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Abstract

The recognition complexity of ordered set properties is considered
(in terms of how many questions must be put to an adversary to decide
if an unknown partial order has the prescribed property). We prove
a lower bound of Q(n?) for properties that are characterized by for-
bidden substructures of fixed size. For the properties being connected,
and having exactly k comparable pairs we show that the recognition
complexity is (3); the complexity of interval orders is exactly (3) — 1.
Non-trivial upper bounds are given for being a lattice, containing a
chain of length k£ > 3 and having width &.

1 Introduction

A property P on a finite set S is defined to be a subset of the power set of
S. We say that a subset X of S has the property P iff X is in the set P.
Consider a two person game in which player B has an arbitrary set
X C S at his disposal that is unknown to player A and player A attempts
to determine if X has the property P by asking questions of the form “Is
z € X 77 where z is an element of S and B can answer “yes” or “no”. The
aim of A is to minimize the number of questions, while B tries to force A
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to ask as many questions as possible. The game ends when A can decide on
the basis of the gathered information whether X € P.

The complexity C(P) of the property P is defined to be the number of
questions that are necessary to complete the game assuming both A and the
adversary B play optimally. The property P is called evasive if B can force A
to ask all the |S| possible questions. If P is considered as a Boolean function,
the complexity of P is a lower bound for the time any algorithm recognizing
P must take in the worst case on any model of sequential machine [8].

A well studied special case of this problem is, when the considered set S
is the set of all possible edges of an n-vertex graph. The relation between
this concept of recognition complexity of graph properties and the computer
representation of graphs is discussed in [9]. In this context The main open
problem is the “Evasiveness Conjecture for Monotone Graph properties”.
A celebrated partial solution using topological methods to this problem is
given in [7].

In [3] Faigle and Turdn suggest to play the game on properties of partial
orders. Here player A asks for the comparability status of two elements a
and b, and B answers “a < b”, “a > b” or “a and b are incomparable.”

Considering a property P of partial orders with n elements, P is eva-
sive if B can force A to ask all possible (72’) questions. Obviously, the game
for properties of partial orders does not fit into the concept of set proper-
ties discussed before, since there are three possible answers instead of two.
Moreover, the transitivity of partial orders may lead to situations, where
player A can infer the comparability status of two elements without asking
it — independently from the considered property. (In such a case we will
say that the pair ab has been “gained”). Note that the property of being a
linear order is equivalent to the sorting problem and hence it’s complexity
is O(nlogn).

In this paper we study the recognition complexity of several properties
of partial orders. First we describe situations that induce the comparability
status of an unasked pair of elements independently from the considered
property. For properties that are characterized by forbidden substructures
of fixed size the Erdés-Stone Theorem leads to a lower bound of Q(n?) for the
recognition complexity. In Section 2 we prove evasiveness for connectedness
and having exactly k comparable pairs, k& < n?/4 and non-evasiveness for
larger values of k. For the class of interval orders we prove that (3) —1 is the
exact value of its recognition complexity. Finally we derive bounds for the
recognition complexity of being a lattice, containing a chain of length k, for
k > 3 and having width k. for k fixed. All these properties are non-evasive.



1.1 Notation and terminology

We first introduce some basic notations. A partial order P = (V, <) consists
of a finite ground set V' and the order relation <, incomparability is denoted
by ||. An element b covers a (denoted a < b) if a < b and there is no ¢ € V
with @ < ¢ < b. Throughout this paper we illustrate partial orders by their
diagram. The vertices of the diagram are the elements of V' and b covers a
in P iff @ and b are connected by an edge going from a up to b. A partial
order property P is a set of partial orders over the same ground set closed
under isomorphism.

Consider the game introduced in Section 1 for a partial order property P
over a n-element ground set V. The state of the game after ¢ < (%) questions
can be interpreted as a triple ((C, <), I, N), where (C,I,N) is a partition
of the set of all two-element subsets of V. The pairs in C are those which
have been given comparable in one of the ¢ steps and < is the corresponding
order relation. [ is the set of pairs given incomparable and N is the set of
pairs not yet asked for.

We call a triple ((C, <), I,N) legal if there exists a partial order P =
(V,<p) compatible with the triple, i.e. satisfying

1. If {a,b} € C and a < b then a <p b.

2. If {a,b} € I thena || bin P.

An algorithm for player A is a mapping ¢ assigning to each legal triple
((C,<),I,N) a pair {a,b} € N, i.e. ¢ prescribes the next question “a : b”
at state (((C,<),I,N).

A strategy for player B is a mapping 1 which assigns to a given legal
triple ((C,<),I,N) and {a,b} € N a new legal triple which is one of the
following two

((€,<), 1U{a,b}, N\{a,b}) . ((CU{a,b},<),1,N\{a,b}).

A game is finished at state ((C, <), I, N) if either all partial orders P com-
patible with the triple are in P, or for all of them P ¢ P holds.

The complexity of a property P for a fixed algorithm ¢ and a fixed
strategy ¢ is the minimum number of questions needed to finish a game if
player A uses ¢ and player B uses v, i.e.

C(P;p,1) = min{q\ game ends at state ((C,<),I,N,) with |CUI| = q}.



The complexity of a property P is the minimum number of questions needed
to finish a game if both A and B play optimally, i.e.

C(P) = m(pin max C(P; ¢, v).

For a legal triple ((C,<),I,N) with |C U I| = ¢, the number of pairs of
elements whose comparability status is known may be more than ¢, they
have been gained.

1.2 Some general observations

We now give situations, where the comparability status of a pair {a,b} € N
is induced by the comparability status of some other pairs independent from
the partial order property under consideration.

Situation 1 If there exist elements a1, ao, a3 with a1 < as and as < a3 then
by transitivity a; < as holds.

Situation 2 If there exist elements a1, as and by, by with a; < a9, by < bs,
a || b2 and a9 H b1 then both of aq || b1 and as H b2 hold.

Proof. With each of the 4 possible comparabilities as < bo, by < as, a1 < by
and b; < a; we would introduce as transitive edge either a; < by or b; < as
contradicting the incomparability of this pair. (See Figure 1a). O

We always illustrate partial orders by their diagram with solid lines, in-
comparabilities are denoted by dashed edges, and dotted edges denote an
unknown comparability status.

Situation 3 Consider a state ((C,<),I,N) of a game where there exists
a b-chain a; < as < a3 < a4 < a5 and an element b ¢ {ay,...,a5} with
{b,a;} € N. Then player A can deduce the comparability status of all five
pairs {b,a;}, 1 <1i <5 by asking only four questions.

Proof. Player A asks for the comparability status of the pairs b : as and
b : ay4. If one of these pairs is comparable we gain a transitive edge. In case
both pairs are given incomparable A concludes b || as. (See Figure 1b).

Situation 4 Consider a state ((C, <), I, N) of a game where there exist two
3-chains a; < as < a3 and by < by < bs and all the pairs {a;, b;} are in N.
Then player A can deduce the comparability status of all six pairs a; : b; by
asking only five questions.

Proof. Player A asks for the comparability status of aj : by and by : ag. If
both ay || bo and by || a2, then situation 2 applies, i.e. a1 || by and as || bs.
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Figure 1: Three standard situations

Otherwise, i.e. if at least one of these pairs is given comparable, A gains a

transitive edge. (See Figure 1c). O

As an application of the Erdés-Stone Theorem (see [2]) the next theo-
rem shows a quadratic lower bound for the complexity of properties with a
forbidden subposet. The height of an order is the number of elements in a
longest chain minus one.

Theorem 1 Let P be a partial order property such that

1. P contains the n-element antichain;

2. there exists a partial order Py = (Viy, <o) of height h such that a partial
order P that contains Py as a suborder is not in P.

The complezity of P on n elements is at least (1/2h — o(1))n?.

Proof. Player B can make use of the following ‘greedy strategy’. As long
as the graph of unasked edges contains a copy G of the comparability graph
of Py the answer to a question a : b is a || b. The n-antichain and the
orientation of G which is the order P, together with independent elements
are both compatible orders, one in P the other not in P.

The comparability graph of Py has chromatic number A+ 1. The Erdds-
Stone Theorem ensures that as long as the graph of unasked edges contains
more then h2_—han edges it also contains a copy of the comparability graph of



Py. Hence, player A has to ask at least (1 — %)%2 questions. Taking into
account that the Erdds-Stone Theorem only gives assymptotic bounds this
leads to the expression claimed in the theorem. O

This theorem applies to a lot of partial order properties, e. g. for being
an interval order, being a lattice, having dimension at most 2 or containing a
chain of 3 elements. In the next section we will give more accurate estimates
for the complexity of some of these properties.

2 Specific properties

2.1 Connected orders

A partial order is said to be connected if its diagram considered as an undi-
rected graph is connected.

Theorem 2 The property P of all connected partial orders over set V is
evasive.

Proof. We describe a strategy ¢ for player B such that C(P;p,¢) = (3)
for all algorithms ¢ of player A.

Let the first question be a : b, player B answers a < b. For further
questions a : b he answers a || b, except in case {a, b} is the last possible
edge between one of the elements, say a, that is not comparable to another
element, and an element b comparable to some other element. Then the
comparability is given according to the comparability status of b, such that
b remains a minimal element or a maximal element. More precisely, given
a legal state ((C,<),I,N) let M = |J {z,y} then for {a,b} € N the

{zy}eC
answer of B is:

a<b ifag¢ M,be M and for all z € M \ {b} we have {z,a} € I, and
b > ¢ for some ¢ € M;

b<a ifag¢ M,b € M and for all z € M \ {b} we have {z,a} € I, and
b < ¢ for some ¢ € M;

alb else.
The strategy 1 obviously preserves the invariants:

. . . M
(1) The partial order induced by (C, <) over M is connected, and (%;) C
CuUl.



(2) All z € M are either minimal or maximal with respect to (C, <).
(3) For each z € V' \ M there is a y € M such that {z,y} € N.

Applying 1, the game ends with a legal triple ((C, <), I, N). If |CUI| < (3),
then the partial orders compatible with ((C, <), I, N) would all be connected
or all be disconnected. But invariants 1 and 2 contradict the assumption that
all compatible partial orders are connected, while invariant 3 contradicts the

case that they all are not connected. O

2.2 k comparable pairs

Theorem 3 Consider the game being played on a ground set of n vertices.
Let Py, denote the property 0fG2ham'ng exactly k comparable pairs. Property
Py is not evasive for any k > .

Proof. We give an algorithm for player A for avoiding at least one question
whenever k > ’2—2. Note that an order with k& comparabilities has to contain
a 3-chain; this is an elementary application of Turdn’s Theorem from graph
theory. The basic idea for the algorithm is to go for the gain of a transitive
edge of a 3-chain, if player B refutes to allow this kind of gain the game will
end in a position where all compatible orders are of height one and hence
have less than k£ comparabilities.

Player A selects a vertex v € Wy = V and asks for the comparability
status of v with all the vertices in Wy if no comparable vertex is found insert
v into the set of isolated vertices Uy. This is repeated until comparable pair
A —1 < by is found.

Let Wy = Wy \ (Up U {a1,b1}). Repeat the same steps with Wy; i.e.,
select a vertex v € Wy and ask for the comparability status of v with all the
vertices in W if no comparable vertex is found insert v into Uy, do this until
a comparable pair ag < by is found. Repeat with Wy = Wy \ (U1 U {a2,b2})
and so on. When all vertices are exhausted there is a sequence of sets which
form a partition of V:

Ug, {al, bl}, Ul, {ag, bQ}, e ,Ut_l, {at, bt}, Ut.

At this point any two elements z € U; and y € U;, with 1 = j possible,
are known to be incomparable. In the next step the algorithm takes the
elements of the sets U; and asks for their status with respect to elements
a; and b; which have not been asked before. When for an element z € U;
a comparability is discovered, say x < b; (if > b; player A has gained a



transitive edge) then z is moved into a set A; associated with a;, element
a; is itself a member of A;. Conversely, when z > a; then z is moved into
Bj which also contains b;. Isolated elements end in Up.

When this step is completed we have a set Uy of isolated vertices and
sets A; and B; for 1 = 1,..,t where each element of A; is below b; and each
element of B; is above a;.

Finally compare all elements of A; with those of A; and dually those of
B; with those of B; for i # j. To avoid transitive edges player B has to give
the answer “incomparable” to all these queries.

We claim that at this point the number of possible comparabilities in
a compatible order is less than ’2—2 + 1. The possible comparabilities are of
three types:

1. Comparabilities between an a; and a b;; there are t? of this type.

2. Comparabilities between z € A; \ {a;} and a; or z € B; \ {b;} and b;;
there are at most n — 2t of these.

3. Comparabilities between z € A; \ {a;} and b; or x € B; \ {b;} and ay;
there are at most (n — 2t)¢ of these.

In total this makes at most p,(t) = t> + (¢ + 1)(n — 2t) comparabilities. It
is easy to check that p,(t) > ’2—2 + 1 has no real solution ¢. Therefore, if

k > Z—Q + 1 player A can stop the game at this point and claim that the
order has less than k comparabilities. This completes the proof of this case.
Now let k = L"TZJ + 1. The only integral solutions of p,(t) > L"TZJ +1
are t =n/2 — 1 in the even case and ¢t = |n/2]| or t = [n/2] — 1 in the odd
case. Each of these solutions gives p,(t) = L"Tfj + 1, hence, all the possible
comparabilities counted by p,(¢) have to be realized by player B.

Let x be one of the elements that was in U'z;:o U;, actually z was in Uy,
otherwise z is known to be incomparable to a; and b;. Assume w.l.o.g. that
x € Ay. Next ask the status of z and a;. To realize the comparabilities
counted by p,(t) player B has to answer 2 < ay. The last question is
a1 : bs. To reach the aspired number of comparabilities player B has to
answer a1 < by but this allows the gain of the transitive edge = < by and

the proof is complete. O



. . 2
Theorem 4 Property Py, is evasive for any k < 7.

We prepare for the proof of the theorem with a definition and two lemmas.

A partial order P = (V, <) is an interval order iff there exists a collection
(I;)zev of intervals on the real line, such that x < y iff I, lies entirely to the
left of I,,. Interval orders have several nice characterizations. We mention
two of them, see Fishburn’s book [5] for full proofs.

1. P is an interval order iff P does not contain a suborder 242, where
242 = ({a,b,c,d}, <) with a < b,¢ < d and no further comparabili-
ties.

2. P is an interval order iff the sets of successors Suc(z) = {y : y > x} of
elements of P are linearly ordered with respect to inclusion.

3. P is an interval order iff the sets of predecessors Pred(z) = {y : y < z}
of elements of P are linearly ordered with respect to inclusion.

Lemma 1 For every integer k < ”4—2 there is a bipartite interval order on n
vertices with k comparable pairs.

Proof. Take a partition (kq,ka,...,k,/2) of k, with [n/2] > ki > ky >
oo 2 kinge) 2 0. Let @y, 29,. .., 2 01 and Y1, Y2, . . ., Y|n/2) be the n vertices
of the order. As relations take z; < y; for 1 <4 < k; and all y. It is easily
shown that the resulting order does not contain an induced 242, hence, it
is a bipartite interval order. O

Lemma 2 Let I be a bipartite interval order. Player A has to ask all (%)
pairs of vertices to verify that player B constructs I.

Proof. Let (X,Y) be a partition of the vertex set of I such that X is the
set of minimal elements and Y is the set of maximal elements (independent
vertices can arbitrarily be considered as minimal or maximal). Suppose
player B has answered the first (%) — 1 queries of player A complying to the
status of the pair in I. Let {a, b} be the remaining pair. With the following
case discussion we show that irrespective of the pair {a, b} player B always
has two legal answers so that the final order is either I or non-isomorphic
to I.

a € X, beY. Independent of the status of a,b in I the answers a || b and
a < b are legal answers for player B.



a,b € X. From the second characterization of interval orders we know that
Suc(a) and Suc(b) are comparable, say, Suc(a) C Suc(b). In this case
the answers a || b and a > b are legal answers for player B.

a,b € Y. Since the dual (all comparabilities reversed) of an interval order

is an interval order this case reduces to the case a,b € X. O

Note that the proof of the previous lemma shows that verification of a
bipartite interval order is evasive even if the labeling of the vertices is fixed.

Proof. (Theorem 4) A strategy for player B proving the theorem is to choose
a bipartite interval order I} with k& comparable pairs (Lemma 1). Player B
answeres the first () — 1 queries complying to the status of the pair in I.
By Lemma 2 the answer to the last question allows player B to construct

either I} or some order in Py_1 U Pr1. O

An easy extension of the above argument leads to lower bounds for the
complexity of Py for k > n?/4.

Player B chooses an appropriate [ for the given value of k and constructs
an order P with [ ranks of about the same size n/l. Any two nonadjacent
ranks induce a complete bipartite order and comparabilities between adja-
cent ranks are chosen so that the following properties hold:

e The order P is an interval order.
e P has exactly k comparabilities.

e If 2,y are from the same rank and Pred(z) C Pred(y) then Suc(z) 2
Suc(y).

e If 2,y are from the same rank and Suc(z) C Suc(y) then Pred(z) D
Pred(y).

Using obvious extensions of the previous methods this can always be done.

For the above order P the recognition problem contains the sorting prob-
lem on the [ sets. In addition every possible edge between 2 adjacent ranks
and also those between elements of the same rank must be asked. This leads
to the following bound :

Proposition 1 Let ! be so that ”72(1—%) <k< ”72(1—%) The recognition
n?

complezity of Py is at least [logl + (I — 1)( l; -1)+ n(gl_l). And the bound
is tight for both ends (I =2 and l =n).

10



2.3 Interval orders

Theorem 5 The recognition complexity of the class P of interval orders is
(3) — 1.

Proof. We first prove the lower bound of (g) — 1, this is the easier part.
To force all but at most one question to be asked player B can use a simple
‘greedy-strategy’: For all states of the game and all questions x : y player B
answers x || y unless there is no compatible partial order containing a 2+2.

Consider the state of the game when player B answers to the question
{a,b} concedes the first comparable pair. Let Gy be the of all edges that
have not yet been asked. It is easy to see that G is either a triangle or a

star with £ > 1 leaves. In Figure 2 we show the five possible situations of
Gy U{a,b}.

a

(T1) (T»)

Figure 2: The bold edge {a, b} and the possible ways to attach it to the star
or the triangle formed by Gy.

In the cases S7 and T} player B can force all the remaining questions by
giving incomparabilities until the last edge is asked.

By adding incomparable pairs case Sy is either transformed to case S
or a,c is the last unasked edge. In that case player B gives the second last
pair comparable so that a,c is a diagonal of a 2+42. This forces player A to
ask this last edge.

By adding incomparable pairs case Ss is either transformed to case Sy or
the three last remaining questions together with the edge a, b form a triangle

11



with an edge sticking out. In this case as well as in case T, player A can
gain a question by first asking the edge disjoint from a,b. Player B gives
the edge comparable. At this point player A only has to ask the diagonal
edge to decide the game.

We now turn to the upper bound. We have to describe an algorithm for
player A which saves a question.

Let V. = {z1,...,z,}, player A takes the elements by increasing index
and asks for their comparability status to all elements with higher index,
until B gives the first comparability.

In case z; || z; for i < n — 3 and all j, every compatible partial order
is an interval order and A gains 3 questions. So, let {x, x4} be the first
comparable pair, assume z; < zj4; (the other case is dual).

Let V! = {&ps1,- Tkt 1, Thtis1,-- -5 T}, Player A continues by ask-
ing all pairs of elements from V'. Let Q' be the resulting order. If Q' is
an antichain then all compatible partial orders are in P. We thus assume
that at least one pair is comparable. Also @’ has to be an interval order,
otherwise all compatible orders contain the 242 of @' and are not in P.

Let a = zy, b = 2, and 2z be a maximal element of Q' with a maximal
set of predecessors. Player A asks all questions b : z for elements elements
x € V'\ {z}. Every comparability given has to be of the form b > =z,
otherwise player A would gain a < x as a transitive edge. Next all questions
a: x for x € V' are asked. The only pair that has not been asked at this
point is the pair b, z. Let () be the order obtained so far.

Claim: If there is no 242 in @ then making {b, 2z} comparable can not
cause one. Otherwise there would be two comparable elements = < y which
are both incomparable to b and z. Since a < b we find x,y # a. Hence
z,y € V' and z < y implies z < z by the choice of z.

If there is a 242 in ) then the diagonals have already been asked since
both b and z are maximal elements of (). Hence, the comparability status
of b, z can not serve to destroy the 242.

In conclusion, player A can save the question b : z. O

2.4 Lattices

In this section we prove that the property Py, of being a lattice is not evasive
and then derive a lower bound on the complexity of Pry,.

Consider a partial order P = (V, <), two elements a,b € V have the
minimum x € V, denoted x = min{a, b} if x < a and x < b, and z < a and
z < b implies z < . The mazimum is defined analogously. P = (V,<) is a
lattice iff min{a, b} and max{a,b} exist for all a,b € V.

12



Figure 3: Forbidden subdiagram for lattices.

Theorem 6 Let P be the property of being a lattic on a set V, |V| > 3,
then C(Pz) < (3)-

Proof. In the following we use the fact that L = (V,<) is a lattice iff it
its diagram does not contain an edge subdivision of the diagram shown in
Figure 3 and it contains a unique minimum and a unique maximum, i.e.
elements z,z € V such that z < y and y < z for all y € V. (Denote the
minimum resp. maximum of L by min(L) resp. max(L).)

An algorithm ¢ for player A with C(P:¢,1)) < (3) for all strategies 1)
is first to ask all (";1) questions over V' \ {z} for a fixed z € V. The state

" 1) questions is a legal triple ((C, <), I, N) with

of the game after these (",

N={{z,y}|y eV}

Case 1. The order induced by ((C, <), I) is not a lattice. The ‘defect’ of
((C, <), I) relative to lattices has to be so small that adding z in the right
way leads to a lattice. The possible situations are:

1.1 The unique minimum or maximum is missing. W.l.o.g. let ((C, <), I)
induce a partial order containing no minimum. It must contain a
maximum z and all lattices compatible with ((C, <), I, N) contain z
as its minimum. Let A ask a : z for an arbitrary a € V'\ {z, z}. Player
B has to answer = < a, else there is no compatible lattice, but with
z < a and z < y player A gains the transitive edge a < y.

1.2 The partial order induced by ((C, <), I) contains a forbidden substruc-
ture on elements a, b, c,d. In this case A asks b: z and d : z. Either
B gives a transitive edge between z and the minimum or the maxi-
mum, or B answers b || z and d || z, which implies that there exists no
compatible lattice.

Case 2. The order induced by ((C, <), I) is a lattice.

13



2.1 If the lattice contains a 5-chain, then situation 3 from section 2 applies.

2.2 If the lattice has height 3, i.e. there is a 4 chain min < a1 < by < max,
then the non-extremal elements are partitioned into aq, ..., ax, those
covering the minimum, and the remaining elements by,...,b;. Note
that all the b; are covered by the maximum. Player A asks x : u for all
u € V'\ {z, min, max, a1 } any comparability among the answers would
induces a transitive edge. Hence we assume that B always answers
z || u. The next two questions are z : min and z : max. To guarantee
that there exists a compatible partial order that is a lattice, B has to
answer z < max and min < z. But now the comparability status of
z and a1 may be chosen arbitrarily, since all orders compatible with
that state of the game do not contain the forbidden substructure, i.e.
are lattices.

2.3 If the lattice has height 2, A first asks z : min and z : max. If the
answers of B are min £ z or x £ max, player A either gains a transitive
edge or there exist no compatible lattices.

Otherwise, if min < z < max, the comparability status of z and
all other elements of V' may be chosen arbitrarily, since there are no
compatible partial order that contains a forbidden substructure, i.e.

all compatible partial orders are lattices. O

We nextderive a lower bound for P;, based on the forbidden substructure.
Recall the following result from extremal graph theory (see [2]). If a graph
G with n wvertices contains more than % (1 + /4n — 3) edges then G must
contain a cycle of length 4.

Theorem 7 For recognition complexity of lattices is at least

(") =D T,

2 4

Proof. Player B answers the first question z : z with z < 2z and sets
aside aside z and z to be the maximum and minimum vertices respectively.
Further questions involving z and z are answered appropriately. For any
question involving the other n — 2 vertices the answer is incomparable.

For the above strategy it is clear that A must ask the status of z and z
with all the other vertices. Furthermore, as long as there is a cycle of length
4 in the graph Gy of not asked edges on V'\ {z, z} there are compatible non-
lattices. The above result implies that A has to ask at least 14 2(n —2) +

(") = #7214 VA =2) =3)) = () - 52 (1+ Va0 = TT) questions

14



2.5 Height and width

We first investigate the complexity of the property of containing a chain of
at least k elements, i.e., the property of being of height at least k£ — 1.

Containing a chain of length 2, i.e., a comparable pair is obviously eva-
sive.

Theorem 8 The property P of all partial orders over set V with |V| =n >
4, that contain a k-chain, k > 4 has complezity C(P) < ().
Proof. Player A asks all possible questions over V' \ {z} for fixed z. To
guarantee that for the state of the game after these (”;1) questions there
exists a compatible partial order containing a chain of length k, player B
has to construct a chain of length & — 1, say a1 < as < ... < ar_;. Now A
asks x : ag. If B answers z || a9, then the comparability status of x : a; and
T a;, 2 <i<k—1,is not relevant for P. Otherwise, if B answers = < ag
or as < z there is an induced transitive edge. O

This argument does not apply to the case k = 3. In an extended abstract [6]
Groéger claims that the exact complexity of this property is (";1) + 3. With
the theorem below we prove the much weaker statement that the property
of containing a 3-chain is non-evasive. The lower bound of (ngl) +1 is rather
obvious, consider the order with one element x dominating all others and
no further comparabilities. Let B give the first answer a comparability and
thus decide the element z. Player A then has to ask all pairs in V' \ {z} to
make a 3-chain impossible.

Theorem 9 The property P of all partial orders over set V, |V| =n > 5,

that contain a 3-chain has complezity C(P) < (3).

Proof. The proof is based on the following facts.

Fact 0. If for a strategy v there exists a state ((C,<),I,N) with two
elements a,b with {a,b} € N and {z : z || a or z || b} = V' \ {a, b} then there
exists an algorithm ¢ such that C(P; ¢, ) < (3).
The pair a,b can not contribute to a 3-chain since the third element z
of every triple a, b, z is incomparable to a or b.
Fact 1. If for a strategy 1 there exists a state ((C,<),I,N) and four
elements a, b, ¢, d such that {a,b},{c,d} € C, a < b,c < d and {a,d} € N,
{b,d},{a,c} € NUI then there exists an algorithm ¢ with C(P; ¢, 9) < (3).
Player A can obtain {a,c} € I and {d, b} € I, otherwise there would be a
3-chain. Now A asks all remaining questions {a,z},  # d and all questions
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Figure 4: Tllustrations for the two facts.

{d,z}, £ # a. If {a,x} € C then a < z, otherwise we would have a 3-chain,
symmetrically {d,z} € C implies z < d. From this we conclude that for all
x # a,d either {a,z} € I or {d,z} € I, but now the comparability status of
a : d is not essential for P, since this pair can not contribute to a 3-chain in
a compatible order. (See left side of Figure 4).

Fact 2. If for a strategy v there exists a state ((C, <), I, N) such that

i) {¢c,v} € CUI for afixed c€ V and all v € V'\ {c},
ii) there are z,y € V with {z,c} € I,{y,c} € C,
iii) for all z,y € V with {z,c} € I,{y,c} € C, we have {a,b} € N

then there exists an algorithm ¢ such that C(P; ¢, 1) < (5).

Wlog ¢ <b Let X ={zx e V\{c}:{czr}el}and = {y €
V\A{c} : {¢,y} € C}, then ¢ < y for all y € since otherwise there is a
3-chain. We next ask for all the remaining pairs {z,z'} and {y,y'}. The
pairs {z,z'} are given incomparable, otherwise Fact 1 applies. Moreover,
all pairs {y,y'} are given incomparable to avoid a 3-chain. But then there
exists no compatible partial order in P, i.e. the comparability status of all
z:y for x € X and y € Y is not essential for property P since these pairs
cannot cause a 3-chain. (See right side of Figure 4).

An algorithm ¢ with C(P; ¢, 1)) < (5) for all strategies ¢ is the following.
Let V ={z1,...,z,}. First, A asks 1 : z5. If the answer is z; || 5 then A
asks z1 : z; for 2 < i < n — 1. Player B answers z; || z;, otherwise Fact 2
applies. But then the question z; : z, can be saved by Fact 0.

Assume B answers 1 < z3. Now, A asks z; : x3. Because of Fact 2,
respectively to avoid a chain of length three, B always answers z1 < 3.
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Next A asks z4 : z9. To avoid a 3-chain, respectively because of Fact 1
with a = x4, b= 29, ¢ = 21, d = x3, player B answers xs || 4.

The next question is z4 : 3. To avoid a chain of length three, B will
not answer r3 < x4. If 23 || x4 player A continues with z4 : 2, 1 =5,...,n
If there is a y comparable to x4 then Fact 1 applies with the four elements
T4,Y,T1,T9. Otherwise, the question z; : x4 can be saved by Fact 0.

Now assume x4 < z3. Player A asks all questions z; : z; for 5 <14,j <n.
If one of the answers is a comparability Fact 1 applies. Now assume that all
answers are incomparabilities.

Player A asks for x9 : z3 with answer z9 || 3. The next question is
x5 : x1, if 25 || 1 then Fact 0 applies with xs, z5.

Now let z1 < x5, player A continues with x5 : z9, x5 : 23 and x1 @ 24,
all answers are incomparable, otherwise there is a 3-chain. But now Fact 0
applies with z4 and z5. O

We have already seen that properties properties with a large recognition
complexity must contain orders of low height. We now consider the width
of partial orders, i.e. the maximal size of an antichain.

Theorem 10 Let P be the property of all partial orders of width k over V,
for a fized k, then C(P) < 2knlogn.

Proof. The algorithm ¢ with C(P; ¢, 1) < 2knlogn is based on sorting. Let
the ground set be indexed, i.e V = {z1,...,z,}, then player A determines
one after another the order on {zy,...,z;} for 1 < i < n. Consider P; =
({z1,...,2z;}, <), if the width of P; is more than k, then all compatible orders
have this property and the game is over. Therefore we assume the width of
P; to be at most k£ and, by the theorem of Dilworth P; can be partitioned
into k chains H},..., HF. ,

Let H} be a chain of the chain partition of P;, say H! = ¢; < ca <
... < ¢. A determines the comparability status of {z;;1,¢;} for 1 < j <1
using binary search. First A asks for z;y1 : Criy- If 2,11 < Cri (resp.
Tiy1 > c(%w) then A recursively determines the comparability status of z; 4
with the elements of the remaining ‘half-chain’ {c; |1 < j < [£]} (resp.
[51 <4 <1).

If 201 || Criys then A has to determine the indices [y = max{j | j =
Oorecj < xip1} and Iy = min{j | j = I+ 1or z;11 < ¢;}. This is done
by binary search to both half-chains. The comparability status of z;;
with all elements of HY can thus be determined with 2log! questions. The

comparability status of all pairs from {z1,...,z;} is known after at most
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2k logn queries. Adding the n elements one by one we obtain the overall
complexity of 2kn logn. O

Algorithm ¢ not only decides if an unknown partial order has width at

most k, but also if it is isomorphic to a fixed partial order Py of width k. Thus
Theorem 10 improves the upper bound given in [3] (which is 2kn log n+3kn)
for the Py-recognition problem.
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