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to ask as many questions as possible. The game ends when A an deide onthe basis of the gathered information whether X 2 P.The omplexity C(P) of the property P is de�ned to be the number ofquestions that are neessary to omplete the game assuming both A and theadversary B play optimally. The property P is alled evasive ifB an fore Ato ask all the jSj possible questions. If P is onsidered as a Boolean funtion,the omplexity of P is a lower bound for the time any algorithm reognizingP must take in the worst ase on any model of sequential mahine [8℄.A well studied speial ase of this problem is, when the onsidered set Sis the set of all possible edges of an n-vertex graph. The relation betweenthis onept of reognition omplexity of graph properties and the omputerrepresentation of graphs is disussed in [9℄. In this ontext The main openproblem is the \Evasiveness Conjeture for Monotone Graph properties".A elebrated partial solution using topologial methods to this problem isgiven in [7℄.In [3℄ Faigle and Tur�an suggest to play the game on properties of partialorders. Here player A asks for the omparability status of two elements aand b, and B answers \a < b"; \a > b" or \a and b are inomparable."Considering a property P of partial orders with n elements, P is eva-sive if B an fore A to ask all possible �n2� questions. Obviously, the gamefor properties of partial orders does not �t into the onept of set proper-ties disussed before, sine there are three possible answers instead of two.Moreover, the transitivity of partial orders may lead to situations, whereplayer A an infer the omparability status of two elements without askingit { independently from the onsidered property. (In suh a ase we willsay that the pair ab has been \gained"). Note that the property of being alinear order is equivalent to the sorting problem and hene it's omplexityis O(n logn).In this paper we study the reognition omplexity of several propertiesof partial orders. First we desribe situations that indue the omparabilitystatus of an unasked pair of elements independently from the onsideredproperty. For properties that are haraterized by forbidden substruturesof �xed size the Erd}os-Stone Theorem leads to a lower bound of 
(n2) for thereognition omplexity. In Setion 2 we prove evasiveness for onnetednessand having exatly k omparable pairs, k � n2=4 and non-evasiveness forlarger values of k. For the lass of interval orders we prove that �n2��1 is theexat value of its reognition omplexity. Finally we derive bounds for thereognition omplexity of being a lattie, ontaining a hain of length k, fork � 3 and having width k, for k �xed. All these properties are non-evasive.2



1.1 Notation and terminologyWe �rst introdue some basi notations. A partial order P = (V;<) onsistsof a �nite ground set V and the order relation <, inomparability is denotedby k. An element b overs a (denoted a � b) if a < b and there is no  2 Vwith a <  < b. Throughout this paper we illustrate partial orders by theirdiagram. The verties of the diagram are the elements of V and b overs ain P i� a and b are onneted by an edge going from a up to b. A partialorder property P is a set of partial orders over the same ground set losedunder isomorphism.Consider the game introdued in Setion 1 for a partial order property Pover a n-element ground set V . The state of the game after q � �n2� questionsan be interpreted as a triple ((C;<); I;N), where (C; I;N) is a partitionof the set of all two-element subsets of V . The pairs in C are those whihhave been given omparable in one of the q steps and < is the orrespondingorder relation. I is the set of pairs given inomparable and N is the set ofpairs not yet asked for.We all a triple ((C;<); I;N) legal if there exists a partial order P =(V;<P ) ompatible with the triple, i.e. satisfying1. If fa; bg 2 C and a < b then a <P b.2. If fa; bg 2 I then a k b in P .An algorithm for player A is a mapping ' assigning to eah legal triple((C;<); I;N) a pair fa; bg 2 N , i.e. ' presribes the next question \a : b"at state (((C;<); I;N).A strategy for player B is a mapping  whih assigns to a given legaltriple ((C;<); I;N) and fa; bg 2 N a new legal triple whih is one of thefollowing two�(C;<); I [ fa; bg; N n fa; bg� ; �(C [ fa; bg; <); I;N n fa; bg�:A game is �nished at state ((C;<); I;N) if either all partial orders P om-patible with the triple are in P, or for all of them P =2 P holds.The omplexity of a property P for a �xed algorithm ' and a �xedstrategy  is the minimum number of questions needed to �nish a game ifplayer A uses ' and player B uses  , i.e.C(P;'; ) = minn q j game ends at state ((C;<); I;N; ) with jC [ Ij = qo:3



The omplexity of a property P is the minimum number of questions neededto �nish a game if both A and B play optimally, i.e.C(P) = min' max C(P;'; ):For a legal triple ((C;<); I;N) with jC [ Ij = q, the number of pairs ofelements whose omparability status is known may be more than q, theyhave been gained.1.2 Some general observationsWe now give situations, where the omparability status of a pair fa; bg 2 Nis indued by the omparability status of some other pairs independent fromthe partial order property under onsideration.Situation 1 If there exist elements a1; a2; a3 with a1 < a2 and a2 < a3 thenby transitivity a1 < a3 holds.Situation 2 If there exist elements a1; a2 and b1; b2 with a1 < a2, b1 < b2,a1 k b2 and a2 k b1 then both of a1 k b1 and a2 k b2 hold.Proof. With eah of the 4 possible omparabilities a2 < b2, b2 < a2, a1 < b1and b1 < a1 we would introdue as transitive edge either a1 < b2 or b1 < a2ontraditing the inomparability of this pair. (See Figure 1a).We always illustrate partial orders by their diagram with solid lines, in-omparabilities are denoted by dashed edges, and dotted edges denote anunknown omparability status.Situation 3 Consider a state ((C;<); I;N) of a game where there existsa 5-hain a1 < a2 < a3 < a4 < a5 and an element b =2 fa1; :::; a5g withfb; aig 2 N . Then player A an dedue the omparability status of all �vepairs fb; aig, 1 � i � 5 by asking only four questions.Proof. Player A asks for the omparability status of the pairs b : a2 andb : a4. If one of these pairs is omparable we gain a transitive edge. In aseboth pairs are given inomparable A onludes b k a3. (See Figure 1b).Situation 4 Consider a state ((C;<); I;N) of a game where there exist two3-hains a1 < a2 < a3 and b1 < b2 < b3 and all the pairs fai; bjg are in N .Then player A an dedue the omparability status of all six pairs ai : bj byasking only �ve questions.Proof. Player A asks for the omparability status of a1 : b2 and b1 : a2. Ifboth a1 k b2 and b1 k a2, then situation 2 applies, i.e. a1 k b1 and a2 k b2.4
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Figure 1: Three standard situationsOtherwise, i.e. if at least one of these pairs is given omparable, A gains atransitive edge. (See Figure 1).As an appliation of the Erd}os-Stone Theorem (see [2℄) the next theo-rem shows a quadrati lower bound for the omplexity of properties with aforbidden subposet. The height of an order is the number of elements in alongest hain minus one.Theorem 1 Let P be a partial order property suh that1. P ontains the n-element antihain;2. there exists a partial order P0 = (V0; <0) of height h suh that a partialorder P that ontains P0 as a suborder is not in P.The omplexity of P on n elements is at least (1=2h � o(1))n2.Proof. Player B an make use of the following `greedy strategy'. As longas the graph of unasked edges ontains a opy G of the omparability graphof P0 the answer to a question a : b is a k b. The n-antihain and theorientation of G whih is the order P0 together with independent elementsare both ompatible orders, one in P the other not in P.The omparability graph of P0 has hromati number h+1. The Erd}os-Stone Theorem ensures that as long as the graph of unasked edges ontainsmore then h�12h n2 edges it also ontains a opy of the omparability graph of5



P0. Hene, player A has to ask at least (1 � h�1h )n22 questions. Taking intoaount that the Erd}os-Stone Theorem only gives assymptoti bounds thisleads to the expression laimed in the theorem.This theorem applies to a lot of partial order properties, e. g. for beingan interval order, being a lattie, having dimension at most 2 or ontaining ahain of 3 elements. In the next setion we will give more aurate estimatesfor the omplexity of some of these properties.2 Spei� properties2.1 Conneted ordersA partial order is said to be onneted if its diagram onsidered as an undi-reted graph is onneted.Theorem 2 The property P of all onneted partial orders over set V isevasive.Proof. We desribe a strategy  for player B suh that C(P;'; ) = �n2�for all algorithms ' of player A.Let the �rst question be a : b, player B answers a < b. For furtherquestions a : b he answers a k b, exept in ase fa; bg is the last possibleedge between one of the elements, say a, that is not omparable to anotherelement, and an element b omparable to some other element. Then theomparability is given aording to the omparability status of b, suh thatb remains a minimal element or a maximal element. More preisely, givena legal state ((C;<); I;N) let M = [fx;yg2Cfx; yg then for fa; bg 2 N theanswer of B is:a < b if a =2 M , b 2 M and for all x 2 M n fbg we have fx; ag 2 I, andb >  for some  2M ;b < a if a =2 M , b 2 M and for all x 2 M n fbg we have fx; ag 2 I, andb <  for some  2M ;a k b else.The strategy  obviously preserves the invariants:(1) The partial order indued by (C;<) over M is onneted, and �M2 � �C [ I. 6



(2) All x 2M are either minimal or maximal with respet to (C;<).(3) For eah x 2 V nM there is a y 2M suh that fx; yg 2 N .Applying  , the game ends with a legal triple ((C;<); I;N). If jC[Ij < �n2�,then the partial orders ompatible with ((C;<); I;N) would all be onnetedor all be disonneted. But invariants 1 and 2 ontradit the assumption thatall ompatible partial orders are onneted, while invariant 3 ontradits thease that they all are not onneted.2.2 k omparable pairsTheorem 3 Consider the game being played on a ground set of n verties.Let Pk denote the property of G having exatly k omparable pairs. PropertyPk is not evasive for any k > n24 .Proof. We give an algorithm for player A for avoiding at least one questionwhenever k > n24 . Note that an order with k omparabilities has to ontaina 3-hain; this is an elementary appliation of Tur�an's Theorem from graphtheory. The basi idea for the algorithm is to go for the gain of a transitiveedge of a 3-hain, if player B refutes to allow this kind of gain the game willend in a position where all ompatible orders are of height one and henehave less than k omparabilities.Player A selets a vertex v 2 W0 = V and asks for the omparabilitystatus of v with all the verties inW0 if no omparable vertex is found insertv into the set of isolated verties U0. This is repeated until omparable pairA� 1 < b1 is found.Let W1 = W0 n (U0 [ fa1; b1g). Repeat the same steps with W1; i.e.,selet a vertex v 2W1 and ask for the omparability status of v with all theverties inW1 if no omparable vertex is found insert v into U1, do this untila omparable pair a2 < b2 is found. Repeat with W2 =W1 n (U1 [ fa2; b2g)and so on. When all verties are exhausted there is a sequene of sets whihform a partition of V :U0; fa1; b1g; U1; fa2; b2g; : : : ; Ut�1; fat; btg; Ut:At this point any two elements x 2 Ui and y 2 Uj , with i = j possible,are known to be inomparable. In the next step the algorithm takes theelements of the sets Ui and asks for their status with respet to elementsaj and bj whih have not been asked before. When for an element x 2 Uia omparability is disovered, say x < bj (if x > bj player A has gained a7



transitive edge) then x is moved into a set Aj assoiated with aj , elementaj is itself a member of Aj . Conversely, when x > aj then x is moved intoBj whih also ontains bj . Isolated elements end in U0.When this step is ompleted we have a set U0 of isolated verties andsets Ai and Bi for i = 1; ::; t where eah element of Ai is below bi and eahelement of Bi is above ai.Finally ompare all elements of Ai with those of Aj and dually those ofBi with those of Bj for i 6= j. To avoid transitive edges player B has to givethe answer \inomparable" to all these queries.We laim that at this point the number of possible omparabilities ina ompatible order is less than n24 + 1. The possible omparabilities are ofthree types:1. Comparabilities between an ai and a bj ; there are t2 of this type.2. Comparabilities between x 2 Ai n faig and ai or x 2 Bi n fbig and bi;there are at most n� 2t of these.3. Comparabilities between x 2 Ai n faig and bj or x 2 Bi n fbig and aj ;there are at most (n� 2t)t of these.In total this makes at most pn(t) = t2 + (t + 1)(n � 2t) omparabilities. Itis easy to hek that pn(t) > n24 + 1 has no real solution t. Therefore, ifk > n24 + 1 player A an stop the game at this point and laim that theorder has less than k omparabilities. This ompletes the proof of this ase.Now let k = bn24  + 1. The only integral solutions of pn(t) � bn24  + 1are t = n=2� 1 in the even ase and t = bn=2 or t = bn=2 � 1 in the oddase. Eah of these solutions gives pn(t) = bn24 + 1, hene, all the possibleomparabilities ounted by pn(t) have to be realized by player B.Let x be one of the elements that was in Sti=0 Ui, atually x was in Ut,otherwise x is known to be inomparable to at and bt. Assume w.l.o.g. thatx 2 A1. Next ask the status of x and a1. To realize the omparabilitiesounted by pn(t) player B has to answer x < a1. The last question isa1 : b2. To reah the aspired number of omparabilities player B has toanswer a1 < b2 but this allows the gain of the transitive edge x < b2 andthe proof is omplete.
8



Theorem 4 Property Pk is evasive for any k � n24 .We prepare for the proof of the theorem with a de�nition and two lemmas.A partial order P = (V;<) is an interval order i� there exists a olletion(Ix)x2V of intervals on the real line, suh that x < y i� Ix lies entirely to theleft of Iy. Interval orders have several nie haraterizations. We mentiontwo of them, see Fishburn's book [5℄ for full proofs.1. P is an interval order i� P does not ontain a suborder 2+2, where2+2 = (fa; b; ; dg; <) with a < b;  < d and no further omparabili-ties.2. P is an interval order i� the sets of suessors Su(x) = fy : y > xg ofelements of P are linearly ordered with respet to inlusion.3. P is an interval order i� the sets of predeessors Pred(x) = fy : y < xgof elements of P are linearly ordered with respet to inlusion.Lemma 1 For every integer k � n24 there is a bipartite interval order on nverties with k omparable pairs.Proof. Take a partition (k1; k2; : : : ; kbn=2) of k, with dn=2e � k1 � k2 �: : : � kbn=2 � 0. Let x1; x2; : : : ; xdn=2e and y1; y2; : : : ; ybn=2 be the n vertiesof the order. As relations take xi < yj for 1 � i � kj and all y. It is easilyshown that the resulting order does not ontain an indued 2+2, hene, itis a bipartite interval order.Lemma 2 Let I be a bipartite interval order. Player A has to ask all �n2�pairs of verties to verify that player B onstruts I.Proof. Let (X;Y ) be a partition of the vertex set of I suh that X is theset of minimal elements and Y is the set of maximal elements (independentverties an arbitrarily be onsidered as minimal or maximal). Supposeplayer B has answered the �rst �n2�� 1 queries of player A omplying to thestatus of the pair in I. Let fa; bg be the remaining pair. With the followingase disussion we show that irrespetive of the pair fa; bg player B alwayshas two legal answers so that the �nal order is either I or non-isomorphito I.a 2 X, b 2 Y . Independent of the status of a; b in I the answers a k b anda < b are legal answers for player B.9



a; b 2 X. From the seond haraterization of interval orders we know thatSu(a) and Su(b) are omparable, say, Su(a) � Su(b). In this asethe answers a k b and a > b are legal answers for player B.a; b 2 Y . Sine the dual (all omparabilities reversed) of an interval orderis an interval order this ase redues to the ase a; b 2 X.Note that the proof of the previous lemma shows that veri�ation of abipartite interval order is evasive even if the labeling of the verties is �xed.Proof. (Theorem 4) A strategy for player B proving the theorem is to hoosea bipartite interval order Ik with k omparable pairs (Lemma 1). Player Bansweres the �rst �n2� � 1 queries omplying to the status of the pair in I.By Lemma 2 the answer to the last question allows player B to onstruteither Ik or some order in Pk�1 [ Pk+1.An easy extension of the above argument leads to lower bounds for theomplexity of Pk for k > n2=4.Player B hooses an appropriate l for the given value of k and onstrutsan order P with l ranks of about the same size n=l. Any two nonadjaentranks indue a omplete bipartite order and omparabilities between adja-ent ranks are hosen so that the following properties hold:� The order P is an interval order.� P has exatly k omparabilities.� If x; y are from the same rank and Pred(x) � Pred(y) then Su(x) �Su(y).� If x; y are from the same rank and Su(x) � Su(y) then Pred(x) �Pred(y).Using obvious extensions of the previous methods this an always be done.For the above order P the reognition problem ontains the sorting prob-lem on the l sets. In addition every possible edge between 2 adjaent ranksand also those between elements of the same rank must be asked. This leadsto the following bound :Proposition 1 Let l be so that n22 (1� 1l�1) < k � n22 (1� 1l ). The reognitionomplexity of Pk is at least l log l + (l � 1)(n2l2 � 1) + n(n�l)2l . And the boundis tight for both ends (l = 2 and l = n).10



2.3 Interval ordersTheorem 5 The reognition omplexity of the lass P of interval orders is�n2�� 1.Proof. We �rst prove the lower bound of �n2� � 1, this is the easier part.To fore all but at most one question to be asked player B an use a simple`greedy-strategy': For all states of the game and all questions x : y player Banswers x k y unless there is no ompatible partial order ontaining a 2+2.Consider the state of the game when player B answers to the questionfa; bg onedes the �rst omparable pair. Let GN be the of all edges thathave not yet been asked. It is easy to see that GN is either a triangle or astar with k � 1 leaves. In Figure 2 we show the �ve possible situations ofGN [ fa; bg. 
a b (T2)(T1) a b

baa(S1) (S3)a (S2)
bb

Figure 2: The bold edge fa; bg and the possible ways to attah it to the staror the triangle formed by GN .In the ases S1 and T1 player B an fore all the remaining questions bygiving inomparabilities until the last edge is asked.By adding inomparable pairs ase S2 is either transformed to ase S1or a;  is the last unasked edge. In that ase player B gives the seond lastpair omparable so that a;  is a diagonal of a 2+2. This fores player A toask this last edge.By adding inomparable pairs ase S3 is either transformed to ase S2 orthe three last remaining questions together with the edge a; b form a triangle11



with an edge stiking out. In this ase as well as in ase T2 player A angain a question by �rst asking the edge disjoint from a; b. Player B givesthe edge omparable. At this point player A only has to ask the diagonaledge to deide the game.We now turn to the upper bound. We have to desribe an algorithm forplayer A whih saves a question.Let V = fx1; : : : ; xng, player A takes the elements by inreasing indexand asks for their omparability status to all elements with higher index,until B gives the �rst omparability.In ase xi k xj for i � n � 3 and all j, every ompatible partial orderis an interval order and A gains 3 questions. So, let fxk; xk+lg be the �rstomparable pair, assume xk < xk+l (the other ase is dual).Let V 0 = fxk+1; : : : ; xk+l�1; xk+l+1; : : : ; xng, player A ontinues by ask-ing all pairs of elements from V 0. Let Q0 be the resulting order. If Q0 isan antihain then all ompatible partial orders are in P. We thus assumethat at least one pair is omparable. Also Q0 has to be an interval order,otherwise all ompatible orders ontain the 2+2 of Q0 and are not in P.Let a = xk, b = xk+l and z be a maximal element of Q0 with a maximalset of predeessors. Player A asks all questions b : x for elements elementsx 2 V 0 n fzg. Every omparability given has to be of the form b > x,otherwise player A would gain a < x as a transitive edge. Next all questionsa : x for x 2 V 0 are asked. The only pair that has not been asked at thispoint is the pair b; z. Let Q be the order obtained so far.Claim: If there is no 2+2 in Q then making fb; zg omparable an notause one. Otherwise there would be two omparable elements x < y whihare both inomparable to b and z. Sine a < b we �nd x; y 6= a. Henex; y 2 V 0 and x < y implies x < z by the hoie of z.If there is a 2+2 in Q then the diagonals have already been asked sineboth b and z are maximal elements of Q. Hene, the omparability statusof b; z an not serve to destroy the 2+2.In onlusion, player A an save the question b : z.2.4 LattiesIn this setion we prove that the property PL of being a lattie is not evasiveand then derive a lower bound on the omplexity of PL.Consider a partial order P = (V;<), two elements a; b 2 V have theminimum x 2 V , denoted x = minfa; bg if x � a and x � b, and z � a andz � b implies z � x. The maximum is de�ned analogously. P = (V;<) is alattie i� minfa; bg and maxfa; bg exist for all a; b 2 V .12
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Figure 3: Forbidden subdiagram for latties.Theorem 6 Let PL be the property of being a latti on a set V , jV j > 3,then C(PL) < �n2�.Proof. In the following we use the fat that L = (V;<) is a lattie i� itits diagram does not ontain an edge subdivision of the diagram shown inFigure 3 and it ontains a unique minimum and a unique maximum, i.e.elements x; z 2 V suh that x � y and y � z for all y 2 V . (Denote theminimum resp. maximum of L by min(L) resp. max(L).)An algorithm ' for player A with C(P;'; ) < �n2� for all strategies  is �rst to ask all �n�12 � questions over V n fxg for a �xed x 2 V . The stateof the game after these �n�12 � questions is a legal triple ((C;<); I;N) withN = f fx; yg j y 2 V g.Case 1. The order indued by ((C;<); I) is not a lattie. The `defet' of((C;<); I) relative to latties has to be so small that adding x in the rightway leads to a lattie. The possible situations are:1.1 The unique minimum or maximum is missing. W.l.o.g. let ((C;<); I)indue a partial order ontaining no minimum. It must ontain amaximum z and all latties ompatible with ((C;<); I;N) ontain xas its minimum. Let A ask a : x for an arbitrary a 2 V nfx; zg. PlayerB has to answer x < a, else there is no ompatible lattie, but withx < a and x < y player A gains the transitive edge a < y.1.2 The partial order indued by ((C;<); I) ontains a forbidden substru-ture on elements a; b; ; d. In this ase A asks b : x and d : x. EitherB gives a transitive edge between x and the minimum or the maxi-mum, or B answers b k x and d k x, whih implies that there exists noompatible lattie.Case 2. The order indued by ((C;<); I) is a lattie.13



2.1 If the lattie ontains a 5-hain, then situation 3 from setion 2 applies.2.2 If the lattie has height 3, i.e. there is a 4 hain min < a1 < b1 < max,then the non-extremal elements are partitioned into a1; :::; ak , thoseovering the minimum, and the remaining elements b1; :::; bl. Notethat all the bi are overed by the maximum. Player A asks x : u for allu 2 V n fx;min;max; a1g any omparability among the answers wouldindues a transitive edge. Hene we assume that B always answersx k u. The next two questions are x : min and x : max. To guaranteethat there exists a ompatible partial order that is a lattie, B has toanswer x < max and min < x. But now the omparability status ofx and a1 may be hosen arbitrarily, sine all orders ompatible withthat state of the game do not ontain the forbidden substruture, i.e.are latties.2.3 If the lattie has height 2, A �rst asks x : min and x : max. If theanswers of B are min 6< x or x 6< max, player A either gains a transitiveedge or there exist no ompatible latties.Otherwise, if min < x < max, the omparability status of x andall other elements of V may be hosen arbitrarily, sine there are noompatible partial order that ontains a forbidden substruture, i.e.all ompatible partial orders are latties.We nextderive a lower bound for PL based on the forbidden substruture.Reall the following result from extremal graph theory (see [2℄). If a graphG with n verties ontains more than n4 (1 + p4n� 3) edges then G mustontain a yle of length 4.Theorem 7 For reognition omplexity of latties is at least n2!� (n� 2)4 (1 +p4n� 11):Proof. Player B answers the �rst question x : z with x < z and setsaside aside x and z to be the maximum and minimum verties respetively.Further questions involving x and z are answered appropriately. For anyquestion involving the other n� 2 verties the answer is inomparable.For the above strategy it is lear that A must ask the status of x and zwith all the other verties. Furthermore, as long as there is a yle of length4 in the graph GN of not asked edges on V nfx; zg there are ompatible non-latties. The above result implies that A has to ask at least 1 + 2(n� 2) +(�n�22 �� (n�2)4 (1+p4(n� 2)� 3)) = �n2�� (n�2)4 (1+p4n� 11) questions.14



2.5 Height and widthWe �rst investigate the omplexity of the property of ontaining a hain ofat least k elements, i.e., the property of being of height at least k � 1.Containing a hain of length 2, i.e., a omparable pair is obviously eva-sive.Theorem 8 The property P of all partial orders over set V with jV j = n �4, that ontain a k-hain, k � 4 has omplexity C(P) < �n2�.Proof. Player A asks all possible questions over V n fxg for �xed x. Toguarantee that for the state of the game after these �n�12 � questions thereexists a ompatible partial order ontaining a hain of length k, player Bhas to onstrut a hain of length k � 1, say a1 < a2 < ::: < ak�1. Now Aasks x : a2. If B answers x k a2, then the omparability status of x : a1 andx : ai, 2 < i � k � 1, is not relevant for P. Otherwise, if B answers x < a2or a2 < x there is an indued transitive edge.This argument does not apply to the ase k = 3. In an extended abstrat [6℄Gr}oger laims that the exat omplexity of this property is �n�12 �+3. Withthe theorem below we prove the muh weaker statement that the propertyof ontaining a 3-hain is non-evasive. The lower bound of �n�12 �+1 is ratherobvious, onsider the order with one element x dominating all others andno further omparabilities. Let B give the �rst answer a omparability andthus deide the element x. Player A then has to ask all pairs in V n fxg tomake a 3-hain impossible.Theorem 9 The property P of all partial orders over set V , jV j = n � 5,that ontain a 3-hain has omplexity C(P) < �n2�.Proof. The proof is based on the following fats.Fat 0. If for a strategy  there exists a state ((C;<); I;N) with twoelements a; b with fa; bg 2 N and fx : x k a or x k bg = V nfa; bg then thereexists an algorithm ' suh that C(P;'; ) < �n2�.The pair a; b an not ontribute to a 3-hain sine the third element xof every triple a; b; x is inomparable to a or b.Fat 1. If for a strategy  there exists a state ((C;<); I;N) and fourelements a; b; ; d suh that fa; bg; f; dg 2 C, a < b;  < d and fa; dg 2 N ,fb; dg; fa; g 2 N[I then there exists an algorithm ' with C(P;'; ) < �n2�.Player A an obtain fa; g 2 I and fd; bg 2 I, otherwise there would be a3-hain. Now A asks all remaining questions fa; xg, x 6= d and all questions15
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Figure 4: Illustrations for the two fats.fd; xg, x 6= a. If fa; xg 2 C then a < x, otherwise we would have a 3-hain,symmetrially fd; xg 2 C implies x < d. From this we onlude that for allx 6= a; d either fa; xg 2 I or fd; xg 2 I, but now the omparability status ofa : d is not essential for P, sine this pair an not ontribute to a 3-hain ina ompatible order. (See left side of Figure 4).Fat 2. If for a strategy  there exists a state ((C;<); I;N) suh thati) f; vg 2 C [ I for a �xed  2 V and all v 2 V n fg,ii) there are x; y 2 V with fx; g 2 I; fy; g 2 C,iii) for all x; y 2 V with fx; g 2 I; fy; g 2 C, we have fa; bg 2 Nthen there exists an algorithm ' suh that C(P;'; ) < �n2�.W.l.o.g.  < b. Let X = fx 2 V n fg : f; xg 2 Ig and Y = fy 2V n fg : f; yg 2 Cg, then  < y for all y 2 sine otherwise there is a3-hain. We next ask for all the remaining pairs fx; x0g and fy; y0g. Thepairs fx; x0g are given inomparable, otherwise Fat 1 applies. Moreover,all pairs fy; y0g are given inomparable to avoid a 3-hain. But then thereexists no ompatible partial order in P, i.e. the omparability status of allx : y for x 2 X and y 2 Y is not essential for property P sine these pairsannot ause a 3-hain. (See right side of Figure 4).An algorithm ' withC(P;'; ) < �n2� for all strategies  is the following.Let V = fx1; : : : ; xng. First, A asks x1 : x2. If the answer is x1 k x2 then Aasks x1 : xi for 2 < i � n � 1. Player B answers x1 k xi, otherwise Fat 2applies. But then the question x1 : xn an be saved by Fat 0.Assume B answers x1 < x2. Now, A asks x1 : x3. Beause of Fat 2,respetively to avoid a hain of length three, B always answers x1 < x3.16



Next A asks x4 : x2. To avoid a 3-hain, respetively beause of Fat 1with a = x4, b = x2,  = x1, d = x3, player B answers x2 k x4.The next question is x4 : x3. To avoid a hain of length three, B willnot answer x3 < x4. If x3 k x4 player A ontinues with x4 : xi, i = 5; : : : ; nIf there is a y omparable to x4 then Fat 1 applies with the four elementsx4; y; x1; x2. Otherwise, the question x1 : x4 an be saved by Fat 0.Now assume x4 < x3. Player A asks all questions xi : xj for 5 � i; j � n.If one of the answers is a omparability Fat 1 applies. Now assume that allanswers are inomparabilities.Player A asks for x2 : x3 with answer x2 k x3. The next question isx5 : x1, if x5 k x1 then Fat 0 applies with x2; x5.Now let x1 < x5, player A ontinues with x5 : x2, x5 : x3 and x1 : x4,all answers are inomparable, otherwise there is a 3-hain. But now Fat 0applies with x4 and x5.We have already seen that properties properties with a large reognitionomplexity must ontain orders of low height. We now onsider the widthof partial orders, i.e. the maximal size of an antihain.Theorem 10 Let P be the property of all partial orders of width k over V ,for a �xed k, then C(P) � 2kn log n.Proof. The algorithm ' withC(P;'; ) � 2kn log n is based on sorting. Letthe ground set be indexed, i.e V = fx1; : : : ; xng, then player A determinesone after another the order on fx1; : : : ; xig for 1 � i � n. Consider Pi =(fx1; : : : ; xig; <), if the width of Pi is more than k, then all ompatible ordershave this property and the game is over. Therefore we assume the width ofPi to be at most k and, by the theorem of Dilworth Pi an be partitionedinto k hains H1i ; : : : ;Hki .Let Hji be a hain of the hain partition of Pi, say Hji = 1 < 2 <: : : < l. A determines the omparability status of fxi+1; jg for 1 � j � lusing binary searh. First A asks for xi+1 : d l2 e. If xi+1 < d l2 e (resp.xi+1 > d l2 e) then A reursively determines the omparability status of xi+1with the elements of the remaining `half-hain' fj j 1 � j < d l2eg (resp.d l2e < j � l).If xi+1 k d l2 e, then A has to determine the indies l1 = maxfj j j =0 or j < xi+1g and l2 = minfj j j = l + 1 or xi+1 < jg. This is doneby binary searh to both half-hains. The omparability status of xi+1with all elements of Hji an thus be determined with 2 log l questions. Theomparability status of all pairs from fx1; : : : ; xig is known after at most17



2k log n queries. Adding the n elements one by one we obtain the overallomplexity of 2kn log n.Algorithm ' not only deides if an unknown partial order has width atmost k, but also if it is isomorphi to a �xed partial order P0 of width k. ThusTheorem 10 improves the upper bound given in [3℄ (whih is 2kn log n+3kn)for the P0-reognition problem.Referenes[1℄ M. Aigner, Combinatorial Searh, (Wiley-Teubner 1988).[2℄ B. Bollobas, Extremal Graph Theory, in Handbook of Combinatoris,Volume II, R. Graham, M. Groetshel, L. Lov�asz, eds., (Elsevier 1995),1231{1292.[3℄ U. Faigle and Gy. Tur�an, Sorting and reognition problems for or-dered sets, SIAM J. Comp. 17 (1988) 100-113.[4℄ S. Felsner und D. Wagner, On the Complexity of Partial OrderProperties, in Pro. 18th Int. Workshop Graph-Theoret. Conepts Com-put. Si., LNCS vol. 657, (Springer 1993), 225{235.[5℄ P. C. Fishburn, Interval Orders and Interval Graphs, (John Wiley &Sons 1985).[6℄ Does transitivity help? On the omplexity of poset proper-ties. in Pro. 9th Int. Conf. Fundamentals of Comput. Theory, LNCSvol. 710, (Springer 1993), 266-278.[7℄ J. Kahn, M. Saks and D. Sturtevant, A topologial approah toevasiveness, Combinatoria 4 (1984) 297-306.[8℄ R. L. Rivest and J. Vuillemin, On reognizing graph propertiesfrom adjaeny matries, Theor. Comp. Siene 3 (1976) 371-384.[9℄ J. van Leeuwen, Graph Algorithms, in Handbook of Theoretial Com-puter Siene, Algorithms and Complexity J. van Leeuwen ed. (Elsevier1990) 525-632.
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