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Abstract. A 4-directional orthogonal ray graph (4-DORG) is the inter-
section graph of horizontal and vertical rays. If the rays are only pointing
into the positive x and y directions, the intersection graph is a 2-DORG.
For 3-DORGs horizontal rays are unrestricted but vertical rays only use
the positive direction.
The recognition of 2-DORGs is known to be polynomial, they form a nice
subclass of bipartite comparability graphs. The recognition problems for
3-DORGs and 4-DORGs, however, are open. Recently is has been shown
that the recognition of unit grid intersection graphs, a superclass of 4-
DORGs, is NP-complete.
Suppose G is given with a partition {L,R,U,D} of its vertices and the
question is whether G has a 4-DORG representation, where the four
classes of the partition correspond to the four directions of rays. We
show that this problem can be solved in polynomial time. For the proof
we construct an auxiliary graph G̃ with directed and undirected edges
and show that G has a 4-DORG representation exactly when G̃ has a
transitive orientation respecting its directed edges. There is a gap in
the proof of Theorem 1. We have not been able to fix it
With an independent approach, we show that if we are given a permu-
tation π of the vertices of U but the partition {L,R} of V \ U is not
given, then we can still efficiently check whether G has a 3-DORG rep-
resentation. Here, π is the order of y-coordinates of endpoints of rays
for U .

1 Introduction

Segment graphs, i.e., the intersection graphs of segments in the plane, have been
the subject of wide spread research activities (see, e.g., [2, 12]). More tractable
subclasses of segment graphs are obtained by restricting the number of directions
for the segments to some fixed positive integer k [4,11]. These graphs are called
k-directional segment graphs. The easiest case is the case of two directions, which
can be assumed to be parallel to the x- and y-axis. If intersections of parallel
segments are forbidden, then 2-directional segment graphs are bipartite and the
corresponding class of graphs is also known as grid intersection graphs (GIG),
see [9]. The recognition of GIGs is NP-complete [10].



Since segment graphs are a fairly complex class, it is natural to study the
subclass of ray intersection graphs [1]. Again, the number of directions can be
restricted by an integer k, which yields the class of k-directional ray intersection
graphs. Particularly interesting is the case where all rays are parallel to the x- or
y-axis. The resulting class is the class of orthogonal ray graphs, the object of this
paper. A k-directional orthogonal ray graph, for short a k-DORG (k ∈ {2, 3, 4}),
is an orthogonal ray graph with rays in k directions. If k = 2 we assume that all
rays point in the positive x- and the positive y-direction, if k = 3 we additionally
allow the negative x-direction.

The class of 2-DORGs was introduced in [19]. There it is shown that the
class of 2-DORGs coincides with the class of bipartite graphs whose comple-
ments are circular arc graphs, i.e., intersection graphs of arcs on a circle. This
characterization implies the existence of a polynomial recognition algorithm (see
[13]), as well as a characterization based on forbidden subgraphs [5]. Alterna-
tively, 2-DORGs can also be characterized as the comparability graphs of ordered
sets of height two and interval dimension two. This yields another polynomial
recognition algorithm (see, e.g., [7]), and due to the classification of 3-interval
irreducible posets ( [6], [21, sec 3.7]) a complete description of minimally forbid-
den subgraphs. A very nice recent contribution on 2-DORGs is [20], the paper
contains a clever solution to the jump number problem for the corresponding
class of posets and shows a close connection between this problem and a hitting
set problem for axis aligned rectangles in the plane.

Our contribution. The recognition problem for 4-DORGs was posed in [19].
We show that if a graph G is given with a partition {L,R,U,D} of its vertices,
then it can be efficiently checked whether G has a 4-DORG representation such
that the vertices of L correspond to the rays pointing to the left, rays for R
point to the right, rays for U point upwards, and rays for vertices of D point
downwards. The result is obtained by constructing an auxiliary mixed graph ΓG,
i.e., a graph with some undirected and some directed edges, such that ΓG has
a transitive orientation respecting its directed edges if and only if G admits a
4-DORG representation. The result trivially implies that for a graph G and a
partition {L,R,U} of its vertices it can be efficiently checked whether G has a 3-
DORG representation respecting the partition. With an independent approach,
we show that if we are given a permutation π of the vertices of U but the partition
{L,R} of V \ U is unknown, then we can still efficiently check whether G has a
3-DORG representation. Here, π denotes the order of y-coordinates of endpoints
of rays for U . While the results do not imply a complete polynomial recognition
algorithm for 3-DORGs or 4-DORGs, we believe that the tools used in the proof
can be adapted for other situations.

4-DORGs in VLSI design. In [18] 4-DORGs were introduced as a mathe-
matical model for defective nano-crossbars in PLA (programmable logic arrays)
design. A nano-crossbar is a rectangular circuit board with m× n orthogonally
crossing wires. Fabrication defects may lead to disconnected wires. The bipar-
tite intersection graph that models the surviving crossbar is an orthogonal ray
graph.
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Fig. 1. a) A nano-wire crossbar with disconnected wire defects. b) The bipartite graph
modeling the crossbar on the left. Note that vertex t is not present, since the corre-
sponding wire is not connected to the crossbar boundary, hence with the remaining
circuit

We briefly mention two problems for 4-DORGs that are tackled in [18]. One
of them is that of finding, in a nano-crossbar with disconnected wire defects,
a maximal surviving square (perfect) crossbar, which translates to finding a
maximal k such that the balanced complete bipartite graph Kk,k is a subgraph of
the orthogonal ray graph modeling the crossbar. This balanced biclique problem
is NP-complete for general bipartite graph but turns out to be polynomially
solvable on 4-DORGs. The other problem, posed in [16], asks how difficult it is
to find a subgraph that would model a given logic mapping and is shown to be
NP-hard.

4-DORGs and UGIGs. A unit grid intersection graph (UGIG) is a GIG that
admits an orthogonal segment representation with all segments of equal (unit)
length. Every 4-DORG is a GIG. This can be seen by intersecting the ray rep-
resentation with a rectangle R, that contains all intersections between the rays
in the interior. To see that every 4-DORG is a UGIG, we first fix an appropri-
ate length for the segments, e.g., the length d of the diagonal of R. If we only
keep the initial part of length d from each ray we get a UGIG representation.
Essentially this construction was already used in [18].

Unit grid intersection graphs were considered in [15]. There it is shown that
UGIG contains P6-free bipartite graphs, interval bigraphs and bipartite permu-
tation graphs. Actually, these classes are already contained 2-DORG. Another
contribution of [15] is to provide an example showing that the inclusion of UGIG
in GIG is proper. In [17] it is shown that interval bigraphs belong to UGIG. Hard-
ness of Hamiltonian cycle and graph isomorphism for inputs from UGIG has been
shown in [22]. Very recently [14] it was shown that the recognition of UGIGs is
NP-complete. With this last result we find 4-DORG nested between 2-DORG
and UGIG with easy and hard recognition, respectively. This observation was
central for our motivation to attack the recognition problem for 4-DORGs.
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2 Preliminaries

We consider in this article simple undirected and directed graphs. For a graph G,
we denote its vertex and edge set by V (G) and E(G), respectively. In an undi-
rected graph G, the edge between vertices u and v is denoted by uv, and in this
case u and v are said to be adjacent in G. The set N(v) = {u ∈ V : uv ∈ E} is
called the neighborhood of the vertex v of G. If the graph G is directed, we denote
by 〈uv〉 the oriented arc from u to v. If G is the complete graph (i.e. a clique), we
call an orientation λ of all (resp. of some) edges of G a (partial) tournament of
G. If in addition λ is transitive, then we call it a (partial) transitive tournament.
Given two matrices A and B of size n× n each, we call by O(MM(n)) the time
needed by the fastest known algorithm for multiplying A and B; currently this
can be done in O(n2.376) time [3].

Let G be a 4-DORG. Then, in a 4-DORG representation of G, every ray is
completely determined by one point on the plane and the direction of the ray.
We call this point the endpoint of this ray. Given a 4-DORG G along with a
4-DORG representation of it, we may not distinguish in the following between a
vertex of G and the corresponding ray in the representation, whenever it is clear
from the context. Furthermore, for any vertex u of G we will denote by ux and
uy the x-coordinate and the y-coordinate of the endpoint of the ray of u in the
representation, respectively.

3 4-Directional Orthogonal Ray Graphs

In this section we investigate some fundamental properties of 4-DORGs and
their representations, which will then be used for our recognition algorithm. In
particular, given a graph G = (V,E) with a vertex partition {L,R,U,D}, we
first construct in Section 3.1 two cliques G1 and G2 with specific orientation
constraints on their edges. Then, in Section 3.2, we augment G1 and G2 into two
larger cliquesG∗1 andG∗2 with some further orientation constraints on their edges.
Finally we combine in Section 3.3 the cliquesG∗1 andG∗2 into an augmented clique
G∗ with a third kind of additional orientation constraints on its edges. Then, as
we prove in Section 3.3, the initial graph G has a 4-DORG representation with
respect to the vertex partition {L,R,U,D} if and only if the clique G∗ can be
transitively oriented subject to some specific orientation constraints. The next
observation on a 4-DORG representation is crucial for the rest of the section.

Observation 1 Let G = (V,E) be a graph that admits a 4-DORG representa-
tion, in which L (resp. R,U,D) is the set of leftwards (resp. rightwards, upwards,
downwards) oriented rays. If u ∈ U and v ∈ R (resp. v ∈ L), then uv ∈ E if
and only if ux > vx (resp. ux < vx) and uy < vy. Similarly, if u ∈ D and v ∈ R
(resp. v ∈ L), then uv ∈ E if and only if ux > vx (resp. ux < vx) and uy > vy.

For the remainder of the section, let G = (V,E) be an arbitrary input graph
with vertex partition V = L ∪R ∪ U ∪D, such that E ⊆ (L ∪R)× (U ∪D).
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3.1 The oriented cliques G1 and G2

In order to decide whether the input graph G = (V,E) admits a 4-DORG rep-
resentation, in which L (resp. R, U , D) is the set of leftwards (resp. rightwards,
upwards, downwards) oriented rays, we build in this section two auxiliary cliques
G1 and G2 with |V | vertices each. We partition the vertices of G1 (resp. G2) into
the sets Lx, Rx, Ux, Dx (resp. Ly, Ry, Uy, Dy). The intuition behind this notation
for the vertices of G1 and G2 is that, if G has a 4-DORG representation with
respect to the partition {L,R,U,D}, then each of these vertices of G1 (resp. G2)
corresponds to the x-coordinate (resp. y-coordinate) of the endpoint of a ray of
G in this representation.

In the following we define orientation of the edges of G1 and G2, cf. Lemma 1.
The intuition behind these orientations is the following. If the input graph G
is a 4-DORG, then it admits a 4-DORG representation such that, for every
u ∈ U ∪D and v ∈ L ∪R, we have that ux > vx (resp. uy > vy) in this
representation if and only if 〈uxvx〉 (resp. 〈uyvy〉) is an oriented edge of the
clique G1 (resp. G2). That is, since all x-coordinates (resp. y-coordinates) of the
endpoints of the rays in a 4-DORG representation can be linearly ordered, these
orientations of the edges of G1 (resp. G2) build a transitive tournament.

In the next lemma we provide a characterization of 4-DORGs in terms of two
particular transitive tournaments of the cliques G1 and G2. This characterization
follows by Observation 1: the transitive tournament λ1 (resp. λ2) of G1 (resp. of
G2) corresponds bijectively to the linear ordering of the x-coordinates (resp. the
y-coordinates) of the endpoints of the rays in a 4-DORG representation of G.

Lemma 1. The next two conditions are equivalent:

1. the graph G = (V,E) has a 4-DORG representation with respect to the vertex
partition {L,R,U,D},

2. there exist two transitive tournaments λ1 and λ2 of G1 and G2, respectively,
such that, whenever u ∈ U ∪D and v ∈ R ∪ L:

(a) if uv ∈ E, u ∈ U , and v ∈ R (resp. v ∈ L) then 〈uxvx〉 ∈ λ1
(resp. 〈vxux〉 ∈ λ1) and 〈vyuy〉 ∈ λ2,

(b) if uv ∈ E, u ∈ D, and v ∈ R (resp. v ∈ L) then 〈uxvx〉 ∈ λ1
(resp. 〈vxux〉 ∈ λ1) and 〈uyvy〉 ∈ λ2,

(c) if uv /∈ E, u ∈ U , and v ∈ R (resp. v ∈ L) then 〈uxvx〉 /∈ λ1
(resp. 〈vxux〉 /∈ λ1) or 〈vyuy〉 /∈ λ2,

(d) if uv /∈ E, u ∈ D, and v ∈ R (resp. v ∈ L) then 〈uxvx〉 /∈ λ1
(resp. 〈vxux〉 /∈ λ1) or 〈uyvy〉 /∈ λ2.

Proof. (⇒) Assume that G has a 4-DORG representation with respect to the
vertex partition {L,R,U,D}. We define the transitive tournament λ1 of the
clique G1 as follows: for every two vertices ux and vx of G1, 〈uxvx〉 ∈ λ1 if and
only if ux > vx in the 4-DORG representation of G. Similarly we define the
transitive tournament λ2 of the clique G2, such that for every two vertices uy
and vy of G2, 〈uyvy〉 ∈ λ2 if and only if uy > vy in the 4-DORG representation
of G. Then the condition 2 of the lemma follows immediately by Observation 1.
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(⇐) Assume that the condition 2 of the lemma is satisfied. In order to con-
struct 4-DORG representation with respect to the partition {L,R,U,D}, we
define for every ray u of G its endpoint (ux, uy) in the representation, as fol-
lows. We define each of the sets {ux : u ∈ V } and {uy : u ∈ V } to be equal to
{1, 2, . . . , |V |}. Furthermore we linearly order the values of {ux : u ∈ V } such
that ux > vx if and only if 〈uxvx〉 ∈ λ1, and we linearly order the values of
{uy : u ∈ V } such that uy > vy if and only if 〈uyvy〉 ∈ λ2. Since every vertex of
G is assigned also an orientation for its row (i.e. leftwards, rightwards, upwards,
and downwards, according to the partition of V into the sets L,R,U,D), this
completes the construction of the 4-DORG representation. Finally it follows by
Observation 1 and the condition 2 of the lemma that this 4-DORG representa-
tion captures exactly the adjacencies of G, i.e. it is a 4-DORG representation for
the graph G. ut

As we proved in Lemma 1, the input graph G admits a 4-DORG representa-
tion if and only if some edges of G1, G2 are forced to have specific orientations in
the transitive tournaments λ1, λ2 (cf. conditions 2(a)-(b) of Lemma 1) and some
pairs of edges of G1, G2 are not allowed to have a specific pair of orientations
in λ1, λ2 (cf. conditions 2(c)-(d) of Lemma 1). Motivated by this, we introduce
in the next two definitions the notions of type-1-mandatory orientations and
of forbidden pairs of orientations, which will be crucial for our analysis in the
remainder of Section 3.

Definition 1 (type-1-mandatory orientations). Let u ∈ U ∪ D and v ∈
L ∪R, such that uv ∈ E. If u ∈ U and v ∈ R (resp. v ∈ L) then the orientations
〈uxvx〉 (resp. 〈vxux〉) and 〈vyuy〉 of G1 and G2 are called type-1-mandatory.
If u ∈ D and v ∈ R (resp. v ∈ L) then the orientations 〈uxvx〉 (resp. 〈vxux〉)
and 〈uyvy〉 of G1 and G2 are called type-1-mandatory. The set of all type-1-
mandatory orientations of G1 and G2 is denoted by M1.

Note that, using the terminology of Definition 1, the edge orientations that
are being forced in conditions 2(a)-(b) of Lemma 1 are exactly the type-1-
mandatory orientations, i.e. the set M1.

Definition 2 (forbidden pairs of orientations). Let u ∈ U ∪ D and
v ∈ R ∪ L, such that uv /∈ E. If u ∈ U and v ∈ R (resp. v ∈ L) then the
pair {〈uxvx〉 , 〈vyuy〉} (resp. the pair {〈vxux〉 , 〈vyuy〉}) of orientations of G1

and G2 is called forbidden. If u ∈ D and v ∈ R (resp. v ∈ L) then the pair
{〈uxvx〉 , 〈uyvy〉} (resp. the pair {〈vxux〉 , 〈uyvy〉}) of orientations of G1 and G2

is called forbidden.

In the following, whenever the orientation of an edge uv of G1 or G2 is
type-1-mandatory, we may say for simplicity of the presentation that the edge
uv (instead of its orientation) is type-1-mandatory. Moreover, for simplicity of
notation in the remainder of the paper, we introduce in the next definition the
notion of optional edges.
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Definition 3 (optional edges). Let {〈pq〉 , 〈ab〉} be a pair of forbidden orien-
tations of G1 and G2. Then each of the (undirected) edges pq and ab is called
optional edges.

3.2 The augmented oriented cliques G∗
1 and G∗

2

We iteratively augment the cliques G1 and G2 into the two larger cliques G∗1
and G∗2, respectively, as follows. For every optional edge pq of G1 (resp. of G2),
where p ∈ Ux ∪ Dx and q ∈ Lx ∪ Rx (resp. p ∈ Uy ∪ Dy and q ∈ Ly ∪ Ry),
we add two vertices rp,q and rq,p and we add all needed edges to make the
resulting graph G∗1 (resp. G∗2) a clique. Note that, if the initial graph G has n
vertices and m non-edges (i.e.

(
n
2

)
−m edges), then G∗1 and G∗2 are cliques with

n + 2m vertices each. Furthermore, since G1 and G2 are induced subgraphs of
G∗1 and G∗2, respectively, Definitions 1-3 carry over to G∗1 and G∗2, i.e. the type-
1-mandatory orientations, the forbidden pairs of orientations, and the optional
edges are the same in the cliques G1, G2 and in the cliques G∗1, G

∗
2. We now

introduce the notion of type-2-mandatory orientations of G∗1 and G∗2.

Definition 4 (type-2-mandatory orientations). For every optional edge pq
of G∗1, the orientations 〈prp,q〉 and 〈qrq,p〉 of G∗1 are called type-2-mandatory
orientations of G∗1. For every optional edge pq of G∗2, the orientations 〈rp,qp〉
and 〈rq,pq〉 of G∗2 are called type-2-mandatory orientations of G∗2. The set of all
type-2-mandatory orientations of G∗1 and G∗2 is denoted by M2.

Whenever the orientation of an edge uv of G∗1 or G∗2 is type-2-mandatory
(cf. Definition 4), we may say for simplicity of the presentation that the edge uv
(instead of its orientation) is type-2-mandatory. The type-2-mandatory orienta-
tions in G∗1 and in G∗2 (with respect to the optional edge pq) are illustrated in
Figure 2(a) and 2(b), respectively. In Figure 2 only the graph induced by the
vertices {p, q, rp,q, rq,p} is shown, while the orientations of the type-2-mandatory
edges prp,q and qrq,p are drawn with double arrows for better visibility.

p

q

rp,q

tp,q

(a)

p

q

rp,q

tp,q

(b)

Fig. 2. An example for the construction of (a) the clique G∗1 from G1 and of (b) the
clique G∗2 from G2, where pq is an optional edge and (a) p ∈ Ux ∪ Dx, q ∈ Lx ∪ Rx,
(b) p ∈ Uy∪Dy and q ∈ Ly∪Ry. In both (a) and (b), the type-2-mandatory orientations
are drawn with double arrows.

In the next lemma we extend Lemma 1 by providing a characterization of 4-
DORGs in terms of two transitive tournaments of the augmented cliques G∗1 and
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G∗2. The characterization of Lemma 2 will be then used in Section 3.3, in order
to prove our main result of Section 3, namely the characterization of 4-DORGs
in Theorem 1.

Lemma 2. The next two conditions are equivalent:

1. the graph G = (V,E) has a 4-DORG representation with respect to the vertex
partition {L,R,U,D},

2. there exist two transitive tournaments λ∗1 and λ∗2 of G∗1 and G∗2, respectively,
such that λ∗1 and λ∗2 satisfy the conditions 2(a)-(d) of Lemma 1, and in
addition:

(a) M2 ⊆ λ∗1 ∪ λ∗2,
(b) let pq be an optional edge of G∗1 and pw /∈M2 be an incident edge of pq

in G∗1; then 〈wrp,q〉 ∈ λ∗1 implies that 〈wp〉 ∈ λ∗1,
(c) let pq be an optional edge of G∗2 and pw /∈M2 be an incident edge of pq

in G∗2; then 〈rp,qw〉 ∈ λ∗2 implies that 〈pw〉 ∈ λ∗2,
(d) let pq be an optional edge of G∗1 (resp. G∗2), where p ∈ Ux∪Dx (resp. p ∈

Uy ∪Dy); then we have:
(i) either 〈pq〉 , 〈rp,qq〉 , 〈rp,qrq,p〉 ∈ λ∗1 (resp. ∈ λ∗2) or 〈qp〉, 〈qrp,q〉,
〈rq,prp,q〉 ∈ λ∗1 (resp. ∈ λ∗2),

(ii) for any incident optional edge pq′ of G∗1 (resp. G∗2), either
〈pq〉 , 〈rp,q′q〉 ∈ λ∗1 (resp. ∈ λ∗2) or 〈qp〉 , 〈qrp,q′〉 ∈ λ∗1 (resp. ∈ λ∗2),

(iii) for any incident optional edge p′q of G∗1 (resp. G∗2), either
〈rp,qq〉 , 〈rp,qrq,p′〉 ∈ λ∗1 (resp. ∈ λ∗2) or 〈qrp,q〉 , 〈rq,p′rp,q〉 ∈ λ∗1
(resp. ∈ λ∗2).

Proof. (⇒) Assume that G has a 4-DORG representation with respect to the
vertex partition {L,R,U,D}. Then the vertices of the clique G1 (resp. of G2)
can be ordered by a linear ordering P1 (resp. P2), according to the x-coordinates
(resp. the y-coordinates) of the endpoints of the rays in the 4-DORG represen-
tation. That is, u >P1 v (resp. u >P2 v) if and only if ux > vx (resp. uy > vy) in
the 4-DORG representation of G. Now we iteratively extend the linear ordering
P1 (resp. P2) of the vertices of G1 (resp. G2) to the linear ordering P ∗1 (resp. P ∗2 )
of the vertices of G∗1 (resp. G∗2) as follows. For every optional edge pq of G∗1, we
place the vertex rp,q immediately to the left of p in P ∗1 (i.e. rp,q <P∗1 p and no
vertex lies between rp,q and p in P ∗1 ). Furthermore, for every optional edge pq of
G∗2, we place the vertex rp,q immediately to the right of p in P ∗2 (i.e. p <P∗2 rp,q
and no vertex lies between p and rp,q in P ∗2 ).

We define the transitive tournament λ∗1 of the clique G∗1 as follows: for every
two vertices u and v of G∗1, 〈uv〉 ∈ λ∗1 if and only if u >P∗1 v. Similarly, we define
the transitive tournament λ∗2 of the clique G∗2 as follows: for every two vertices
u and v of G∗2, 〈uv〉 ∈ λ∗2 if and only if u >P∗2 v. Since the linear ordering P ∗1
(resp. P ∗2 ) is an extension of the linear ordering P1 (resp. P2), it follows now
easily (similarly to the proof of Lemma 1) that the transitive tournaments λ∗1
and λ∗2 satisfy the conditions 2(a)-(d) of Lemma 1.

Proof of the condition 2(a) of the lemma. Let pq be an arbitrary optional
edge of G∗1 (resp. of G∗2). Then rp,q <P∗1 p and rq,p <P∗1 q (resp. p <P∗2 rp,q
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and q <P∗2 rq,p) by the construction of the linear ordering P ∗1 (resp. P ∗2 ) from
the linear ordering P1 (resp. P2). Therefore, by the definition of the transitive
tournament λ∗1 (resp. λ∗2) from the linear ordering P ∗1 (resp. P ∗2 ), it follows that
〈prp,q〉 , 〈qrq,p〉 ∈ λ∗1 (resp. 〈rp,qp〉 , 〈rq,pq〉 ∈ λ∗2). That is, due to Definition 4, the
orientations of the set M2 are included in the union of λ∗1 and λ∗2.

Proof of the conditions 2(b) and 2(c) of the lemma. Let pq be an arbitrary
optional edge of G∗1 (resp. of G∗2) and let pw /∈M2 be an incident edge of pq in
G∗1 (resp. G∗2). Then, similarly to the previous paragraph, the relative position
of w with p in P ∗1 (resp. in P ∗2 ) is the same as the relative position of w with rp,q
in P ∗1 (resp. in P ∗2 ). That is, p >P∗1 w if and only if rp,q >P∗1 w (resp. p >P∗2 w if
and only if rp,q >P∗2 w). Therefore, by the definition of the transitive tournament
λ∗1 (resp. λ∗2), it follows that 〈pw〉 ∈ λ∗1 (resp. ∈ λ∗2) if and only if 〈rp,qw〉 ∈ λ∗1
(resp. ∈ λ∗2). This implies the conditions 2(b) and 2(c) of the lemma.

Proof of the condition 2(d) of the lemma. Let pq be an optional edge of G∗1,
where p ∈ Ux ∪Dx (the proof for the case where pq is an optional edge of G∗2,
where p ∈ Uy ∪ Dy, is exactly the same, so we omit it here for simplicity of
the presentation). The relative position of p with q in P ∗1 is the same as the
relative position of rp,q with q in P ∗1 (by the construction of the linear ordering
P ∗1 from P1). Similarly, the relative position of p with q in P ∗1 is the same as the
relative position of rp,q with rq,p in P ∗1 . That is, either p >P∗1 q and rp,q >P∗1 q
and rp,q >P∗1 rq,p, or p <P∗1 q and rp,q <P∗1 q and rp,q <P∗1 rq,p. Therefore, by
the definition of the transitive tournament λ∗1 from the linear ordering P ∗1 , it
follows that either 〈pq〉 , 〈rp,qq〉 , 〈rp,qrq,p〉 ∈ λ∗1 or 〈qp〉 , 〈qrp,q〉 , 〈rq,prp,q〉 ∈ λ∗1.
This proves the condition 2(d)(i) of the lemma.

Consider now an arbitrary optional edge pq′ of G∗1 that is incident to the
optional edge pq. Then, similarly to the above, the relative position of p with
q in P ∗1 is the same as the relative position of rp,q′ with q in P ∗1 . Therefore,
either p >P∗1 q and rp,q′ >P∗1 q, or p <P∗1 q and rp,q′ <P∗1 q. Thus, either
〈pq〉 , 〈rp,q′q〉 ∈ λ∗1 or 〈qp〉 , 〈qrp,q′〉 ∈ λ∗1. This proves the condition 2(d)(ii) of the
lemma.

Finally, consider an arbitrary optional edge p′q of G∗1 that is incident to
the optional edge pq. Then, by the construction of the linear ordering P ∗1 , the
relative position of p with q in P ∗1 is the same as the relative position of each of
{p, rp,q} with each of {q, rq,p′} in P ∗1 . Therefore, either rp,q >P∗1 q and rp,q >P∗1
rq,p′ , or rp,q <P∗1 q and rp,q <P∗1 rq,p′ . Thus, either 〈rp,qq〉 , 〈rp,qrq,p′〉 ∈ λ∗1 or
〈qrp,q〉 , 〈rq,p′rp,q〉 ∈ λ∗1. This proves the condition 2(d)(iii) of the lemma.

For an illustration of the condition 2(d) of the lemma, see Figure 3.

(⇐) Assume that there exist two transitive tournaments λ∗1 and λ∗2 of G∗1
and G∗2, respectively, which satisfy the whole condition 2 of the lemma. Then, in
particular, λ∗1 and λ∗2 satisfy the conditions 2(a)-(d) of Lemma 1. Now we define
λ1 (resp. λ2) to be the restriction of λ∗1 (resp. λ∗2) to the clique G1 (resp. G2).
Then λ1 and λ2 are transitive tournaments of G1 and G2, respectively, and they
satisfy the conditions 2(a)-(d) of Lemma 1. Thus G has a 4-DORG representation
with respect to the vertex partition {L,R,U,D} by Lemma 1. ut
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An example of the orientations of condition 2(d) in Lemma 2 (for the case
of G∗1) is shown in Figure 3. For simplicity of the presentation, in Figure 3 only
the the type-2-mandatory edges, the optional edges, and their associated edges
are shown (the formal definition of the associated edges to an optional edge pq
is given in the next definition).

Definition 5 (associated edges). Let pq be an optional edge of G1 (resp. G2),
where p ∈ Ux ∪Dx and q ∈ Lx ∪Rx (resp. p ∈ Uy ∪Dy and q ∈ Ly ∪Ry). The
associated edges to the optional edge pq are the edges defined in condition 2(d)
of Lemma 2, i.e. the edges rp,qq, rp,qrq,p, rp,q′q, and rp,qrq,p′ .

p

q
q′

rp,q

rp,q′

p

q
q′

rp,q

rp,q′

rq,p

rq′,p

rq,p

rq′,p

(a)

p

q

rp,q

p

q

rp,q

p′

rp′,q

rp′,q

p′

rq,p

rq,p′

rq,p

rq,p′

(b)

Fig. 3. An example of the orientations of the clique G∗1 in the transitive tournament
λ∗1, where p ∈ Ux ∪Dx (cf. condition 2(d) in Lemma 2): (a) both possible orientations
where the optional edges pq and pq′ are incident and (b) both possible orientations
where the optional edges pq and p′q are incident. In both (a) and (b), the orientations
of the type-2-mandatory edges are drawn with double arrows. The case for G2 is the
same, except that the orientation of the type-2-mandatory edges is the opposite.

The next corollary follows easily from the proof of Lemma 2.

Corollary 1. Lemma 2 is true also if we remove condition 2(c).

Proof. The first direction (⇒) of the proof is identical to the proof of Lemma 2.
For the second direction (⇐) of the proof, similarly to the proof of Lemma 2,
we define the restriction λ1 of λ∗1 (resp. the restriction λ2 of λ∗2) to the clique G1

(resp.G2). Then λ1 and λ2 are transitive tournaments ofG1 andG2, respectively,
and they satisfy the conditions 2(a)-(d) of Lemma 1. Thus G has a 4-DORG
representation with respect to the vertex partition {L,R,U,D} by Lemma 1.

ut
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3.3 The coupling of G∗
1 and G∗

2 into the oriented clique G∗

Now we iteratively construct the cliqueG∗ from the cliquesG∗1 andG∗2, as follows.
Initially G∗ is the union of G∗1 and G∗2, together with all needed edges such that
G∗ is a clique. Then, for every pair {〈pq〉 , 〈ab〉} of forbidden orientations of
G∗1 and G∗2 (where pq ∈ E(G1) and ab ∈ E(G2), cf. Definition 2), we merge
in G∗ the vertices rb,a and rp,q, i.e. we have rb,a = rp,q in G∗. Recall that
each of the cliques G∗1 and G∗2 has n + 2m vertices. Therefore, since G∗1 and
G∗2 have m pairs {〈pq〉 , 〈ab〉} of forbidden orientations, the resulting clique G∗

has 2n + 3m vertices. Furthermore, since G∗1 and G∗2 are induced subgraphs
of G∗, Definitions 1-5 carry over to G∗, i.e. the type-1-mandatory and type-2-
mandatory orientations, the forbidden pairs of orientations, the optional edges,
and their associated edges are the same in the cliques G∗1, G

∗
2 and in the clique

G∗. We now introduce the notion of type-3-mandatory orientations of G∗.

Definition 6 (type-3-mandatory orientations). For every pair {〈pq〉 , 〈ab〉}
of forbidden orientations of G∗1 and G∗2, the orientation 〈rq,pra,b〉 is called a type-
3-mandatory orientation of G∗. The set of all type-3-mandatory orientations of
G∗ is denoted by M3.

Whenever the orientation of an edge uv of G∗ is type-3-mandatory (cf. Defi-
nition 6), we may say for simplicity of the presentation that the edge uv (instead
of its orientation) is type-3-mandatory. An example for the construction of G∗

from G∗1 and G∗2 is illustrated in Figure 4, where it is shown how two optional
edges pq ∈ E(G∗1) and ab ∈ E(G∗2) are joined together in G∗, where {〈pq〉 , 〈ab〉}
is a pair of forbidden orientations of G∗1 and G∗2. For simplicity of the presen-
tation, only the optional edges pq and ab, the type-2-mandatory edges prp,q,
qrq,p, ara,b, brb,a, and two of the associated edges (namely rp,qrq,p and ra,brb,a)
are shown in Figure 4. Furthermore, the type-2-mandatory orientations 〈prp,q〉,
〈qrq,p〉, 〈ra,ba〉, and 〈rb,ab〉, as well as the type-3-mandatory orientation 〈rq,pra,b〉,
are drawn with double arrows in Figure 4 for better visibility.

p

qa

b

ra,b rq,p

rb,a = rp,q

Fig. 4. An example of joining in G∗ the pair of optional edges {pq, ab}, where pq ∈
E(G1) and ab ∈ E(G2).

In the next theorem we extend Lemmas 1 and 2 by providing a characteri-
zation of 4-DORGs in terms of one transitive tournament λ∗ of the clique G∗.
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The main novelty of the characterization of Theorem 1 in comparison to Lem-
mas 1 and 2 is that Theorem 1 does not rely any more on the conditions 2(c)-(d)
of Lemma 1, which concern the forbidden pairs of orientations. This charac-
terization will be used in Section 5, in order to provide our main result of the
paper, namely the recognition of 4-DORGs with respect to the vertex partition
{L,R,U,D}.

Theorem 1. The next two conditions are equivalent:

1. the graph G = (V,E) with n vertices has a 4-DORG representation with
respect to the vertex partition {L,R,U,D},

2. there exists a transitive tournament λ∗ of G∗, such that λ∗ satisfies the
conditions 2(b)-(d) of Lemma 2 and M1 ∪M2 ∪M3 ⊆ λ∗.

Furthermore, given such a transitive tournament λ∗ of G∗, a 4-DORG rep-
resentation of G can be computed in O(n2) time.

Proof. (⇒) Assume that G has a 4-DORG representation with respect to the
vertex partition {L,R,U,D}. Then Lemma 2 implies that there exist two transi-
tive tournaments λ∗1 and λ∗2 of the cliques G∗1 and G∗2, respectively, which satisfy
the conditions 2(a)-(d) of Lemma 1 (and thus also the conditions 2(a)-(b) of
Lemma 1) and the conditions 2(a)-(d) of Lemma 2 we have no proof for this
statement – it may be false.

We now define the partial tournament λ̂∗1 (resp. λ̂∗2) as the restriction of the
tournament λ∗1 (resp. λ∗2) to the some specific oriented edges of G∗1 (resp. of

G∗2), as follows. First, we include in λ̂∗1 (resp. λ̂∗2) (i) the type-1-mandatory and
type-2-mandatory orientations (cf. Definitions 1 and 4), i.e. the oriented edges
of M1 ∪M2 in G∗1 (resp. in G∗2) and (ii) the orientations of the optional edges
and their associated edges (cf. Definitions 3 and 5). Furthermore, consider an
optional edge pq of G∗1 and an incident edge pw /∈M2 in G∗1. Then, if both edges
wrp,q and wp are oriented as 〈wrp,q〉 and 〈wp〉 in the tournament λ∗1 of G∗1
(cf. condition 2(b) of Lemma 2), we augment the partial tournament λ̂∗1 by the
orientations 〈wrp,q〉 and 〈wp〉. Finally, consider an optional edge pq of G∗2 and
an incident edge pw /∈M2 in G∗2. Then, if both edges wrp,q and wp are oriented as
〈rp,qw〉 and 〈pw〉 in the tournament λ∗2 of G∗2 (cf. condition 2(c) of Lemma 2), we

augment the partial tournament λ̂∗2 by the orientations 〈rp,qw〉 and 〈pw〉. This

completes the definition of the partial tournaments λ̂∗1 and λ̂∗2. Note that each

of λ̂∗1 and λ̂∗2 satisfies the conditions 2(b)-(d) of Lemma 2.

We define now the partial tournament λ̂∗ of G∗ as λ̂∗ = λ̂∗1 ∪ λ̂∗2 ∪M3. By

the construction of λ̂∗, it follows that M1 ∪M2 ∪M3 ⊆ λ̂∗ and that λ̂∗ satisfies
the conditions 2(b)-(d) of Lemma 2.

We now prove that the partial tournament λ̂∗ of G∗ is acyclic. Suppose
otherwise that λ̂∗ contains an induced directed cycle C. Note that, since λ̂∗1
(resp. λ̂∗2) is a restriction of the transitive tournament λ∗1 (resp. λ∗2), it follows

that λ̂∗1 (resp. λ̂∗2) is an acyclic partial tournament of G∗1 (resp. of G∗2). Therefore,
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since λ̂∗1 ⊆ λ̂∗ and λ̂∗2 ⊆ λ̂∗, the directed cycle C of λ̂∗ must contain edges from

both λ̂∗1 and λ̂∗2. Let z1 ∈ V (G∗1)\V (G∗2) and z2 ∈ V (G∗2)\V (G∗1) be two vertices

of C. Then, in particular, λ̂∗ contains a directed path Q from z2 to z1. Now,
by the construction of λ̂∗ it follows that there must exist a pair {〈pq〉 , 〈ab〉} of
forbidden orientations of G∗1 and G∗2 (cf. Definition 2), where pq ∈ E(G∗1) and
ab ∈ E(G∗2), such that Q passes from the vertices of G∗2 to the vertices of G∗1
through the vertex rb,a = rp,q, cf. Figure 4.

Observe now (by the construction of the partial tournament λ̂∗1 of G∗1) that

the only possible outgoing edges from the vertex rp,q in λ̂∗1 are some of the
associated edges to the optional edge pq, cf. Definition 5. As an example see the
oriented edges 〈rp,qq〉, 〈rp,qrq,p〉, and 〈rp,qrq,p′〉 in the upper parts of Figures 3(a)
and 3(b), respectively. Similarly, the only possible incoming edges to the vertex

rb,a = rp,q in λ̂∗2 are some of the associated edges to the optional edge ab.

Since λ̂∗1 (resp. λ̂∗2) satisfies the condition 2(d) of Lemma 2, the associated
edges of pq (resp. of ab) that are adjacent to vertex rb,a = rp,q are either all

incoming to rp,q or all outgoing from rp,q in λ̂∗1 (resp. in λ̂∗2). Since by assumption
the directed path Q passes from the vertices of G∗2 to the vertices of G∗1 through

rb,a = rp,q, it follows that these edges in λ̂∗1 (resp. in λ̂∗2) are all outgoing from
(resp. incoming to) rb,a = rp,q. Therefore, in particular, the edge rp,qrq,p is

oriented as 〈rp,qrq,p〉 in λ̂∗1 and the edge ra,brb,a is oriented as 〈ra,brb,a〉 in λ̂∗2.

Thus the optional edges pq and ab are oriented as 〈pq〉 in λ̂∗1 and 〈ab〉 in λ̂∗2
(cf. condition 2(d)(i) of Lemma 2). This comes in contradiction to the fact that
{〈pq〉 , 〈ab〉} is a pair of forbidden orientations of G∗1 and G∗2, cf. Definition 2
(recall that, due to Lemma 2, the conditions 2(c)-(d) of Lemma 1 are satisfied

by the tournaments λ∗1 and λ∗2). Therefore the partial tournament λ̂∗ of G∗ is

acyclic, and thus λ̂∗ can be extended to a transitive tournament λ∗ of G∗ such
that λ̂∗ ⊆ λ∗. Furthermore, since λ̂∗ satisfies the conditions 2(b)-(d) of Lemma 2,

it follows that also λ∗ satisfies these conditions. Finally M1 ∪M2 ∪M3 ⊆ λ̂∗,
since M1 ∪M2 ∪M3 ⊆ λ∗.

(⇐) Assume that there exists a transitive tournament λ∗ of G∗, such that λ∗

satisfies the conditions 2(b)-(d) of Lemma 2 and M1 ∪M2 ∪M3 ⊆ λ∗. We define
the transitive tournament λ∗1 (resp. λ∗2) of G∗1 (resp. G∗2) as the restriction of λ∗

on the edges of the clique G∗1 (resp. G∗2). Then, since λ∗ satisfies the conditions
2(b)-(d) of Lemma 2, it follows that also λ∗1 and λ∗2 satisfy the conditions 2(b)-
(d) of Lemma 2. Furthermore, since M2 ⊆ λ∗ by assumption, it follows that
M2 ⊆ λ∗1 ∪ λ∗2, and thus λ∗1 and λ∗2 satisfy also the condition 2(a) of Lemma 2.

Due to Lemma 2, in order to prove that the graph G = (V,E) has a 4-DORG
representation with respect to the vertex partition {L,R,U,D}, it remains to
show that λ∗1 and λ∗2 satisfy also the conditions 2(a)-(d) of Lemma 1. Recall
that the edge orientations that are being forced in conditions 2(a) and 2(b) of
Lemma 1 are exactly the type-1-mandatory orientations, i.e. the set M1 (cf.
Definition 1). That is, these two conditions are equivalent to the fact that M1 ⊆
λ∗1 ∪ λ∗2, which is true since M1 ⊆ λ∗ by assumption.
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Now recall that the conditions 2(c) and 2(d) of Lemma 1 state that λ∗1 and
λ∗2 do not contain any forbidden pair {〈pq〉 , 〈ab〉} of orientations, where pq and
ab are optional edges (cf. Definitions 2 and 3). For the sake of contradiction, con-
sider a pair {〈pq〉 , 〈ab〉} of forbidden orientations and assume that 〈pq〉 ∈ λ∗1 and
〈ab〉 ∈ λ∗2. Then, since λ∗1 and λ∗2 satisfy the condition 2(d)(i) of Lemma 2, it fol-
lows that 〈rp,qrq,p〉 ∈ λ∗1 and 〈ra,brb,a〉 ∈ λ∗2, and thus 〈ra,brb,a〉 , 〈rp,qrq,p〉 ∈ λ∗.
Therefore, since λ∗ is transitive by assumption and rb,a = rp,q by the construc-
tion of G∗ (cf. Figure 4), it follows that 〈ra,brq,p〉 ∈ λ∗. This is a contradiction,
since 〈rq,pra,b〉 ∈ M3 (cf. Definition 6) and M3 ⊆ λ∗ by assumption. Therefore
it is not true that both 〈pq〉 ∈ λ∗1 and 〈ab〉 ∈ λ∗2, and thus λ∗1 and λ∗2 satisfy the
conditions 2(c) and 2(d) of Lemma 1.

Summarizing, λ∗1 and λ∗2 satisfy the conditions 2(a)-(d) of Lemma 1 and the
conditions 2(a)-(d) of Lemma 2. Therefore Lemma 2 implies that the graph
G = (V,E) has a 4-DORG representation with respect to the vertex parti-
tion {L,R,U,D}.

Time analysis. First recall that, if the input graph G has n vertices and m
non-edges (i.e.

(
n
2

)
−m = O(n2) edges), each of the cliques G1, G2, G

∗
1, G

∗
2 has

O(n) vertices and O(n2) edges. Assume now that the condition 2 of the theorem
is satisfied, i.e. there exists a transitive tournament λ∗ of G∗ such that λ∗ satisfies
the conditions 2(b)-(d) of Lemma 2 and M1 ∪M2 ∪M3 ⊆ λ∗. First we construct
the transitive tournament λ∗1 (resp. λ∗2) of G∗1 (resp. G∗2) as the restriction of
λ∗ on the edges of the clique G∗1 (resp. G∗2). Second we construct the transitive
tournament λ1 (resp. λ2) of G∗1 (resp. G∗2) as the restriction of λ∗1 (resp. λ∗2)
on the edges of the clique G1 (resp. G2). The construction of λ1 and λ2 can be
clearly done in O(n2) time, since the size of G∗ is O(n2). Furthermore, due to
the above proof of Theorem 1 and the proof of Lemma 2, it follows that the
transitive tournaments λ1 and λ2 satisfy the conditions 2(a)-(d) of Lemma 1.
Therefore, due to the proof of Lemma 1 (cf. the (⇐)-part of the proof), we
can compute the endpoint for every ray in a 4-DORG representation of G by
just sorting their coordinates. This can be done in O(n log n) time. Therefore,
given the transitive tournament λ∗ of G∗, a 4-DORG representation for G can
be constructed in O(n2) time. ut

Similarly to Corollary 1, the next corollary follows easily from the proof of
Theorem 1.

Corollary 2. Theorem 1 is true also if λ∗ does not have to satisfy the conditions
2(b) and 2(c) of Lemma 2.

4 S-orientations of graphs

In this section we introduce a new way of augmenting an arbitrary graph G
by adding a new vertex and some new edges to G. This type of augmentation
process is done with respect to a particular edge ei = xiyi of the graph G, and is
called the deactivation of ei in G. By doing so, we establish structural properties
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that are needed in our 4-DORG recognition algorithm. In particular, if we apply
iteratively the deactivation operation for a set of specific edges of the clique
G∗ of Section 3.3, we are able to reduce the recognition problem for 4-DORGs
into the problem of extending a partial orientation of a graph into a transitive
orientation (cf. Section 3). In order to do so, we first introduce in this section the
crucial notion of an S-orientation of a graph G (cf. Definition 8), which extends
the classical notion of a transitive orientation. For the remainder of this section,
G denotes an arbitrary graph, and not the input graph discussed in Section 3.

Definition 7. Let G = (V,E) be a graph and let (xi, yi), 1 ≤ i ≤ k, be k ordered
pairs of vertices of G, where xiyi ∈ E. Let Vout, Vin be two disjoint vertex subsets
of G, where {xi : 1 ≤ i ≤ k} ⊆ Vout ∪ Vin. For every i = 1, 2, . . . , k:

– the special neighborhood of xi is a vertex subset S(xi) ⊆(
N(xi) ∩

(⋂
xj=xi

N(yj)
))
\ {xj : 1 ≤ j ≤ k},

– the forced neighborhood orientation of xi is:

• the set F (xi) = {〈xiz〉 : z ∈ S(xi)} of oriented edges of G, if xi ∈ Vout,
• the set F (xi) = {〈zxi〉 : z ∈ S(xi)} of oriented edges of G, if xi ∈ Vin.

Definition 8. Let G = (V,E) be a graph. For every i = 1, 2, . . . , k let S(xi) be
a special neighborhood in G. Let T be a transitive orientation of G. Then T is
an S-orientation of G on the special neighborhoods S(xi), 1 ≤ i ≤ k, if for every
i = 1, 2, . . . , k:

1. F (xi) ⊆ T and
2. for every z ∈ S(xi), 〈xiyi〉 ∈ T if and only if 〈zyi〉 ∈ T .

Furthermore, if G admits such a transitive orientation T then G is S-
orientable on these special neighborhoods.

Definition 9. Let G = (V,E) be a graph. For every i = 1, 2, . . . , k let S(xi) be a
special neighborhood in G. Let T be an S-orientation of G on the sets S(xi), 1 ≤
i ≤ k. Then T is consistent if, for every i = 1, 2, . . . , k, it satisfies the following
conditions, whenever zw ∈ E, where z ∈ S(xi) and w ∈ (N(xi)∩N(yi)) \S(xi):

– if xi ∈ Vout, then 〈wz〉 ∈ T implies that 〈wxi〉 ∈ T ,
– if xi ∈ Vin, then 〈zw〉 ∈ T implies that 〈xiw〉 ∈ T .

In the next definition we introduce the notion of deactivating an edge ei =
xiyi of a graph G, where S(xi) is a special neighborhood in G. In order to
deactivate edge ei of G, we augment appropriately the graph G, obtaining a new
graph G̃(ei) that has one new vertex.

Definition 10. Let G = (V,E) be a graph and let S(xi) be a special neighbor-

hood in G. The graph G̃(ei) obtained by deactivating the edge ei = xiyi (with
respect to Si) is defined as follows:

1. V (G̃(ei)) = V ∪ {ai},
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2. E(G̃(ei)) = E ∪ {zai : z ∈ N(xi) \ S(xi)}.

Note that, after deactivating the edge ei, the edge aiyi is always an edge of
G̃(ei), since yi /∈ S(xi) by Definition 7. An example of the deactivation operation
of Definition 10 is illustrated in Figure 5. For better visibility, the edges of
G̃(ei) \ E(G) are drawn dashed.

yixi

ai

G :

z1
z2 z3 z4

(a)

yi
G̃(ei) : xi

ai

z1
z2 z3 z4

(b)

Fig. 5. (a) A graph G and (b) the graph G̃(ei) obtained after the deactivation of the
edge ei = xiyi with respect to the edge neighborhood set S(xi) = {z3}. The edges of

G̃(ei) \ E(G) are drawn dashed.

Lemma 3. Let G = (V,E) be a graph and S(xi), 1 ≤ i ≤ k, be a set of k special
neighborhoods in G. Let ek = xkyk and let M0 be an arbitrary set of edge orien-
tations of G. If G̃(ek) has an S-orientation T̃ on S(x1), S(x2), . . . , S(xk−1) such

that M0∪F (xk) ⊆ T̃ , then G has an S-orientation T on S(x1), S(x2), . . . , S(xk)

such that M0 ⊆ T̃ .

Proof. We will show that T̃ is also an S-orientation of G̃(ek) on Sk. First consider

a vertex z ∈ S(xk), and thus akz /∈ E(G̃(ek)) by Definition 10. Then, since T̃ is

transitive and xkak /∈ E(G̃(ek)) by Definition 10, it follows that 〈xkyk〉 ∈ T̃ if and

only if 〈akyk〉 ∈ T̃ . Furthermore, since akz /∈ E(G̃(ek)), it follows that 〈akyk〉 ∈ T̃
if and only if 〈zyk〉 ∈ T̃ . Therefore, for every z ∈ S(xk), 〈xkyk〉 ∈ T̃ if and only

if 〈zyk〉 ∈ T̃ . Thus, since F (xk) ⊆ T̃ by assumption, it follows by Definition 8

that T̃ is also an S-orientation of G̃(ek) on Sk. Thus, since M0 ⊆ T̃ and T̃ is

by assumption an S-orientation of G̃(ek) on S1, S2, . . . , Sk−1, it follows that the

restriction T of T̃ on G is an S-orientation of G on S(x1), S(x2), . . . , S(xk) such
that M0 ⊆ T . ut

Lemma 4. Let G = (V,E) be a graph and S(xi), 1 ≤ i ≤ k, be a set
of k special neighborhoods in G. Let ek = xkyk and let M0 be an arbi-
trary set of edge orientations of G. If G has a consistent S-orientation T on
S(x1), S(x2), . . . , S(xk) such that M0 ⊆ T , then G̃(ek) has a consistent S-

orientation T̃ on S(x1), S(x2), . . . , S(xk−1) such that M0 ∪ F (xk) ⊆ T̃ .

Proof. Assume that G has a consistent S-orientation T on
S(x1), S(x2), . . . , S(xk) such that M0 ⊆ T . Then, in particular, F (xk) ⊆ T and
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T is an S-orientation on S(x1), S(x2), . . . , S(xk−1) by Definition 8. We construct

an orientation T̃ of G̃(ek) such that T ⊆ T̃ (and thus also M0 ⊆ T̃ ), as follows.

For every edge akz ∈ E(G̃(ek)), where z ∈ N(xk) \ S(xk), we orient 〈akz〉 ∈ T̃
if and only if 〈xkz〉 ∈ T . It follows by the definition of T̃ that F (xk) ⊆ T ⊆ T̃ .

Furthermore T̃ is an S-orientation on S(x1), S(x2), . . . , S(xk−1), cf. Definition 8.

In Figure 6 the orientation T̃ is illustrated on a small example.

xk
yk

z1
z2 z3 z4

ak

Fig. 6. An example for the orientation T̃ of the graph G̃(ei), i = k, of Figure 5, where
ek = xkyk.

We first prove that T̃ remains a consistent S-orientation on the sets
S(x1), S(x2), . . . , S(xk−1), cf. Definition 9. Consider the vertex pair (xj , yj),
where 1 ≤ j ≤ k. Furthermore consider two vertices z, w, where zw ∈ E, z ∈
S(xj), and w ∈ (N(xj)∩N(yj)) \S(xj). If ak /∈ {xj , yj , z, w}, then the four ver-
tices {xj , yj , z, w} satisfy the conditions of Definition 9, since the S-orientation
T is consistent by assumption. Otherwise assume that ak ∈ {xj , yj , z, w}, and
thus ak = w. Note that the vertices {xj , yj , z, ak} induce a clique, and thus

xk /∈ {xj , yj , z, ak}, since xkak /∈ E(G̃(ek)) by the construction of G̃(ek). Fur-
thermore note that xk /∈ S(xj) by Definition 7. Since each of {xj , yj , z} is

adjacent to ak in G̃(ek), it follows by the construction of G̃(ek) that each of

{xj , yj , z} is also adjacent to xk in G̃(ek). Therefore the vertices {xj , yj , z, xk}
satisfy the conditions of Definition 9. Now, the construction of the orientation
T̃ implies that 〈akz〉 ∈ T̃ if and only if 〈xkz〉 ∈ T ; similarly 〈akxj〉 ∈ T̃ if
and only if 〈xkxj〉 ∈ T . Therefore, since the vertices {xj , yj , z, xk} satisfy the
conditions of Definition 9, it follows that the vertices {xj , yj , z, ak} satisfy also
the conditions of Definition 9. Thus T is a consistent S-orientation on the sets
S(x1), S(x2), . . . , S(xk−1) by Definition 9.

In order to complete the proof of the lemma, we now show that the orien-
tation T̃ is transitive. To do so, it suffices to prove that T̃ is transitive on any
induced subgraph of G̃(ek) on three vertices and at least two edges. Since the
the orientation T of G is transitive by assumption and ak is the only new vertex
in G̃(ek), it suffices to consider only triples {z, w, ak} of vertices in G̃(ek).

Suppose first that the vertices {z, w, ak} induce a triangle in G̃(ek). Then

xk /∈ {z, w}, since xkak /∈ E(G̃(ek)) by construction of G̃(ek). Furthermore,

since z and w are adjacent to ak G̃(ek), it follows that z and w are also adjacent

to xk. Moreover, the construction of T̃ implies that 〈akz〉 ∈ T̃ if and only if
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〈xkz〉 ∈ T ; similarly 〈akw〉 ∈ T̃ if and only if 〈xkw〉 ∈ T . That is, the triangle

induced by {z, w, ak} is transitive in T̃ if and only if the triangle induced by
{z, w, xk} is transitive in T . Therefore, since T is transitive by assumption, the

triangle induced by {z, w, ak} is transitive in T̃ .

Suppose now that the induced subgraph of G̃(ek) on the vertices {z, w, ak}
has two edges. Let first zak, akw ∈ E(G̃(ek)) and zw /∈ E(G̃(ek)). Then xk /∈
{z, w} by the construction of G̃(ek). Furthermore, by the construction of the

orientation T̃ it follows that 〈akz〉 ∈ T̃ if and only if 〈xkz〉 ∈ T ; moreover

〈akw〉 ∈ T̃ if and only if 〈xkw〉 ∈ T . Therefore, the induced subgraph of G̃(ek)

on the vertices {z, w, ak} is transitively oriented in T̃ if and only if the induced
subgraph of G on the vertices {z, w, xk} is transitively oriented in T ; this is true,
since the orientation T is transitive by assumption.

Let now zw,wak ∈ E(G̃(ek)) and zak /∈ E(G̃(ek)). Then xk 6= w, since

xkak /∈ E(G̃(ek)), and thus 〈akw〉 ∈ T̃ if and only if 〈xkw〉 ∈ T by the con-

struction of the orientation T̃ . Thus, if xk = z, it follows immediately that the
induced subgraph of G̃(ek) on {w, z, ak} is transitively oriented in T̃ . Suppose
that xk 6= z. We distinguish now the cases where z /∈ S(xk) and z ∈ S(xk).

Case 1. z /∈ S(xk). Then the construction of G̃(ek) implies that vertex z is
not adjacent to xk, since z is not adjacent to ak. Therefore, since the orientation
T is transitive by assumption, 〈xkw〉 ∈ T if and only if 〈zw〉 ∈ T . Therefore,

since 〈akw〉 ∈ T̃ if and only if 〈xkw〉 ∈ T , it follows that 〈akw〉 ∈ T̃ if and only if

〈zw〉 ∈ T . Therefore, since T ⊆ T̃ and T is transitive by assumption, it follows

that the induced subgraph of G̃(ek) on {w, z, ak} is transitively oriented in T̃ .

Case 2. z ∈ S(xk). Then z is adjacent to both xk and yk in G, cf. Definition 7.

Furthermore, since w is adjacent to ak in G̃(ek) by assumption, it follows by the

construction of G̃(ek) that w /∈ S(xk). The remainder of the proof, which is done

by contradiction, is based on the fact that the S-orientation T̃ is consistent, cf.
Definition 9.

Assume that the induced subgraph of G̃(ek) on {w, z, ak} is not transitively

oriented in T̃ , i.e. either 〈akw〉 , 〈wz〉 ∈ T̃ or 〈zw〉 , 〈wak〉 ∈ T̃ . In the following
we distinguish the cases where xk ∈ Vout and xk ∈ Vin.

Case 2a. xk ∈ Vout. Then 〈xkz〉 ∈ T . Suppose first that 〈zw〉 , 〈wak〉 ∈ T̃ .

Then 〈wxk〉 ∈ T by the construction of G̃. That is, the vertices {xk, z, w} of G
induce a directed cycle in T , which is a contradiction to the transitivity of T .

Suppose now that 〈akw〉 , 〈wz〉 ∈ T̃ . Then 〈xkw〉 ∈ T by the construction of

T̃ . Let 〈ykxk〉 ∈ T . Then, since 〈xkw〉 ∈ T and T is transitive by assumption, it
follows in particular that ykw ∈ E(G). Otherwise let 〈xkyk〉 ∈ T . Then, since T
is an S-orientation by assumption (cf. Definition 8), it follows that 〈zyk〉 ∈ T .

Therefore, since we assumed that 〈wz〉 ∈ T ⊆ T̃ , it follows in particular by the
transitivity of T that ykw ∈ E(G). That is, ykw ∈ E(G) in both cases where
〈ykxk〉 ∈ T and 〈xkyk〉 ∈ T . Summarizing, z ∈ S(xk), w ∈ (N(xk) ∩N(yk)) \
S(xk), and zw ∈ E(G̃(ek)), while 〈wz〉 ∈ T ⊆ T̃ and 〈xkw〉 ∈ T . This is a
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contradiction to the first condition of Definition 9, since the orientation T is
consistent.

Case 2b. xk ∈ Vin. Then 〈zxk〉 ∈ T . Suppose first that 〈akw〉 , 〈wz〉 ∈ T̃ .

Then 〈xkw〉 ∈ T by the construction of G̃. That is, the vertices {xk, z, w} of G
induce a directed cycle in T , which is a contradiction to the transitivity of T .

Suppose now that 〈zw〉 , 〈wak〉 ∈ T̃ . Then 〈wxk〉 ∈ T by the construction of

T̃ . Let 〈xkyk〉 ∈ T . Then, since 〈wxk〉 ∈ T and T is transitive by assumption, it
follows in particular that ykw ∈ E(G). Otherwise let 〈ykxk〉 ∈ T . Then, since T
is an S-orientation by assumption (cf. Definition 8), it follows that 〈ykz〉 ∈ T .

Therefore, since we assumed that 〈zw〉 ∈ T ⊆ T̃ , it follows in particular by the
transitivity of T that ykw ∈ E(G). That is, ykw ∈ E(G) in both cases where
〈xkyk〉 ∈ T and 〈ykxk〉 ∈ T . Summarizing, z ∈ S(xk), w ∈ (N(xk) ∩N(yk)) \
S(xk), and zw ∈ E(G̃(ek)), while 〈zw〉 ∈ T ⊆ T̃ and 〈wxk〉 ∈ T . This is a
contradiction to the second condition of Definition 9, since the orientation T is
consistent.

Therefore the orientation T̃ is transitive. This completes the proof of the
lemma. ut

After deactivating the edge ek of G, obtaining the graph G̃(ek), we can con-
tinue by sequentially deactivating the edges ek−1, ek−2, . . . , e1, obtaining eventu-

ally the graph G̃. The next theorem follows by iterative application of Lemmas 3
and 4.

Theorem 2. Let G = (V,E) be a graph and S(xi), 1 ≤ i ≤ k, be a set of k
special neighborhoods in G. Let M0 be an arbitrary set of edge orientations of
G, and let G̃ be the graph obtained after deactivating all edges ei = xiyi, where
1 ≤ i ≤ k.

– If G has a consistent S-orientation T on S(x1), S(x2), . . . , S(xk) such that

M0 ⊆ T , then G̃ has a transitive orientation T̃ such that M0 ∪ F (xi) ⊆ T̃
for every i = 1, 2, . . . , k.

– If G̃ has a transitive orientation T̃ such that M0 ∪ F (xi) ⊆ T̃ for every
i = 1, 2, . . . , k, then G has an S-orientation T on S(x1), S(x2), . . . , S(xk)
such that M0 ⊆ T .

5 Efficient Recognition of 4-DORGs

In this section we complete our analysis in Sections 3 and 4 and we present
our 4-DORG recognition algorithm. Let G = (V,E) be an arbitrary input
graph that is given along with a vertex partition V = L ∪R ∪ U ∪D, such that
E ⊆ (L ∪R)× (U ∪D). First we construct from G the cliques G1, G2 (cf. Sec-
tion 3.1), the augmented cliques G∗1, G

∗
2 (cf. Section 3.2), and finally we combine

G∗1 and G∗2 in order to produce the clique G∗ (cf. Section 3). Then, for a specific
choice of k ordered pairs (xi, yi) of vertices, 1 ≤ i ≤ k, and for particular sets
S(xi) and neighborhood orientations F (xi), 1 ≤ i ≤ k (cf. Definitions 7 and 8),
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we iteratively deactivate the edges xiyi, 1 ≤ i ≤ k (cf. Section 4), constructing

thus the graph G̃∗. Then, for a specific partial orientation of the graph G̃∗, we
prove in Theorems 3 and 4 that G̃∗ has a transitive orientation that extends this
partial orientation if and only if the input graph G has a 4-DORG representation
with respect to the vertex partition {L,R,U,D}.

Assume that the input graph G has n vertices and m non-edges (i.e.
(
n
2

)
−m

edges). Recall by Definition 2 (in Section 3.1) that each of the m non-edges of
G corresponds to exactly one pair {〈pq〉 , 〈ab〉} of forbidden orientations of G1

and G2, where pq ∈ E(G1) and ab ∈ E(G2) are two (undirected) optional edges,
cf. Definition 3. Denote by piqi and aibi the optional edges that participate in the
ith of these pairs of forbidden orientations, such that pi ∈ Ux∪Dx, qi ∈ Lx∪Rx,
ai ∈ Uy ∪Dy, bi ∈ Ly ∪ Ry. Note that, by this notation for the optional edges
piqi and aibi, the corresponding pair of forbidden orientations may be either
{〈piqi〉 , 〈aibi〉}, or {〈qipi〉 , 〈aibi〉}, {〈piqi〉 , 〈biai〉}, or {〈qipi〉 , 〈biai〉}.

Now, for each pair {piqi, aibi} of optional edges, where 1 ≤ i ≤ m, we define
four ordered pairs of vertices (cf. Definition 7), as follows: (x2i−1, y2i−1) = (pi, qi),
(x2i, y2i) = (qi, rpi,qi), (x2m+2i−1, y2m+2i−1) = (ai, bi), and (x2m+2i, y2m+2i) =
(bi, rai,bi). Furthermore we define the disjoint vertex subsets V ∗out and V ∗in of
the clique G∗ (cf. Definition 7) as V ∗out = {xi : 1 ≤ i ≤ 2m} and V ∗in = {xi :
2m+ 1 ≤ i ≤ 4m}. That is, V ∗out (resp. V ∗in) contains exactly the vertices xi that
correspond to endpoints of the optional edges in G1 (resp. G2).

Let now G̃∗ is the graph constructed from G∗ by iteratively deactivating the
edges xiyi, where 1 ≤ i ≤ 4m. Denote by M1,M2,M3 the type-1-mandatory, the
type-2-mandatory, and the type-3-mandatory orientations ofG∗, respectively (cf.

Definitions 1, 4, and 6). Since G∗ is an induced subgraph of G̃∗, Definitions 1, 4,

and 6 carry over to G̃∗, i.e. all three types of mandatory orientations are the
same in the clique G∗ and in the graph G̃∗.

Moreover we define for every xi, 1 ≤ i ≤ 4m, its special neighborhood
S(xi) = {rxj ,yj

: xj = xi}, cf. Definition 7. Note that xj /∈ S(xi) for every
i, j ∈ {1, 2, . . . , 4m}, cf. Definition 7. Note furthermore that, due to the above
definition of the vertex sets V ∗out, V

∗
in, and S(xi), 1 ≤ i ≤ 4m, the forced neigh-

borhood orientation F (xi) of vertex xi is exactly the set of oriented type-2-

mandatory edges of G∗ (and thus also of G̃∗) that are incident to xi, cf. Defini-
tion 4. That is, ∪4mi=1F (xi) = M2, where M2 is the set of all type-2-mandatory

orientations in the graph G̃∗ (cf. Definition 4).

Let ei = xiyi, where 1 ≤ i ≤ 4m. We iteratively deactivate the edges
e4m, e4m−1, . . . , e1 in G̃∗ (cf. Section 4), obtaining eventually the graph G̃∗. In
the next two theorems we provide necessary and sufficient conditions (in therms

of the graph G̃∗) such that the input graph G to have a 4-DORG representation
with respect to a given vertex partition {L,R,U,D}.

Theorem 3. If the graph G = (V,E) has a 4-DORG representation with respect

to the vertex partition {L,R,U,D}, then G̃∗ has a transitive orientation T̃ such

that M1 ∪M2 ∪M3 ⊆ T̃ .
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Proof. Let G have a 4-DORG representation with respect to the vertex partition
{L,R,U,D}. Then Theorem 1 implies that there exists a transitive tournament
(and thus a transitive orientation) λ∗ of the clique G∗, such that λ∗ satisfies the
conditions 2(b)-(d) of Lemma 2 and M1 ∪M2 ∪M3 ⊆ λ∗.

We will prove that λ∗ is a consistent S-orientation of G∗ on the sets S(xi),
1 ≤ i ≤ 4m. To this end, we first prove that λ∗ is an S-orientation, cf. Defini-
tion 8. Recall that ∪4mi=1F (xi) = M2 by the definition of the forced neighborhood
orientation F (xi) of vertex xi, 1 ≤ i ≤ 4m. Therefore, since M2 ⊆ λ∗ by assump-
tion, it follows that the transitive orientation λ∗ of G∗ satisfies the condition 1
of Definition 8.

Regarding the condition 2 of Definition 8, consider first an ordered pair
(x2i−1, y2i−1) = (pi, qi), where 1 ≤ i ≤ m. Then S(x2i−1) = {rpi,qi} ∪
{rpi,qj : piqj is an optional edge in G∗1}. Therefore, since λ∗ satisfies in par-
ticular the conditions 2(d)(i) and 2(d)(ii) of Lemma 2, it follows that either
〈piqi〉 , 〈rpi,qiqi〉 ,

〈
rpi,qjqi

〉
∈ λ∗ or 〈qipi〉 , 〈qirpi,qi〉 ,

〈
qirpi,qj

〉
∈ λ∗. That is, for

every i ∈ {1, 2, . . . ,m} and for every z ∈ S(x2i−1), 〈x2i−1, y2i−1〉 = 〈piqi〉 ∈ λ∗
if and only if 〈zy2i−1〉 ∈ T . Consider now an ordered pair (x2i, y2i) = (qi, rpi,qi),
where 1 ≤ i ≤ m. Then S(x2i) = {rqi,pi} ∪ {rqi,pj : pjqi is an optional edge in
G∗1}. Therefore, since λ∗ satisfies in particular the conditions 2(d)(i) and 2(d)(iii)
of Lemma 2, it follows that either 〈rpi,qiqi〉 , 〈rpi,qirqi,pi

〉 ,
〈
rpi,qirqi,pj

〉
∈ λ∗ or

〈qirpi,qi〉 , 〈rqi,pirpi,qi〉 ,
〈
rqi,pjrpi,qi

〉
∈ λ∗. That is, for every i ∈ {1, 2, . . . ,m},

〈x2i, y2i〉 = 〈qi, rpi,qi〉 ∈ λ∗ if and only if 〈zy2i〉 ∈ T , for every z ∈ S(x2i).

Summarizing, whenever 1 ≤ i ≤ 2m, we have that 〈xiyi〉 ∈ λ∗ if and only
if 〈zyi〉 ∈ λ∗, for every z ∈ S(xi). By exactly the same arguments (just by
considering edges of G∗2 instead of G∗1) it follows by the conditions 2(d)(i)-(iii)
of Lemma 2 that, whenever 2m + 1 ≤ i ≤ 4m, we have that 〈xiyi〉 ∈ λ∗ if and
only if 〈zyi〉 ∈ λ∗, for every z ∈ S(xi). Therefore the transitive orientation λ∗

of G∗ satisfies the condition 2 of Definition 8, and thus λ∗ is an S-orientation of
G∗ on the sets S(xi), 1 ≤ i ≤ 4m.

We now prove that λ∗ is also consistent, cf. Definition 9. Recall first that, by
the definition of the vertex subsets V ∗out and V ∗in of the graph G̃∗, the vertices of
V ∗out ∪ V ∗in are also a subset of the vertices of the clique G∗.

Consider first an ordered pair (x2i−1, y2i−1) = (pi, qi), where 1 ≤ i ≤ m.
That is, x2i−1 ∈ V ∗out. Let z ∈ S(x2i−1). Then, by the definition of S(x2i−1), it
follows that either z = rpi,qi or z = rpi,qj , where piqj is an optional edge of G∗1
that is incident to piqi. Furthermore let w /∈ S(x2i−1). If x2i−1w ∈ M2, then
w ∈ S(x2i−1) by the definition of S(x2i−1), which is a contradiction. Therefore
x2i−1w = piw /∈ M2. Moreover, since G∗ is a clique, it follows in particular
that z is adjacent to w, as well as that w is adjacent to both x2i−1 and y2i−1.
We will prove that 〈wz〉 ∈ λ∗ implies that 〈wx2i−1〉 = 〈wpi〉 ∈ λ∗. Suppose
first that z = rpi,qi . Then, since λ∗ satisfies the condition 2(b) of Lemma 2, it
follows that 〈wz〉 = 〈wrpi,qi〉 ∈ λ∗ implies that 〈wx2i−1〉 = 〈wpi〉 ∈ λ∗. Suppose
now that z = rpi,qj , where piqj is an incident optional edge of G∗1. Then the
condition 2(b) of Lemma 2 implies that 〈wz〉 =

〈
wrpi,qj

〉
∈ λ∗ implies that

〈wx2i−1〉 = 〈wpi〉 ∈ λ∗.
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Consider now an ordered pair (x2i, y2i) = (qi, rpi,qi), where 1 ≤ i ≤ m. That
is, x2i ∈ V ∗out. Let z ∈ S(x2i). Then, by the definition of S(x2i), it follows that
either z = rqi,pi or z = rqi,pj , where pjqi is an optional edge of G∗1 that is
incident to piqi. Furthermore let w /∈ S(x2i). If x2iw ∈ M2, then w ∈ S(x2i) by
the definition of S(x2i), which is a contradiction. Therefore x2iw = qiw /∈ M2.
Moreover, since G∗ is a clique, it follows in particular that z is adjacent to w,
as well as that w is adjacent to both x2i and y2i. We will prove that 〈wz〉 ∈ λ∗
implies that 〈wx2i−1〉 = 〈wpi〉 ∈ λ∗. Suppose first that z = rqi,pi

. Then, since
λ∗ satisfies the condition 2(b) of Lemma 2, it follows that 〈wz〉 = 〈wrqi,pi〉 ∈ λ∗
implies that 〈wx2i〉 = 〈wqi〉 ∈ λ∗. Suppose now that z = rqi,pj , where pjqi is an
incident optional edge of G∗1. Then the condition 2(b) of Lemma 2 implies that
〈wz〉 =

〈
wrqi,pj

〉
∈ λ∗ implies that 〈wx2i〉 = 〈wqi〉 ∈ λ∗.

Summarizing, since xi ∈ V ∗out if and only if 1 ≤ i ≤ 2m, we proved that the
transitive ordering λ∗ satisfies the first condition of Definition 9. By considering
the vertices xi ∈ V ∗in (i.e., where 2m + 1 ≤ i ≤ 4m), it follows by exactly the
symmetric arguments that λ∗ satisfies also the second condition of Definition 9,
and thus λ∗ is a consistent S-orientation on the sets S(xi), 1 ≤ i ≤ 4m.

Recall that G̃∗ is the graph constructed from G∗ by iteratively deactivating
the edges xiyi, where 1 ≤ i ≤ 4m (cf. Section 4). Now, since λ∗ is a consistent
S-orientation on the sets S(xi), 1 ≤ i ≤ 4m, such that M1 ∪M2 ∪M3 ⊆ λ∗,
the first part of Theorem 2 implies that G̃∗ has a transitive orientation T̃ such
that M1 ∪M2 ∪M3 ∪ F (xi) ⊆ T̃ for every i = 1, 2, . . . , 4m. Therefore, since

∪4mi=1F (xi) = M2, it follows that M1 ∪M2 ∪M3 ⊆ T̃ . This completes the proof
of the theorem. ut

Theorem 4. If G̃∗ has a transitive orientation T̃ such that M1 ∪M2 ∪M3 ⊆
T̃ , then G has a 4-DORG representation with respect to the vertex parti-
tion {L,R,U,D}.

Proof. Let G̃∗ have a transitive orientation T̃ such that M1 ∪M2 ∪M3 ⊆ T̃ .
Then also ∪4mi=1F (xi) ⊆ T̃ , since ∪4mi=1F (xi) = M2. Therefore the second part
of Theorem 2 implies that the graph G∗ (i.e. the graph before deactivating the
edges xiyi, 1 ≤ i ≤ 4m) has an S-orientation T on the sets S(xi), 1 ≤ i ≤ 4m,
such that M1 ∪M2 ∪M3 ⊆ T . Since T is a transitive orientation of G∗ and G∗

is a clique, T is a transitive tournament of G∗.
We will prove that T satisfies the condition 2(d) of Lemma 2. Consider first

an optional edge piqi of G∗1, 1 ≤ i ≤ m, where pi ∈ Ux ∪Dx and qi ∈ Lx ∪ Rx.
Then, due to the definition of the ordered vertex pairs (x1, y1), . . . , (x4m, y4m),
it follows that x2i−1 = pi and y2i−1 = qi. Furthermore S(x2i−1) = {rpi,qi} ∪
{rpi,qj : piqj is an optional edge in G∗1}. Since T is an S-orientation on the
sets S(xi), 1 ≤ i ≤ 4m, it follows by the condition 2 of Definition 8 that for
every z ∈ S(x2i−1) we have 〈x2i−1y2i−1〉 = 〈piqi〉 ∈ T if and only if 〈zy2i−1〉 =
〈zqi〉 ∈ T . That is, for every optional edge piqj of G∗1 that is incident to piqi,
either 〈piqi〉 , 〈rpi,qiqi〉 ,

〈
rpi,qjqi

〉
∈ T or 〈qipi〉 , 〈qirpi,qi〉 ,

〈
qirpi,qj

〉
∈ T (cf. the

conditions 2(d)(i)-(ii) of Lemma 2).

22



Furthermore, due to the definition of the ordered vertex pairs
(x1, y1), . . . , (x4m, y4m), it follows that x2i = qi and y2i = rpi,qi . Moreover
S(x2i) = {rqi,pi} ∪ {rqi,pj : pjqi is an optional edge in G∗1}. Since T is an
S-orientation on the sets S(xi), 1 ≤ i ≤ 4m, the condition 2 of Defini-
tion 8 implies that for every z ∈ S(x2i) we have 〈x2iy2i〉 = 〈qirpi,qi〉 ∈ T if
and only if 〈zy2i〉 = 〈zrpi,qi〉 ∈ T . That is, for every optional edge pjqi of
G∗1 that is incident to piqi, either 〈rpi,qiqi〉 , 〈rpi,qirqi,pi

〉 ,
〈
rpi,qirqi,pj

〉
∈ T or

〈qirpi,qi〉 , 〈rqi,pi
rpi,qi〉 ,

〈
rqi,pj

rpi,qi

〉
∈ T (cf. the conditions 2(d)(i) and 2(d)(iii)

of Lemma 2).
Summarizing, we proved that the transitive tournament T of G∗ satisfies the

condition 2(d) of Lemma 2 for all optional edges piqi of G∗1, where 1 ≤ i ≤ m.
By considering the optional edges aibi of G∗2, where 1 ≤ i ≤ m, it follows by
exactly the same arguments that T satisfies the condition 2(d) of Lemma 2 also
for the optional edges of G∗2. Therefore, since also M1 ∪M2 ∪M3 ⊆ T , it follows
by Corollary 2 (cf. also the statements of Theorem 1 and Lemma 2) that G has
a 4-DORG representation with respect to the vertex partition {L,R,U,D}. ut

We are now ready to present our 4-DORG recognition algorithm (Algo-
rithm 1). The proof of correctness and the timing analysis are given in the
next theorem.

Theorem 5. Let G = (V,E) be a graph with n vertices, given along with a ver-
tex partition V = L ∪R ∪ U ∪D, such that E ⊆ (L ∪R)× (U ∪D). Then Al-
gorithm 1 constructs in O(MM(n2)) time a 4-DORG representation for G with
respect to this vertex partition, or correctly announces that G does not have a
4-DORG representation.

Proof. Let G̃∗ be the graph that is constructed from G∗ by iteratively deacti-
vating the edges xiyi, 1 ≤ i ≤ 4m, cf. line 12 of Algorithm 1. Then it follows
directly by Theorems 3 and 4 that G̃∗ has a transitive orientation T̃ such that
M1 ∪M2 ∪M3 ⊆ T̃ if and only if G has a 4-DORG representation with respect
to the vertex partition {L,R,U,D}. Therefore, if G̃∗ does not have such a tran-

sitive orientation T̃ , Algorithm 1 correctly concludes in line 14 that G does not
have a 4-DORG representation with respect to the vertex partition {L,R,U,D}.
Otherwise, if G̃∗ has such a transitive orientation T̃ , Algorithm 1 computes and
returns a 4-DORG representation of G with respect to this vertex partition,
using the O(n2) algorithm of Theorem 1.

The running time of Algorithm 1 is therefore dominated by the time needed
to compute a transitive orientation T̃ of the graph G̃∗, given a partial orientation
M1∪M2∪M3 of T̃ . This can be done using one of the known transitive orientation
algorithm; the fastest known algorithm requires matrix multiplication (currently
achieved in O(MM) = O(n2.376) time for multiplying two n × n matrices [3]).

Therefore, since the size of the graph G̃∗ is O(n2), the transitive orientation T̃
can be computed (if one exists) in time O(MM(n2)) (i.e. in the time needed for
multiplying two n2 × n2 matrices). ut
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Algorithm 1 Recognition of 4-DORGs

Input: An undirected graph G = (V,E) with a vertex partition V = L ∪R ∪ U ∪D
Output: A 4-DORG representation for G, or the announcement that G is not a 4-

DORG graph

1: n← |V |; m←
(
n
2

)
− |E| {m is the number of non-edges in G}

2: Construct from G the clique G1 with vertex set Lx∪Rx∪Ux∪Dx and the clique G2

with vertex set Ly ∪Ry ∪ Uy ∪Dy

3: Construct the set M1 of type-1-mandatory orientations in G1 and G2

4: Construct the m forbidden pairs of orientations of G1 and G2

5: Construct from G1, G2 the augmented cliques G∗1, G
∗
2 and the set M2 of type-2-

mandatory orientations
6: Construct from G∗1, G

∗
2 the clique G∗ and the set M3 of type-3-mandatory orienta-

tions

7: for i = 1 to m do
8: Let piqi ∈ E(G1), aibi ∈ E(G2) be the optional edges in the ith pair of forbidden

orientations, where pi ∈ Ux ∪Dx, qi ∈ Lx ∪Rx, ai ∈ Uy ∪Dy, bi ∈ Ly ∪Ry

9: (x2i−1, y2i−1)← (pi, qi); (x2i, y2i)← (qi, rpi,qi)
10: (x2m+2i−1, y2m+2i−1)← (ai, bi); (x2m+2i, y2m+2i)← (bi, rai,bi)
11: S(xi)← {rxj ,yi : xj = xi}

12: Construct the graph G̃∗ by iteratively deactivating all edges xiyi, 1 ≤ i ≤ 4m

13: if G̃∗ has a transitive orientation T̃ such that M1 ∪M2 ∪M3 ⊆ T̃ then
14: return the 4-DORG representation of G computed by Theorem 1
15: else
16: return “G is not a 4-DORG graph with respect to the partition {L,R,U,D}”

6 Recognizing three directional orthogonal ray graphs
with partial representation restrictions

In this section we consider bipartite graphs G(V,E), with vertex partitions V =
A∪B, having m, respectively n elements and an ordering (v1, v2, . . . , vm) of the
vertices of A.

The question we address is the following: Does G admit a representation as
a three directional orthogonal ray graph, with A corresponding to rays oriented
upwards, and B to rays oriented to the left or to the right, such that for any
vi, vj ∈ A, the y-coordinate of vi is larger than the y-coordinate of vj if and only
if i < j ?

Our approach consists of using the adjacency relations in the graph, to re-
cursively derive necessary conditions for the left to right ordering of the rays
corresponding to the vertices in A. If at no point during the process a contra-
diction is reached, we will construct a 3-DORG representation, otherwise none
exists.

Definition 11. A = A1∪A2∪. . .∪Ak be a partition of A. Then, (A1, A2, . . . Ak)
is said to be a consistent partition for G, if the following holds: if G is a three
directional orthogonal ray graph, then it admits a 3DORG representation such
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that for i < j, all the rays of the vertices in Ai are represented to the left of the
rays of the vertices in Aj.

Definition 12. Let A = {A1, A2, . . . , Ak}, B = {B1, B2, . . . , Bl} be two parti-
tions of A. If B is a refinement of A, B is called elementary if and only if there
exists no partition strictly contained between A and B with respect to refinement.

Let n1 denote the number of neighbors of v1, and let (u1, u2, . . . un1
) be any

ordering of the elements of N(v1) ⊆ B. Supposing G admits a three directional
orthogonal ray representation. By symmetry, it can be assumed without that u1
is oriented to the left.

Lemma 5. If G has a 3DORG representation respecting the y-coordinate or-
dering (v1, v2, . . . , vm) of A, then (N(u1), A \N(u1)) is a consistent partition of
A.

Proof. Assume G is a three directional orthogonal ray graph and that there exist
vi ∈ N(u1), vj ∈ A\N(u1) such that vj lies to the left of vi. Since it is a neighbor
of v1, the ray of u1 is higher than the endpoint of vj , and starts to the right of
vj due to adjacency to vi, therefore it must cross the ray of vj , contradiction.

For all neighbors (u1, u2, . . . un1
) of v1 we construct the following chain of

ordered partition refinements P1, P2, . . . Pn1 :
1) P1 = (N(u1), A \N(u1)).
2) For all i ≥ 1, Pi+1, if it exists, is the consistent partition resulting from

the intersection of Pi with either (N(ui), A \N(ui)) or (A \N(ui), N(ui)).
The following holds:

Proposition 1. If G has a 3DORG representation that respects the y-coordinate
ordering (v1, v2, . . . , vm) of A and in which u1 is oriented to the left, then
(P1, P2, . . . Pn1

) exists and is a consistent chain of elementary refinements.

Proof. Consider a 3DORG representation of G as in the hypothesis. Then, by
Lemma 5, P1 is a consistent partition of G.

Similarly as in Lemma 5, it can be shown that at least one of (N(u1), A \
N(ui+1)) and (A \N(ui+1), N(ui+1)) is a consistent partition for G (depending
on whether ui+1 goes towards left or right). Let Pi = (A1, A2, . . . Aki). By as-
sumption, Pi is a consistent partition of G, i.e. if j1 < j2, all elements of Aj1

appear to the left of all elements of Aj2 for any such representation of G. To-
gether with the previous remark, this implies there exists an 1 ≤ li ≤ ki such
that either N(ui+1) ⊆ A1 ∪ . . . ∪ Ali or N(ui+1) ⊆ Ali ∪ . . . ∪ Aki

. Therefore,
at most the set Ali is split in the refinement Pi+1, hence Pi+1 is elementary.
Finally, since Pi+1 is the intersection of two consistent (ordered) partitions, it
follows that (Pi)1≤i≤n1

is a consistent chain of elementary refinements.

After processing all neighbors of v1, we eliminate v1 and its neighbors, ob-
taining an induced subgraph with a 3-DORG representation where v2 is the
highest vertical ray. We process the neighbors of v2 in a similar fashion as in
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Proposition 1, the starting partition being the last one obtained after process-
ing v1 (excluding v1 itself). Repeating the procedure for the remaining vertices
of A, we create a sequence of partitions which, if at no step a contradiction
is reached with respect to their properties, will permit the construction of a
3-DORG representation with the desired constraints.

Formally, we construct chain R1, R2, . . . , Rm of partitions as follows:

1) G1 = G and R1 = Pn1
, as in Proposition 1.

2) For 1 ≤ i < m, let Gi+1 be defined as G[V (Gi \ N [vi]] (i.e., the induced
subgraph on all vertices of Gi but {vi, N(vi)}). Starting with Ri \ {vi} as initial
partition, one successively performs refinings as in Proposition 1 for each u ∈
N(vi+1), with Ri+1 being the final partition after all neighbors of vi+1 have
been processed. If G has no 3-DORG representation, then at some step, for some
vertex u, the refinement of the currently processed partition P is not elementary.

Theorem 6. Let G(V,E) be a bipartite graph , with vertex partitions V = A∪B
and (v1, v2, . . . , vm) an ordering of the vertices of A. Then, A admits a three
directional orthogonal ray representation such that the ray of vi is higher than
that of vj for any i < j if and only if the above procedure yields a chain of
elementary refinements for all 1 ≤ i ≤ m.

Proof. “⇒”: Assume G has a three directional orthogonal ray representation.
This induces a linear ordering R of the vertical rays by their x-coordinate. Ap-
plying Proposition 1 to Gi, 1 ≤ i ≤ m, it follows that R restricted to V (Gi) is a
refinement of any partition corresponding to a neighbor of vi, therefore the sets
Ri are well defined. Furthermore, since the chain of refinements is elementary,
the conclusion follows.

“⇐” : We produce a 3DORG representation based on the chain of partitions
R1, R2, . . . Rm. We first assign to each vi ∈ A the y-coordinate m − i. Let now
A1, A2, . . . An1

be the sets in the partition R1. There must exist a 1 ≤ k ≤ n1
such that v1 ∈ Ak. The vertex v1 is now assigned the final x coordinate |A1| +
|A2| + . . . + |Ak|. For vi, with i > 1, the x-coordinate is computed analogously
with respect to Ri. However, to avoid collisions with rays of vertices vj , j < i
we add 1 for each vj , j < i whose set in Rj was the left of the set of vi in Rj .
The y-coordinates of the horizontal rays are assigned as follows: for a vertex vk
in A, consider all neighbors for which vk is their highest adjacency. The rays
corresponding to these neighbors are now assigned distinct y-values between
m− k and m− k+ 1. For the x-coordinates, consider a vertex u ∈ B and let vk
be its highest neighbor. Then, N(u) contains either the leftmost, or the rightmost
set in Rk (since u was processed in the construction of Rk). In the first case, we
orient u to the left, and its x-coordinate is assigned to that of the rightmost of
its neighbors in G, after adding 0.5. If N(u) contains the rightmost set of Rk,
u will be oriented to the right, and its x-coordinate is assigned to that of its
leftmost neighbor in G, after subtracting 0.5. This construction is highlighted in
the example in Figure 6 below.
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Color chart:

v ∈ A with neighbors currently processed

Neighbor of the currently processed u ∈ B

Non-neighbor of the currently processed u ∈ B

v ∈ A with all neighbors previously processed

v4 v1 v3 v2 v5

v4 v1 v3 v2 v5

v4 v1 v5 v3 v2

v4 v1 v3 v2 v5

Fig. 7. Constructing a 3-DORG representation: Top left - the bipartite graph G with
the given vertex order. Top-right - the consistent chain of partitions. Bottom right -
The 3-DORG representation of G as read from the partition chain

The method used to prove the theorem can be viewed as a particular partition
refinement technique. Such techniques have various applications in string sorting,
automaton minimization, and graph algorithms. An overview is given in [8].

We now show that Theorem 6 yields an efficient algorithm for deciding
whether G is a 3-DORG with the given vertex ordering.

Theorem 7. It can be decided in O(|V |2) operations whether a bipartite graph G
admits a three directional orthogonal ray representation with a given horizontal
and vertical partition and a prescribed ordering of the y-coordinates of the vertical
rays.

Proof. According to Theorem 6 it is enough to construct the chain R1, R2, . . . Rm

of partitions. Note that each step of partition refinement corresponds to process-
ing a vertex u ∈ B, for some Gk, 1 ≤ k ≤ m. If all steps can be carried out
consistently, we obtain a three directional orthogonal ray representation, oth-
erwise none exists. The refinement for u is elementary if and only if at most
one set in the current partition contains both neighbors and non-neighbors of
u. Furthermore, no set containing a neighbor of u may lie between two sets
containing non-neighbors of u and viceversa. Checking for both these properties
requires a single sweep through the current partition, that is, O(m) steps. There
are n vertices in B to be processed, yielding a total number of O(nm) ≤ O(|V |2)
operations.
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