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Abstract

We use Schnyder woods of 3-connected planar graphs to produce convex straight line
drawings on a grid of size (n − 2 − ∆) × (n − 2 − ∆). The parameter ∆ ≥ 0 depends on
the Schnyder wood used for the drawing. This parameter is in the range 0 ≤ ∆ ≤ n

2
− 2.

The algorithm is a refinement of the face-counting-algorithm, thus, in particular, the size
of the grid is at most (f − 2) × (f − 2).

The above bound on the grid size simultaneously matches or improves all previously
known bounds for convex drawings, in particular Schnyder’s and the recent Zhang and
He bound for triangulations and the Chrobak and Kant bound for 3-connected planar
graphs. The algorithm takes linear time.

The drawing algorithm has been implemented and tested. The expected grid size for
the drawing of a random triangulation is close to 7

8
n × 7

8
n. For a random 3-connected

plane graph, tests show that the expected size of the drawing is 3

4
n × 3

4
n.

Mathematics Subject Classifications (2000). 05C10, 68R10, 68U05.

1 Introduction

We investigate crossing-free straight line drawings of planar graphs with the restriction that
the vertices of the graph have to be located at integer grid points. The aim is to keep the
area of an axis-aligned rectangle which covers the drawing as small as possible. It is known
that a square of side-length n− 2, i.e., a (n− 2)× (n− 2) grid is enough to host every planar
graph.

A drawing with the property that the boundary of every face (including the outer face)
is a convex polygon is called a convex drawing. Convex drawings exist for every 3-connected
planar graph. Again the aim is to keep the area of such a drawing as small as possible.

It is important to distinguish between convex drawings and strictly convex drawings.
A drawing is strictly convex if every interior angle is less than 180◦ and every outer angle
greater than 180◦. In this paper we deal with convex drawings. The grid size for strictly
convex drawings was recently studied by Rote [18], he proves that an O(n7/3)×O(n7/3) grid
is enough for strictly convex drawings of planar graphs with n vertices. The construction is
based on a convex drawing obtained via Schnyder woods.

An extended abstract of this research was contributed to the proceedings of Graph Drawing ’04 [1]
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1.1 Previous work

The question whether every planar graph has a straight line embedding on a grid of poly-
nomial size was raised by Rosenstiehl and Tarjan [17]. Unaware of the problem Schny-
der [20] constructed a barycentric representation which translates to an embedding on the
(2n − 5)× (2n − 5) grid. The first explicit answer to the question was given by de Fraysseix,
Pach, and Pollack [5], [6]. They construct straight line embeddings on a (2n − 4) × (n − 2)
grid and show that the embedding can be computed in O(n log n). De Fraysseix et al. also
observed a lower bound of (2

3
n − 1) × (2

3
n − 1) for grid embeddings of the n vertex graph

containing a nested sequence of n/3 triangles. It is conjectured that this is the worst case,
i.e., that every planar graph can be embedded on the (2

3
n − 1) × (2

3
n − 1) grid. 4-connected

planar graphs with at least four vertices on the outer face can be drawn even more compactly.
Work of He [12] and Miura et al. [16] shows that these graphs can be embedded on the n

2
× n

2

grid.
In his second paper [21] Schnyder proves the existence of an embedding on the (n − 2) ×

(n−2) grid which can be computed in O(n) time. In general Schnyder’s result from [21] is still
unbeaten. Lately, Zhang and He [26] used the minimum Schnyder wood of a triangulation to
prove a bound of (n− 1−∆ )× (n− 1−∆ ), where ∆ is the number of cyclic faces in the
minimum Schnyder wood.

Though it is implicitly contained in Steinitz’s characterization of 3-connected planar
graphs as the skeleton graphs of 3-dimensional polytopes the existence of convex drawings
for these graphs is known as Tutte’s theorem. The idea for Tutte’s proof [24], [25] is known
as spring-embedding. Technically the embedding is obtained as solution to a system of linear
equations. Kant [13] has extended the approach of de Fraysseix et al. to construct convex
drawings on the (2n − 4) × (n − 2) grid. The grid size was reduced to (n − 2) × (n − 2)
by Chrobak and Kant [4]. Schnyder and Trotter [22] have worked on ideas for convex grid
embeddings which are based on Schnyder woods . The basic approach was independently
worked out by Di Battista et al. [7] and Felsner [8]. This results in convex grid drawings
on the (f − 1) × (f − 1) grid, where f is the number of faces of the graph. In this paper
this basic algorithm is used but the size of the required grid is reduced by some new ideas.
Loosely speaking, some edges are eliminated which results in the reduction of f . This can
be done until at most n − ∆ faces remain. The eliminated edges can be reinserted in the
resulting drawing on the (n−1−∆)× (n−1−∆) grid, with ∆ ≥ 0. ∆ ≥ n−f . The drawing
procedure can be implemented to run in linear time. The algorithm has been implemented
and integrated into the PIGALE library∗.

1.2 Organization of the paper

In the next section we introduce Schnyder woods. It is shown how to use Schnyder woods
to obtain convex drawings of 3-connected planar maps. The lattice of Schnyder woods is
discussed and a new operation called merge is introduced as a tool for transforming Schnyder
woods and their underlying graphs.

Section 3 contains the generic drawing algorithm. It is shown that this algorithm produces
convex drawings and the size of the grid required for the drawing is analyzed. The main
ingredient of this analysis is a bound on the number of merges applicable to a Schnyder

∗PIGALE is an open-source library in wich is implemented numerous planar graphs algorithm. It is
developped and maintained by H. de Fraysseix and P. Ossona de Mendez. urlhttp://pigale.sourceforge.net
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wood. In particular it is shown that starting with the Schnyder wood of a triangulation a
sequence of n − 4 + ∆ − ∆ merge operations is admissible.

Section 4 adds some ideas for further reduction of the grid size. The first of these allows
a decrease of the side-length of the grid by one. This small reduction, however, is crucial to
match Schnyder’s (n−2)× (n−2) bound for planar triangulations. We present a second idea
for further reducing the grid size. Basically, the improvement comes from disregarding some
faces. Although the technique is appealing it has so far resisted our attempts of proving that
it guarantees some non-zero gain. We adapt the method to produce compact convex drawings
in the slightly more general case of internally 3-connected planar graphs.

Finally, we report some experimental results. Tests with the implementation allow to
guess the average reduction in size obtained from the parameter ∆ or from disregarding
some faces.

2 Schnyder Woods

Schnyder defined special colorings and orientations of the internal edges of a triangulation.
In [20] and [21] he applied these Schnyder woods to characterize planar graphs via order
dimension and to draw planar graphs on small grid sizes. Here we describe a generalization
of Schnyder woods for 3-connected planar graphs. Such a generalization has been presented
in [7] and [8], in our exposition we follow [9].

A planar map M is a simple planar graph G together with a fixed planar embedding
of G in the plane. A suspension Mσ of M is obtained as follows: Three different vertices
from the outer face of M are specified and named a1, a2, a3 in clockwise order. (For ease of
visualization we identify the indices 1, 2, 3. Moreover, we assume a cyclic structure on the
indices such that i + 1 and i− 1 are always defined). At each of the three special vertices ai,
called suspension vertices, a half-edge reaching into the outer face is attached.

Let Mσ be a suspension of a planar map. A Schnyder wood is an orientation and coloring
of the edges of Mσ with the colors 1, 2, 3 satisfying the following rules.

(W1) Every edge e is oriented by one or two opposite directions. The directions of edges are
colored such that if e is bi-directed the two directions have distinct colors.

(W2) The half-edge at ai is directed outwards and colored i.

(W3) Every vertex v has outdegree one in each color. The edges e1, e2, e3 leaving v in colors
1,2,3 occur in clockwise order. Each edge entering v in color i enters v in the clockwise
sector from ei+1 to ei−1. See Figure 1.

(W4) There is no interior face whose boundary is a directed cycle in one color.

3

2

2
2

1

3

3

2
1 1 1

Figure 1: Edge colorings∗ and orientations at a vertex.
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A suspension is internally 3-connected if adding a new vertex v∞ as the second endpoint
for the three half-edges the graph obtained is planar and 3-connected.

Fact 1. There is a Schnyder wood for Mσ, if and only if Mσ is the suspension Mσ internally
3-connected.

The proof that only internally 3-connected suspensions admit a Schnyder wood is given
by Theorem 5.1 of [15].

Given a Schnyder wood, let Ti be the set of edges colored i with the direction they have
in this color. Since every internal vertex has outdegree one in Ti every v is the starting vertex
of a unique i-path Pi(v) in Ti.

Fact 2. The digraph Ti is acyclic, even more, Ti is a tree with root ai.

2.1 Convex drawings via face-counting

Schnyder and Trotter [22] had some ideas of using Schnyder woods for convex grid embeddings.
The approach has been worked out in [7] and [8]. We describe the technique omitting some
details.

From the vertex condition (W3) it can be deduced that for i 6= j the paths Pi(v) and
Pj(v) have v as the only common vertex. Therefore, P1(v), P2(v), P3(v) divide M into three
regions R1(v), R2(v) and R3(v), where Ri(v) denotes the region bounded by and including
the two paths Pi−1(v) and Pi+1(v), see Figure 2.

2 3

2 3
2

11

1

3
1

3 2

1

3
3

3

2

2

1

2

3

3 1
2

1

2

1

R1(v)

v
R3(v)

R2(v)

Figure 2: A Schnyder wood and the regions of vertex v.

Fact 3. (a) Ri(u) ⊆ Ri(v) iff u ∈ Ri(v).

(b) Ri(u) = Ri(v) iff there is a path of bicolored edges in colors i − 1 and i + 1 connecting u
and v.

(c) For all u, v there are i and j with Ri(u) ⊂ Ri(v) and Rj(v) ⊂ Rj(u).

∗ If you can’t see the colors look up the colorful electronic versions at the authors’ homepages.
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The face-count of a vertex v is the vector (v1, v2, v3), where vi is defined as:

vi = The number of faces of M contained in region Ri(v).

Fact 4. For every edge {u,w} and vertex v 6= u,w there is a color i with {u,w} ∈ Ri(v),
hence, ui ≤ vi and wi ≤ vi.

Inclusion properties of the three regions of adjacent vertices imply:

Fact 5. (a) If edge (u, v) is uni-directed in color i, then
ui < vi, ui−1 > vi−1 and ui+1 > vi+1.

(b) If (u, v) is directed in color i − 1 and (v, u) in color i + 1, then
ui = vi, ui−1 > vi−1 and ui+1 < vi+1.

Clearly, each vertex v has v1+v2+v3 = f−1, where f is the number of faces of M . Hence,
we have a mapping of the vertices of the graph to the plane Tf = {(x1, x2, x3) : x1 +x2 +x3 =
f − 1} in IR3. Connecting the points corresponding to adjacent vertices by the line segment
between them yields a drawing µ(M) of M in the plane Tf .

The color and orientation of edges are nicely encoded in this drawing: Let v be a vertex
with µ(v) = (v1, v2, v3). The three lines x1 = v1, x2 = v2 and x3 = v3 partition the plane Tf

into six wedges with apex µ(v). By Fact 5 the color and orientation of edges incident to v is
determined by the wedge containing them, see Figure 3. In particular the bicolored edges are
the edges supported by the lines defining the wedges.

2

1
3

2
1

3

11

2

x3 = v3

x1 = v1

x2 = v2

v

Figure 3: Wedges and edges at a vertex v in the plane Tf .

Theorem 1. The drawing µ(M) is a convex drawing of M in Tf . Dropping the third coor-
dinate yields a convex drawing of M on the (f − 1) × (f − 1) grid.

Proof. (sketch)

• For every edge {u,w} and vertex v 6= u,w the point µ(v) is not contained in the segment
[µ(u), µ(v)] representing the edge.

• There are no crossing edges in µ(M), i.e., the embedding is planar. (This can be concluded
from the observation that face-counting yields a weak barycentric embedding as defined
by Schnyder [21]).

• The outgoing edges at a vertex (see Figure 3) guarantee that all interior angles of µ(M)
are ≤ π, i.e., the embedding is convex.

• Planarity and convexity are preserved by the projection of the drawing from Tf to the
plane x3 = 0.
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2.2 The lattice of Schnyder woods

In general the suspension Mσ of an internally 3-connected planar map will admit many
Schnyder woods. Felsner [10] has shown that the set of all Schnyder woods of a given Mσ has
the structure of a distributive lattice. As we will make use of some elements of this theory
we recall some definitions and the main results.

Think of the three half-edges of Mσ as noncrossing infinite rays. These rays partition the
outer face of M into three parts. The suspension dual Mσ∗ of Mσ is the dual of this map.
Thus Mσ∗ has a triangle b1, b2, b3 corresponding to the unbounded face of M . Half-edges
reaching into the unbounded face of Mσ∗ are attached to the three suspension vertices bi.
Figure 4 shows an example.

b1

a3 a2

b3

a1

b2

Figure 4: The suspension dual of the example from Figure 2.

The completion M̃σof a plane suspension Mσ and its dual Mσ∗ is obtained as follows:
Superimpose Mσ and Mσ∗ so that exactly the primal dual pairs of edges cross (the half edge
at ai has a crossing with the dual edge {bj , bk}, for {i, j, k} = {1, 2, 3}). At each crossing
place a new vertex such that this new edge vertex subdivides the two crossing edges.

The completion M̃σ is planar, every edge-vertex has degree four and there are six half-
edges reaching into the unbounded face.

A 3-orientation of the completion M̃σ of Mσ is an orientation of the edges of M̃σ such
that:

(O1) outdeg(v) = 3 for all primal- and dual-vertices v.

(O2) indeg(ve) = 3 for all edge-vertices ve (hence, outdeg(ve) = 1).

(O3) All half-edges are out-edges of their vertex.

Theorem 2. Let Mσ be a suspension of an internally 3-connected plane graph M . The
following structures are in bijection:

(1) Schnyder woods of Mσ.

(2) Schnyder woods of the suspension dual Mσ∗.

(3) 3-orientations of the completion M̃σ.

The bijections are illustrated in Figure 5. The proof of this theorem is given in [10]. The
proof of Lemma 2 contains a piece of detail about the bijections.

The lattice structure of Schnyder woods is best understood by looking at 3-orientations:
Let X be a 3-orientation and let C be a directed cycle of X. Reverting the orientation
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b1

b2

a1

a2a3

b3

Figure 5: The bijections for Theorem 2

of all edges of C yields another 3-orientation XC . If C is a simple directed cycle it has a
connected interior and we can speak of the clockwise and the counterclockwise order of C.
Define X ≻ XC if C is a clockwise directed cycle in X. The transitive closure ≻∗ of this
relation is an order relation on the set of 3-orientations.

Theorem 3. The relation ≻∗ is the order relation of a distributive lattice on the set of 3-
orientations of the completion M̃σ of a suspension Mσ of an internally 3-connected planar
map. The unique minimum 3-orientation contains no clockwise directed cycles.

In view of Theorem 2 a suspension Mσ has unique minimum Schnyder wood SMin. Figure 6
shows two sub-structures which are impossible in SMin.

• A uni-directed edge incoming at v in color i+1 such that the counterclockwise next edge
is bi-directed, outgoing at v in color i − 1 and incoming in color i.

• A clockwise triangle of uni-directed edges, having colors i, i + 1, i + 2 in this clockwise
order.

An algorithm to compute SMin has been described and analyzed by Fusy et al. [11]. The
result is the following:

Theorem 4. Let Mσ be a suspended 3-connected planar map. The minimal Schnyder Wood
SMin of Mσ can be computed in linear time.

2

1

3

1
3

2

Figure 6: Two types of clockwise cycles in 3-orientations and the corresponding sub-structures
of Schnyder woods.

2.3 Merging and splitting

The operations merge and split introduced in this section operate on Schnyder woods and the
underlying graph. Merge and split can be seen as inverse operations, corresponding to the
deletion and insertion of an edge.
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Given a Schnyder wood, a knee at vertex v is an ordered pair of uni-directed edges adjacent
at an angle of v such that the first the edges is incoming and the second outgoing at v. Knees
come in two kinds, if the in-edge of the knee is the clockwise neighbor of the out-edge at v
we speak of a cw-knee, otherwise, if the in-edge of the knee is the counterclockwise neighbor
of the out-edge it is a ccw-knee.

Let (u, v), (v,w) be a knee at v. Suppose that the color of (v,w) is i; by the vertex
condition the color of (u, v) is i−1 if it is a cw-knee and i+1 if it is a ccw-knee. The merge of
the knee consists of the deletion of the out-edge (v,w) while making (u, v) a bi-directed edge
outgoing at v in color i and incoming in the same color as before. Depending on the type of
the knee we distinguish between clockwise and counterclockwise merge operations. Figure 7
illustrates the definition.

i
i

v
i + 1

w

u i

i
i + 1

i − 1

u
v

w

i − 1
cw-split ccw-split

cw-merge ccw-merge

Figure 7: Clockwise and counterclockwise merge and split.

Lemma 1. Let S be a Schnyder wood, the coloring and orientation of edges after merging a
knee is again a Schnyder wood.

Proof. The first three conditions (W1), (W2) and (W3) of Schnyder woods obviously remain
true after the merge. Instead of arguing for (W4) we use the bijection with 3-orientations
(Theorem 2). The merge of the knee corresponds to the deletion of an edge-vertex and
the merge of two face-vertices as shown in Figure 8. The result of the merge is again a
3-orientation.

Figure 8: A cw-merge in a 3-orientation.

A split of a bi-directed edge is the inverse operation of a merge. A split, however, is not
determined by the choice of a bi-directed edge. The bi-directed edge can only split into one
of its adjacent faces, this corresponds to the choice for the split of being the inverse of a
cw-merge or a ccw-merge, i.e., a cw-split or a ccw-split. This choice determines the resulting
color of the edge. If this choice is fixed, there can still be several choices for the second
endpoint of the split edge.

At this point we stay with the remark that every bi-directed edge can be split, actually,
it can be split by a cw-split or a ccw-split. To see that this should be true look at Figure 8
from right to left.
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In the context of this paper we only need one very specific type of split. The short cw-split
is the inverse of a cw-merge with the additional property that (u,w) is an edge, i.e., u, v,w
form a triangle.

3 The Drawing Algorithm

Let M be a 3-connected planar map with n vertices and f faces. The steps of the drawing
algorithm with input M are the following:

(A1) Choose three vertices from the outer face for the suspension Mσ.

(A2) Compute the minimum Schnyder wood SMin for Mσ and let S0 = SMin.

(A3) Compute a maximal cw-merge sequence S0 → S1 → . . . Sk of Schnyder woods, i.e., Si+1

is obtained from Si by a cw-merge and Sk contains no cw-knee.

(A4) Use face-counting to draw Sk on the (f − k − 1) × (f − k − 1) grid.

(A5) Reinsert all edges which have been deleted by merge operations into the drawing from
the previous step.

3
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1

1

2

2 2

2
2

2

2

2

3

3

3

3 3

3

3

3

2 3

1

3

3

3

3

3

33

3

2

2

2

2

2

2

2
2 1

1

1

1

1

1

1

1

1

1

1

Figure 9: On the left a Schnyder wood S0, cw-knees are indicated by arcs. On the right the
final Schnyder wood of a merge sequence.

With Figure 9 we illustrate step (A3) of the algorithm.
Note from the example that the Schnyder woods of a merge sequence may correspond to

suspended maps which are only internally 3-connected.
The gray triangle in the left part of Figure 9 contains a ccw-knee which disappears with a

cw-merge (see the right part of the figure). An important fact for the analysis of our algorithm
is that cw-merges never make a cw-knee disappear.

3.1 The drawing is convex

Theorem 5. Reinserting all the edges which have been deleted by a sequence of cw-merge
operations into the drawing of Sk obtained in step (A4) keeps the drawing planar and convex.

The drawing steps of the algorithm ((A4) and (A5)) are illustrated in Figure 10. Essential
for the proof of the theorem is the following lemma:

9



2

3

33 1

1

1

1

1 1 1 1

2 2

2

2

2

2

2

2 3

1

3

3
3 3

3

Figure 10: The example graph with n = f = 9 drawn on the 6 × 6 grid.
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Figure 11: The generic structure of a face as described by Lemma 2 and two concrete instances.

Lemma 2. Given a Schnyder wood of a suspended map Mσ and let F be an interior face.
The orientation and coloring of edges around F obey the following rule (see Figure 11):

• In clockwise order the types of edges at the boundary of the face can be described as follows
(in case of bi-directed edges the clockwise color is noted first): One edge from the set {1-
cw, 3-ccw, 1-3}, any number (may be 0) of edges 2-3, one edge from the set {2-cw, 1-ccw,
2-1}, any number of edges 3-1, one edge from the set {3-cw, 2-ccw, 3-2}, any number of
edges 1-2.

Proof. There is a bijection between Schnyder woods of Mσ and the dual Mσ∗ (Theorem 2).
This bijection can be constructed edge by edge, the rule is shown in Figure 12

1

3 1

2
2

1

3 3

2

Figure 12: Rule for orientation and coloring of dual edges.

Given this rule the statement of the lemma is equivalent to the vertex condition (W3) at
the vertex vF dual to face F .
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In Figure 11 the faces are drawn with a surrounding triangle. It is one of the features of
drawing via face counting as described in Subsection 2.1, that all the vertices of a face sit on
the boundary of such a triangle. Planarity of the drawing implies that there are no vertices
in the interior of the face. Even more is true: there are no vertices in the (open) interior of
the bounding triangle for the face.

Since we will make use of the shape of a face in the drawing we include a proof.

Lemma 3. Given a suspended map Mσ with a Schnyder wood. Let µ(M) be the face-count
drawing of M in the plane x1 + x2 + x3 = f − 1 and let F be an interior face of M . Then the
vertices of F are placed on the boundary of a triangle with sides x1 = c1, x2 = c2 and x3 = c3

as shown in Figure 11.

Proof. Lemma 2 gives information about colorings and orientation of edges around F . Fact 5
and Figure 3 state how edges of a given color and orientation are embedded with respect to
their incident vertices. In combination this implies the statement of the lemma.

Proof of Theorem 5. Consider a merge operation performed during step (A3) of the algorithm.
The bi-directed edge e resulting from the merge is an edge of Sk. For concreteness let us
assume that e = (u, v) was originally colored 3 and the merge was a cw-merge at v. It follows
that the edge e′ = (v,w) that was merged into e was colored 1 (this is the situation shown in
the left part of Figure 7).

In the drawing of Sk consider the face F which is to the left of (v, u) and let ∇ be the
bounding triangle for F (Lemma 3). Given the colors of the bicolored edge e, it follows from
Lemma 3 that v and u belong to the boundary line of ∇ with equation x2 = c2, moreover,
u1 > v1. Vertex w also belongs to F . The edge e′ removed in the merge was entering w
between the 2-outgoing and the 3-outgoing edge in clockwise order. Therefore, F is contained
in the region R1(w).

Suppose that the area of F is in the region R1(w) with respect to the final Schnyder wood
Sk of the merge sequence. In this case vertex w is placed on the boundary line of ∇ with
equation x1 = c1. The positions of v and w in the triangle ∇ imply that the straight edge
(v,w) can be added to the drawing.

The alternative is that F does not remain in the region R1(w). This can only happen if
there is a later merge using a knee at w which contains F in its angle. Since this is a cw-merge
it must merge the 2-outgoing edge at w into an 1-incoming. The area of F is in the region
R3(w) after this merge. Further merges cannot change this situation. In this case vertex w is
placed on the boundary line of ∇ with equation x3 = c3. From the positions of v and w in the
triangle ∇ we can again conclude that the straight edge (v,w) can be added to the drawing.

A given face F of the drawing of Sk may be the host for more than one reinsertion of a
merge-edge. We can argue that all these reinsertions can be done without conflict as follows:
The boundary of face F is a cycle C in the planar map M . Edges which have disappeared
while transforming the Schnyder wood S0 corresponding to M to Sk are chords of C. In M
all these chords are drawn without crossings in the interior of C. In the drawing of Sk the
cycle C is the boundary of the convex face F . Hence, the chords can be reinserted without
crossings.

It remains to verify the convexity of all faces after reinsertion of edges. The reinsertion
partitions a convex face F into pieces using a set of non-crossing straight edges each connecting
two points on the boundary of F . From the definition of a convex set it follows that all the
pieces, i.e., faces of M , are convex as well.
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3.2 The number of merges

Essential for the grid-size required for the drawing produced by the algorithm is the length
k of the merge sequence computed in step (A3). The main result in this subsection is a
lower bound for k in terms of easily recognizable substructures of the initial Schnyder wood
S computed in step (A2) of the algorithm.

As a warm-up let us consider the case where M is a triangulation and S is an arbitrary
Schnyder wood of M . Consider the (2n−4)−4 triangles of S which are bounded by three uni-
directed edges (only external edges are bi-directed). These triangles can be partitioned into
two classes: Class one are those with at least two clockwise oriented edges on the boundary
and class two are those with at least two counterclockwise edges on the boundary. Suppose
that the number C1 of triangles of class one is the larger one or that C1 and C2 are equal, i.e.,
C1 ≥ n−4 ≥ C2. In a triangle T of class one there is a knee of two consecutive clockwise edges
of T , this knee is a candidate for a clockwise merge. Since every edge is clockwise only for
one of its neighboring triangles these C1 merges can be performed independently. It follows
that starting from S there is a merge sequence of length k ≥ C1 ≥ n−4. This estimate yields
drawing of triangulations on grids of size at most (f − (n − 4) − 1) × (f − (n − 4) − 1) =
(n − 1) × (n − 1).

Let again M be a triangulation with a Schnyder wood S. We aim for a more precise
estimate for the number of merges that can be applied to S. Consider a cw-knee at v, let i
be the color of the incoming edge (u, v) of the knee. The edge (u, v) is a witness that v is an
inner vertex of the tree Ti of i-colored edges in S. Conversely, if v is an inner vertex of Ti,
then the outgoing edge in color i+1 together with its adjacent incoming edge in color i form a
cw-knee. For fixed S this proves a bijection between inner vertices of Ti and cw-knees with an
incoming edge of color i. The number of cw-knees thus is

∑
i inner(Ti). If a uni-directed edge

(v1, v2) participates at two different cw-knees, then both v1 and v2 are vertices of a cw-knee.
It follows that the triangle to the right of (v1, v2) is a clockwise triangle of S. A clockwise
triangle contributes three cw-knees which are pairwise incompatible. If ∆S is the number of
clockwise triangles of S, then the number of cw-merges that can be performed with initial
Schnyder wood S is at least

∑
i inner(Ti)−2∆S . This leads to Proposition 1 which makes use

of the following counts for a Schnyder wood S of a plane triangulation:

• ∆S is the number of clockwise triangles of S.

• ∆S be the number of counterclockwise triangles of S.

Proposition 1. Let S be a Schnyder wood with ∆S clockwise and ∆S counterclockwise tri-
angles. The number of cw-merges applicable in a merge sequence starting with S is at least
n − 4 − ∆S + ∆S .

Proof. We have already proven the lower bound
∑

i inner(Ti) − 2∆S for the number of cw-
merges applicable in a merge sequence starting with S. Thus it is enough to prove:∑

i inner(Ti) = n − 4 + ∆S + ∆S

This formula is due to Bonichon et al. [3]. The following simple double counting proof was
found by Lin et al. [14].

Each tree Ti spans all n vertices of the graph. However, it is easier if we disregard the
three special vertices, such that inner(Ti) + leaves(Ti) = n − 3 for each Ti.

If v is a leaf in Ti, then outgoing edges at v in colors i − 1 and i + 1 are adjacent and
the triangle containing both of them is not cyclic, neither clockwise nor counterclockwise.
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Conversely, a triangle which is not cyclic has a unique source vertex v with two outgoing edges.
If these edges have colors i−1 and i+1, then v is a leaf in Ti. This proves a bijection between
leaves of all colors and non-cyclic triangles in S. Hence,

∑
i leaves(Ti) = 2n − 5 − ∆S − ∆S .

Combining the formulas we have
∑

i inner(Ti) = 3(n− 3)−
∑

i leaves(Ti) = n− 4 + ∆S + ∆S .

Combining Theorem 5 and Proposition 1 we find that a triangulation with Schnyder wood
S can be drawn on a grid of size (n − 1 + ∆S − ∆S ) × (n − 1 + ∆S − ∆S ). An interesting
special case of this bound (Corollary 1) was first obtained by Zhang and He [26] with a
different method. Let again SMin be the minimum Schnyder wood in the lattice and recall
that ∆SMin

= 0.

Corollary 1. A planar triangulation with n vertices has a straight line drawing on a grid of
size (n − 1 − ∆SMin

) × (n − 1 − ∆SMin
).

To estimate the number of merges that can be applied to a Schnyder wood S of a non-
triangulated map we introduce two parameters:

• ∆S is the number of faces, with a counterclockwise edge in each of the three colors.
(These edges are not required to be uni-directed.)

• ∆S counts the number of clockwise triangles of uni-directed edges plus patterns of the
following type: a uni-directed edge incoming at v in color i + 1 such that the counter-
clockwise next edge around v is bi-directed, outgoing at v in color i − 1 and incoming in
color i, see Figure 13.

3
3

2

21

1

v
u

w

Figure 13: The two patterns counted by ∆ .

Theorem 6. Let S be a Schnyder wood of a 3-connected planar map. The number of cw-
merges that can be applied to S is at least f − n + ∆ − ∆ .

Proof. The proof for the special case where the outer face is a triangle is somewhat simpler.
We first deal with this situation.

The bound is obtained from the bound of Proposition 1 as follows: Starting from S we
construct a triangulation and a corresponding Schnyder wood S′ such that S can be obtained
from S′ by a sequence of k cw-merges. Proposition 1 gives a bound k′ for the number of
cw-merges applicable to S′. The difference k′ − k is a bound for the number of cw-merges
applicable to S.

Consider an internal face F in S. At the boundary of F there are three special edges,
these are the dual edges of the outgoing edges of the dual vertex vF . The special edges may
be separated by bi-directed paths (see Lemma 2). The edges of the bi-directed boundary path
of F in colors i and i+1 are split such that the edge in color i+1 points to the clockwise last
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Figure 14: Four examples for the triangulation of a face.

vertex of the bi-directed path of F in colors i − 1 and i. This can be achieved by a sequence
of cw-splits. See Figure 14.

Applying the construction to all bounded faces of S yields an inner triangulation and a
corresponding Schnyder wood S′. The following observations are crucial:

• The number of cw-merges applicable to S′ is k′ ≥ n − 4 + ∆S′ − ∆S′ (Proposition 1).

• The original Schnyder wood S can be obtained from S′ via a sequence of k cw-merges.

• Each merge reduces the number of faces by one, hence, k = (2n − 4) − f .

• ∆S′ = ∆S and ∆S′ = ∆S (c.f. Figure 14).

Therefore, the number of cw-merges applicable to S is k′ − k ≥ f − n + ∆S − ∆S .

3

3 32 22 3 2 3 3 2

2a2 a3 a2a3

ext-merge

ext-split

Figure 15: External merge and split.

Now suppose that the outer face contains more than three vertices. Starting from S we
produce a Schnyder wood S∗ with an outer triangle, this is done with some external splits,
as shown in Figure 15. Let the number of external splits required to get from S to S∗ be
t ∈ {0, 1, 2, 3}.

We know that S∗ admits k∗ ≥ f∗ − n + ∆S∗ − ∆S∗ cw-merges. The goal is to derive the
inequality k ≥ f − n + ∆S − ∆S by comparing the corresponding parts of the two formulae.

• The face numbers f and f∗ of S and S∗ are related by f∗ = f + t.

• By comparing knees it is obvious that k∗ ≥ k. Let t1 = k∗ − k and note that t1 ≤ t
since every knee of S∗ which does not correspond to a knee of S is of the form shown

14



in Figure 16 (a). The orientation of edges at the suspension vertices ai makes knees at
these vertices impossible.

2

2

1 1
1 1

3
3

3
3

2

2 2 2 2 2

a3a3

S∗ S

(a) (b)

a3a3

F F

S∗ S

Figure 16: (a) A cw-knee of S∗ which is not a cw-knee of S, exemplified at vertex a3. (b)
A face F contributing to ∆S but not to ∆S∗.

• It is easy to verify ∆S∗ = ∆S .

• It remains to compare ∆S∗ and ∆S . It is obvious that ∆S ≥ ∆S∗ . A face F contributing
to ∆S but not to ∆S∗ is of the form shown in Figure 16 (b). The crucial fact is that such a
face can not contribute to the difference in the count of cw-knees. Hence, ∆S −∆S∗ ≤ t−t1.

Together this shows that S admits at least f − n + ∆S − ∆S cw-merges.

Given an arbitrary Schnyder wood the contribution of ∆ −∆ in the above formula may
well be negative. However, the choice of S = SMin guarantees that ∆ = 0 (Figure 6 shows
that the two configurations counted by ∆ are impossible, since they imply a clockwise cycle
in the completion SMin). The findings of this section can be summarized as follows.

Theorem 7. A 3-connected planar map M with n vertices has a convex drawing on a grid
of size (n − 1 − ∆SMin

) × (n − 1 − ∆SMin
), where ∆SMin

≥ 0 is the number of faces with a
counterclockwise edge in each color in SMin. Such a drawing can be computed in linear time.

Proof. From the previous lemmas, it only remains to prove that all the cw-merges can be
done in linear time. The algorithm that makes all this cw-merges is quite simple: for each
inner vertex v in the tree Ti, such that its parent edge in Ti+1 is uni-directed and the edge
toward its rightmost child in Ti is also uni-directed, cw-merge the outgoing edge colored i+1
with the edge toward the rightmost child of v. Since ∆ = 0 the edge toward the rightmost
child is not mergeable. So all the cw-merges are independent in S and can be performed in
one run.

In order to show that the parameter ∆ can be up to n/2 − 2, let us consider Mσ the
suspension of a 3-connected n-vertex cubic planar map. Let S be the minimal Schnyder wood
of Mσ. The dual of S is a Schnyder wood of a triangulation. Every edge of the dual is
uni-directed except the 3 external ones. Hence, except the 4 faces that are adjacent to an
external edge, every face has at least 3 bi-directed edges respectively colored 1 − 2, 2 − 3 and
3 − 1. These 3 edges are the ones corresponding to the 3 uni-directed outgoing edges in the
dual. Each of these n/2− 2 faces contributes to the parameter ∆ and to the parameter ∆ .
Moreover we can observe that for any Schnyder wood S′ obtained from S applying cw-splits,
we also have ∆S′ = n/2 − 2.
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4 Improvements and Limitations

Our ambition was to design an algorithm for convex drawings of 3-connected planar graphs
which at least matches all known algorithms for this task. Theorem 7 shows that we are
very close. Still, there is Schnyder’s (n − 2) × (n − 2) bound for triangulations which is not
completely matched by (n − 1 − ∆SMin

) × (n − 1 − ∆SMin
) since there are triangulations with

∆SMin
= 0. An example of such a triangulation is shown in Figure 17.
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Figure 17: (a) A stacked triangulation on the (n − 1) × (n − 1) grid. (b) The same graph
drawn with the improved method.

It is indeed the case that with an algorithm which computes the positions of vertices just
by face-counting the graph of Figure 17 (a) requires a grid of size (n− 1)× (n− 1). This can
be verified as follows:

• The suspension vertices a1 and a3 both embed on the y-axis.

• Every internal vertex of the triangulation is connected with both a1 and a3. Since there
are no crossing edges no two internal vertices can have the same x-coordinate.

• The two available grid points on the grid-line x = n−2 are used by the edges of the outer
triangle. Therefore, this line contains no vertex.

Together this shows that n vertical grid-lines are necessary. In the next subsection we propose
a modified drawing strategy which circumvents this obstruction. The effect of the modification
is that the outer triangle is tilted, see Figure 17 (b).

4.1 From n − 1 to n − 2

In the standard algorithm, the face-count of the vertices a1 is (f−k−1, 0, 0), a2 is (0, f−k−1, 0)
and a3 is (0, 0, f − k− 1). In order to reduce the grid size, we change the coordinates of these
vertices as follows: a1 → (f −k−2, 0, 1), a2 → (1, f −k−2, 0) and a3 → (0, 1, f −k−2). The
effect on the drawing is that a1 is moving down by one unit, a2 is moving one unit to the left
and one unit up, while a3 is moving one unit to the right. Figure 17 (b) shows an example.

Below we show that the resulting drawing is convex and planar. This yields:
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Theorem 8. A 3-connected planar map M with n vertices has a convex drawing on a grid
of size (n − 2 − ∆SMin

) × (n − 2 − ∆SMin
), where ∆SMin

≥ 0 is the number of faces with a
counterclockwise edge in each color in SMin.

Figure 23 presents an example of produced drawings.
In the proof of the theorem, we use the following lemma. It may be interesting to observe

that again the validity of this lemma depends on our choice of only using cw-merges to produce
Sk.

Lemma 4. In the face-count of Sk there is no vertex with the coordinates (f − k − 2, 0, 1) or
(1, f − k − 2, 0) or (0, 1, f − k − 2).

Proof. Assume that there is a vertex v with the face-count (1, f − k− 2, 0). Since |R1(v)| = 1
there is a unique face F in R1(v). Since |R3(v)| = 0 vertex v is on the bi-directed path between
a1 and a2. It follows that the degree of a2 in Sk is 2. The path P3(v) from v to a3 uses a part
of the boundary of F to get from v to the bi-directed path between a2 and a3. A cw-split
applied to an edge of F would have to split one of the edges of P3(v). This is impossible
since these edges have color 3 in ccw direction. We conclude that deg(a2) = 2 in the original
Schnyder Wood S0. This is in contradiction to the assumption that G is 3-connected. The
two other cases are symmetrical.

Proof of Theorem 8. The previous lemma shows that the new coordinates of the suspension
vertices do not coincide with other vertices.

The next step is to show that after the change in the coordinates of the suspension vertices
the drawing of Sk remains convex. Consider a face F containing a2. With the new coordinates,
a2 is interior to the triangle associated with F by Lemma 3, see Figure 18. From Section 3.1
we know that the (open) interior of the bounding triangle of F contains no vertices. This
shows that the modified drawing is free of crossings. The convexity of the new drawing of
face F can also be read off from Figure 18.
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Figure 18: (a) Generic structure of a face containing one external vertex and no external
edges. (b) Generic structure of a face containing one external vertex and one external edge.
(c) Generic structure of a face containing two external vertices.

The reinsertion of edges can be performed without introducing crossings or non-convex
faces. This follows from the proof of Theorem 5 which also works for faces of the types shown
in Figure 18.

Note that if ccw-merges are allowed to produce Sk, then the result becomes false. In
Figure 18 (c) it could be the case that a2 is on the top edge of the triangle, i.e., the edge
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colored 2 pointing to a2 is horizontal. Applying a ccw-split to one of the horizontal double
edges 2-3 would then produce overlapping edges.

We conclude this subsection with an application of Theorem 8 to internally 3-connected
planar maps.

A planar map M is internally 3-connected iff adding a new vertex v+ connected to all
vertices of the outer face yields a 3-connected map M+. Thomassen [23] proves the following
characterization: M has a (strictly) convex drawing if and only if M is internally 3-connected.

A drawing is called internally convex if all bounded faces are convex, the outer face,
however, may be ragged. Chrobak and Kant [4] adapt their algorithm so that internally 3-
connected graphs are drawn internally convex on the (n−1)×(n−2) grid. With our approach
we can reduce the grid size.

Let M be internally 3-connected with n vertices. First, extend M to M+ by adding a
new vertex v+ connected it to all vertices of the outer face of M . Let S = SMin be the
minimal Schnyder wood of the suspension of M+ with v+ = a1. Since M+ has n + 1 vertices
Theorem 8 guarantees a drawing of M+ on the (n − 1 − ∆S ) × (n − 1 − ∆S ) grid. Since
the outer face of M+ is a triangle, a1 is the only vertex on the highest horizontal and on the
leftmost vertical grid-line. Therefore we only have to remove a1 to prove:

Corollary 2. An internally 3-connected map M with n vertices can be drawn internally
convex on the (n− 2−∆S )× (n− 2−∆S ) grid, where S is a minimal Schnyder wood of M+.

4.2 Ignoring faces

In this subsection we propose another technique which can be used to reduce the size of a
drawing. The idea is to ignore some of the faces for the count of faces in regions. More
formally, define weights w : Fb → {0, 1} for all bounded faces F ∈ Fb. This extends linearly
to weights for the regions of vertices. Map a vertex v to the point (w(R2(v)), w(R1(v))) in
the plane and add the edges as line segments. If we are lucky, then this results in a convex
drawing on a grid with side-length less than f − 1. Figure 19 shows an example.
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Figure 19: Ignoring the gray face in the count yields the more compact drawing on the right.

Analyzing the proof of the drawing algorithm it can be concluded that the following
property is just what is needed to guarantee a convex drawing:

• If u and v are vertices and Ri(u) ( Ri(v), then w(Ri(u)) < w(Ri(v)).

This condition can be used to identify a face whose weight can be set to zero without spoiling
the convexity of the drawing. The drawback with the condition is that we know of no really
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efficient test. Below we give a proposition with a sufficient criterion which is much easier to
verify.

A face F is called pointed in color i, if there is a vertex x ∈ F such that the two boundary
edges of F which are incident to x are both directed towards x in color i. Figure 20 illustrates
the concept.
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Figure 20: (a) A face pointed in colors 2 and 3. (b) A face pointed in color 3. (c) A
non-pointed face.

Proposition 2. If the weight of non-pointed faces is set to zero, then the drawing is still
convex.

Proof. We verify the above condition for the weight w : Fb → {0, 1} with w(F ) = 0 for all
non-pointed faces F . Let u and v be a pair of vertices with Ri(u) ( Ri(v). Let Pi+1(u) (resp.
Pi+1(v)), the path of color i + 1 from u (resp.v) to ai+1. There are two cases to consider:

• Pi+1(v) merge at a face pointed in color i + 1 which is contained in Ri(v) but not in
Ri(u). Since the weight of this face is non-zero we obtain w(Ri(u)) < w(Ri(v)) as
wanted.

• Pi+1(u) is a subpath of Pi+1(v). In this case, however, paths Pi−1(u) and Pi−1(v) merge
at a face pointed in color i − 1 so that the inequality w(Ri(u)) < w(Ri(v)) also holds
for this case.

In their recent paper about drawings of triangulations Zhang and He [26] use a similar
idea of ignoring faces when counting faces in regions.

In conjunction with our drawing algorithm the technique of ’ignoring faces’ can only be
applied with care: A drawing of Sk obtained with a count that ignores non-pointed faces is
convex (Proposition 2) but the faces need not obey the generic structure (Lemma 2), therefore,
the reinsertion of edges may cause an overlap of edges.

4.3 Experimental results

Theorem 8 gives a bound for the size of a grid that accommodates a given 3-connected planar
graph. This bound depends on the parameter ∆SMin

which can be equal to zero in ‘bad’ cases.

Bonichon et al. [2] have analyzed the asymptotic average value of ∆SMin
over triangulations

with n vertices. They prove that E(∆SMin
) = n/8 + o(n). Hence, the number of merges that
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Figure 21: Experimental results for 3-connected planar graphs of different sizes.

can be applied when starting with the SMin of a random triangulation is of order 9n/8 and
the expected size of the grid required for the drawing is 7n/8 × 7n/8.

For general 3-connected planar graphs there is no theory about the expected size of ∆SMin
.

Still it is possible to make some experiments. For this purpose, we have first tested our
drawing algorithm on random planar maps generated uniformly over m-edge 3-connected
planar maps. The generator used is due to Schaeffer [19]. We generated some 6000 maps
with m edges where m goes from 200 up to 20000. For each map we’ve computed the
parameter ∆ , the number of faces and the grid size of the drawing of the graph obtained
with the algorithm of Theorem 8 (see Figure 21). We can first observe that the expected
value of ∆SMin

is m/8. Using Euler’s formula, we also see that the expected number of vertices
is equal to the expected number of faces of a random m-edge 3-connected planar maps are:
m/2. Consequently, the expected size of the grid required for the drawing is 3n/4 × 3n/4.

Our second experimental result is obtained on 3-connected cubic planar maps. For the
class of maps, the analysis of ∆SMin

is quite trivial: All the edges except 3 (one connected to
each suspension vertex) are bicolored , so no merge is possible. In order to reduce the grid
size, we have experimented with ignoring non-pointed faces as described in Subsection 4.2.
Random cubic graphs are easily obtained as duals of random triangulations. Once again, we
used the uniform random triangulation generator due to Schaeffer [19]. Figure 22 shows that
approximately 3.8% of the faces are non-pointed. Hence, for these graphs the expected size
of the grid required for the drawing is (0.481n) × (0.481n).
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Figure 23: An example of drawing obtained by our algorithm (Theorem 8). The present
graph has 26 vertices, 57 edges, 33 faces. It is drawn on a 21 × 21 grid.
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