algebra of finite types, the cluster complex is a simplicial complex whose vertices are

cluster variables and maximal simplices are clusters.

Theorem 8 (Fomin-Zelevinsky [37]). The cluster complex of a cluster algebra of finite type is the dual of

the generalized associahedron of that type. In particular, the cluster complexes of type A cluster algebras

are duals of associahedra, and those of type B are duals of cyclohedra.

4.2 Bipartite belts

We consider the notion of bipartite belt defined by Fomin and Zelevinsky [38]. (Note that here we will

leave out the so-called coefficient dynamics, and only consider the cluster variables.)

An exchange matrix B is said to be bipartite if there exists a function ε : [n] → {+1,−1} such
that if bij is positive, then ε(i) = +1 and ε(j) = −1. If the exchange matrix corresponds to a quiver

(hence if it is skew-symmetric), it means that the quiver is bipartite in the graph-theoretic sense: all

arrows are from a positive to a negative vertex. We will say that a seed (x, B) is bipartite if B is

bipartite.

A simple example of a bipartite quiver is the Dynkin diagram of type A, a path , oriented

so that sinks and sources alternate. For instance the matrix

B =


0 −1 0 0
1 0 1 0
0 −1 0 −1
0 0 1 0


is the bipartite exchange matrix corresponding to a bipartite orientation of the path on four vertices.

The bipartite belt can be defined on all algebras with a bipartite seed (x, B). Note that from the

characterization of finite type cluster algebras in Theorem 7, and since Dynkin diagrams are bipartite,

it holds for all finite type cluster algebras. Let us denote by µk the mutation in direction k. We define

the following two operations:

µ+ =
∏

k:ε(k)=+1

µk, µ− =
∏

k:ε(k)=−1

µk,
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corresponding respectively to composing the mutations on all vertices on each side of the bipartition.

Given an initial bipartite seed S0 = (x0, B), its bipartite belt consists of the clusters

Sm = (xm, (−1)mB),m ∈ Z,

where for t > 0, St is obtained by applying t times one of the operations µ+ and µ−, alternately,
starting with µ−:

St = . . . µ−µ+µ−︸ ︷︷ ︸
t factors

(S0),

and S−t is defined similarly, but starting with µ+. Since for t > 0 the first mutation is µ−, we have
x1,j = x0,j for all j such that ε(j) = +1, and in general we have xm+1,j = xm,j for all j such that

ε(j) = (−1)m. For j = (−1)m−1, on the other hand, we have by definition

xm−1,jxm+1,j = 1 +
∏

i:ε(i)=−ε(j)

x
|bij |
m,i . (1)

The following theorem is one of the main result in the fourth paper by Fomin and Zelevinsky [38].

Theorem 9 (Fomin and Zelevinsky [38]). Consider the bipartite belt constructed from a bipartite ex-

change matrix B whose graph Γ(B) is connected.

1. If the cluster algebra is of finite type, then:

a) the bipartite belt is periodic, and Sm = Sm+2(h+2) for all m ∈ Z, where h is the Coxeter

number,

b) every cluster variable belongs to a cluster of the bipartite belt,

c) the denominator vectors establish a bijection between cluster variables and the almost positive

roots Φ≥−1 of the corresponding root system Φ.

2. Otherwise, all the elements xm,i in the bipartite belt are distinct.

4.3 Bipartite belts in type And Conway-Coxeter friezes.

It is convenient to represent the bipartite belt as a frieze: For each m ∈ Z, we represent the cluster
variables xm,j such that ε(j) = (−1)m in a single column.

In typeA, this is related to a well-studied family of objects known as theConway-Coxeter friezes [23,

24]. This relation was first described by Caldero and Chapoton [12]. Let the initial bipartite quiver be

a path (the type A Dynkin diagram), oriented such that sinks and sources alternate along the path.

Then Equation (1) governing the update of the cluster variables becomes the Ptolemy relation

ad− bc = 1

for every diamond pattern of variables a b
cd in the frieze, where we assume that the top and bottom

row all consist of 1s. This is the rule defining the Conway-Coxeter friezes. By replacing the initial

cluster variables by the number 1 and applying the update rule, we obtain such a frieze. The bipartite

belt in typeA4 is represented in Table 2, and a frieze obtained by evaluating the cluster variables with

xi = 1 for all i is given in Table 3.

Similarly, we can replace every cluster variable by a diagonal of the (n+3)-gon, such that the initial
seed maps to a zigzag triangulation of the polygon. The arrows in the seed quiver can be interpreted
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Table 2: The bipartite belt in type A4. For every 4-tuple of variables forming a diamond a b
cd, and

assuming top and bottom rows consisting of 1s, the relation ad− bc = 1 holds.

m = −1 0 1 2 3 4 5 6 7

x1
1+x2
x1

x1x3+x2x4+1
x2x3

x3+1
x4

x4

x2
x2
2x4+x1x3+x2x4+x2+1

x1x2x3

x1x2
3+x1x3+x2x4+x3+1

x2x3x4
x3

x3
x2x4+1

x3

x1x2
3+x2

2x4+x1x3+x2x3+x2x4+x2+x3+1
x1x2x3x4

x1x3+1
x2

x2
x4

x2x4+x3+1
x3x4

x1x3+x2+1
x1x2

x1

Table 3: A frieze obtained from the type A4 bipartite belt.

1 2 3 2 1
1 5 5 1

1 2 8 2 1
1 3 3 1

as pairs of diagonals forming a clockwise angle. An application of either µ− or µ+ then corresponds

to a rotation of angle 2π/(n+3) of every other diagonal, and the successive applications of both yield
a rotation of the whole triangulation. An illustration is given on Figure 20.

The update of the cluster variables for the diamond patterns a b
cd then corresponds to a diagonal

flip in the triangulation, and the relation resembles the Ptolemy relation on the length of diagonals

of a quadrilateral. (This interpretation is in fact correct in a hyperbolic setting.) By setting to 1 the

variables corresponding to another triangulation, we obtain another frieze, the second row of which

is the quiddity of the triangulation: the number of triangles incident to each successive vertex of the

polygon. We refer to the original papers from Conway and Coxeter [23, 24], and to Morier-Genoud’s

survey [64] for details on these beautiful structures.

Figure 20: The type A4 frieze with diagonals of a heptagon.
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4.4 Facet-Hamiltonian cycles from friezes

We now explain how we can easily extract many facet-Hamiltonian cycles on generalized associahe-

dra from the bipartite belts of the corresponding cluster algebras of finite types.

Given a bipartite belt in finite type, we construct a facet-Hamiltonian cycle by starting with the

initial seed, and performing the mutations µk for all k such that ε(k) = −1, the composition of

which yields µ−, then the mutations µk for all k such that ε(k) = +1, the composition of which

yields µ+. This is mutating the initial seed S0 into S2, and visiting all cluster variables x2. Iterating,

we will obtain all cluster variables, which, from Theorem 8, correspond to facets of the corresponding

generalized associahedron. From Theorem 9, this will yield a cycle that passes through every cluster

variable exactly once, hence every facet of the generalized associahedron exactly once, as desired.

This directly proves our main result.

Theorem 3. Generalized associahedra of all finite types are facet-Hamiltonian.

As explained in the previous section, for the three main types A, B/C , and D, the bipartite belts

have an interpretation in terms of triangulation models. An example of cycle obtained from the bi-

partite belt of type A4 is given in Figure 21. One can check that it is precisely the cycle described in

the second proof of Section 3.1 and illustrated in Figure 6.

µ− µ+

Figure 21: A facet-Hamiltonian cycle on the type A4 associahedron.

The cluster algebras of type B, with Dynkin diagrams of the form , do not have skew-

symmetric exchange matrices, hence are not quiver cluster algebras, but there is a natural interpreta-

tion of the bipartite belt as rotation of diagonals in symmetric triangulations of a 2n-gon. Again, the
second cycle described in Section 3.2 can be read from the type B bipartite belt.

Bipartite exchange matrices for the type D have diagrams of the form . Orienting the

arrows such that sinks and sources alternate yield bipartite quivers. In Figure 22, we show the obtained

frieze using arcs in a triangulation of a punctured n-gon as models for the cluster variables. This

triangulation model is described by Fomin, Shapiro, and Thurston [34], and is obtained from the

symmetric pseudo-triangulation model by Ceballos and Pilaud [19] described in the previous section

by folding the triangulation around its center of symmetry.

In fact, bipartite belts directly yield rhombic strips in a suitable poset. All the facet-Hamiltonian

cycles on generalized associahedra of types A, B/C , and D of Section 3 can be read from the corre-

sponding friezes, by considering initial clusters that do not correspond to bipartite quivers, but are

constructed from the frieze as a path from the top to the bottom row. In the types A, B/C and D,

these cluster correspond to triangulations in which all triangles have at least one edge which is an

edge of the polygon. The obtained cycles include for instance those described on Figures 13 and 15.

Bipartite belts are used in software packages for cluster algebras, with the purpose of generating

all cluster variables, even in cluster algebras of infinite types [65]. Since from Theorem 9, the cluster

variables of the bipartite belt are all different, it provides a simple way to generate arbitrarily many in

a systematic fashion. However, it is not true in general that all cluster variables lie in the bipartite belt,

24



Figure 22: The type D6 frieze with arcs of a punctured hexagon.

so some cluster variables may never be generated this way. Still, the idea has further applications, see

for instance Assem, Reutenauer, and Smith [2], and Pallister [69] for applications to affine quivers.

5 Facet-Hamiltonian paths and cycles in graph associahedra

We first recall the definition and properties of graph associahedra in Section 5.1. In Section 5.4, we

introduce a number of simple tools and definitions that will be helpful in the remainder. Sections 5.5

to 5.7 give the proofs of Theorem 4 and Theorem 5.

5.1 Graph associahedra

For this entire section, let G = (V,E) be a simple connected graph with n := |V |.
We recall the definition of tubes and tubings given in Section 1. A tube of G is a nonempty proper

subset t ⊂ V such that the induced subgraphG[t] is connected. Two tubes t1 and t2 are compatible if

one of the following conditions is fulfilled:

• They are nested: either t1 ⊂ t2 or t2 ⊂ t1.

• They are non-adjacent: G[t1 ∪ t2] is not connected.

(Note that non-adjacent tubes are necessarily disjoint.) Figure 23 depicts examples of pairs of tubes.

(a) nested (b) disjoint, non-adjacent (c) neither disjoint nor

nested

(d) disjoint but adjacent

Figure 23: Compatible pairs of tubes in (a) and (b), and non-compatible pairs of tubes in (c) and (d).

A tubing is a collection of pairwise compatible tubes. It is called nested if all pairs of its tubes are

nested.
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The graph associahedron A(G) is the polytope whose face lattice is obtained by ordering the tub-

ings ofG in reverse inclusion order. The vertices ofA(G) therefore correspond to themaximal tubings

of G, and the facets correspond to tubings of size one, hence to single tubes. This polytope is simple

because every maximal tubing of a connected n vertex graph consists of n − 1 tubes and each tube

of a maximal tubing can be replaced by a unique distinct tube. We say that this tube is being flipped,

see Figure 24 for examples. Edges of A(G) are in bijection with pairs of maximal tubings that differ

by a single flip.

→ → →

Figure 24: An example of a flip sequence. The first two tubings are nested.

In this paper, we only consider graph associahedra of connected graphs. This is because the associ-

ahedronA(G) of a graphGwith multiple connected componentsC1, . . . , Ck is the cartesian product

of the graph associahedra of the components: A(G) = A(C1) × · · · × A(Ck). Thus, A(G) has a
facet-Hamiltonian cycle (or path) if and only if each A(Ci) has a facet-Hamiltonian cycle (or path).

5.2 Graph associahedra and triangulations.

Graph associahedra generalize many well-known families of polytopes, including some that were

already discussed in previous sections. In particular, (type A) associahedra are graph associahedra in

which the graph is a path.

The bijection between triangulations of a convex (n + 2)-gon and maximal tubings of a path is

obtained as follows. Label the vertices of the (n + 2)-gon from 0 to n + 1 in, say, clockwise order,

and the vertices of the path from 1 to n. For an example consider Figure 25(a). Now consider a

triangulation, and for a diagonal of the triangulation connecting the vertices i and j, with j > i+ 1,
include the tube {i+1, . . . , j−1}. It is easy to see that this collection of tubes is a maximal tubing, and

that the map is bijective. The map generalizes to an order-preserving map between the non-crossing

sets of diagonals and (not necessarily maximal) tubings of the path.

0
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5
6

1

2

3

4
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(a)

1

2

34

5

1

2

3 4

5

1

2

3

4

5

(b)

Figure 25: Bijections between (a) diagonals of the (n + 2)-gon and tubes of Pn and (b) diagonals of

the 2n-gon and tubes of Cn.

Similarly, there is a bijection between the tubes (respectively, maximal tubings) of the n-cycle Cn

and the diagonals (respectively, symmetric triangulations) of the 2n-gon, implying that type B as-
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sociahedra are associahedra of cycles. Label the corners of the 2n-gon by 1, . . . , n, 1, . . . , n as in

Figure 25(b). Here a k-tube of Cn is mapped to the diagonals that span the corresponding k elements:

it connects the predecessor and the successor. For example the tube {1, 2, 3} corresponds to the di-

agonals {n, 4}. It is easy to see that all bistars correspond to permutations that are cyclic shifts of

1, . . . , n. In the case where the graph is complete, every maximal tubing consists of pairwise nested

tubes, and every flip preserves the size of the flipped tube. Flipping the tube of size k is equivalent

to swapping the elements in positions k and k + 1 in the corresponding permutation, which is an

adjacent transposition. In this case the graph associahedron is the permutahedron.

Finally, note that the stellohedra, the graph associahedra of stars, encode regular triangulations of

a family of point sets known as the mother of all examples [57]. We refer the reader to Ceballos and

Pilaud [19] for more details.

5.3 Facet-Hamiltonian paths/cycles in graph associahedra.

The vertices incident to a facet of the graph associahedron A(G) are all the maximal tubings con-

taining a certain tube. Thus, for a facet-Hamiltonian cycle or path, we seek sequences of maximal

tubings of G such that every tube appears in an interval along this sequence and every adjacent pair

in the sequence is related by a flip. See Figure 24 for an example of a part of such a sequence. One

can ask for a facet-Hamiltonian cycle or path to have the additional property that all its tubings are

nested, which will be fulfilled for many of the constructions which follow. In this case the cycle or

path can be represented as a rhombic strip similar to the constructions seen in Figures 11, 12 and 4.

In this case we seek a rhombic strip which is a subgraph of the Boolean lattice obtained by deleting

all subsets which do not correspond to tubes. This is the inclusion poset on the tubes. See Figure 29

for an example.

5.4 Tools

We now introduce a few operations that will be essential in our constructions of facet-Hamiltonian

cycles and paths.

In what follows, we will refer to nested maximal tubings simply as nested tubings. A nested tubing

has a unique tube consisting of only one vertex, which we call the kernel of the tubing. A nested

tubing corresponds to a permutation by ordering the vertices according to the number of tubes they

are contained in, in decreasing order, so that the kernel is the first element of the permutation.

Let us consider a graph G+v = (V ∪ {v}, E′) with E ⊂ E′, obtained by adding v to G, together

with some new edges incident to v. Let T be a nested tubing ofG such that its kernel is adjacent to v.
There is a labeling of the vertices such that T is associated with the permutation π = 1, . . . , n, with
kernel 1. We define the procedure absorbing v into T as follows. Let us define a new nested tubing

T ′ := T ∪ {V } associated with the permutation πn+1 = 1, . . . , n, v. We now observe that flipping

the tubes of T ′ in descending order, thus iteratively replacing the tube [k] by [k − 1] ∪ {v}, gives a
new nested tubing associated with πk in each step. Thus, in terms of the associated permutations,

these flips correspond to the adjacent transpositions in descending order. The final nested tubing has

kernel v and the permutation π1 = v, 1, . . . , n. Section 5.4 illustrates this process. The process of

absorbing v can be reversed by flipping all tubes in ascending order. We will refer to this procedure

as expelling v.

Lemma 2. Let T be a nested tubing of G with permutation π and kernel c, and G+v
a supergraph of

G obtained by adding a vertex v such that cv ∈ E(G+v). Then T ′ = T ∪ {V } is a nested tubing and

the process of absorbing v produces a valid path in the associahedron A(G+v) consisting of the nested
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v

→

v

→

v

→

v

→

v

Figure 26: Vertex v is being absorbed into the tubing. In this example this induces four flips.

tubings associated to πn+1, . . . , π1. Furthermore, each tube introduced in this path is present in the last

tubing associated with the permutation π1.

Proof. T ′ is indeed a nested tubing because every tube in T is contained in V . Given a labeling of G
such that T is associated with permutation π = 1, . . . , n, in step k we replace tube the [n − k + 1]
with [n − k] ∪ {v}. This new tube is compatible with all other tubes because it is either a subset or

a superset in each case. Furthermore, [n − k] ∪ {v} is actually a tube because v is connected to the

kernel c = 1, hence [n− k] ∪ {v} is connected in G+v
. The tubes present in the final tubings are the

prefixes of the permutation π1.

Now let us consider a path P in A(G) such that for each maximal tubing T in P the following

properties hold: (i) T is nested, (ii) the kernel of T is adjacent to v in the supergraph G+v
. Let P+v

be the path obtained as follows: For each maximal tubing T of P , add v to every tube of T , and add

the tube {v} to T . In other words, a tubing in P with permutation π corresponds to a tubing in P+v

with permutation π1.

Lemma 3. P+v
is a well-defined path in A(G+v).

Proof. We have seen in Lemma 2 that every tubing in P+v
is well-defined. Let T1 and T2 be consec-

utive tubings in P . Then there are tubes t1 and t2 such that T2 = T1\{t1} ∪ {t2}. Let T ′1 and T ′2
be the corresponding adjacent tubings in P+v

. Consider t′1 = t1 ∪ {v} and t′2 = t2 ∪ {v}. Then
T ′2 = T ′1\{t′1} ∪ {t′2}. This shows that T ′1 and T ′2 are connected by an edge in A(G+v).

Combining the above two lemmas and ideas from the proof of Theorem 2, we can construct facet-

Hamiltonian cycles in graphs obtained by adding a universal vertex; we call a vertex universal if it is

adjacent to every other vertex of a given graph.

Lemma 4. Let P be a facet-Hamiltonian path of the graph associahedron A(G). Let G+
be the graph

obtained from G by adding a universal vertex v to G. Let V = [n] be a labeling of the vertices.

1. If P ends in the nested tubing associated with π = 1, 2, . . . , n, then A(G+) has a facet-Hamil-

tonian path ending in the nested tubing associated with v, 1, . . . , n.

2. If P starts in n, 1, . . . , n− 1 and ends in 1, 2, . . . , n, then A(G+) has a facet-Hamiltonian cycle.

Proof. We follow the basic idea of the proof of Theorem 2. Let T be the final nested tubing of P ,

and let Q be the sequence of nested tubings obtained by absorbing v into T . From Lemma 2, Q
is a path in A(G+). Let P ′ be the path found in the proof of Theorem 2. From Lemma 3, the se-

quenceP ′+v
is also a path inA(G+). Thenwe claim that under the assumption in (i), the concatenated

sequence PQ(P ′+v) is a facet-Hamiltonian path in A(G+). In P we see all tubes not containing v,
and in P ′+v

we see all tubes containing v. In Q we only encounter those tubes which are either

already present in the end of P or in the beginning of P ′+v
.

Now suppose that (ii) is fulfilled. LetQ−1 be the path obtained by expelling v from the tubing at the

end of P ′+v
. By construction and Lemma 2 again, PQ(P ′+v)Q−1 is a facet-Hamiltonian cycle.
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Remark 1. If a graph G fulfills condition (i) or (ii) of Lemma 4, then G+
fulfills the same condition.

Thus, by repeated application of Lemma 4, we may add universal cliques.

The proofs of the following results rely heavily on absorption and expulsion. There we will not

always absorb a vertex that is not contained in any tube yet, but start the procedure from the middle.

Likewise, vertices will be expelled that are not the kernel of their nested tubing. In the context it will

always be clear what is being done.

5.5 Complete split graph, fan, and wheel associahedra

Wenowpresent our construction of facet-Hamiltonian paths and cycles for complete split graphs, fans

and wheels. As a first step, we revisit the facet-Hamiltonian cycles for type A and B/C associahedra

that we have seen in Section 3. We give equivalent proofs in the language of graph associahedra. By

doing so, we also find facet-Hamiltonian paths where we pay close attention to the start and end of

these paths.

Proposition 5. The graph associahedronA(G) of a graphG on n vertices has a facet-Hamiltonian path

that starts in 1, . . . , n and ends in 2, . . . , n, 1, if G is

1. the path Pn (where the vertices are labeled 1, 2, . . . , n along the path)

2. the cycle Cn (where the vertices are labeled 1, 2, . . . , n along the cycle).

3. the star Sn (where the center has label 1)
1
,

Furthermore, in these cases A(G) has a facet-Hamiltonian cycle.

Proof. LetG = Pn and label the vertices along the path by [n]. Then the tubes are the intervals of [n].
First we give a general construction for a facet-Hamiltonian cycle of A(Pn). Start with the nested

tubing T = {t1, . . . , tn} associated with 1, . . . , n. Now we apply the following algorithm. In each

step we find a tube tk such that either k = n − 1 and tk = [n − 1] or the only element in tk+1\tk
is the maximum of tk+1. (Note that there may be many candidates; for our depicted cycles we flip

the tubes by increasing size.) Such a tube always exists if T ̸= {{n}, . . . , {2, . . . , n}}. Flip tk and

update T . Repeat this until T = {{n}, . . . , {2, . . . , n}}. Now flipping every tube once more gives

a facet-Hamiltonian cycle. This can be seen as follows. Draw the vertices of Pn in a vertical line,

labeled 1, . . . , n from top to bottom. Each flip described above consists of shifting a tube of T one

step downwards. After applying the algorithm each tube has been shifted all the way down and has

hence passed over every possible interval of its respective size. Furthermore, once an interval has

been left behind, it is clearly not seen again because we never shift upwards. This shows that the

algorithm produces a facet-Hamiltonian path. The last step then joins the ends of this path as can be

seen in Figure 27. Now the claimed facet-Hamiltonian path can be obtained by breaking this cycle

open in the appropriate spot.

Now, we consider the case where G = Cn. Label the vertices along the cycle. Start again in the

nested tubing associated with 1, . . . , n. We apply a similar idea as for the path. In a phase, we flip

the tubes in the order of increasing size each once. On the level of the permutations that means that

element 1 is shifted to the right in the first phase. Thus, after the first phase, we obtain the tubing

associated with 2, . . . , n, 1. In general, a phase corresponds to a cyclic left-shift in the permutation,

1

Here, Sn is the star with n vertices and n− 1 leaves. We use this non-standard definition is to make the dimensions of

all polytopes mentioned in the proposition the same.
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Figure 27: A facet-Hamiltonian cycles for the path P5. For n = 4, this construction yields the cycle

from Figure 14.

and after n phases we are back where we started. This can be seen as shifting the intervals along the

cycle in (for example) a clockwise direction, so the same reasoning as for the path shows that this

gives a facet-Hamiltonian cycle. Again, breaking the cycle open in the right spot gives the path we

are after. Here it suffices to remove the last phase to obtain a path ending in n, 1, . . . , n−1. Figure 28
illustrates the result for C4 and Figure 29 a facet-Hamiltonian cycle of A(C6) as a rhombic strip.

Figure 28: A facet-Hamiltonian cycle for the cycle C5. For n = 4, this construction yields the cycle

from Figure 7.

1 2 3 4 5 6

12 23 34 45 56 16

123 234 345 456 156 126

1234 2345 3456 1456 1256 1236

12345 23456 13456 12456 12356 12346

1

12

123

1234

12345

Figure 29: A facet-Hamiltonian cycle ofA(C6) as a rhombic strip. The cycle is assumed to be labeled

1, . . . , 6 around. The shaded area encodes facet-Hamiltonian paths on A(P6).

Finally, let us consider the case where G = Sn with center 1. Note that the tubes containing 1
consist of arbitrary subsets of [n] that contain 1. Let P ′ be the facet-Hamiltonian path of A(Kn−1)
from Lemma 1 where we use the labels {2, . . . , n} on Kn−1. Let P be the path on A(G) obtained
from P by appending 1 at the beginning of every permutation of P ′. Then along P we see all tubes

of G that contain the center. Lastly, expelling 1 yields the tubing {{2}, . . . , {n}} and hence a facet-
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Hamiltonian path. It is clear that we can flip the tubing at the end of this path to any nested tubing,

so this path can be closed to a facet-Hamiltonian cycle. Figure 30 illustrates the result for S4.

It remains to show that the permutations match our claims. First of all, the beginning and the end

of P really are nested permutations. The beginning is associated with 1, . . . , n by construction. P ′

shifts the elements 2, . . . , n to the right. Furthermore, the end of P consists of a tubing where 1 is not

the kernel. So 1 must be in the second position of the permutation. It follows that the permutation

associated with the end of P is n, 1, . . . , n − 1. Reversing P hence gives the desired path. The ends

of this path can be joined by expelling n to obtain a facet-Hamiltonian cycle.
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Figure 30: The facet-Hamiltonian path obtained on A(S5) by the construction in the proof of Propo-

sition 5(3).

The star, the path and the cycle all fulfill the second condition of Lemma 4. This gives facet-Hamil-

tonian cycles for complete split graphs, fans and wheels. This completes the proof of Theorem 4

(together with Theorem 2 and Propositions 2 and 3).

Corollary 1. The graph associahedron A(G) of a graph G has a facet-Hamiltonian cycle if G is a fan,

a wheel, or a complete split graph.

Proof. Note that a fan and a wheel contain exactly one universal vertex. After its removal, we obtain

a path or cycle respectively. A complete split graph contains many universal vertices; removing all

but one, yields a star. Proposition 5 shows that the star, the path and the cycle all fulfill condition (ii)

of Lemma 4. This completes the proof.

Theorem 4. Graph associahedra of complete graphs, paths, cycles, stars, wheels, fans, and complete

split graphs are facet-Hamiltonian.

5.6 Caterpillar associahedra

A caterpillar is a tree that becomes a path if all leaves are removed. Let G be a graph and let P =
(T1, . . . , Tk) be a ordered subset of A(G). For a tube t of G, Pt denotes the subset of P such that

t ∈ Ti ⇐⇒ i ∈ Pt. We say that Pt is connected, if these tubings form an interval along P that is not

empty.

Lemma 5. Graph associahedra of caterpillars have a facet-Hamiltonian path.

Proof. A spine of G is a path obtained by deleting leaves. We denote the vertices of a spine of G by

s1, . . . , sn for n ∈ N and the leaves of si by ℓi,j for i = 1, . . . , n and j = 1, . . . ,mi where mi is the
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s1 s2 sn

ℓ1,1 ℓ1,m1 ℓ2,1

. . .

ℓ2,m2 ℓn,1 ℓn,mn
. . . . . . . . .

(a)

s1 s2 sn

ℓ1,1 ℓ1,m1 ℓ2,1

. . .

ℓ2,m2 ℓn,1 ℓn,mn
. . . . . . . . .

(b)

Figure 31: Illustration for the proof of Theorem 5 for caterpillars.

number of leaves adjacent to si. Note that we allow sn to be a leave. For a schematic illustration,

consider Figure 31(a).

We apply induction on the number of vertices of G. The induction hypothesis is as follows: For

any caterpillarGwith vertex labeling as above the graph associahedronA(G) contains a path P with

the following properties:

• All tubings of P are maximally nested.

• P starts in the maximally nested tubing associated to

s1, ℓ1,1, . . . , ℓ1,m1 , . . . , sn, ℓn,1, . . . , ℓn,mn .

• Pt is connected exactly for the tubes t of G that do not consist of only one leave of G.

• The path P splits into two paths P0 and X such that all tubes in all tubings of X contain sn
and all such tubes appear along X .

For the induction base we consider the caterpillar on two vertices with labels s1 and ℓ1,1. Then the

path P consist of the tubing corresponding to s1, ℓ1,1 and X = P . The four properties are trivially

fulfilled.

For the induction step, we consider a caterpillar G with a spine on n ≥ 2 vertices. Note that we

can assume sn ≥ 1; otherwise we may shorten the spine. Let G′ denote the subcaterpillar obtained
from G by deleting the leaf ℓn,mn . Observe that G′ is contained as a tube in our initial tubing, see

Figure 31(b). Let Q′ be the path we get by induction on G′ with the parts Q′0 and X ′. Each tubing

in Q′ is maximally nested and hence associated to a permutation. Adding ℓn,mn to the end of these

permutations lifts the pathQ′ to a pathQ inA(G). AlongQ, all tubes not containing sn are dealt with,
except the singletons that are leaves which we deliberately ignore for now. AlongX ′, we see all tubes
containing sn but not ℓn,mn . Again, writing ℓn,mn at the end of each of the associated permutations

liftsX ′ to a path X̂ in A(G). Furthermore, let X̄ be the pathX ′ where we put ℓn,mn into the second

position of each permutation. Lastly, let A be the path obtained by absorbing ℓn,mn but skipping the

last flip, i.e., not touching the singleton sn, starting from the endpoint of Q. Then we define

P = QAX̄−1.

To show that this is the required path, we first note that these paths fit together. By definition, the

end of Q and the start of A match. The end of A is the end of X ′ with ℓn,mn added in the second

position of the permutation. This is exactly the starting point of X̄−1. It is clear that the path

X = (X̂)AX̄−1
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fulfills the conditions required. To show that Pt is really connected for all tubes t of G that do not

consist of only one leave of G, note that the tubes not containing ℓn,mn are seen along Q and those

containing ℓn,mn are seen along X̄ . To see that all tubes are seen we note that the tubes contain-

ing ℓn,mn (but not just containing ℓn,mn ) are in bijection with those containing sn and not ℓn,mn .

To obtain a facet-Hamiltonian path, start in the tubing that contains all leaves of G as singletons

as well as the tubes Ti for i = 1, . . . , n − 1, where Ti contains all spine vertices sj with j ≤ i and
all leaves of the spine vertices it contains. Now flip to the starting point of P in the obvious way and

then apply P . This gives a facet-Hamiltonian path.

Figure 32 illustrates a facet-Hamiltonian path resulting from the constructive proof of Lemma 5.

Figure 32: The facet-Hamiltonian path constructed in the proof of Lemma 5. Note that this particular

path can be closed to a cycle. It is not known whether this is always possible with this

construction.

5.7 Complete bipartite graph associahedra

In this section, we prove the first part of Theorem 5, namely the following statement.

Lemma 6. Graph associahedra of complete bipartite graphs have a facet-Hamiltonian path.

We introduce some concepts.

Pattern. Let G = Kn,m be a complete bipartite graph where the parts of the bipartition are A =
{a1, . . . , an} and B = {b1, . . . , bm}. Consider a nested tubing in A(G) with permutation π. The
pattern of π is defined to be the word w ∈ {A,B}n+m

such that

w(i) =

{
A, if π(i) ∈ A

B, if π(i) ∈ B
.

Shaving. Consider the nested tubing associated with the permutation

a1, b1, a2, . . . , an, b2, . . . , bm,

with the pattern ABA . . . AB . . . B. Let t denote the 2-tube t = {a1, b1}. The tubes containing t
are made of t together with any subset of the other vertices. Hence, we have the structure of the
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permutahedron. Let the active set M = A \ t consist of the elements of A that are not in t. Apply
the reverse path of the permutahedron A(K|M |) from Theorem 2 to the active set, by modifying

the permutation on these elements. Now take the first element of B in the permutation that is not

in t and flip it to the second place of the permutation (absorbing it). Add the replaced B element

to the active set. Apply the path of the permutahedron A(K|M |) to the now larger active set, again

shifting in either direction. Now take the next B element and flip it to the front. Add the replaced B
element to the active set and repeat. Do this until no new B element can be flipped to the front. See

Figure 33 for an example. Finally, it is easy to check that if we always shift to the left the path ends

in a1, bn, a3, . . . , an, a2, b1, . . . , bn−1.

a1, b1, a2, a3, a4, b2, b3, b4 → a1, b1, a3, a4, a2, b2, b3, b4

→ a1, b2, b1, a3, a4, a2, b3, b4 → a1, b2, a3, a4, a2, b1, b3, b4

→ a1, b3, b2, a3, a4, a2, b1, b4 → a1, b3, a3, a4, a2, b1, b2, b4

→ a1, b4, b3, a3, a4, a2, b1, b2 → a1, b4, a3, a4, a2, b1, b2, b3

Figure 33: The sequence of permutations coming from the shaving procedure onK4,4. The active set

is drawn in blue and the element from B that is absorbed is marked in red in each step.

Note how the active set is always shifted to the left. The direction of shift can be chosen

freely in each step.

Lemma 7. The shaving procedure gives a valid path inA(Kn,m) starting in the nested tubing associated
with a1, b1, a2, . . . , an, b2, . . . , bm that visits every tube containing a1 exactly once.

Proof. Let T1 be the set of tubes containing a1. Except for the singleton, each one contains at least one
element of B that ensures the connectedness. For a tube t ∈ T1 \ {a1} let maxB(t) be the maximal

element in B that t contains. Let Tm
1 be the tubes in T1 such that maxB(t) = m. Starting with the

permutation a1, b1, a2, . . . , an, b2, . . . , bm (patternABA . . . AB . . . B), in the first step we see exactly

the tubes in T b1
1 . Then we flip b2 to the front. In the next shift we see exactly the tubes in T b2

1 and so

forth. The fact that these sets partition T1 proves the claim.

Note that the statement holds for any sequence of left/right shifts we choose, where a right shift

means that we apply the path obtained in Theorem 2, and a left shift means that we apply the reverse

of that path. This has the effect of shifting the elements of the active set either to the right or to the

left, respectively.

We use the shaving procedure to construct facet-Hamiltonian paths in the graph associahedra of

complete bipartite graphs.

Proof of Theorem 5 – complete bipartite graphs. We start with the nested tubing corresponding to a1,
b1, a2, . . . , an, b2, . . . , bn and apply the shaving procedure always shifting to the left. We end up with

a tubing with the pattern ABA . . . AB . . . B. Now we have seen all tubes containing a1. Flip the

2-tube, then we have two singletons on the A side: (AA)BA . . . AB . . . B. Now flip a1 all the way to
the right (expelling it), we get the pattern ABA . . . AB . . . B∥A where the ∥ stands for the fact that
we ignore a1 from here on out. We see the same pattern on the left side of the ∥, hence we proceed
by induction. Eventually all elements of A are expelled to the right side of the ∥, leaving us with
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AB . . . B∥A . . . A. On the left side we have the star left. Flip the singleton, this leaves us with the

patternBAB . . . B for which the same procedure can be applied (with the roles ofA andB reversed).

In each step we see exactly those tubes containing a particular element of A, starting with a1.

Figures 34 and 35 illustrate a facet-Hamiltonian cycle of A(K3,3) and its rhombic strip.

Figure 34: A facet-Hamiltonian cycle in A(K3,3) (to be read from left to right in each line, the edges

ofK3,3 are omitted for visibility reasons).

Figure 35: The rhombic strip for the cycle on A(K3,3) from Figure 34.

6 On the existence of facet-Hamiltonian paths and cycles

In the previous section, we presented some facet-Hamiltonian paths. We now show that facet-Hamil-

tonian simple 3-polytopes always admit a facet-Hamiltonian path, but that the same is not true for

non-simple polytopes.
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Theorem 6. (i) If a simple 3-dimensional polytope P has a facet-Hamiltonian cycle, then it has a

facet-Hamiltonian path.

(ii) There exists a (non-simple) 3-polytope P which has a facet-Hamiltonian cycle but no facet-Hamil-

tonian path.

Proof. We start by showing (i). Consider a facet-Hamiltonian cycleC ofP and let k denote the number

of facets. A facet-Hamiltonian cycle has length k − 3 (and more generally k − n for a n-polytope).
If there exists a facet that C never leaves, then after the deletion of any two consecutive edges all

faces are still guarded, and we obtain a facet-Hamiltonian path. Otherwise, by Observation 1, C has

length k and we aim to identify three edges, the deletion of which yields a facet-Hamiltonian path. In

other words, we are seeking two consecutive vertices of C such that their unique non-cycle edges lie

on different sides of C : one inside and one outside C , as depicted in Figure 36(a). When deleting the

three corresponding edges of C , we obtain a path P of length k − 3 as desired. As the end vertices

of P do not share a face (or equivalently, all facets are still guarded), P is facet-Hamiltonian.

(a)

?

�

(b)

f

(c)

Figure 36: Illustration for the proof of Theorem 6(ii). (a) If the non-cycle edges of two consecutive

vertices lie on different sides of C , then deleting their incident cycle edges yields a facet-

Hamiltonian path. (b) If the non-cycle edges lie on the same side of C , then some face is

not guarded. (c) The last two vertices of f have the desired property.

Figure 36(b) illustrates the case in which the two non-cycle edges lie on the same side of C . Then,

in the corresponding path, one facet is not guarded and the end vertices lie on the same facet.

In this case, it remains to identify three suitable edges ofC . For an illustration, consider Figure 36(c).

We consider some facet f that is visited for at least two edges by C ; it is easy to see that such a facet

exists by 3-regularity. (In fact, by 3-regularity, for every edge of C , one of its two incident facets is

visited at least by two edges of C .) Traversing C in some direction, we consider the last two vertices

that see f . Clearly, the two incident non-cycle edges lie on different sides. This finishes the proof

of (i).

It remains to show (ii). Consider the 3-connected planar graph in Figure 37(a). By Steinitz theorem,

it is the skeleton of a 3-polytope P . Figure 37(a) highlights a facet-Hamiltonian cycle C . We remark

that this cycle is not unique; there also exist facet-Hamiltonian cycles of length 4.

In the following we show that P does not have a facet-Hamiltonian path. Suppose that there exists

a facet-Hamiltonian path P and let ℓ denote the number of vertices that P and C have in common.

Clearly, ℓ ≥ 1; otherwise the central face is not visited. If ℓ = 3, then exactly two edges of C belong

to P ; otherwise the central triangle is visited at least twice. However, then the triangle on the outer

side of the unused edge is visited twice by P , a contradiction.

Thus ℓ ∈ {1, 2}, hence one vertex of C is visited and one is not. Consider the subgraph illustrated

in Figure 37(b) and suppose P visits v but not u. We aim to show that v has two neighbors in P
that lie in this subgraph. In order to visit the green and orange faces, P visits an orange and a green

vertex. If P visits both after or before visiting v, then it uses the vertical (red) edge as illustrated in
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(a)

v u

(b) (c) (d)

Figure 37: Illustration for the proof of Theorem 6(ii).

Figure 37(b). However, as the incident faces must be visited consecutively, this yields a cycle (and

degree two for v in this subgraph). Therefore, assume some orange vertex is visited by an edge to v
and P ends there, see Figure 37(c). Now, if P visits no green vertex directly before or after v, then P
contains the topmost vertical (red) edge. However, as the incident faces are visited once, P contains

an edge to a green vertex. In particular, v has two neighbors within the subgraph. (In fact, Figure 37(d)
illustrates the unique solution for the subgraph, note that P ends within the subgraph.)

If ℓ = 2, then P contains the edge between these two vertices. However, by the above observation,

the two vertices have degree two in their subgraph. A contradiction. If ℓ = 1, then v has degree two

in each of the two subgraphs – a contradiction again.

7 Computational complexity

In this section, we prove the NP-completeness of the problem of deciding the existence of a facet-

Hamiltonian cycle in a given polytope. We exhibit a reduction from the NP-complete Tree-Residue

Vertex-Breaking (TRVB) problem introduced by Demaine and Rudoy [25]. In TRVB, we are given a

connected graphG and asked whether we can transformG into a tree by performing vertex-breaking

operations. A vertex-breaking of a vertex v replaces v by deg(v) vertices of degree 1; for an illustration
see Figure 38(a). The problem remains NP-hard even if G is a planar 4-regular graph. Figure 38(b)

shows that the octahedral graph is a negative instance of TRVB. Note that if two adjacent vertices

are broken, a component containing a single edge is created. Without loss of generality a potential

solution breaks the leftmost vertex. Then, none of the vertices in the red cycle can be broken and we

cannot eliminate all cycles of G without disconnecting it.

(a) (b)

Figure 38: (a) Vertex-breaking operation. (b) Negative instance of TRVB.
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Theorem 1. The problem of deciding whether a given simple three-dimensional polytope has a facet-

Hamiltonian cycle is NP-complete.

Proof. Containment in NP is easy. NP-hardness is established by a reduction from TRVB. We first

give an informal intuition. Given a connected planar 4-regular graph G′ as instance of TRVB, we

build a graph G that will have a facet-Hamiltonian cycle C if and only if G′ is a positive instance of
TRVB. We can think ofG as a “thickening” ofG′, obtained by blowing up vertices and edges by their

respective gadgets. IfG′ can be transformed into a tree T , the construction forcesC to act as an Euler

tour around T (using vertices of G).

(a)

=

(b) (c)

Figure 39: (a) Edge gadget, (b) cross gadget , and (c) vertex gadget.

The edge gadget is shown in Figure 39(a), and the vertex gadget is shown in Figure 39(c). The

leftmost (rightmost) 8 vertices of the edge gadget are shared with the vertex gadget corresponding to

the left (right) endpoint of the edge. The diamond vertices in the edge gadget represent the subgraph

shown in Figure 39(c) that we call cross gadget. The blue triangles denote edges whose other endpoints

are not part of any gadget. Note that they point to an original face ofG′. A face F ofG′ incident to eF
edges has 2eF associated blue triangles (one from every corresponding edge gadget and one for every

corresponding vertex gadget). Note that since G′ is simple, eF > 2. We connect the blue triangles of

each face with a binary tree, similar to the 6 vertices in the interior of the vertex gadgets. That means

that F correspond to 2eF faces in G. The graph G is planar and cubic. Note that two nonadjacent

vertices are a 2-cut in a planar graph if and only if they both appear in two face cycles. By construction,

all face cycles internal to gadgets intersect at exactly one edge. The only faces not internal to gadgets

are the ones created by the addition of the binary trees connecting the blue triangles. By construction,

such face cycles share exactly one edge with adjacent face cycles. We conclude thatG is 3-connected.

This concludes the description of G.

It remains to show that G is facet-Hamiltonian if and only if G′ is a yes-instance of TRVB. First,

assume G′ is a yes-instance, so that it can be transformed into a tree T by breaking a set of vertices.

We now describe a corresponding facet-Hamiltonian cycle C in G. Informally, C traces an Euler

tour of T . If a vertex v of G′ was broken, we choose C to traverse the corresponding vertex gadget

as shown in Figure 40(a). Otherwise, C traverses the vertex gadget as shown in Figure 40(b). For

every edge e that had one of its endpoints broken, C traverses the corresponding edge gadget as in

Figure 40(c). Else, none of the endpoints of e are broken in T , and we make C traverse the edge

gadget as in Figure 40(d). All cross gadgets are traversed as in Figure 40(e). We can verify that the

faces contained by the gadgets are traversed exactly once as desired. The 2eF faces corresponding to
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a face F of G′ are all adjacent to a unique edge in an edge gadget that is incident to a cross gadget.

Since C contains those edges, these faces are visited. Each of these faces are incident to a single edge

gadget and a single vertex gadget. By construction, C also visits these faces only once in both cases:

when the vertex is broken or not.

(a) (b) (c) (d) (e)

Figure 40: Constructing a facet-Hamiltonian cycle given a solution to the instance of TRVB.

For the reverse direction, assume thatG admits a facet-Hamiltonian cycle C . We now show that C
must traverse G so that every vertex gadget is traversed exactly as in Figure 40(a) or Figure 40(b).

That allows us to determine which vertices of G′ to break so that we have a solution for the TRVB

problem. To this end, we prove some structural properties of C .

F1

F2

(a)

F1 F2
F3

(b)

F1

F3

F2

(c)

F2F1

F3

(d)

Figure 41: Illustrations for the proofs of Claims 1, 2 and 3.

Claim 1. C traverses exactly two of the four edges incident a cross gadget, and they must not be consec-

utive in the circular order around the gadget.

Proof. Because the cross gadget contains faces induced by the vertices of the gadget, it is clear that C
must traverse at least two of the four incident edges or else these face would not be visited. For a

contradiction, assume that C traverses two consecutive edges. Refer to Figure 41(a). Without loss of

generality, assume that C traverses the left and top edges, which are both incident to face F1. Since

the edges of C on the boundary of F1 must induce a path, only two faces enclosed by the gadget are

visited. Then C must visit the same gadget again, as shown in the figure. However C cannot visit the

small quadrangular face inside the gadget, a contradiction.

Claim 2. In every edge vertex, C traverses the four horizontal (using the orientation of Figure 39(a))

edges incident to cross gadgets.

Proof. For contradiction, assume that C traverses a vertical edge incident to a cross gadget. Refer

to Figure 41(b). By Claim 1, C must traverse both vertical edges, one of each is incident to faces F1

and F2 enclosed by the gadget. C must also traverse the two small triangular faces at the bottom of
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the gadget, but it cannot use the two horizontal edges incident to the cross gadget. Since the traversal

around F1 must induce a path, C must go through the three upper edges of F1 as shown in the figure.

However, C must then visit F2 twice, a contradiction.

We now focus on vertex gadgets. Note that the vertex gadget contains a cycle with 32 vertices that

enclose 6 vertices, 13 edges and 8 faces. We call these inner vertices, edges and faces.

Claim 3. C contains no inner edge of a vertex gadget.

Proof. To arrive at a contradiction, assume that C contains an inner edge of a vertex gadget, and

let P be a path in the gadget containing such an edge. Refer to Figure 41(c). Note that P must visit

at least 3 inner faces (in the figure they are labeled F1, F2 and F3). Every inner face is adjacent to a

small triangular face which is also present in the adjacent edge gadget. By Claim 2, P visits exactly

two of these (at least three) triangular faces, because as soon as P reaches the boundary of the vertex

gadget it must continue to the adjacent edge gadget. But C visits all of the triangular faces, implying

that C visits an inner face more than once (F3 in the figure), a contradiction.

Claim 4. All vertex and edge gadgets are traversed as in Figure 40.

Proof. By Claim 2, the four horizontal edges incident to cross gadgets in an edge gadget must be in

C . Claim 3 rules out traversals such as the one shown in Figure 41(d). The horizontal edges in the

middle of the gadget must also not be in C or else either F1 or F3 is visited twice. Also note that

only one edge of the triangular faces can be traversed: the bottom edge of F1 is traversed by Claim 2

and, if two edges of the neighbor triangular face is traversed, F1 is visited twice. We are left with

the traversals in Figures 40(c) and 40(d). That implies (with Claim 3) that C must be exactly as in

Figures 40(a) or 40(b) at a vertex gadget.

By Claim 4 we can consistently decide which vertices to break based on C . Since C is connected,

every cycle inG′ has at least one vertex broken, and the set of broken vertices are not a cut set ofG′.
Thus the result of breaking the selected vertices is a tree. That concludes the proof of the theorem.
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