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Felsner, Hurtado, Noy and Streinu (2000) conjectured that arrangement graphs22

of simple great-circle arrangements have chromatic number at most 3. Motivated23

by this conjecture, we study the colorability of arrangement graphs for different24

classes of arrangements of (pseudo-)circles.25

In this paper the conjecture is verified for4-saturated pseudocircle arrangements,26

i.e., for arrangements where one color class of the 2-coloring of faces consists of tri-27

angles only, as well as for further classes of (pseudo-)circle arrangements. These28

results are complemented by a construction which maps 4-saturated arrangements29

with a pentagonal face to arrangements with 4-chromatic 4-regular arrangement30

graphs. This corona construction has similarities with the crowning construction31

introduced by Koester (1985). Based on exhaustive experiments with small ar-32

rangements we propose three strengthenings of the original conjecture.33

We also investigate fractional colorings. It is shown that the arrangement graph34

of every arrangement A of pairwise intersecting pseudocircles is “close” to being35
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3-colorable. More precisely, the fractional chromatic number χf (A) of the arrange-36

ment graph is bounded from above by χf (A) ≤ 3+O( 1
n), where n is the number of37

pseudocircles of A. Furthermore, we construct an infinite family of 4-edge-critical38

4-regular planar graphs which are fractionally 3-colorable. This disproves a conjec-39

ture of Gimbel, Kündgen, Li, and Thomassen (2019).40

1 Introduction41

An arrangement of pseudocircles is a family of simple closed curves on the sphere or in the42

plane such that each pair of curves intersects at most twice. Similarly, an arrangement of43

pseudolines is a family of x-monotone curves such that every pair of curves intersects exactly44

once. An arrangement is simple if no three pseudolines/pseudocircles intersect in a common45

point and intersecting if every pair of pseudolines/pseudocircles intersects. Given an arrange-46

ment of pseudolines/pseudocircles, the arrangement graph is the planar graph obtained by47

placing vertices at the intersection points of the arrangement and thereby subdividing the48

pseudolines/pseudocircles into edges.49

A proper coloring of a graph assigns a color to each vertex such that no two adjacent vertices50

have the same color. The chromatic number χ of a graph is the smallest number of colors needed51

for a proper coloring of the graph. For an arrangement A, we denote the chromatic number52

of (the arrangement graph of) A by χ(A).53

The famous Four Color theorem and also Brook’s theorem imply the 4-colorability of planar54

graphs with maximum degree 4; hence also every arrangement graph is properly 4-colorable.55

This motivates the following question: which arrangement graphs have chromatic number 456

and which can be properly colored with fewer than four colors?57

There exist arbitrarily large non-simple line arrangements that require 4 colors. For exam-58

ple, the construction depicted in Figure 1(a) contains the Moser spindle as subgraph which59

has chromatic number 4. Hence the construction cannot be properly 3-colored. Using an in-60

verse central (gnomonic) projection which maps lines to great-circles, one gets a non-simple61

arrangement A of great-circles with χ(A) = 4 for any such line arrangement. Therefore, we62

restrict our attention to simple arrangements in the following.63

Koester [Koe85] presented a simple arrangement A of 7 circles with χ(A) = 4 in which all64

but one pair of circles intersect; see Figure 8(b) in Section 3.1. Moreover, there also exist65

simple intersecting arrangements that require 4 colors. We invite the reader to verify this66

property for the example depicted in Figure 1(b).67

In 2000, Felsner, Hurtado, Noy and Streinu [FHNS00] (cf. [FHNS06]) studied arrangement68

graphs of pseudoline and pseudocircle arrangements. They obtained results regarding con-69

nectivity, Hamiltonicity, and colorability of those graphs. In that work, they also stated the70

following conjecture:71

Conjecture 1 (Felsner et al. [FHNS00, FHNS06]). The arrangement graph of every simple72

arrangement of great-circles on the sphere is 3-colorable.73

While this conjecture is fairly well known (cf. [Ope09, Kal18, Wag02] and [Wag10, Chap-74

ter 17.7]) there has been little progress in the last 20 years. Aichholzer, Aurenhammer, and75

Krasser verified the conjecture for up to 11 great-circles [Kra03, Chapter 4.6.4]. They did not76

explicitly mention “non-realizable” arrangements, i.e., arrangements of pseudocircles that can-77

not be realized by great-circles despite fulfilling all necessary combinatorial properties of great-78
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(a) (b)

Figure 1: (a) A 4-chromatic non-simple line arrangement. The red subarrangement not intersecting
the Moser spindle (highlighted blue) can be chosen arbitrarily. (b) A simple intersecting
arrangement of 5 pseudocircles with χ = 4 and χf = 3.

circle arrangements (see below for details). We have re-generated the data from [Kra03, Chap-79

ter 4.6.4] for arrangements of up to 11 great-circles (cf. [SSS20]) and verified the conjecture80

also for non-realizable arrangements of the same size, by this confirming it for all arrangements81

of up to 11 great-pseudocircles. Arrangements of great-pseudocircles are defined as arrange-82

ments of pairwise intersecting pseudocircles where along each pseudocircle, the sequence of the83

2n− 2 intersections with the other pseudocircles is (n− 1)-periodic. Equivalently, the induced84

subarrangement of every three pseudocircles only has triangular faces.85

Results and outline In Section 2 we discuss two infinite families of 3-colorable arrangements.86

The first is the family of 4-saturated arrangements of pseudocircles: A plane graph is 4-87

saturated if every edge is incident to exactly one triangular face, an arrangement is4-saturated88

if its arrangement graph is 4-saturated. The second family is based on a specific construction89

which replaces a pseudocircle by a bundle of three pseudocircles and preserves 3-colorability.90

In Section 3 we extend our study of 4-saturated arrangements and present an infinite family91

of arrangements which require 4 colors. We believe that the construction results in infinitely92

many 4-vertex-critical arrangement graphs. A k-chromatic graph is k-vertex-critical if the re-93

moval of every vertex decreases the chromatic number. It is k-edge-critical if the removal of94

every edge decreases the chromatic number. One of the arrangements which can be obtained95

with our construction is Koester’s arrangement of 7 circles [Koe85]; see Figure 8(b) in Sec-96

tion 3.1. Koester obtained his example using a “crowning” operation, which actually yields97

infinite families of 4-edge-critical 4-regular planar graphs. However, except for the initial 798

circles example, these graphs are not arrangement graphs of arrangements of pseudocircles.99

In Section 4 we investigate the fractional chromatic number χf of arrangement graphs.100

Roughly speaking, this variant of the chromatic number is the objective value of the linear101

relaxation of the ILP formulation for the chromatic number1. We show that intersecting102

arrangements of pseudocircles are “close” to being 3-colorable by proving that χf (A) ≤ 3 +103

O( 1
n) for any intersecting arrangement A of n pseudocircles.104

1The exact definition of the fractional chromatic number is deferred to Section 4
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In their work about the fractional chromatic number of planar graphs, Gimbel, Kündgen,105

Li, and Thomassen conjectured that every 4-chromatic planar graph has fractional chromatic106

number strictly greater than 3 [GKLT19, Conjecture 3.2]. They argued that a positive answer107

to this statement would yield an alternative proof of the Four Color Theorem. In Section 5,108

we present an example of a 4-edge-critical arrangement graph which is fractionally 3-colorable.109

The example is the basis for constructing an infinite family of 4-regular planar graphs which110

are 4-edge-critical and fractionally 3-colorable. This disproves the conjecture of Gimbel et111

al. in a strong form.112

We conclude this paper with a discussion in Section 6, where we also propose three strength-113

ened versions of Conjecture 1 which are supported by exhaustive experiments with small ar-114

rangements.115

2 Families of 3-colorable arrangements of pseudocircles116

In this section we present two classes of arrangements of pseudocircles which are 3-colorable.117

2.1 4-saturated arrangements are 3-colorable118

Recall that an arrangement is 4-saturated if every edge of the arrangement graph is incident119

to exactly one triangular face. Figure 2 shows some examples of 4-saturated arrangements of120

pseudocircles. We show that 4-saturated arrangements are 3-colorable. This verifies Conjec-121

ture 1 for a class of great-pseudocircle arrangements. Note, however that not all 4-saturated122

arrangements are great-pseudocircle arrangements; For example the first two arrangements123

in Figure 2 are not. To see this, consider the subarrangement of the black, blue, and red124

pseudocircle in each of the two arrangements.125

Figure 2: 4-saturated intersecting arrangements with 7, 9, and 10 pseudocircles.

Theorem 2. Every simple 4-saturated arrangement A of pseudocircles is 3-colorable.126

Proof. Let H be a graph whose vertices correspond to the triangles of A and whose edges127

correspond to pairs of triangles sharing a vertex of A. This graph H is planar and 3-regular.128

Moreover, since the arrangement graph of A is 2-connected, H is bridgeless. Now Tait’s129

theorem, a well known equivalent of the 4-color theorem, asserts that H is 3-edge-colorable,130

see e.g. [Aig87] or [Tho98]. The edges of H correspond bijectively to the vertices of the131

arrangement A and, since adjacent vertices of A are incident to a common triangle, the132

corresponding edges of H share a vertex. This shows that the graph of A is 3-colorable.133
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The maximum number of triangles in arrangements of pseudolines and pseudocircles has134

been studied intensively, see for example [Grü72, Rou86, Bla11] and the recent work [FS21].135

By recursively applying the “doubling method”, Harborth [Har85], Roudneff [Rou86], and136

Blanc [Bla11] proved the existence of 4-saturated arrangements of n pseudolines for infinitely137

many values of n ≡ 0, 4 (mod 6). Similarly, a doubling construction for arrangements of138

(great-)pseudocircles yields infinitely many4-saturated arrangements of (great-)pseudocircles.139

Figure 3 illustrates the doubling method applied to an arrangement of great-pseudocircles.140

Note that for n ≡ 2 (mod 3) there is no 4-saturated intersecting pseudocircle arrangements141

because the number of edges of the arrangement graph equals 3 times the number of triangles142

but the number of edges is 2n(n− 1) which is not divisible by 3.143

(a) (b)

Figure 3: The doubling method applied to an arrangements of 6 great-pseudocircles. The red pseudo-
circle is replaced by a cyclic arrangement.

The proof of Theorem 2 actually can be extended to a larger class of graphs (cf. Theorem 3).144

Before stating the result we need some more definitions.145

The medial graph M(G) of an embedded planar graph G is a graph representing the adja-146

cencies between edges in the cyclic order of vertices and faces, respectively: The vertices of147

M(G) correspond to the edges in G. Two vertices of M(G) share an edge whenever their cor-148

responding edges in G are adjacent along the boundary of a face of G (and hence consecutive149

around a vertex; vertices of degree 1 and 2 in G induce loops and multi-edges, respectively, in150

M(G)). Note that every medial graph is a 4-regular planar graph. Vice-versa, every 4-regular151

planar graph is the medial graph of some planar graph.152

In order to see that the latter statement is true for connected graphs, let H be a 4-regular153

connected embedded planar graph, and consider its dual graph H∗. Since H is 4-regular and154

hence Eulerian, H∗ is a bipartite graph. Next consider the 2-coloring of the faces of H which is155

induced by the bipartition of H∗, say, with colors gray and white. Pick one of the color classes,156

e.g., the gray faces, and create a new plane graph G as follows: G has exactly one vertex157

placed in the interior of every gray face of H, and two vertices u and v of G are connected158

via an edge if and only if their corresponding gray faces touch at a vertex x. In this case, the159

edge uv is drawn in G in such a way that it connects u to v by crossing through x and staying160

within the union of the gray faces corresponding to u and v otherwise. From this construction161
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it is now easy to see that G is a plane graph satisfying M(G) = H, and every such graph G162

is referred to as a premedial graph of H. By picking the white instead of the gray faces in the163

above construction, we would have obtained another premedial graph of H, namely the dual164

graph G∗ of G. While this shows that reconstructing G from M(G) is in general not possible,165

it can be seen that H determines a primal-dual pair {G,G∗} of premedial graphs uniquely up166

to isomorphism. Figure 4 shows an example of a medial graph and its two premedial graphs.167

Figure 4: The cube graph (left) and its medial graph GA (middle). The graph GA is also the graph of
an arrangement of four pseudocircles; as indicated by the edge colors. The second premedial
graph of GA is the octahedron graph (right).

Note that if G is the graph of an arrangement of pseudocircles, then G is 4-regular while its168

dual graph G∗ has vertices of degree ≤ 3. Hence, in this case we can identify G in the pair of169

premedial graphs given by M(G).170

In the other direction, an arrangement graph G has a cubic premedial graph – the graph H171

in the proof of Theorem 2 – if and only if G is ∆-saturated. Moreover, the proof of Theorem 2172

does not require that the 4-regular graph G under consideration is actually an arrangement173

graph. It just requires it to be 2-connected to ensure that the cubic premedial graph H is174

bridgeless. Hence the following theorem generalizes Theorem 2, while essentially having the175

same proof.176

Theorem 3. If G is a 2-connected 4-regular planar graph which has a cubic premedial graph177

H then χ(G) = 3.178

We remark that 2-connectivity is a crucial condition in Theorem 3 as illustrated in Figure 5.179

Figure 5: A connected 4-regular planar graph G with a cubic premedial graph and χ(G) = 4

Proof. Let H be the cubic premedial graph of G, i.e., G = M(H). A bridge in H corresponds180

to a cut vertex of its medial graph G. Since G is assumed to be 2-connected, it follows that H181

is bridgeless and hence, by Tait’s theorem, 3-edge-colorable. Adjacent vertices of G correspond182

to edges of H that are consecutive in the circular order at a vertex of H. As such pairs of edges183

receive different colors in the edge-coloring of H, the 3-edge-coloring of H induces a 3-coloring184

of G.185

It follows from the above discussion that χ(M(H)) is upper bounded by the chromatic186

index χ′(H), i.e., the minimum number of colors required for a proper edge coloring of H.187
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Indeed, if v is a vertex of H, then edges incident to v require pairwise distinct colors in an188

edge coloring, while in M(H) these edges are vertices along the boundary of a facial cycle so189

that repetitions of colors might be feasible.190

2.2 More families of 3-colorable arrangements191

We next show how to construct more infinite families of 3-colorable arangements of (intersect-192

ing) pseudocircles, great-pseudocircles, or circles, respectively.193

Let A be a 3-colorable arrangement of n pseudocircles and let φ be a coloring of A with194

colors 0, 1, 2. We will use the additive structure of Z3 on the colors.195

Fix a pseudocircle C of A and let VI and VO be the sets of vertices of A inside and out-196

side of C, respectively. Let A′ be the arrangement obtained from A by adding two parallel197

pseudocircles C ′ and C ′′ along C, i.e., the order in which the three pseudocircles C, C ′, and198

C ′′ cross the other pseudocircles is the same. We can think of the parallel pseudocircles as199

drawn close to C such that C is the innermost, C ′ the middle, and C ′′ the outer of the three200

pseudocircles. For every vertex v ∈ C, we have the corresponding vertices v′ and v′′ on C ′ and201

C ′′ respectively. Formally, this correspondence can be stated by saying that vv′ and v′v′′ are202

edges of A′, and edges vw with w ∈ VO of A are replaced by v′′w in A′.203

The following defines a 3-coloring φ′ of A′: For u ∈ VI let φ′(u) = φ(u); for a triple v, v′, v′′ of204

corresponding vertices on the three pseudocircles C,C ′, C ′′, let φ′(v) = φ(v), φ′(v′) = φ(v) + 1,205

and φ′(v′′) = φ(v) + 2; finally for w ∈ VO let φ′(w) = φ(w) + 2.206

Since we are mostly interested in intersecting arrangements we next describe how to trans-207

form A′ into a 3-colorable intersecting arrangement A′′. Let e1 and e2 be two edges on C in A.208

Corresponding to each of e1 and e2, we have a 2× 3 grid in A′; see Figure 6 left. This grid can209

be replaced by a triangular structure with pairwise crossings of the three pseudocircles, see210

Figure 6 middle and right. The figure also shows that a 3-coloring of the grid, where the colors211

in the columns are 0, 1, 2, or 1, 2, 0, or 2, 0, 1, can be extended to the three added crossings.212

Hence, we obtain a 3-colorable intersecting arrangement A′′.213

C ′′

C ′

C

C ′′

C ′

C

C ′
C ′′

C

Figure 6: A 2× 3 grid (left) and two ways of adding pairwise crossings on the horizontal curves.

Let A be a 3-colorable arrangement of great-pseudocircles. If we pick e1 and e2 as a pair of214

antipodal edges on C and add the intersections between C, C ′, and C ′′ along those two edges,215

once as in the middle of Figure 6 and once as in the right of the figure, then we obtain an216

arrangement A′′ which is again an arrangement of great-pseudocircles.217

Moreover, if A is an arrangement of (proper) circles, then clearly A′ is again an arrangement218

of circles. Less obvious but still true is that A′′ can also be realized as a circle arrangement.219

The reason is that the three circles C ′, C ′′ can be placed inside an arbitrarily narrow belt220

centered at C. Figure 7 shows an example of a transformation A → A′ → A′′.221

The following is a direct consequence of the above-described constructions.222

Proposition 4. Let A be a 3-colorable arrangement of n (intersecting) pseudocircles, great-223

pseudocircles, or circles, respectively. Then for any k ∈ N, arrangement A can be extended to224

a 3-colorable arrangement of size n+ 2k of the same type.225
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A A′ A′′

Figure 7: A 3-colorable arrangement A of circles and the derived arrangements A′ and A′′.

3 Constructing 4-chromatic arrangement graphs226

In the first part of this section, we describe an operation that extends any 4-saturated inter-227

secting arrangement of pseudocircles with a pentagonal cell (which is 3-colorable by Theorem 2)228

to a 4-chromatic arrangement of pseudocircles by inserting only one additional pseudocircle.229

This corona extension is somewhat related to Koester’s crowning, an operation used to con-230

struct an infinite family of 4-regular 4-edge-critical planar graphs [Koe90]. This motivates231

the study of criticality of the graphs obtained via the corona extension, which is the topic of232

Subsection 3.2.233

3.1 The corona extension234

We start with a 4-saturated arrangement A of pseudocircles which contains a pentagonal cell235

D. By definition, in the 2-coloring of the faces of A, one of the two color classes consists236

of triangles only; see e.g. the arrangement from Figure 8(a). Since the arrangement is 4-237

saturated, the pentagonal cell D is surrounded by triangular cells.238

We can now insert an additional pseudocircle enclosing D so that the new pseudocircle239

intersects only the 5 pseudocircles which bound D and does so only at edges incident to240

vertices of D. Figure 8(b) illustrates this extension for the arrangement from Figure 8(a). In241

the extended arrangement A+, one of the two color classes of faces consists of triangles and242

the pentagon D. We say that A+ is obtained via a corona extension2 from A. It is interesting243

to note that the arrangement depicted in Figure 8(b) is Koester’s arrangement [Koe85].244

To discuss the colorability of the corona extension, we introduce some notation. For a245

graph G, let α(G) denote the size of any maximum independent set of G. In a proper k-246

coloring of G, the vertices of every color class form an independent set, and we trivially have247

α(G) ≥ |V (G)|
k for every k-colorable graph.248

Lemma 5. Let G be a 4-regular planar graph. If in the 2-coloring of the faces of G, one of249

the classes consists of only triangles and a single pentagon, then α(G) < |V (G)|
3 .250

Proof. Color the faces of G = (V,E) with black and white. Let the black class contain only
triangles and one pentagon. Let t be the number of these triangles and let α := α(G). Given
an independent set I of cardinality α, we count the number of pairs (v, F ), where v is a vertex
of I and F is a black face of A incident to v. There are 2 such faces for every v ∈ I, hence,
2α pairs in total. Since any independent set of G contains at most one vertex of each triangle

2The writing of this article has benefited from the corona lockdown in April 2020.
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(a) (b)

Figure 8: (a) A 4-saturated arrangement of 6 great-circles and (b) the corona extension at its central
pentagonal face. The arrangement in (b) is Koester’s [Koe85] example of a planar 4-edge-
critical 4-regular planar graph.

and at most two vertices of the pentagon, the number of pairs (v, F ) is at most t+ 2. Hence,
we have

2α ≤ t+ 2. (1)

Since G is 4-regular, there are exactly |E| = 2|V | edges. As every edge is incident to exactly
one black face, we also have |E| = 3t+ 5. This yields the equation

3t+ 5 = 2|V |. (2)

From equation (2), we conclude that t is odd. Therefore we can strengthen equation (1) to

2α ≤ t+ 1. (3)

Combining equations (2) and (3) yields 6α ≤ 3t+ 3 = 2|V | − 2 and hence α < |V |
3 .251

Proposition 6. The corona extension of a 4-saturated arrangement of pseudocircles with a252

pentagonal cell D is 4-chromatic.253

Proof. From Lemma 5 we know that after the corona extension the inequality 3α(G) < |V (G)|254

holds. This implies that the corona extension of a 4-saturated arrangement of pseudocircles255

with a pentagonal cell D is not 3-colorable.256

It is remarkable that the argument from the proof of Lemma 5 only holds for pentagons.257

More precisely, if the class of black faces of G consists of triangles and a single k-gon, then we258

need k = 5 to get α < |V |/3.259

By iteratively applying the doubling method (cf. Section 2.1) to the arrangements depicted in260

Figure 2, we obtain 4-saturated arrangements of n pseudocircles which have pentagonal cells261

for infinitely many values of n ≡ 0, 4 (mod 6). Applying the corona extension to the members262

of this infinite family yields an infinite family of arrangements that are not 3-colorable.263

Theorem 7. There exists an infinite family of simple 4-chromatic arrangements of pseudo-264

circles, each of which is obtained from an intersecting arrangement of pseudocircles by adding265

only one additional pseudocircle.266
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3.2 Criticality267

Koester [Koe90] introduced the crowning operation and used this operation to construct an268

infinite family of 4-regular 4-edge-critical planar graphs (cf. Proposition 15 and Figure 14). A269

particular example of a graph obtained by crowning is the Koester graph of Figure 8(b), which270

happens to be an arrangement graph of circles.271

Since crowning and the corona extension show some similarities and both operations can272

be used to obtain the Koester graph depicted in Figure 8(b), we believe that many of the 4-273

chromatic arrangements obtained with the corona extension (Theorem 7) are in fact 4-vertex-274

critical. In the following, we present sufficient conditions to obtain 4-vertex-critical and 4-275

edge-critical arrangements via the corona extension.276

We need some terminology. Let H be a cubic plane graph and let G = M(H) be its medial277

graph. If H is bridgeless, then χ(G) = 3 by Theorem 3. If in addition H has a pentagonal278

face DH , then we can apply the corona extension to G to obtain a 4-regular graph G◦ with279

χ(G◦) = 4 (Lemma 5). We are interested in conditions on H which imply that G◦ is 4-vertex-280

critical or even 4-edge-critical.281

With DG we denote the pentagon corresponding to DH in G. The connector vertices of DG282

are the five vertices of the triangles adjacent to DG which do not belong to DG.283

Figure 9: Applying the corona extension at a pentagon of a 4-saturated 4-regular planar graph.

Consider a 3-edge-coloring ϕ of H. We call ϕ trihamiltonian, if all three subgraphs induced284

by edges of two of the three colors of ϕ induce a Hamiltonian cycle on H. We will prove the285

following:286

Theorem 8. Let H be a cubic planar graph with a pentagonal face DH and a trihamiltonian287

3-edge-coloring ϕ. If G is the medial graph of H and G◦ is obtained from G by the corona288

extension at DG, where DG is the pentagonal face of G corresponding to DH , then G◦ is 4-289

vertex-critical. If, additionally, H admits 5-fold rotational symmetry around DH , then G◦ is290

even 4-edge-critical.291

Proof. Recall from Section 2.1 that the 3-edge-coloring ϕ of H yields a 3-vertex-coloring of292

the 4-saturated graph G. Each of the three 2-colored Hamiltonian cycles in H given by ϕ293

yields a cycle in G, which covers all the vertices of the respective colors. This is indicated in294

Figure 10 (left). Each edge of G is contained in exactly one of the 3 cycles, hence we obtain a295

non-proper 3-edge-coloring of G with the property that every color class is a cycle. The two296

red, two green and one blue circular arcs indicate the way that these three cycles are closed297

outside the corona region. Note that the order of connector vertices on the red and green cycle298

must be as indicated in Figure 10 (left) since each monochromatic cycle is non-crossing. Every299
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DG

Figure 10: Left: Edges of G have the color that is missing on its incident vertices.
Middle: The golden vertex can move along the red path and arrows in both directions.
Right: The purple edge indicates the critical edge after we change colors on the green cycle.

vertex belongs to two of the three cycles induced by the edge coloring, hence, in Figure 10 arcs300

of different colors can have multiple intersections and touchings.301

Note that Figure 10 (left) has a vertical axis of symmetry which preserves the blue vertices302

and the blue cycle but exchanges the colors red and green. In the following, we will show how303

to modify these two colorings (original and reflected) in order to find a collection of 4-colorings304

of G◦ that allows to argue for 4-vertex- and 4-edge-criticality in the respective cases.305

Figure 10 (middle) shows a 4-coloring ϕ◦ of G◦ with the same coloring of the connector306

vertices and vertices outside the corona region as in Figure 10 (left). Note that a single vertex307

is colored with the fourth color (gold). If in a 4-vertex-coloring ϕ′ a vertex is the single golden308

vertex, we call it the special vertex of the coloring. To show that G◦ is 4-vertex-critical, we309

need to show that every vertex in the graph is the special vertex of some 4-coloring of G◦.310

In every 4-coloring with a special vertex v, this vertex is surrounded by all three colors, since311

we know from Lemma 5 that the graph G◦ is 4-chromatic. Thus only one of the colors appears312

twice. Recoloring v with the one of the other colors and the corresponding neighbor w of v313

with gold makes this neighbor the special vertex of the new coloring. We say that the special314

vertex moves from v to w. To show that an edge e is critical in G◦, it suffices to show that315

there is a 4-coloring with special vertex v which allows such a move from v to w.316

Starting from ϕ◦, we can make the special vertex move along the red path (see Figure 10317

(middle)), changing the colors of green and blue vertices along the way. To see this, remember318

that the green and blue vertices on the red arcs have 2 red neighbors (in G and thus in G◦), so319

the blue and green color are the ones to move along. At one of the endpoints of the red path320

in Figure 10 (middle), there are two blue neighbors, thus the next neighbor to move to is the321

11



Figure 11: A 3-coloring of the great-circle arrangement from Figure 8(a). The three cycles obtained
by removing each of the color classes are depicted on the right.

red neighbor. At the other endpoint, there are two green neighbors, so again the red neighbor322

is the next neighbor to move to. This is indicated by arrows in Figure 10 (middle).323

Move the golden vertex along the two red branches and the extending steps. Then turn to324

the symmetric (reflected) coloring and do the symmetric moves. We claim that together this325

yields a collection of colorings of G◦ such that every vertex is the special (golden) vertex of326

one of them. For the vertices inside or on the new circle, this is easily checked from Figure 10327

(middle). The vertices outside of the corona region are colored with 3 colors. The blue and328

green ones lie on the red arcs and are therefore reached when moving the golden vertex along329

the red arcs. The red ones lie on the green paths and will therefore be reached if we start330

from the reflected coloring, because then these same vertices would be green and lie on the331

corresponding red arcs. Thus 4-vertex-criticality is established.332

Now suppose that H has a 5-fold symmetry fixing DH . This symmetry carries over to G333

and G◦. Thus it is sufficient to show that any edge can be rotated to an edge that we have334

covered already. The only edges which are not covered by the moves along the extended red335

paths of Figure 10 (middle) and its rotations are the small edges on the new circle that are336

inside the triangles of G next to DG. In Figure 10 (right), we show an additional extension of337

the coloring of the connector vertices to the interior. Exchanging the colors of the blue and red338

vertices of the green cycle in the bottom left makes it possible to 3-color the graph by making339

the special vertex blue, if the purple edge is omitted. Since the purple edge is a representative340

of the last rotational orbit we did not cover yet, this yields 4-edge-criticality.341

Next, we present some examples of the application of Theorem 8. Let H be a cubic planar342

graph which has a unique 3-edge-coloring up to permutations of the colors. Then this coloring343

is trihamiltonian, since if a graph induced by two colors has more than one component, we344

can change the two colors on this component alone and construct a different coloring. Thus345

for any pentagon in H, the resulting graph G◦ is 4-vertex-critical.346

The class of uniquely 3-edge-colorable cubic graphs is well understood. Fowler [Fow98,347

Theorem 2.8.5] characterized them as the graphs that can be obtained from K4 by successively348

12



Figure 12: A 3-coloring of a 4-saturated great-circle arrangement. The three cycles obtained by
removing each of the color classes are depicted on the right.

Figure 13: This great-circle arrangement of 16 great-pseudocircles has been discovered by Simmons
[Sim73]. The three cycles obtained by removing any of the color classes are depicted on
the right.
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replacing a vertex by a triangle. These are the duals of stacked triangulations, which are the349

uniquely 4-colorable planar graphs [Fow98, Conjecture 1.2.1]3.350

Additionally, Figures 11, 12, and 13 show 4-saturated arrangements of 6, 10, and 16 great-351

pseudocircles respectively, that admit 5-fold rotational symmetry. The arrangement graphs are352

shown with 3-colorings which correspond to trihamiltonian 3-edge-colorings of their respective353

premedial graphs. The theorem implies that the corona extension at the outer pentagon of354

these arrangements yields 4-edge-critical graphs. We are aware of three more 4-saturated355

arrangements of 6, 7, and 9 pseudocircles respectively, which have 4-edge-critical corona ex-356

tensions. For these arrangements, however, the 4-edge-criticality is not implied by our theorem.357

All data is available on the supplementary website [FS].358

We conclude this section with the following conjecture:359

Conjecture 9. There exists an infinite family of simple arrangement graphs of 4-edge-critical360

arrangements of pseudocircles.361

Relaxing the condition of the conjecture to 4-regular planar graphs, this is a known result362

of Koester (see Proposition 15).363

4 Fractional colorings364

In this section, we investigate fractional colorings of arrangements. A b-fold coloring of a
graph G with m colors is an assignment of a set of b colors from {1, . . . ,m} to each vertex of G
such that the color sets of any two adjacent vertices are disjoint. The b-chromatic number χb(G)
is the minimum m such that G admits a b-fold coloring with m colors. The fractional chromatic
number of G is χf (G) := lim

b→∞
χb(G)
b = inf

b

χb(G)
b . With α(G) being the independence number of

G and ω(G) being the clique number of G, the following inequalities hold:

max

{
|V |
α(G)

, ω(G)

}
≤ χf (G) ≤ χb(G)

b
≤ χ(G). (4)

The fractional chromatic number forms a natural lower bound for the chromatic number of365

graphs. While the chromatic number of quite some intersecting arrangements of pseudocircles366

is four, at least their fractional chromatic number is always close to three:367

Theorem 10. Let G be the arrangement graph of a simple intersecting arrangement A of n368

pseudocircles, then χf (G) ≤ 3 + 6
3n−2 = 3 + 2

n + o
(
1
n

)
. In particular, if v denotes the number369

of vertices of G, then χf (G) ≤ 3 + 2√
v

+ o
(

1√
v

)
.370

Proof. Fix an arbitrary circle C ∈ A and let VC ⊆ VG be the vertex set of C. Let VG \ VC =371

VI ∪ VO, where VI and VO are the sets of vertices inside or outside of C, respectively.372

Claim 1. The graphs G[VI ] and G[VO] are 3-colorable.373

Proof. We prove the claim for G[VI ], the proof for G[VO] is analogous. Let C0 /∈ A be a tiny374

circle in some face of the arrangement in the interior of C. The Sweeping Theorem of Snoeyink375

and Hershberger [SH91, Theorem 3.1] asserts that there exists a sweep which continuously376

3This theorem in the thesis is called a conjecture, since it is first proved to be equivalent to the Fiorini-Wilson-
Fisk Conjecture, which is proved much later as the main result of the thesis.
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transforms C0 into C such that at any time A ∪ C0 is an arrangement of pseudocircles. Let377

t = |VI | and let π = (v1, v2, . . . , vt) be the ordering of the vertices of VI induced by this sweep,378

i.e., vi for i ∈ {1, . . . , t} is the i-th vertex met by the sweep-pseudocircle C0. Orient each edge379

of G[VI ] from the vertex of smaller index to the vertex of larger index. Note that on every380

pseudocircle C ′ ∈ A this orientation induces at most two directed paths that share the starting381

point, the first vertex of C ′ met by C0. At every vertex v ∈ VI two pseudocircles cross and382

v has at most one predecessor on each of the two pseudocircles (here we use the fact that A383

is an intersecting arrangement, and hence every pseudocircle of A different from C intersects384

both the interior and the exterior of C). Hence, in the acyclic orientation of G defined above,385

every v ∈ VI satisfies indeg(v) ≤ 2. Thus, the greedy algorithm with the ordering π yields a386

3-coloring of G[VI ].387

Let us pause to note that just on the basis of this first claim we get χf (G) ≤ 3 + 6
n−2 which388

is not too far from the bound given in the theorem. Indeed if for each pseudocircle C of the389

arrangement we use 3 colors to color V \ VC , then every vertex receives n − 2 colors, whence390

we obtain a b-coloring with b = n− 2 using 3n colors in total, i.e., χn−2(G) ≤ 3n.391

Claim 2. The graph G[VC ] is 2-colorable.392

Proof. Let F be a face of the planar graph G[VC ]. Each vertex of F is a crossing of C with393

some C ′ 6= C and each C ′ 6= C contributes 0 or 2 vertices to the boundary of F . This shows394

that every face of G[VC ] is even whence G[VC ] is a bipartite graph.395

Claim 3. For every weighting w : VG → [0,∞) there is an independent set I of G such that396

w(I) ≥ (13 −
2
9n)w(VG).397

Proof. Let C ∈ A be a pseudocircle with minimal weight w(VC). Let I1, I2, I3 and J1, J2, J3398

denote the 3 color classes of a proper 3-coloring of G[VI ] and G[VO], respectively (Claim 1).399

For (i, j) ∈ {1, 2, 3}2, let Ii,j := Ii ∪ Jj and let Xi,j ⊆ VC denote the set of vertices on C with400

no neighbor in Ii,j . The subgraph G[Xi,j ] of G[VC ] is 2-colorable (Claim 2). Let X1
i,j , X

2
i,j401

denote the color classes of such a coloring, and define independent sets Ii,j,k := Ii,j ∪Xk
i,j in G402

for k = 1, 2.403

With I we denote the random independent set Ii,j,k with (i, j, k) being chosen from the404

uniform distribution on {1, 2, 3} × {1, 2, 3} × {1, 2}. In the following we bound the expected405

weight E(w(I)).406

For every vertex x ∈ VC , we have x ∈ Xi,j if and only if none of the two neighbors xO, xI of
x in VO respectively VI lie in Ii respectively Jj . Since i, j and k are sampled independently,
we conclude

P(x ∈ I) =
1

2
P(x ∈ Xi,j) =

1

2
P(xO /∈ Ii)P(xI /∈ Jj) =

1

2

(2

3

)2
=

2

9
.

This implies that

E(w(I)) = E(w(Ii ∪ Jj)) + E(w(Xk
i,j)) =

1

3
(w(VG)−w(VC)) +

2

9
·w(VC) =

1

3
w(VG)− 1

9
w(VC).

Since C was chosen as a pseudocircle of minimum weight, and since
∑

C′∈A w(VC′) = 2w(VG),407

we conclude that w(VC) ≤ 2
nw(VG) and hence E(w(I)) ≥ (13 −

2
9n)w(VG). Since I is ranging in408

the independent sets of G, this implies the existence of an independent set with total weight409

at least (13 −
2
9n)w(VG).410
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It is well known that the fractional chromatic number can be obtained as the optimal value
of the linear program

min1 · x subject to Mx ≥ 1, x ≥ 0

where M is the incidence matrix of vertices versus independent sets. The dual of the program411

is max1 · w subject to MTw ≤ 1, w ≥ 0. Here w can be interpreted as a weighting on the412

vertices. If w is an optimal weighting for this program, then χf (G) = w(VG). With Claim 3413

we get 1 ≥ E(w(I)) ≥ (13 −
2
9n)w(VG). Hence, χf (G) ≤ 1

1
3
− 2

9n

= 3 + 6
3n−2 .414

We note that for 4-vertex-critical graphs G, the following simple bound on the fractional415

chromatic number further improves the bound given in Theorem 10.416

Proposition 11. If G is a 4-vertex-critical graph on v vertices, then χf (G) ≤ 3 + 3
v−1 .417

Proof. We show that G admits a (v − 1)-fold coloring using 3v colors, which will imply418

χv−1(G) ≤ 3v and hence χf (G) ≤ χv−1(G)
v−1 ≤ 3v

v−1 = 3 + 3
v−1 .419

The coloring can be obtained as follows: For every vertex x ∈ V (G), fix a proper 3-coloring420

cx : V (G) \ {x} → {C1,x, C2,x, C3,x} of the vertices in G− x (which exists since G is 4-vertex-421

critical). Here, {C1,x, C2,x, C3,x} is a set of 3 colors chosen such that these color-sets are422

pairwise disjoint for different vertices x.423

We now define a (v − 1)-fold coloring of G by assigning to every w ∈ V (G) the following424

set of v − 1 colors {cx(w)|x ∈ V (G), x 6= w}. Since every cx is a proper coloring of G, these425

color-sets are disjoint for adjacent vertices in G. Furthermore, the coloring uses only colors426

in {C1,x, C2,x, C3,x | x ∈ V (G) }, so 3v colors in total, and this proves the above claim and427

concludes the proof.428

4.1 Arrangements with dense intersection graphs429

Given an arrangement A of pseudocircles, the intersection graph of A is the simple graph HA430

with the pseudocircles in A as the vertex-set in which two distinct pseudocircles C1, C2 ∈ A431

share an edge if and only if they cross. Using this notion, we see that intersecting arrangements432

of pseudocircles are exactly the arrangements whose intersection graph is a complete graph.433

Looking at Theorem 10, we were able to show that the fractional chromatic number of such434

arrangements is close to 3. In this section we discuss possible generalizations of this result by435

extending this bound to arrangements A for which HA is sufficiently dense. In particular we436

have the following question.437

Question 1. For k ∈ N, let χ≥k denote the supremum of χf (G) over all arrangement graphs G438

of arrangements A of pseudocircles such that the minimum degree δ(HA) is at least k. Is it439

true that χ≥k → 3 for k →∞?440

In the following, we show two weaker statements related to this question. The first one441

shows that if we require the minimum degree in the intersection graph of an arrangement to442

be sufficiently large compared to n, then we can indeed conclude that the fractional chromatic443

number of the arrangement graph is close to 3. The second statement answers a relaxed version444

of Question 1 by showing that for large minimum degree in the intersection graph, the inverse445

independence ratio |V (G)|
α(G) of the arrangement graph G approaches 3.446

Theorem 12. Let d > 1
2 and n ∈ N. Let A be a simple arrangement of n pseudocircles such447

that δ(HA) ≥ dn. Then for the arrangement graph G of A, we have χf (G) ≤ 3
2d−1 .448
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Proof. The proof is similar to the one of Theorem 10, and we borrow the notations from that449

proof. For a fixed pseudocircle C ∈ A, we further define DC ⊆ VG \ VC as the union of VC′450

over all C ′ ∈ A for which C ′ and C are disjoint. Also the following two claims hold for every451

choice of C ∈ A, with word-to-word the same proofs as for the according claims in the proof452

of Theorem 10.453

Claim 1. The graph G− (VC ∪DC) is 3-colorable.454

Claim 2. The graph G[VC ] is 2-colorable.455

Claim 3. For every weighting w : VG → [0,∞) there is an independent set I of G such that456

w(I) ≥ (13 −
2(1−d)

3 )w(VG).457

Proof. Fix C ∈ A as a pseudocircle minimizing w(VC) + 3w(DC). In the following we fix some458

notation analogous to the one in the proof of Theorem 10: We denote by I1, I2, I3 and J1, J2, J3459

the color classes of a 3-coloring of G[VI ]−(VI∩DC) and G[VO]−(VO∩DC), respectively (which460

exist by Claim 1). For (i, j) ∈ {1, 2, 3}2, we denote again Ii,j := Ii ∪ Jj and by Xi,j ⊆ VC461

the set of vertices on C with no neighbor in Ii,j . Let X1
i,j , X

2
i,j denote the color classes of a462

2-coloring of G[Xi,j ] ⊆ G[VC ], and define independent sets Ii,j,k := Ii,j ∪Xk
i,j in G for k = 1, 2.463

Again we let I denote the random set Ii,j,k where (i, j, k) is chosen uniformly at random from464

{1, 2, 3} × {1, 2, 3} × {1, 2}.465

Every vertex x ∈ VC belongs to Xi,j for at least 4 different choices of (i, j). If x has neighbors
in Ia and Jb, then it belongs to Xi,j for i ∈ {1, 2, 3} \ {a} and j ∈ {1, 2, 3} \ {b}. Therefore,

E(w(Xk
i,j)) =

1

3
· 1

3
· 1

2

∑
i′,j′,k′

w(Xk′
i′,j′) =

1

18

∑
i′,j′

w(Xi′,j′) ≥
1

18
· 4w(VC) =

2

9
w(VC).

This implies that

E(w(I)) = E(w(Ii ∪ Jj)) + E(w(Xk
i,j)) ≥

1

3
(w(VG)− w(VC ∪DC)) +

2

9
· w(VC)

=
1

3
w(VG)− 1

9
(w(VC) + 3w(DC))

Since C was chosen as a pseudocircle minimizing w(VC)+3w(DC), we have w(VC)+3w(DC) ≤
1
n

∑
C′∈A (w(VC′) + 3w(DC′)). Let v be a vertex in the intersection of two pseudocircles C1 and

C2. For i = 1, 2 pseudocircle Ci is disjoint from at most (n − 1) − dn = (1 − d)n − 1 other
pseudocircles. Hence, v is in at most 2(1− d)n− 2 sets DC′ and we get∑

C′∈A

(w(VC′) + 3w(DC′)) ≤
∑
C′∈A

w(VC′) + 3
∑
C′∈A

w(DC′) ≤

2
∑

v∈V (G)

w(v) + (2(1− d)n− 2)3
∑

v∈V (G)

w(v) ≤ 6(1− d)n · w(VG).

Consequently w(VC) + 3w(DC) ≤ 6(1 − d)w(VG) and E(w(I)) ≥ (13 −
2(1−d)

3 )w(VG). This466

implies the existence of an independent set with total weight at least (13 −
2(1−d)

3 )w(VG).467
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Just as in the proof of Theorem 10 we express the fractional chromatic number as the optimal468

value of the linear program max1 · w subject to MTw ≤ 1, w ≥ 0 where M is the incidence469

matrix of vertices versus independent sets. As previously, Claim 3 now directly yields that470

χf (G) ≤ 1/(13 −
2(1−d)

3 ) = 3
2d−1 . This concludes the proof of Theorem 12.471

Proposition 13. Let G be the arrangement graph of a simple arrangement A of pseudocircles472

with δ(HA) ≥ 2. Then we have |V (G)|
α(G) ≤ 3 + 3

δ(HA)−1 .473

Proof. Let C0 and C1 be pseudocircles not belonging to A, such that C0 contains all pseudo-
circles of A and C1 in its exterior, while C1 has all pseudocircles in A and C0 in its interior.
By the Sweeping Theorem of Snoeyink and Hershberger [SH91, Theorem 3.1] there is a linear
ordering v1, . . . , v|V (G)| of the vertices of G such that each pseudocircle C ∈ A contains a
unique vertex vC ∈ VC with precisely 2 predecessors on C in this ordering, while all vertices
in VC \ {vC} are preceded by at most one other vertex on C. It is now clear that the graph
G′ := G − {vC |C ∈ A} is 2-degenerate (since in the induced acyclic orientation of G′, every
vertex has at most one in-edge on each of its two circles, and so the maximum in-degree in
this orientation is at most 2). Hence G′ is properly 3-colorable by the greedy algorithm. Thus,
α(G) ≥ α(G′) ≥ 1

3(|V (G)| − |A|). Since δ(HA) = k ≥ 2, every pseudocircle contains at least
2k vertices, and hence we have |V (G)| ≥ k|A|. We finally conclude that

α(G) ≥ 1

3

(
|V (G)| − 1

k
|V (G)|

)
=
k − 1

3k
|V (G)|.

474

5 Fractionally 3-colorable 4-edge-critical planar graphs475

On the basis of the database of pseudocircles [FS] we could compute χ and χf exhaustively476

for small arrangements4. We found the arrangement depicted in Figure 1(b) with χ = 4 and477

χf = 3. This is a counterexample to Conjecture 3.2 in Gimbel et al. [GKLT19].478

Extending the experiments to small 4-regular planar graphs we found that there are pre-479

cisely 17 4-regular planar graphs on 18 vertices with χ = 4 and χf = 3. They are minimal in480

the sense that there are no 4-regular graphs on n ≤ 17 vertices with χ = 4 and χf = 3. Each of481

these 17 graphs is 4-vertex-critical and the one depicted in Figure 15(a) is even 4-edge-critical.482

Starting with a triangular face in the 4-edge-critical 4-regular graph of Figure 15(a) and483

repeatedly applying Koester’s crowning operation as illustrated in Figure 15(b) (which by484

definition preserves the existence of a facial triangle), we can deduce the following theorem.485

Theorem 14. There exists an infinite family of 4-edge-critical 4-regular planar graphs G with486

fractional chromatic number χf (G) = 3.487

We prepare the proof of the above result with some background on Koester’s crowing op-488

eration from [Koe90]. For a 4-regular plane graph G and a face D of odd degree in G, we489

denote by Crown(G,D) the plane graph obtained by applying the crowning operation to D490

in G. Figure 14 shows how to apply the crowning to a triangle and a pentagon respectively,491

the general case should be deducible. Koester proved the following:492

4 Computing the fractional chromatic number of a graph is NP-hard in general [LY94]. For our computations
we formulated a linear program which we then solved using the MIP solver Gurobi.
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Figure 14: Crowning of a triangle and a pentagon.

Proposition 15 ( [Koe90]). Let G be a 4-regular plane graph with a facial triangle T . If G is493

4-edge-critical, then so is Crown(G,T ).494

Via the following lemma, we can use Koester’s crowning operation to extend the example495

from Figure 15(a) to an infinite family of 4-regular 4-edge-critical planar graphs with fractional496

chromatic number 3.497

(a) (b)

Figure 15: (a) A 4-edge-critical 4-regular 18-vertex planar graph with χ = 4 and χf = 3 and (b) the
crowning extension at its center triangular face.

Lemma 16. Let G be a 4-regular plane graph with a facial triangle T . If χf (G) = 3, then498

χf (Crown(G,T )) = 3.499

Proof. If χf (G) = 3, then it follows from the representation of χf (G) as the optimal value of a500

rational linear program that there exists b ∈ N such that G has a b-coloring using 3b colors. For501

every vertex v ∈ V (G), let c(v) ∈
([3b]
b

)
be the assigned sets of colors. Let T = uvw, then we502

know that c(u), c(v), c(w) must be pairwise disjoint and hence form a partition of {1, . . . , 3b}.503

Let c(u) = A1, c(v) = A2, and c(w) = A3. It is easy to see that the subgraph of Crown(G,T )504

induced by the vertices u, v, w and the nine new vertices in V (Crown(G,T )) \ V (G) is 3-505

colorable such that the colors of u, v, w are pairwise distinct. By appropriately replacing the506

3 colors by A1, A2, A3 we obtain a b-coloring of Crown(G,T ) with 3b colors. This proves507

χf (Crown(G,T )) ≤ 3, now χf (Crown(G,T )) = 3 follows because Crown(G,T ) contains a508

triangle.509

Starting with a facial triangle in the 4-regular 4-edge-critical graph of Figure 15 and repeating510

the crowning operation (which by definition preserves the existence of a facial triangle), by511

Lemma 16 and Proposition 15 we obtain an infinite family of 4-edge-critical 4-regular planar512

graphs G with fractional chromatic number χf (G) = 3. This proves Theorem 14.513
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6 Discussion514

With Theorem 2 we gave a proof of Conjecture 1 for 4-saturated great-pseudocircle arrange-515

ments. While this is a very small subclass of great-pseudocircle arrangements, it is reasonable516

to think of it as a “hard” class for 3-coloring. The rationale for such thoughts is that triangles517

restrict the freedom of extending partial colorings. Our computational data indicates that518

sufficiently large intersecting pseudocircle arrangements that are diamond-free, i.e., no two519

triangles of the arrangement share an edge, are also 3-colorable. Computations also suggest520

that sufficiently large great-pseudocircle arrangements have antipodal colorings, i.e., 3-colorings521

where antipodal points have the same color. Based on the experimental data we propose the522

following strengthened variants of Conjecture 1.523

Conjecture 17. The following three statements hold:524

(a) Every simple diamond-free intersecting arrangement of n ≥ 6 pseudocircles is 3-colorable.525

(b) Every simple intersecting arrangement of sufficiently many pseudocircles is 3-colorable.526

(c) Every simple arrangement of n ≥ 7 great-pseudocircles has an antipodal 3-coloring.527
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