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tThe re
ognition 
omplexity of ordered set properties is 
onsidered(in terms of how many questions must be put to an adversary to de
ideif an unknown partial order has the pres
ribed property). We provea lower bound of 
(n2) for properties that are 
hara
terized by for-bidden substru
tures of �xed size. For the properties being 
onne
ted,and having exa
tly k 
omparable pairs we show that the re
ognition
omplexity is �n2�; the 
omplexity of interval orders is exa
tly �n2�� 1.Non-trivial upper bounds are given for being a latti
e, 
ontaining a
hain of length k � 3 and having width k.1 Introdu
tionA property P on a �nite set S is de�ned to be a subset of the power set ofS. We say that a subset X of S has the property P i� X is in the set P.Consider a two person game in whi
h player B has an arbitrary setX � S at his disposal that is unknown to player A and player A attemptsto determine if X has the property P by asking questions of the form \Isx 2 X ?" where x is an element of S and B 
an answer \yes" or \no". Theaim of A is to minimize the number of questions, while B tries to for
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to ask as many questions as possible. The game ends when A 
an de
ide onthe basis of the gathered information whether X 2 P.The 
omplexity C(P) of the property P is de�ned to be the number ofquestions that are ne
essary to 
omplete the game assuming both A and theadversary B play optimally. The property P is 
alled evasive ifB 
an for
e Ato ask all the jSj possible questions. If P is 
onsidered as a Boolean fun
tion,the 
omplexity of P is a lower bound for the time any algorithm re
ognizingP must take in the worst 
ase on any model of sequential ma
hine [8℄.A well studied spe
ial 
ase of this problem is, when the 
onsidered set Sis the set of all possible edges of an n-vertex graph. The relation betweenthis 
on
ept of re
ognition 
omplexity of graph properties and the 
omputerrepresentation of graphs is dis
ussed in [9℄. In this 
ontext The main openproblem is the \Evasiveness Conje
ture for Monotone Graph properties".A 
elebrated partial solution using topologi
al methods to this problem isgiven in [7℄.In [3℄ Faigle and Tur�an suggest to play the game on properties of partialorders. Here player A asks for the 
omparability status of two elements aand b, and B answers \a < b"; \a > b" or \a and b are in
omparable."Considering a property P of partial orders with n elements, P is eva-sive if B 
an for
e A to ask all possible �n2� questions. Obviously, the gamefor properties of partial orders does not �t into the 
on
ept of set proper-ties dis
ussed before, sin
e there are three possible answers instead of two.Moreover, the transitivity of partial orders may lead to situations, whereplayer A 
an infer the 
omparability status of two elements without askingit { independently from the 
onsidered property. (In su
h a 
ase we willsay that the pair ab has been \gained"). Note that the property of being alinear order is equivalent to the sorting problem and hen
e it's 
omplexityis O(n logn).In this paper we study the re
ognition 
omplexity of several propertiesof partial orders. First we des
ribe situations that indu
e the 
omparabilitystatus of an unasked pair of elements independently from the 
onsideredproperty. For properties that are 
hara
terized by forbidden substru
turesof �xed size the Erd}os-Stone Theorem leads to a lower bound of 
(n2) for there
ognition 
omplexity. In Se
tion 2 we prove evasiveness for 
onne
tednessand having exa
tly k 
omparable pairs, k � n2=4 and non-evasiveness forlarger values of k. For the 
lass of interval orders we prove that �n2��1 is theexa
t value of its re
ognition 
omplexity. Finally we derive bounds for there
ognition 
omplexity of being a latti
e, 
ontaining a 
hain of length k, fork � 3 and having width k, for k �xed. All these properties are non-evasive.2



1.1 Notation and terminologyWe �rst introdu
e some basi
 notations. A partial order P = (V;<) 
onsistsof a �nite ground set V and the order relation <, in
omparability is denotedby k. An element b 
overs a (denoted a � b) if a < b and there is no 
 2 Vwith a < 
 < b. Throughout this paper we illustrate partial orders by theirdiagram. The verti
es of the diagram are the elements of V and b 
overs ain P i� a and b are 
onne
ted by an edge going from a up to b. A partialorder property P is a set of partial orders over the same ground set 
losedunder isomorphism.Consider the game introdu
ed in Se
tion 1 for a partial order property Pover a n-element ground set V . The state of the game after q � �n2� questions
an be interpreted as a triple ((C;<); I;N), where (C; I;N) is a partitionof the set of all two-element subsets of V . The pairs in C are those whi
hhave been given 
omparable in one of the q steps and < is the 
orrespondingorder relation. I is the set of pairs given in
omparable and N is the set ofpairs not yet asked for.We 
all a triple ((C;<); I;N) legal if there exists a partial order P =(V;<P ) 
ompatible with the triple, i.e. satisfying1. If fa; bg 2 C and a < b then a <P b.2. If fa; bg 2 I then a k b in P .An algorithm for player A is a mapping ' assigning to ea
h legal triple((C;<); I;N) a pair fa; bg 2 N , i.e. ' pres
ribes the next question \a : b"at state (((C;<); I;N).A strategy for player B is a mapping  whi
h assigns to a given legaltriple ((C;<); I;N) and fa; bg 2 N a new legal triple whi
h is one of thefollowing two�(C;<); I [ fa; bg; N n fa; bg� ; �(C [ fa; bg; <); I;N n fa; bg�:A game is �nished at state ((C;<); I;N) if either all partial orders P 
om-patible with the triple are in P, or for all of them P =2 P holds.The 
omplexity of a property P for a �xed algorithm ' and a �xedstrategy  is the minimum number of questions needed to �nish a game ifplayer A uses ' and player B uses  , i.e.C(P;'; ) = minn q j game ends at state ((C;<); I;N; ) with jC [ Ij = qo:3



The 
omplexity of a property P is the minimum number of questions neededto �nish a game if both A and B play optimally, i.e.C(P) = min' max C(P;'; ):For a legal triple ((C;<); I;N) with jC [ Ij = q, the number of pairs ofelements whose 
omparability status is known may be more than q, theyhave been gained.1.2 Some general observationsWe now give situations, where the 
omparability status of a pair fa; bg 2 Nis indu
ed by the 
omparability status of some other pairs independent fromthe partial order property under 
onsideration.Situation 1 If there exist elements a1; a2; a3 with a1 < a2 and a2 < a3 thenby transitivity a1 < a3 holds.Situation 2 If there exist elements a1; a2 and b1; b2 with a1 < a2, b1 < b2,a1 k b2 and a2 k b1 then both of a1 k b1 and a2 k b2 hold.Proof. With ea
h of the 4 possible 
omparabilities a2 < b2, b2 < a2, a1 < b1and b1 < a1 we would introdu
e as transitive edge either a1 < b2 or b1 < a2
ontradi
ting the in
omparability of this pair. (See Figure 1a).We always illustrate partial orders by their diagram with solid lines, in-
omparabilities are denoted by dashed edges, and dotted edges denote anunknown 
omparability status.Situation 3 Consider a state ((C;<); I;N) of a game where there existsa 5-
hain a1 < a2 < a3 < a4 < a5 and an element b =2 fa1; :::; a5g withfb; aig 2 N . Then player A 
an dedu
e the 
omparability status of all �vepairs fb; aig, 1 � i � 5 by asking only four questions.Proof. Player A asks for the 
omparability status of the pairs b : a2 andb : a4. If one of these pairs is 
omparable we gain a transitive edge. In 
aseboth pairs are given in
omparable A 
on
ludes b k a3. (See Figure 1b).Situation 4 Consider a state ((C;<); I;N) of a game where there exist two3-
hains a1 < a2 < a3 and b1 < b2 < b3 and all the pairs fai; bjg are in N .Then player A 
an dedu
e the 
omparability status of all six pairs ai : bj byasking only �ve questions.Proof. Player A asks for the 
omparability status of a1 : b2 and b1 : a2. Ifboth a1 k b2 and b1 k a2, then situation 2 applies, i.e. a1 k b1 and a2 k b2.4
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Figure 1: Three standard situationsOtherwise, i.e. if at least one of these pairs is given 
omparable, A gains atransitive edge. (See Figure 1
).As an appli
ation of the Erd}os-Stone Theorem (see [2℄) the next theo-rem shows a quadrati
 lower bound for the 
omplexity of properties with aforbidden subposet. The height of an order is the number of elements in alongest 
hain minus one.Theorem 1 Let P be a partial order property su
h that1. P 
ontains the n-element anti
hain;2. there exists a partial order P0 = (V0; <0) of height h su
h that a partialorder P that 
ontains P0 as a suborder is not in P.The 
omplexity of P on n elements is at least (1=2h � o(1))n2.Proof. Player B 
an make use of the following `greedy strategy'. As longas the graph of unasked edges 
ontains a 
opy G of the 
omparability graphof P0 the answer to a question a : b is a k b. The n-anti
hain and theorientation of G whi
h is the order P0 together with independent elementsare both 
ompatible orders, one in P the other not in P.The 
omparability graph of P0 has 
hromati
 number h+1. The Erd}os-Stone Theorem ensures that as long as the graph of unasked edges 
ontainsmore then h�12h n2 edges it also 
ontains a 
opy of the 
omparability graph of5



P0. Hen
e, player A has to ask at least (1 � h�1h )n22 questions. Taking intoa

ount that the Erd}os-Stone Theorem only gives assymptoti
 bounds thisleads to the expression 
laimed in the theorem.This theorem applies to a lot of partial order properties, e. g. for beingan interval order, being a latti
e, having dimension at most 2 or 
ontaining a
hain of 3 elements. In the next se
tion we will give more a

urate estimatesfor the 
omplexity of some of these properties.2 Spe
i�
 properties2.1 Conne
ted ordersA partial order is said to be 
onne
ted if its diagram 
onsidered as an undi-re
ted graph is 
onne
ted.Theorem 2 The property P of all 
onne
ted partial orders over set V isevasive.Proof. We des
ribe a strategy  for player B su
h that C(P;'; ) = �n2�for all algorithms ' of player A.Let the �rst question be a : b, player B answers a < b. For furtherquestions a : b he answers a k b, ex
ept in 
ase fa; bg is the last possibleedge between one of the elements, say a, that is not 
omparable to anotherelement, and an element b 
omparable to some other element. Then the
omparability is given a

ording to the 
omparability status of b, su
h thatb remains a minimal element or a maximal element. More pre
isely, givena legal state ((C;<); I;N) let M = [fx;yg2Cfx; yg then for fa; bg 2 N theanswer of B is:a < b if a =2 M , b 2 M and for all x 2 M n fbg we have fx; ag 2 I, andb > 
 for some 
 2M ;b < a if a =2 M , b 2 M and for all x 2 M n fbg we have fx; ag 2 I, andb < 
 for some 
 2M ;a k b else.The strategy  obviously preserves the invariants:(1) The partial order indu
ed by (C;<) over M is 
onne
ted, and �M2 � �C [ I. 6



(2) All x 2M are either minimal or maximal with respe
t to (C;<).(3) For ea
h x 2 V nM there is a y 2M su
h that fx; yg 2 N .Applying  , the game ends with a legal triple ((C;<); I;N). If jC[Ij < �n2�,then the partial orders 
ompatible with ((C;<); I;N) would all be 
onne
tedor all be dis
onne
ted. But invariants 1 and 2 
ontradi
t the assumption thatall 
ompatible partial orders are 
onne
ted, while invariant 3 
ontradi
ts the
ase that they all are not 
onne
ted.2.2 k 
omparable pairsTheorem 3 Consider the game being played on a ground set of n verti
es.Let Pk denote the property of G having exa
tly k 
omparable pairs. PropertyPk is not evasive for any k > n24 .Proof. We give an algorithm for player A for avoiding at least one questionwhenever k > n24 . Note that an order with k 
omparabilities has to 
ontaina 3-
hain; this is an elementary appli
ation of Tur�an's Theorem from graphtheory. The basi
 idea for the algorithm is to go for the gain of a transitiveedge of a 3-
hain, if player B refutes to allow this kind of gain the game willend in a position where all 
ompatible orders are of height one and hen
ehave less than k 
omparabilities.Player A sele
ts a vertex v 2 W0 = V and asks for the 
omparabilitystatus of v with all the verti
es inW0 if no 
omparable vertex is found insertv into the set of isolated verti
es U0. This is repeated until 
omparable pairA� 1 < b1 is found.Let W1 = W0 n (U0 [ fa1; b1g). Repeat the same steps with W1; i.e.,sele
t a vertex v 2W1 and ask for the 
omparability status of v with all theverti
es inW1 if no 
omparable vertex is found insert v into U1, do this untila 
omparable pair a2 < b2 is found. Repeat with W2 =W1 n (U1 [ fa2; b2g)and so on. When all verti
es are exhausted there is a sequen
e of sets whi
hform a partition of V :U0; fa1; b1g; U1; fa2; b2g; : : : ; Ut�1; fat; btg; Ut:At this point any two elements x 2 Ui and y 2 Uj , with i = j possible,are known to be in
omparable. In the next step the algorithm takes theelements of the sets Ui and asks for their status with respe
t to elementsaj and bj whi
h have not been asked before. When for an element x 2 Uia 
omparability is dis
overed, say x < bj (if x > bj player A has gained a7



transitive edge) then x is moved into a set Aj asso
iated with aj , elementaj is itself a member of Aj . Conversely, when x > aj then x is moved intoBj whi
h also 
ontains bj . Isolated elements end in U0.When this step is 
ompleted we have a set U0 of isolated verti
es andsets Ai and Bi for i = 1; ::; t where ea
h element of Ai is below bi and ea
helement of Bi is above ai.Finally 
ompare all elements of Ai with those of Aj and dually those ofBi with those of Bj for i 6= j. To avoid transitive edges player B has to givethe answer \in
omparable" to all these queries.We 
laim that at this point the number of possible 
omparabilities ina 
ompatible order is less than n24 + 1. The possible 
omparabilities are ofthree types:1. Comparabilities between an ai and a bj ; there are t2 of this type.2. Comparabilities between x 2 Ai n faig and ai or x 2 Bi n fbig and bi;there are at most n� 2t of these.3. Comparabilities between x 2 Ai n faig and bj or x 2 Bi n fbig and aj ;there are at most (n� 2t)t of these.In total this makes at most pn(t) = t2 + (t + 1)(n � 2t) 
omparabilities. Itis easy to 
he
k that pn(t) > n24 + 1 has no real solution t. Therefore, ifk > n24 + 1 player A 
an stop the game at this point and 
laim that theorder has less than k 
omparabilities. This 
ompletes the proof of this 
ase.Now let k = bn24 
 + 1. The only integral solutions of pn(t) � bn24 
 + 1are t = n=2� 1 in the even 
ase and t = bn=2
 or t = bn=2
 � 1 in the odd
ase. Ea
h of these solutions gives pn(t) = bn24 
+ 1, hen
e, all the possible
omparabilities 
ounted by pn(t) have to be realized by player B.Let x be one of the elements that was in Sti=0 Ui, a
tually x was in Ut,otherwise x is known to be in
omparable to at and bt. Assume w.l.o.g. thatx 2 A1. Next ask the status of x and a1. To realize the 
omparabilities
ounted by pn(t) player B has to answer x < a1. The last question isa1 : b2. To rea
h the aspired number of 
omparabilities player B has toanswer a1 < b2 but this allows the gain of the transitive edge x < b2 andthe proof is 
omplete.
8



Theorem 4 Property Pk is evasive for any k � n24 .We prepare for the proof of the theorem with a de�nition and two lemmas.A partial order P = (V;<) is an interval order i� there exists a 
olle
tion(Ix)x2V of intervals on the real line, su
h that x < y i� Ix lies entirely to theleft of Iy. Interval orders have several ni
e 
hara
terizations. We mentiontwo of them, see Fishburn's book [5℄ for full proofs.1. P is an interval order i� P does not 
ontain a suborder 2+2, where2+2 = (fa; b; 
; dg; <) with a < b; 
 < d and no further 
omparabili-ties.2. P is an interval order i� the sets of su

essors Su
(x) = fy : y > xg ofelements of P are linearly ordered with respe
t to in
lusion.3. P is an interval order i� the sets of prede
essors Pred(x) = fy : y < xgof elements of P are linearly ordered with respe
t to in
lusion.Lemma 1 For every integer k � n24 there is a bipartite interval order on nverti
es with k 
omparable pairs.Proof. Take a partition (k1; k2; : : : ; kbn=2
) of k, with dn=2e � k1 � k2 �: : : � kbn=2
 � 0. Let x1; x2; : : : ; xdn=2e and y1; y2; : : : ; ybn=2
 be the n verti
esof the order. As relations take xi < yj for 1 � i � kj and all y. It is easilyshown that the resulting order does not 
ontain an indu
ed 2+2, hen
e, itis a bipartite interval order.Lemma 2 Let I be a bipartite interval order. Player A has to ask all �n2�pairs of verti
es to verify that player B 
onstru
ts I.Proof. Let (X;Y ) be a partition of the vertex set of I su
h that X is theset of minimal elements and Y is the set of maximal elements (independentverti
es 
an arbitrarily be 
onsidered as minimal or maximal). Supposeplayer B has answered the �rst �n2�� 1 queries of player A 
omplying to thestatus of the pair in I. Let fa; bg be the remaining pair. With the following
ase dis
ussion we show that irrespe
tive of the pair fa; bg player B alwayshas two legal answers so that the �nal order is either I or non-isomorphi
to I.a 2 X, b 2 Y . Independent of the status of a; b in I the answers a k b anda < b are legal answers for player B.9



a; b 2 X. From the se
ond 
hara
terization of interval orders we know thatSu
(a) and Su
(b) are 
omparable, say, Su
(a) � Su
(b). In this 
asethe answers a k b and a > b are legal answers for player B.a; b 2 Y . Sin
e the dual (all 
omparabilities reversed) of an interval orderis an interval order this 
ase redu
es to the 
ase a; b 2 X.Note that the proof of the previous lemma shows that veri�
ation of abipartite interval order is evasive even if the labeling of the verti
es is �xed.Proof. (Theorem 4) A strategy for player B proving the theorem is to 
hoosea bipartite interval order Ik with k 
omparable pairs (Lemma 1). Player Bansweres the �rst �n2� � 1 queries 
omplying to the status of the pair in I.By Lemma 2 the answer to the last question allows player B to 
onstru
teither Ik or some order in Pk�1 [ Pk+1.An easy extension of the above argument leads to lower bounds for the
omplexity of Pk for k > n2=4.Player B 
hooses an appropriate l for the given value of k and 
onstru
tsan order P with l ranks of about the same size n=l. Any two nonadja
entranks indu
e a 
omplete bipartite order and 
omparabilities between adja-
ent ranks are 
hosen so that the following properties hold:� The order P is an interval order.� P has exa
tly k 
omparabilities.� If x; y are from the same rank and Pred(x) � Pred(y) then Su
(x) �Su
(y).� If x; y are from the same rank and Su
(x) � Su
(y) then Pred(x) �Pred(y).Using obvious extensions of the previous methods this 
an always be done.For the above order P the re
ognition problem 
ontains the sorting prob-lem on the l sets. In addition every possible edge between 2 adja
ent ranksand also those between elements of the same rank must be asked. This leadsto the following bound :Proposition 1 Let l be so that n22 (1� 1l�1) < k � n22 (1� 1l ). The re
ognition
omplexity of Pk is at least l log l + (l � 1)(n2l2 � 1) + n(n�l)2l . And the boundis tight for both ends (l = 2 and l = n).10



2.3 Interval ordersTheorem 5 The re
ognition 
omplexity of the 
lass P of interval orders is�n2�� 1.Proof. We �rst prove the lower bound of �n2� � 1, this is the easier part.To for
e all but at most one question to be asked player B 
an use a simple`greedy-strategy': For all states of the game and all questions x : y player Banswers x k y unless there is no 
ompatible partial order 
ontaining a 2+2.Consider the state of the game when player B answers to the questionfa; bg 
on
edes the �rst 
omparable pair. Let GN be the of all edges thathave not yet been asked. It is easy to see that GN is either a triangle or astar with k � 1 leaves. In Figure 2 we show the �ve possible situations ofGN [ fa; bg. 
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Figure 2: The bold edge fa; bg and the possible ways to atta
h it to the staror the triangle formed by GN .In the 
ases S1 and T1 player B 
an for
e all the remaining questions bygiving in
omparabilities until the last edge is asked.By adding in
omparable pairs 
ase S2 is either transformed to 
ase S1or a; 
 is the last unasked edge. In that 
ase player B gives the se
ond lastpair 
omparable so that a; 
 is a diagonal of a 2+2. This for
es player A toask this last edge.By adding in
omparable pairs 
ase S3 is either transformed to 
ase S2 orthe three last remaining questions together with the edge a; b form a triangle11



with an edge sti
king out. In this 
ase as well as in 
ase T2 player A 
angain a question by �rst asking the edge disjoint from a; b. Player B givesthe edge 
omparable. At this point player A only has to ask the diagonaledge to de
ide the game.We now turn to the upper bound. We have to des
ribe an algorithm forplayer A whi
h saves a question.Let V = fx1; : : : ; xng, player A takes the elements by in
reasing indexand asks for their 
omparability status to all elements with higher index,until B gives the �rst 
omparability.In 
ase xi k xj for i � n � 3 and all j, every 
ompatible partial orderis an interval order and A gains 3 questions. So, let fxk; xk+lg be the �rst
omparable pair, assume xk < xk+l (the other 
ase is dual).Let V 0 = fxk+1; : : : ; xk+l�1; xk+l+1; : : : ; xng, player A 
ontinues by ask-ing all pairs of elements from V 0. Let Q0 be the resulting order. If Q0 isan anti
hain then all 
ompatible partial orders are in P. We thus assumethat at least one pair is 
omparable. Also Q0 has to be an interval order,otherwise all 
ompatible orders 
ontain the 2+2 of Q0 and are not in P.Let a = xk, b = xk+l and z be a maximal element of Q0 with a maximalset of prede
essors. Player A asks all questions b : x for elements elementsx 2 V 0 n fzg. Every 
omparability given has to be of the form b > x,otherwise player A would gain a < x as a transitive edge. Next all questionsa : x for x 2 V 0 are asked. The only pair that has not been asked at thispoint is the pair b; z. Let Q be the order obtained so far.Claim: If there is no 2+2 in Q then making fb; zg 
omparable 
an not
ause one. Otherwise there would be two 
omparable elements x < y whi
hare both in
omparable to b and z. Sin
e a < b we �nd x; y 6= a. Hen
ex; y 2 V 0 and x < y implies x < z by the 
hoi
e of z.If there is a 2+2 in Q then the diagonals have already been asked sin
eboth b and z are maximal elements of Q. Hen
e, the 
omparability statusof b; z 
an not serve to destroy the 2+2.In 
on
lusion, player A 
an save the question b : z.2.4 Latti
esIn this se
tion we prove that the property PL of being a latti
e is not evasiveand then derive a lower bound on the 
omplexity of PL.Consider a partial order P = (V;<), two elements a; b 2 V have theminimum x 2 V , denoted x = minfa; bg if x � a and x � b, and z � a andz � b implies z � x. The maximum is de�ned analogously. P = (V;<) is alatti
e i� minfa; bg and maxfa; bg exist for all a; b 2 V .12
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Figure 3: Forbidden subdiagram for latti
es.Theorem 6 Let PL be the property of being a latti
 on a set V , jV j > 3,then C(PL) < �n2�.Proof. In the following we use the fa
t that L = (V;<) is a latti
e i� itits diagram does not 
ontain an edge subdivision of the diagram shown inFigure 3 and it 
ontains a unique minimum and a unique maximum, i.e.elements x; z 2 V su
h that x � y and y � z for all y 2 V . (Denote theminimum resp. maximum of L by min(L) resp. max(L).)An algorithm ' for player A with C(P;'; ) < �n2� for all strategies  is �rst to ask all �n�12 � questions over V n fxg for a �xed x 2 V . The stateof the game after these �n�12 � questions is a legal triple ((C;<); I;N) withN = f fx; yg j y 2 V g.Case 1. The order indu
ed by ((C;<); I) is not a latti
e. The `defe
t' of((C;<); I) relative to latti
es has to be so small that adding x in the rightway leads to a latti
e. The possible situations are:1.1 The unique minimum or maximum is missing. W.l.o.g. let ((C;<); I)indu
e a partial order 
ontaining no minimum. It must 
ontain amaximum z and all latti
es 
ompatible with ((C;<); I;N) 
ontain xas its minimum. Let A ask a : x for an arbitrary a 2 V nfx; zg. PlayerB has to answer x < a, else there is no 
ompatible latti
e, but withx < a and x < y player A gains the transitive edge a < y.1.2 The partial order indu
ed by ((C;<); I) 
ontains a forbidden substru
-ture on elements a; b; 
; d. In this 
ase A asks b : x and d : x. EitherB gives a transitive edge between x and the minimum or the maxi-mum, or B answers b k x and d k x, whi
h implies that there exists no
ompatible latti
e.Case 2. The order indu
ed by ((C;<); I) is a latti
e.13



2.1 If the latti
e 
ontains a 5-
hain, then situation 3 from se
tion 2 applies.2.2 If the latti
e has height 3, i.e. there is a 4 
hain min < a1 < b1 < max,then the non-extremal elements are partitioned into a1; :::; ak , those
overing the minimum, and the remaining elements b1; :::; bl. Notethat all the bi are 
overed by the maximum. Player A asks x : u for allu 2 V n fx;min;max; a1g any 
omparability among the answers wouldindu
es a transitive edge. Hen
e we assume that B always answersx k u. The next two questions are x : min and x : max. To guaranteethat there exists a 
ompatible partial order that is a latti
e, B has toanswer x < max and min < x. But now the 
omparability status ofx and a1 may be 
hosen arbitrarily, sin
e all orders 
ompatible withthat state of the game do not 
ontain the forbidden substru
ture, i.e.are latti
es.2.3 If the latti
e has height 2, A �rst asks x : min and x : max. If theanswers of B are min 6< x or x 6< max, player A either gains a transitiveedge or there exist no 
ompatible latti
es.Otherwise, if min < x < max, the 
omparability status of x andall other elements of V may be 
hosen arbitrarily, sin
e there are no
ompatible partial order that 
ontains a forbidden substru
ture, i.e.all 
ompatible partial orders are latti
es.We nextderive a lower bound for PL based on the forbidden substru
ture.Re
all the following result from extremal graph theory (see [2℄). If a graphG with n verti
es 
ontains more than n4 (1 + p4n� 3) edges then G must
ontain a 
y
le of length 4.Theorem 7 For re
ognition 
omplexity of latti
es is at least n2!� (n� 2)4 (1 +p4n� 11):Proof. Player B answers the �rst question x : z with x < z and setsaside aside x and z to be the maximum and minimum verti
es respe
tively.Further questions involving x and z are answered appropriately. For anyquestion involving the other n� 2 verti
es the answer is in
omparable.For the above strategy it is 
lear that A must ask the status of x and zwith all the other verti
es. Furthermore, as long as there is a 
y
le of length4 in the graph GN of not asked edges on V nfx; zg there are 
ompatible non-latti
es. The above result implies that A has to ask at least 1 + 2(n� 2) +(�n�22 �� (n�2)4 (1+p4(n� 2)� 3)) = �n2�� (n�2)4 (1+p4n� 11) questions.14



2.5 Height and widthWe �rst investigate the 
omplexity of the property of 
ontaining a 
hain ofat least k elements, i.e., the property of being of height at least k � 1.Containing a 
hain of length 2, i.e., a 
omparable pair is obviously eva-sive.Theorem 8 The property P of all partial orders over set V with jV j = n �4, that 
ontain a k-
hain, k � 4 has 
omplexity C(P) < �n2�.Proof. Player A asks all possible questions over V n fxg for �xed x. Toguarantee that for the state of the game after these �n�12 � questions thereexists a 
ompatible partial order 
ontaining a 
hain of length k, player Bhas to 
onstru
t a 
hain of length k � 1, say a1 < a2 < ::: < ak�1. Now Aasks x : a2. If B answers x k a2, then the 
omparability status of x : a1 andx : ai, 2 < i � k � 1, is not relevant for P. Otherwise, if B answers x < a2or a2 < x there is an indu
ed transitive edge.This argument does not apply to the 
ase k = 3. In an extended abstra
t [6℄Gr}oger 
laims that the exa
t 
omplexity of this property is �n�12 �+3. Withthe theorem below we prove the mu
h weaker statement that the propertyof 
ontaining a 3-
hain is non-evasive. The lower bound of �n�12 �+1 is ratherobvious, 
onsider the order with one element x dominating all others andno further 
omparabilities. Let B give the �rst answer a 
omparability andthus de
ide the element x. Player A then has to ask all pairs in V n fxg tomake a 3-
hain impossible.Theorem 9 The property P of all partial orders over set V , jV j = n � 5,that 
ontain a 3-
hain has 
omplexity C(P) < �n2�.Proof. The proof is based on the following fa
ts.Fa
t 0. If for a strategy  there exists a state ((C;<); I;N) with twoelements a; b with fa; bg 2 N and fx : x k a or x k bg = V nfa; bg then thereexists an algorithm ' su
h that C(P;'; ) < �n2�.The pair a; b 
an not 
ontribute to a 3-
hain sin
e the third element xof every triple a; b; x is in
omparable to a or b.Fa
t 1. If for a strategy  there exists a state ((C;<); I;N) and fourelements a; b; 
; d su
h that fa; bg; f
; dg 2 C, a < b; 
 < d and fa; dg 2 N ,fb; dg; fa; 
g 2 N[I then there exists an algorithm ' with C(P;'; ) < �n2�.Player A 
an obtain fa; 
g 2 I and fd; bg 2 I, otherwise there would be a3-
hain. Now A asks all remaining questions fa; xg, x 6= d and all questions15
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Figure 4: Illustrations for the two fa
ts.fd; xg, x 6= a. If fa; xg 2 C then a < x, otherwise we would have a 3-
hain,symmetri
ally fd; xg 2 C implies x < d. From this we 
on
lude that for allx 6= a; d either fa; xg 2 I or fd; xg 2 I, but now the 
omparability status ofa : d is not essential for P, sin
e this pair 
an not 
ontribute to a 3-
hain ina 
ompatible order. (See left side of Figure 4).Fa
t 2. If for a strategy  there exists a state ((C;<); I;N) su
h thati) f
; vg 2 C [ I for a �xed 
 2 V and all v 2 V n f
g,ii) there are x; y 2 V with fx; 
g 2 I; fy; 
g 2 C,iii) for all x; y 2 V with fx; 
g 2 I; fy; 
g 2 C, we have fa; bg 2 Nthen there exists an algorithm ' su
h that C(P;'; ) < �n2�.W.l.o.g. 
 < b. Let X = fx 2 V n f
g : f
; xg 2 Ig and Y = fy 2V n f
g : f
; yg 2 Cg, then 
 < y for all y 2 sin
e otherwise there is a3-
hain. We next ask for all the remaining pairs fx; x0g and fy; y0g. Thepairs fx; x0g are given in
omparable, otherwise Fa
t 1 applies. Moreover,all pairs fy; y0g are given in
omparable to avoid a 3-
hain. But then thereexists no 
ompatible partial order in P, i.e. the 
omparability status of allx : y for x 2 X and y 2 Y is not essential for property P sin
e these pairs
annot 
ause a 3-
hain. (See right side of Figure 4).An algorithm ' withC(P;'; ) < �n2� for all strategies  is the following.Let V = fx1; : : : ; xng. First, A asks x1 : x2. If the answer is x1 k x2 then Aasks x1 : xi for 2 < i � n � 1. Player B answers x1 k xi, otherwise Fa
t 2applies. But then the question x1 : xn 
an be saved by Fa
t 0.Assume B answers x1 < x2. Now, A asks x1 : x3. Be
ause of Fa
t 2,respe
tively to avoid a 
hain of length three, B always answers x1 < x3.16



Next A asks x4 : x2. To avoid a 3-
hain, respe
tively be
ause of Fa
t 1with a = x4, b = x2, 
 = x1, d = x3, player B answers x2 k x4.The next question is x4 : x3. To avoid a 
hain of length three, B willnot answer x3 < x4. If x3 k x4 player A 
ontinues with x4 : xi, i = 5; : : : ; nIf there is a y 
omparable to x4 then Fa
t 1 applies with the four elementsx4; y; x1; x2. Otherwise, the question x1 : x4 
an be saved by Fa
t 0.Now assume x4 < x3. Player A asks all questions xi : xj for 5 � i; j � n.If one of the answers is a 
omparability Fa
t 1 applies. Now assume that allanswers are in
omparabilities.Player A asks for x2 : x3 with answer x2 k x3. The next question isx5 : x1, if x5 k x1 then Fa
t 0 applies with x2; x5.Now let x1 < x5, player A 
ontinues with x5 : x2, x5 : x3 and x1 : x4,all answers are in
omparable, otherwise there is a 3-
hain. But now Fa
t 0applies with x4 and x5.We have already seen that properties properties with a large re
ognition
omplexity must 
ontain orders of low height. We now 
onsider the widthof partial orders, i.e. the maximal size of an anti
hain.Theorem 10 Let P be the property of all partial orders of width k over V ,for a �xed k, then C(P) � 2kn log n.Proof. The algorithm ' withC(P;'; ) � 2kn log n is based on sorting. Letthe ground set be indexed, i.e V = fx1; : : : ; xng, then player A determinesone after another the order on fx1; : : : ; xig for 1 � i � n. Consider Pi =(fx1; : : : ; xig; <), if the width of Pi is more than k, then all 
ompatible ordershave this property and the game is over. Therefore we assume the width ofPi to be at most k and, by the theorem of Dilworth Pi 
an be partitionedinto k 
hains H1i ; : : : ;Hki .Let Hji be a 
hain of the 
hain partition of Pi, say Hji = 
1 < 
2 <: : : < 
l. A determines the 
omparability status of fxi+1; 
jg for 1 � j � lusing binary sear
h. First A asks for xi+1 : 
d l2 e. If xi+1 < 
d l2 e (resp.xi+1 > 
d l2 e) then A re
ursively determines the 
omparability status of xi+1with the elements of the remaining `half-
hain' f
j j 1 � j < d l2eg (resp.d l2e < j � l).If xi+1 k 
d l2 e, then A has to determine the indi
es l1 = maxfj j j =0 or 
j < xi+1g and l2 = minfj j j = l + 1 or xi+1 < 
jg. This is doneby binary sear
h to both half-
hains. The 
omparability status of xi+1with all elements of Hji 
an thus be determined with 2 log l questions. The
omparability status of all pairs from fx1; : : : ; xig is known after at most17



2k log n queries. Adding the n elements one by one we obtain the overall
omplexity of 2kn log n.Algorithm ' not only de
ides if an unknown partial order has width atmost k, but also if it is isomorphi
 to a �xed partial order P0 of width k. ThusTheorem 10 improves the upper bound given in [3℄ (whi
h is 2kn log n+3kn)for the P0-re
ognition problem.Referen
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