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Abstract1

Felsner, Hurtado, Noy and Streinu (2000) stated a conjecture that the arrangement graphs2

of great-circle arrangements have chromatic number at most 3. In this paper, we prove results3

related to this conjecture.4

We show that the conjecture holds in the special case when the arrangement is 4-saturated,5

i.e., when one color class of the bipartite dual of the arrangement consists of triangles only. More-6

over, we extend 4-saturated arrangements with certain properties to a family of arrangements7

which are 4-chromatic. Our construction generalizes Koester’s construction from 1985.8

Last but not least we investigate fractional colorings. We show that arrangements A of9

pairwise intersecting pseudocircles are “close” to being 3-colorable by proving that χf (A) ≤10

3+O( 1
n ) where n is the number of pseudocircles. We further construct an infinite family of 4-edge-11

critical 4-regular planar graphs which are fractionally 3-colorable. This disproves a conjecture by12

Gimbel, Kündgen, Li and Thomassen (2019) that every 4-chromatic planar graph has fractional13

chromatic number strictly greater than 3.14

Lines 182

1 Introduction15

An arrangement of pseudocircles is a family of simple closed curves on the sphere or in16

the plane such that each pair of curves intersects at most twice. Similarly, an arrangement17

of pseudolines is a family of x-monotone curves such that every pair of curves intersects18

exactly once. An arrangement is simple if no three pseudolines/pseudocircles intersect in a19

common point and intersecting if every pair of pseudolines/pseudocircles intersects. Given20

an arrangement of pseudolines/pseudocircles, the arrangement graph is the planar graph21

obtained by placing vertices at the intersection points of the arrangement and thereby sub-22

dividing the pseudolines/pseudocircles into edges.23
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A (proper) coloring of a graph assigns a color to each vertex such that no two adjacent24

vertices have the same color. The chromatic number χ is the smallest number of colors25

needed for a proper coloring. Since both the well-known 4-color theorem and also Brook’s26

theorem imply the 4-colorability of planar graphs with maximum degree 4, the major ques-27

tion is: which arrangement graphs require 4 colors in any proper coloring?28

There exist arbitrarily large non-simple line arrangements that require 4 colors; see29

Figure 1(a). Using a line – great-circle transformation, one gets non-simple arrangements30

of great-circles with χ = 4. Koester [11] presented a simple arrangement of 7 circles with31

χ = 4 in which all but one pair of circles intersect, see Figure 3(b). Moreover, there are32

simple intersecting arrangements that require 4 colors but we do not have an infinite family.33

It is therefore natural to ask which simple intersecting arrangements of pseudocircles could34

possibly be 3-colorable.35

(a)36 (b)36

Figure 1 (a) A construction of non-simple line arrangements with χ = 4 which contains a
Moser spindle as subgraph (highlighted blue). The red subarrangement not intersecting the Moser
spindle can be chosen arbitrarly. (b) A simple intersecting arrangement of 5 pseudocircles with
χ = 4 and χf = 3.
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In 2000, Felsner, Hurtado, Noy and Streinu [3] studied various properties of arrangement41

graphs of pseudoline and pseudocircle arrangements, showing multiple interesting results42

concerning connectivity, Hamiltonicity, and colorability of those graphs. In this work, they43

also stated the following conjecture:44

I Conjecture 1 (Felsner et al. [3]). The arrangement graph of every simple arrangement of45

great-circles is 3-colorable.46

While the conjecture is fairly well known (cf. [13, 9, 17] and [18, Chapter 17.7]) there has47

been almost no progress in the last 20 years. Aichholzer, Aurenhammer, and Krasser verified48

the conjecture for up to 11 great-circles [12, Chapter 4.6.4].49

Results and outline50

In Section 2 we show that Conjecture 1 holds for 4-saturated arrangements of pseudocircles,51

i.e., arrangements where one color class of the 2-coloring of faces consists of triangles only.52

In Section 3 we extend our study of 4-saturated arrangements and present an infinite53

family of arrangements which require 4 colors. Our construction generalizes Koester’s [11]54
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arrangement of 7 circles which requires 4 colors; see Figure 3(b). Moreover, we believe that55

the construction results in infinitely many 4-vertex-critical arrangement graphs. Koester [11]56

obtained his example using a "crowning" operation, this operation actually yields infinite57

families of 4-regular planar 4-critical graphs, however, except for the 7 circles example these58

graphs are not arrangement graphs.59

In Section 4 we investigate the fractional chromatic number χf of arrangement graphs.60

This variant of the chromatic number is the objective value of the linear relaxation of the61

ILP formulation for the chromatic number. We show that intersecting arrangements of62

pseudocircles are “close” to being 3-colorable by proving that χf (A) ≤ 3 +O( 1
n ) where n is63

the number of pseudocircles of A. In Section 5, we present an example of a 4-edge-critical64

arrangement graph which is fractionally 3-colorable, and use this as a basis for constructing65

an infinite family of 4-regular planar graphs with the same property. This family disproves66

Conjecture 3.2 by Gimbel, Kündgen, Li and Thomassen [6] that every 4-chromatic planar67

graph has fractional chromatic number strictly greater than 3.68

Last but not least, we summarize our computational data, report on some new discoveries69

related to Conjecture 1, and present strengthened versions of Conjecture 1 in Section 6.70

2 4-saturated arrangements are 3-colorable71

The maximum number of triangles in arrangements of pseudolines and pseudocircles has72

been studied intensively, see e.g. [7, 14, 2] and [5]. By recursively applying the "doubling73

method" Harborth [8] and also [14, 2] proved the existence of infinite families of 4-saturated74

arrangements of pseudolines. A doubling construction for pseudocircle arrangements sim-75

ilarly yields infinitely many 4-saturated arrangements of great-pseudocircles. Figure 2 il-76

lustrates the doubling method applied to an arrangement of great-pseudocircles. It will be77

relevant later that arrangements obtained via doubling contains pentagonal cells. Note that78

for n ≡ 2 (mod 3) there is no 4-saturated intersecting pseudocircle arrangement because79

the number of edges of the arrangement graph is not divisible by 3.80

(a)81 (b)81

Figure 2 The doubling method applied to an arrangements of 6 great-pseudocircle. The red
pseudocircle is replaced by a cyclic arrangement. Triangular cells are shaded gray.

82

83

I Theorem 2. Every 4-saturated arrangement A of pseudocircles is 3-colorable.84
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Proof. Let H be a graph whose vertices correspond to the triangles of A and whose edges85

correspond to pairs of triangles sharing a vertex of A. This graph H is planar, 3-regular and86

bridgeless. Hence, Tait’s theorem, a well known equivalent of the 4-color theorem, asserts87

that H is 3-edge-colorable, see e.g. [1] or [16]. The edges of H correspond bijectively to the88

vertices of the arrangement A and, since adjacent vertices of A are incident to a common89

triangle, the corresponding edges of H share a vertex. This shows that the graph of A is90

3-colorable. J91

3 Constructing 4-chromatic arrangement graphs92

In this section, we describe an operation that extends any 4-saturated intersecting arrange-93

ment of pseudocircles with a pentagonal cell (which is 3-colorable by Theorem 2), to a94

4-chromatic arrangement of pseudocircles by inserting one additional pseudocircle. This95

operation generalizes the non-4-colorable arrangement graph constructed by Koester.96

The corona extension We start with a 4-saturated arrangement of pseudocircles which97

contains a pentagonal cell D. By definition, in the 2-coloring of the faces one of the two98

color classes consists of triangles only; see e.g. the arrangement from Figure 3(a). Since the99

arrangement is 4-saturated, the pentagonal cell D is surrounded by triangular cells. As100

illustrated in Figure 3(b) we can now insert an additional pseudocircle close to D. This101

newly inserted pseudocircle intersects only the 5 pseudocircles which bound D, and in the102

so-obtained arrangement one of the two dual color classes consists of triangles plus the103

pentagon D. It is interesting to note that the arrangement depicted in Figure 3(b) is precisely104

Koester’s arrangement [10, 11].105

(a)106 (b)106

Figure 3 (a) A 4-saturated arrangement of 6 great-circles and (b) the corona extension at its
central pentagonal face. The arrangement in (b) is Koester’s [10] example of a 4-critical 4-regular
planar graph.

107

108

109

The following proposition plays a central role in this section. Due to space constraints,110

we defer its proof to Appendix A.111

I Proposition 3. The corona extension of a 4-saturated arrangement of pseudocircles with112

a pentagonal cell D is 4-chromatic.113
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By applying the corona extension to members of the infinite family of 4-saturated ar-114

rangements with pentagonal cells (cf. Section 2), we obtain an infinite family of arrangements115

that are not 3-colorable.116

I Theorem 4. There exists an infinite family of 4-chromatic arrangements of pseudocircles.117

Koester [11] defines a related construction which he calls crowning and constructs his ex-118

ample by two-fold crowning of a graph on 10 vertices. He also uses crowning to generate an119

infinite family of 4-regular 4-critical graphs. In the full version of our paper, we will present120

sufficient conditions to obtain a 4-vertex-critical arrangement via the corona extension. We121

conclude this section with the following conjecture:122

I Conjecture 5. There exists an infinite family of arrangement graphs of arrangements of123

pseudocircles that are 4-vertex-critical.124

4 Fractional colorings125

In this section, we investigate fractional colorings of arrangements. A b-fold coloring of a126

graph G with m colors is an assignment of a set of b colors from {1, . . . ,m} to each vertex127

of G such that the color sets of any two adjacent vertices are disjoint. The b-fold chromatic128

number χb(G) is the minimum m such that G admits a b-fold coloring with m colors. The129

fractional chromatic number of G is χf (G) := lim
b→∞

χb(G)
b = inf

b

χb(G)
b . With α being the130

independence number and ω being the clique number, the following inequalities holds:131

max
{
|V |
α(G) , ω(G)

}
≤ χf (G) ≤ χb(G)

b
≤ χ(G). (1)132

I Theorem 6. Let G be the arrangement graph of an intersecting arrangement A of n133

pseudocircles, then χf (G) ≤ 3 + 6
n−2 .134

Sketch of the proof. Let C be a pseudocircle of A. After removing all vertices along C135

from the arrangement graph G we obtain a graph which has two connected components A136

(vertices in the interior of C) and B (vertices in the exterior). Let C ′ be a small circle137

contained in one of the faces of A, the Sweeping Lemma of Snoeyink and Hershberger [15]138

asserts that there is a continuous transformation of C ′ into C which traverses each vertex139

of A precisely once. In particular, when a vertex is traversed, at most two of its neighbors140

have been traversed before. Hence, we obtain a 3-coloring of the vertices of A by greedily141

coloring vertices in the order in which they occur during the sweep. An analogous argument142

applies to B. Taking such a partial 3-coloring of G for each of the n pseudocircles of A, we143

obtain for each vertex a set of n − 2 colors, i.e., an (n − 2)-fold coloring of G. The total144

number of colors used is 3n. The statement now follows from inequality (1). J145

5 4-edge-critical planar graphs which are fractionally 3-colorable146

From our computational data (cf. [4]) , we observed that some of the arrangements such as147

the 20 vertex graph depicted in Figure 1(b) have χ = 4 and χf = 3, and therefore disprove148

Conjecture 3.2 by Gimbel et al. [6]. Moreover, we determined that there are precisely 17 4-149

regular 18-vertex planar graphs with χ = 4 and χf = 3, which are minimal in the sense that150

there are no 4-regular graphs on n ≤ 17 vertices with χ = 4 and χf = 3. Each of these 17151

graphs is 4-vertex-critical and the one depicted in Figure 4(a) is even 4-edge-critical.152

EuroCG’21
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(a)153 (b)153

Figure 4 (a) A 4-edge-critical 4-regular 18-vertex planar graph with χ = 4 and χf = 3 and
(b) the crowning extension at its center triangular face.

154

155

Starting with a triangular face in the 4-regular 4-edge-critical graph depicted in Fig-156

ure 4(a) and repeatedly applying the Koester’s crowning operation [11] as illustrated in157

Figure 4(b) (which by definition preserves the existence of a facial triangle), we deduce the158

following theorem, a formal proof of which is found in Appendix B.159

I Theorem 7. There exists an infinite family of 4-critical 4-regular planar graphs G with160

fractional chromatic number χf (G) = 3.161

6 Discussion162

With Theorem 2 we gave a proof of Conjecture 1 for4-saturated great-pseudocircle arrange-163

ments. While this is a very small subclass of great-pseudocircle arrangements it is reasonable164

to think of it as a class which is hard for 3-coloring. The rational for such thoughts is that165

triangles restrict the freedom of extending partial colorings. Our computational data indi-166

cates that sufficiently large intersecting pseudocircle arrangements that are diamond-free,167

i.e., no two triangles of the arrangement share an edge, are also 3-colorable. Computations168

also suggest that sufficiently large great-pseudocircle arrangements have antipodal colorings,169

i.e., 3-colorings where antipodal points have the same color. Based on the experimental data170

we propose the following strengthened variants of Conjecture 1.171

I Conjecture 8. The following three statements hold.172

(a) Every diamond-free intersecting arrangement of n ≥ 6 pseudocircles is 3-colorable.173

(b) Every intersecting arrangement of sufficiently many pseudocircles is 3-colorable.174

(c) Every arrangement of n ≥ 7 great-pseudocircles has an antipodal 3-coloring.175
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A Proof of Proposition 3216

The 4-colorability of corona extensions follows from the following lemma and inequality (1).217

I Lemma 9. Let G be a 4-regular planar graph. If in the 2-coloring of the faces of G, one218

of the classes consists of only triangles and a single pentagon, then α(G) < |V (G)|
3 .219

Proof. Color the faces of G = (V,E) with black and white. Let the black class contain only220

triangles and one pentagon. Let 4 be the number of these triangles and let α := α(G).221

Given an independent set I of cardinality α, we count the number of pairs (v, F ), where v222

is a vertex of I and F is a black face of A incident to v. There are 2 such faces for every223

v ∈ I, hence, 2α pairs in total. Since any independent set of G contains at most one vertex224

of of each triangle and at most two vertices of the pentagon, we have225

2α ≤ 4+ 2. (2)226

Since G is 4-regular, it has exactly |E| = 2|V | edges. As every edge is incident to exactly227

one black face, we also have |E| = 34+ 5. This yields the equation228

34+ 5 = 2|V |. (3)229

From equation (3), we conclude that 4 is odd. Therefore we can strengthen equation (2) to230

2α ≤ 4+ 1. (4)231

Combining equations (3) and (4) then gives 6α ≤ 34+3 = 2|V |−2 and hence α < |V |/3. J232

B Proof of Theorem 7233

When he invented the crowning operation, Köster [11] proved the following.234

I Proposition 10. Let G be a 4-regular plane graph with a facial triangle T . If G is 4-edge-235

critical, then so is G ◦ T .236

We further have the following observation.237

I Lemma 2.1. Let G be a 4-regular plane graph with a facial triangle T . If χf (G) = 3, then238

χf (G ◦ T ) = 3.239

Proof. Suppose χf (G) = 3, then it follows from the representation of χf (G) as the optimal240

value of a rational linear program that there exists b ∈ N such that G has a (3b, b)-coloring.241

For every vertex v ∈ V (G), let c(v) ∈
([3b]
b

)
be the assigned sets of colors. Let T = uvw,242

then we know that c(u), c(v), c(w) must be pairwise disjoint and hence form a partition of243

{1, . . . , 3b}. Therefore, possibly after relabelling the colors, we may assume that c(u) =244

{1, . . . , b} =: A1, c(v) = {b + 1, . . . , 2b} =: A2, c(w) = {2b + 1, . . . , 3b} =: A3. It is easy to245

see that the subgraph of G ◦ T induced by the vertices u, v, w and the nine new vertices in246

V (G ◦ T ) \ V (G) is properly 3-vertex-colorable and hence admits a proper coloring with the247

color-set {A1, A2, A3} such that u, v and w are assigned, respectively, the colors A1, A2, A3.248

It is now obvious that joining this coloring of the nine additional vertices to the coloring c of249

G defines a (3b, b)-coloring of G ◦ T . This proves χf (G ◦ T ) ≤ 3, and clearly χf (G ◦ T ) ≥ 3250

since G ◦ T contains a triangle. J251

Starting with a facial triangle in the 4-regular 4-edge-critical graph depicted in Figure 4252

and repeating the crowning operation (which by definition preserves the existence of a facial253

triangle), we deduce the theorem.254


	Introduction
	-saturated arrangements are 3-colorable
	Constructing 4-chromatic arrangement graphs
	Fractional colorings
	4-edge-critical planar graphs which are fractionally 3-colorable
	Discussion
	Proof of Proposition 3
	Proof of Theorem 7

