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Abstract

Motivated by the bijection between Schnyder labelings of a plane triangulation and
partitions of its inner edges into three trees, we look for binary labelings for quadrangu-
lations (whose edges can be partitioned into two trees). Our labeling resembles many of
the properties of Schnyder’s one for triangulations: Apart from being in bijection with
tree decompositions, paths in these trees allow to define the regions of a vertex such that
counting faces in them yields an algorithm for embedding the quadrangulation, in this
case on a 2-book. Furthermore, as Schnyder labelings have been extended to 3-connected
plane graphs, we are able to extend our labeling from quadrangulations to a larger class
of 2-connected bipartite graphs.

AMS subject classification: 05C78
Keywords: Schnyder labeling, quadrangulation, book embedding, pseudo-triangulation,
Laman graph.

1 Introduction

Schnyder labelings are by now a classical tool to deal with planar graphs. A Schnyder labeling
is a special labeling of the angles of a plane graph with three colors. Schnyder [21] introduced
this concept for triangulations, i.e., maximal (in the number of edges) planar graphs. He
showed that these angle labelings are in bijection with Schnyder woods, i.e., special partitions
of the inner edges of the triangulation into three trees. A main application of Schnyder
woods are straight-line embeddings of triangulations on small grids. Felsner [5] generalized
the concepts of Schnyder labelings and Schnyder woods to the larger class of 3-connected
plane graphs. Again, there are applications in graph drawing [3].

Plane quadrangulations are plane graphs all whose faces have degree four. They are also
called maximal bipartite planar graphs. The present work is motivated by the fact that
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quadrangulations admit a decomposition of the edge set into two trees. Our aim is to look
for a closer resemblance of Schnyder structures in these cases. In particular we study angle
labelings with two colors.

In Section 2 we define strong labelings. A graph admitting a strong labeling has to be a
plane quadrangulation. We show that strong labelings indeed resemble many properties of
Schnyder labelings:

• Strong labelings induce a partition of the quadrangulation into two oriented trees with
Schnyder-like properties, see Subsection 2.1. For the existence of a 2-tree decomposition
of a plane quadrangulation there are many references, e.g. [1, 8, 9, 10, 13, 15, 17, 18].
The tree decomposition induced by the strong labeling has the nice property that at
each vertex the two trees are “separated”, i.e., around a vertex the edges of each tree
appear consecutively. Such separating tree decompositions have been previously studied
in [8]. In fact, strong labelings and separating decompositions are in bijection. Further
combinatorial objects related to strong labelings and separating decompositions have
recently been studied in [7].

• Strong labelings also allow to obtain an embedding of a quadrangulation on a 2-book,
i.e., a mapping of the nodes to a line and a non-crossing embedding of the edges in the
half-planes separated by that line. In our case each halfplane contains the edges of one
of the two trees. Let v1, . . . , vn be the nodes ordered along the line. Then the trees on
each page are alternating, i.e., there are no two edges vivj and vjvk with i < j < k.
Book embeddings of graphs are well studied and have several applications; see e.g. [4].
For the particular case of quadrangulations, the existence of a 2-book embedding with
a tree on each page was shown in [9]. Our Schnyder-like technique allows to obtain the
alternating property. Non-crossing alternating trees were studied and counted in [11].
They have also appeared as one-dimensional analogs of pseudo-triangulations [19].

In Section 3 we define weak labelings for plane graphs. Weak labelings contain strong
labelings as a subclass. Every weak labeling induces a 2-coloring and a 2-orientation of the
2n − 4 edges (n being the number of vertices). We show that weak labelings are indeed in
bijection with a pair of 2-orientations, one for the graph and another for an appropriately
defined dual. This allows the characterization and efficient recognition of graphs admitting a
weak labeling. We remark that a slight variant of weak labelings also exists for the class of
Laman graphs [12].

In Section 4, we generalize the notion of strong labeling from quadrangulations to a larger
class of bipartite graphs. The generalized strong labelings still yield a pair of trees. This
is similar to the generalization of Schnyder structures in [5]. The class of bipartite graphs
admitting a generalized strong labeling is characterized in Subsection 4.2.

2 Strong labelings

Definition 2.1. Let G be a quadrangulation with color classes of black and white vertices
and two distinguished black vertices s0 and s1 on the outer face. A strong labeling of G is a
mapping of the angles of G to {0, 1} which satisfies:

(G0) Special vertices: All angles incident to si are labeled i.
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(G1) Vertex rule: For each vertex v /∈ {s0, s1}, the incident labels form a non-empty interval
of 1s and a non-empty interval of 0s.

(G2) Edge rule: For each edge, the incident labels coincide at one endpoint and differ at
the other.

(G3) Face rule: The labels in each face are 0011 cyclically. Reading the labels of the outer
face in clockwise order starting at s0, they are also 0011.

Observation 2.2. A strong labeling induces both a 2-coloring and a 2-orientation of the
edges: Every edge is colored according to its endpoint with the two coincident labels and ori-
ented towards that endpoint. Moreover, the vertex rule implies that every vertex except s0, s1

has outdegree two; such an orientation will be called a 2-orientation. See Figure 1.

In the figures, and sometimes in the text we will identify color 0 with gray and color 1
with black.
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Figure 1: A strong labeling for a quadrangulation (left) and the induced 2-coloring and
orientation of the edges (right).

Lemma 2.3 (Walking rule). In a strong labeling of a quadrangulation the following is true:
Walking along an interior face in clockwise order, the labels change precisely when moving
from a black to a white vertex.

Proof. Let F and F ′ be two faces sharing an edge e. Suppose that F obeys the walking rule.
If the clockwise walk in F sees a change of labels along e, then this walk traverses e from the
black to the white vertex, which determines the partition into black and white for all vertices
on F and F ′. The edge rule implies that the two labels on the other side of e are the same.
This observation together with the face rule for F ′ yields the validity of the walking rule for
F ′. The other possibility, when the clockwise walk in F sees the same label on both endpoints
of e, is similar: The walking rule determines the black/white partition, the edge rule implies
two different labels in F ′ and the face rule enforces the walking rule for F ′.

From the definition of labels at the outer face we obtain the validity of the walking rule
for the bounded face F0 which is incident to the edge containing s0 and having two labels 0
on the outer face. Any face F can be connected to F0 with a dual path avoiding the outer
face. The above reasoning allows to transfer the validity of the walking rule along this path
to F .
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The following strong edge rule is an immediate consequence of the edge rule together with
the walking rule. Actually, the walking rule also follows from the strong edge rule, i.e., the
two rules are equivalent.

Lemma 2.4 (Strong edge rule). In a strong labeling of a quadrangulation the following is
true: For each edge, the incident labels coincide at one endpoint and differ at the other.
Moreover if the latter is a white (respectively black) vertex, the right (respectively left) side of
the edge, oriented as in Observation 2.2, has coincident labels. See Figure 2.
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Figure 2: Edge types complying with the strong edge rule.

Yet another useful property of strong labelings is given with the next lemma, whose proof
is immediate from the strong edge rule. Observe that, as in the previous lemma, the rule is
“white–right”, “black–left”.

Lemma 2.5 (Turning rule). In a strong labeling of a quadrangulation the following is true:
If v is a white (respectively black) vertex and uv an incoming edge, then the outgoing edge at
v with the same color as uv is the next outgoing edge to the right (respectively left) of uv. See
Figure 3.
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Figure 3: Illustrating the turning rule.

Before further studying strong labelings of quadrangulations we prove that every quad-
rangulation has such a labeling.

Theorem 2.6. Every quadrangulation admits a strong labeling.

Proof. We use induction on the number of vertices n of a quadrangulation Q. If n = 4 then a
strong labeling exists, as shown in Figure 4 (left). For the induction step we distinguish two
cases.

For the first case, assume that Q contains an interior vertex v of degree two. Removal
of v and its two incident edges yields a quadrangulation Q′ which, by induction, admits a
strong labeling. Reinsertion of v and its incident edges into Q′ can be done in a unique way
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Figure 4: The basis of the induction and inserting a vertex of degree two.

such that the rules of strong labelings are maintained. One of the possible cases is shown in
Figure 4 (right).

For the second case, assume that Q contains no interior vertex of degree two. We say that
a face q incident to s0 is contractible if it does not contain the other special vertex s1. The
contraction of q = {e′, e, f, f ′}, where {e′, e, f, f ′} are the edges of q in clockwise order starting
at s0 and p is the vertex opposite to s0, identifies e with e′, f with f ′ and p with s0. This
can be interpreted as a continuous movement of p and its incident edges to s0, see Figure 5.

A contraction makes a problem when it creates a double edge because p and s0 have three
common neighbors, in this case the contraction is illegal. To find a legally contractible face q
we proceede as follows: let q0 be any face incident to the black vertices s0 and p0. Let R0 be
the region obtained as union of all four cycle through s0 and p0 together with their interiours.
If R0 = q0 then contracting q0 is legal. Otherwise there is a white vertex in the strict interior
of R0, since this vertex has degree ≥ 3 there is black vertex p1 such that p1 is on a common
face q1 with s0 and R1 ( R0, where R1 is the region defined by the four cycles through p1

and s0. Iterate this until qk = Rk which has to happen by finiteness.
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Figure 5: Contracting a quadrangle to the special vertex s0.

The contraction of a face q yields a quadrangulation which by induction admits a strong
labeling. Now, reversing the contraction maintains the strong labeling outside of the face q
and it only remains to label the angles inside q. First, the rule for the special vertex s0 requires
that the angle at this vertex is labeled 0. The other labels have to be chosen according to the
walking rule. Figure 5 shows an example. The vertex and edge rules at the boundary of the
new face are easily verified.
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2.1 Schnyder-like properties for strong labelings

Consider the coloring and orientation of the edges induced by a strong labeling (c.f. Observa-
tion 2.2). For this coloring and orientation we obtain results which are in nice correspondence
to those obtained by Schnyder [21] for triangulations and Felsner [5] for 3-connected plane
graphs. The orientation and coloring of the edges of a graph induced by a strong labeling
have another interesting property: Let G be a quadrangulation with a strong labeling and
let T0 and T1 be the edges of colors 0 and 1. Since the edges are oriented according to a
2-orientation, we can define T−1

i as the set of edges colored i with their orientation reversed.

Lemma 2.7. Every vertex except s0, s1 has outdegree 1 in each of T0 and T1.

Proof. This follows from the turning rule (Lemma 2.5).

Lemma 2.8. There is no directed cycle in T0 ∪ T−1
1

, nor in T1 ∪ T−1
0

.

Proof. Suppose that there is a cycle in T0 ∪ T−1
1

. Choose C to be such a cycle with the least
number of faces in its interior. Claim 1: There is no vertex in the interior of C. Otherwise the
black and the gray path leaving the vertex can be used to identify a cycle with less interior
faces. Claim 2: C has no chord. Again this follows from the minimality assumption. To
complete the proof it can be checked that there is no directed facial cycle in T0 ∪ T−1

1
.

Corollary 2.9. Ti, i ∈ {0, 1}, is a directed tree with sink si that spans all vertices but s1−i.

Proof. From Lemma 2.8 we know that Ti has no directed cycle. This and Lemma 2.7 implies
that Ti is cycle-free. Since Ti spans all vertices except s1−i the claim follows.

For each non-special vertex v /∈ {s0, s1}, we define the i-path Pi(v), i ∈ {0, 1}, as the
directed path in Ti from v to the sink si. We say that two paths cross if they share a vertex
v such that the two edges incident to v of one path lie on different sides of the other path.

Observation 2.10. Two paths of the same color cannot cross, because every vertex has
outdegree 1 in this color. Two paths of different colors cannot cross, because this would
violate the vertex rule.

Lemma 2.11. The paths Pi(v), v /∈ {s0, s1}, are chord-free.

Proof. Let v = v0, v1, v2, . . . , vk, si be the sequence of vertices of Pi(v). Suppose that vivj

with i + 1 < j is an edge of the quadrangulation. The edge is not in the tree Ti, hence, it is
of color 1 − i. Lemma 2.8 implies that the orientation is not from vi to vj . If vjvi lies to the
right of Pi(v) we know that vj is black because of the turning rule (Lemma 2.5). The same
rule at the white vertex vi implies that the outgoing edge at vi points into the interior of the
cycle vi, vi+1, . . . , vj , vi. This implies a crossing between the paths Pi(vi) and P1−i(vi) which
contradicts Observation 2.10. The other case where vjvi lies to the left of Pi(v) is essentially
symmetric.

Because of Observation 2.10, the paths P0(v) and P1(v) have v as only common ver-
tex. Therefore they split the quadrangulation into two regions which we denote by R0(v)
and R1(v), where Ri is the region to the right of Pi(v) and including both paths.

Lemma 2.12. Let u, v be distinct interior vertices. For i ∈ {0, 1}, the following implications
hold:
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(i) u ∈ int(Ri(v)) ⇒ Ri(u) ⊂ Ri(v).

(ii) u ∈ Pi(v), u 6= v ⇒





Ri(u) ⊂ Ri(v) and R1−i(v) ⊂ R1−i(u)
or
Ri(v) ⊂ Ri(u) and R1−i(u) ⊂ R1−i(v)

.

Proof. If u ∈ int(Ri(v)), Observation 2.10 implies that both paths P0(u), P1(u) and the region
they enclose are contained in Ri(v). If u ∈ P0(v), u 6= v, then P0(u) ⊂ P0(v) while the first
edge of P1(u) points to the interior of either R0(v) (if u is black) or to the interior of R1(v)
(if u is white), because of the turning rule. In the first case we obtain R0(u) ⊂ R0(v) and
R1(u) ⊃ R1(v), in the second case we obtain the reversed inclusions. Similar arguments work
if u ∈ P1(v), u 6= v.

2.2 Alternating embedding of quadrangulations in a 2-book

Mimicking the obtention of straight-line embeddings of triangulations on small grids via
Schnyder labelings, Lemma 2.12 allows us to obtain 2-book embeddings of quadrangulations
such that each of the two pages contains an alternating tree.

For each non-special vertex v, let us define fi(v) as the number of faces contained in Ri(v).
For the two special vertices s0, s1, we set f0(s0) = f1(s1) = −1 and f1(s0) = f0(s1) = n − 2,
where n is the number of vertices. As shown in Lemma 2.12 there is an inclusion between the
i-regions of any two vertices, therefore, the following holds:

Proposition 2.13. For any two vertices u 6= v, we have fi(u) 6= fi(v). Equivalently, all
possible values of fi from 0 to n − 3 occur.

All the points (f0(v), f1(v)) lie equally spaced on the line f0 +f1 = f , where f is the total
number of bounded faces (which equals n−3 by Euler’s formula). For the sake of convenience,
we can choose a reference system in which this line is the horizontal axis and the f1-values
increase from left to right. Given this as spine of the book, we draw the edges of each tree Ti

on one side. As a convention, we will draw T0 gray and above the line, and T1 black and
below. In Theorem 2.14 we prove that the trees are non-crossing, and hence we get a 2-book
embedding for the quadrangulation Q such that each page contains a tree.

In Theorem 2.14 we additionally prove that both trees are alternating , meaning that the
tree contains no two edges vivj and vjvk for i < j < k (where v1, . . . , vn denotes the vertices
in the order they are encountered along the line). This is equivalent to saying that either all
neighbors of vj have indices bigger than j or they all have indices smaller than j. Figure 6
shows an example for the book embedding.

Non-crossing alternating trees are counted by the Catalan numbers. They came up in
research about pseudo-triangulations, where they have been identified as one-dimensional
analogs to pseudo-triangulations [19]. In that paper it has been shown that the “flip graph”
on alternating trees is the 1-skeleton of the associahedron.

Theorem 2.14. Let the vertices of a quadrangulation be placed on a line by the face-counting
process, with the trees T0 and T1 placed on each side of the line. Then T0 and T1 are non-
crossing and alternating.

Proof. We will prove that the gray tree T0 cannot have crossings. Let us suppose that there
is a crossing in T0, i.e., four points a, b, c, d with
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a b c d e f g h x y s0 s1

f0 1 2 8 3 7 6 5 4 9 0 −1 10

f1 8 7 1 6 2 3 4 5 0 9 10 −1

x c e f g h d b as1 s0y

Figure 6: Embedding on a 2-book the quadrangulation in Figure 1.

f0(a) > f0(b) > f0(c) > f0(d) (1)

and edges ac, bd. We focus on the edge ac. The two possible configurations are shown in
Figure 7. Any other situation would violate either the relations in (1) or the vertex rule (G1).

a

c

c

a

b-zone

d-zone b-zone

d-zone

s0 s0

s1s1

Figure 7: Possible configurations according to the relations in (1).

Furthermore, from f0(c) > f0(d) and Lemma 2.12, we know that d 6∈ int(R1(c)) and
analogously that b 6∈ int(R0(c)). This gives us the feasible zones for points b and d, denoted
as b- and d-zones in Figure 7. Note that in both cases shown in the figure the path P1(c)
separates the two zones, hence, the existence of a gray edge bd implies that b or d is on this
path. From Lemma 2.11 we know that at most one of them is on the path.

• If b ∈ P1(c), d 6∈ P1(c): In this case the edge bd is to the left of P1(c) and hence the
same holds for all the gray edges incident to b. Therefore, R0(b) ⊂ R0(c) which implies
f0(b) < f0(c), a contradiction.

• If b 6∈ P1(c), d ∈ P1(c): In this case the edge bd is to the right of P1(c) and hence
the same holds for all the gray edges incident to d. This leads to the contradiction
f0(d) > f0(c).

A similar analysis shows that the black tree T1 has no crossings.

We now show that for our choice of coordinates, T0 and T1 are alternating. We focus on
the black tree T1, and the case for the gray tree T0 is analogous. Vertices s0 and s1 have all
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their neighbors on one side, hence they are alternating. For the other two vertices x and y of
the external face, all the interior angles are labeled 0, respectively 1 for y, and x is incident
to only one edge of T1 to s1, and y to only one edge of T0 to s0. This implies that also x
and y are alternating. Let us consider an interior black vertex vj . The successor vs of vj on
the black path P1(vj) is a white vertex. From the turning rule (Lemma 2.5) it follows that
the gray outgoing edge of vs is to the left of P1(vj), i.e., it points into R0(vj) which implies
f0(vs) < f0(vj), equivalently f1(vs) > f1(vj) and hence s > j.

Now consider a black edge vpvj which is incoming at vj . This edge belongs to the black
path P1(vp). The fact that vj is black and the turning rule implies that the gray outgoing
edge of vj points into R1(vp) which implies f1(vp) > f1(vj) and hence p > j.

The case where vj is a white vertex is similar, in that case all neighbors in the black tree
have indices smaller than j.

2.3 Strong labelings, separating decompositions and 2-orientations

The following definition was essentially (with reversed orientations) proposed by de Fraysseix
and Ossona de Mendez [8].

Definition 2.15. Let Q be a quadrangulation, with vertices of the bipartition properly
bicolored as black and white. Let s0 and s1 be nonadjacent vertices at the outer face. A
separating decomposition of Q is a partition of the edges into two directed trees T0, T1 with
sinks s0, s1, such that the incident edges at each vertex but s0 and s1 are gathered as follows,
in clockwise order for black vertices and counterclockwise order for white vertices:

• The incoming edges (if any) from T0,

• The outgoing edge from T0,

• The incoming edges (if any) from T1,

• The outgoing edge from T1.

Note that the above condition about the orientations of edges at a vertex is exactly the turning
rule (see Figure 3).

Theorem 2.16. Separating decompositions and strong labelings of a quadrangulation are in
bijection.

Proof. Let Q be a quadrangulation with a distinguished vertex s0 on the outer face. A strong
labeling of Q induces a coloring and orientation of the edges. By Corollary 2.9 this yields
a partition into trees T0 and T1 rooted at s0 and the opposite vertex of the outer face s1.
The coloring and orientation of the edges obeys the turning rule (Lemma 2.5). This rule is
precisely the condition required for a separating decomposition.

Conversely, let a separating decomposition be given. Given a directed edge uv color
both angles incident to uv at v with the color of the edge. The property of a separating
decomposition implies that angles with two incident incoming edges get the same label from
both edges. Furthermore, the angles at the tail endpoint of an edge being labeled according
to the turning rule implies the strong edge rule to be fulfilled. See Figures 2 and 3. It is
obvious that the vertex conditions (G0) and (G1) hold for this labeling. All edges conform to
the strong edge rule and hence to the edge rule (G2). The strong edge rule also implies the
walking rule (Lemma 2.3) which in turn implies the face rule (G3). Together this shows that
the implied labeling of angles is a strong labeling.
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To enhance the picture we quote the following theorem from [8]. In the statement ‘quad-
rangulation’ is again to be understood as a quadrangulation together with a distinguished
vertex s0 on the outer face.

Theorem 2.17 (De Fraysseix and Ossona de Mendez). Separating decompositions and 2-
orientations of a quadrangulation are in bijection.

Corollary 2.18. There is a bijection between 2-orientations and strong labelings of a quad-
rangulation.

2.4 Flips on strong labelings of quadrangulations

Given a graph G with a 2-orientation, one can reverse any directed cycle and obtain another
2-orientation. Such a local modification of an object in more general terms is often called
flip. In Lemma 2.19 below we show that for a strong labeling of a quadrangulation, such a
flip means that we invert all labels inside the cycle to obtain another strong labeling of the
same quadrangulation, see Figure 8.
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Figure 8: A flip for a strong labeling of a quadrangulation.

Lemma 2.19. Given a quadrangulation, the reversal of a directed cycle C in a 2-orientation
conforms with the complementation of all the labels inside C in the corresponding strong
labeling.

Proof. It is obvious that the walking rule and face rule (G3) are maintained for all faces. For
the vertices and edges inside or outside the cycle, it is also clear that the vertex rule (G1)
and edge rule (G2) are maintained.
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Let us consider a vertex v on the boundary of the directed cycle, and let uv, vw be the
incident directed edges of the cycle. Before the flip, one of the change of label around v
happens at the tail angles of vw and the other change happens either inside or outside the
cycle. After the flip, that change happens at the head of uv, while the other change keeps its
position. This proves the vertex rule (G1).

For an edge on the boundary of the cycle, the two labels that are reversed are either
different, in which case they remain different, or the same, in which case they remain the
same after the flip. Therefore, the edge rule (G2) is satisfied.

Schnyder woods of triangulations are in bijection to 3-orientations. In this context
Brehm [2] has investigated the reversal of directed cycles (flip) for 3-orientations. He proved
that the set of 3-orientations forms a distributive lattice. A more general result was obtained
by Ossona de Mendez [16] and Felsner [6], they obtained lattice structures on the set of α-
orientations of a planar graph. A particular instance of the general theorem is that the set of
all 2-orientations of a quadrangulation can be enhanced with an ordering which is a distribu-
tive lattice. The order relation is the transitive closure generated by X < XC whenever X is
a 2-orientation which has a simple directed cycle C which runs clockwise around its interior
and XC is obtained by reverting C in X. The flip structure on 2-orientations of quadrangu-
lations was also investigated by Nakamoto and Watanabe [15]. A simple consequence of the
distributive lattice structure on 2-orientations and the bijection with strong labelings is:

Corollary 2.20. The flip graph of strong labelings is connected.

3 Weak labelings

Definition 3.1. Let G be a plane graph with two special vertices s0 and s1 on the outer
face. A weak labeling for G is a mapping from the angles of G to {0, 1} which satisfies the
following conditions:

(G0) Special vertices: All angles incident to si are labeled i.

(G1) Vertex rule: For each vertex v /∈ {s0, s1}, the incident labels form a non-empty interval
of 1s and a non-empty interval of 0s.

(G2) Edge rule: For each edge, the incident labels coincide at one endpoint and differ at
the other.

(G3w) Weak face rule: For each face (including the outer face), its labels form a non-empty
interval of 1s and a non-empty interval of 0s.

Observation 3.2. A weak labeling induces both a 2-coloring and a 2-orientation of the
edges: Every edge is colored according to its endpoint with the two coincident labels and
oriented towards that endpoint. As in the case of strong labelings, such an orientation is a
2-orientation. See Figure 9.

Note that if a graph admits a labeling satisfying (G0), (G1) and (G2), then its edge
cardinality is equal to 2n − 4. A quadrangulation on n vertices has 2n − 4 edges and indeed
quadrangulations admit weak labelings (they even admit a stronger labeling, see Section 2).
But weak labelings also exist for some graphs which are not quadrangulations; consider e.g.
the graph obtained by inserting into the cycle C6 the edges 15 and 24. A more complex
example is part of Figure 10.
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Figure 9: The orientation induced by a weak labeling, the dashed edges may have either color.

3.1 Graphs admitting a weak labeling

Observation 3.3. Since the angles of a plane graph G and of the dual G∗ are in bijection we
can interpret a weak labeling φ of G as a labeling φ∗ of the angles of G∗. The edge rule for φ
is the edge rule for φ∗ and the weak face rule for φ implies the vertex rule for (all!) vertices in
the labeling φ∗. As in the previous observation, we can argue that φ∗ induces an orientation
of the edges of G∗ such that every vertex has outdegree two. One additional property of the
orientation induced by φ can be noted: The special vertices s0, s1 divide the edge set on the
outer face of G into two arcs A0 and A1. Each of these arcs contains a change of label. Split
the dual vertex corresponding to the outer face of G into two vertices o∗0 and o∗1 such that
o∗i keeps the incidences with the dual edges of Ai and let G∗

s denote the resulting split-dual
of G. The orientation induced by φ on G∗

s has outdegree one at o∗0 and o∗1 and outdegree two
at every other vertex; let us call such an orientation a 2∗-orientation.

Proposition 3.4. Let G be a plane graph with special vertices s0 and s1 on the outer face.
Weak labelings of G are in bijection to pairs (X, X∗) where X is a 2-orientation of G and X∗

is a 2∗-orientation of G∗
s.

Proof. The mapping from a weak labeling φ to a pair (Xφ, X∗
φ) of orientations was given in

Observations 3.2 and 3.3. For the converse construction, we introduce an auxiliary graph:
The completion G̃ of G is obtained by superimposing G and G∗

s such that exactly the primal-
dual pairs of edges cross, and this crossing is made a new edge-vertex. For v, e, f the numbers
of vertices, edges and faces of G, the completion G̃ of G has v + e + f + 1 vertices and 4e
edges. The faces of G̃ are (almost) in bijection to the angles of G, only the outer face of G̃
corresponds to two angles, the outer ones of s0 and s1. In order to remedy this, an exceptional
edge eo connecting o∗0 and o∗1 can be added.

Given a 2-orientation X of G and a 2∗-orientation X∗ of G∗
s, we induce an orientation

on G̃ by taking the orientation of an edge e for both of its halfedges, see Figure 10. We seek
for a 0-1 coloring of the inner faces of G̃ such that, if ve is an edge-vertex and a an outgoing
edge at ve, then the color of the two faces incident to a are the same. We model this by
calling a an irrelevant edge. Edges that are not irrelevant are relevant. Observe that, from
the properties of X and X∗ and the construction, we obtain:

• There are no relevant edges incident to s0 and s1.

• There is exactly one relevant edge incident to o∗0 and o∗1.

• Apart from these exceptions, every vertex of G̃ is incident to exactly two relevant edges.

It follows that the relevant edges form a union of disjoint simple cycles and a path from o∗0
to o∗1 which, by adding eo as relevant edge is also closed into a cycle. Starting with color 0 in
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the face containing s0, there is a unique extension to a 0-1 coloring of the faces in the graph
of relevant edges and hence to a coloring of the faces of G̃. It is routine to check that this
indeed yields a weak labeling and that the two mappings are inverse to each other.
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Figure 10: Orientations X and X∗, the relevant edges of G̃ and the resulting weak labeling
of G.

A nice consequence of the above proposition is that it yields a characterization of plane
graphs admitting a weak labeling: Given a graph G = (V, E) and a function α : V → IN, an α-
orientation is an orientation X of G such that the outdegree of each v is as prescribed by α, i.e.,
it is α(v). It is known that G admits an α-orientation if

∑
v∈V α(v) = |E| and for all W ⊂ V

the number of edges incident to vertices in W is at least as large as α(W ) =
∑

v∈W α(v).
Moreover, the question whether G admits an α-orientation can be translated into a flow-
problem [6]. The flow problem can be solved in O(n3/2) with the algorithm of Miller and
Naor [14], see also [22]. A polynomial time recognition algorithm for plane graphs admitting
a weak labeling would first decide whether G and G∗

s admit a 2- resp. a 2∗-orientation. In the
positive case such orientations X and X∗ could be transformed into a weak labeling of G in
linear time. We summarize:

Theorem 3.5. Plane graphs admitting a weak labeling can be recognized in O(n3/2).

From the theory of α-orientations developed in [6] it also follows that the sets of 2-
orientations of G and of 2∗-orientations of G∗

s carry a natural distributive lattice structure.
The product of these two distributive lattices is a distributive lattice on the set of all weak
labelings of a plane graph. The ideas on how to define the lattice structure on 2-orientations
of a plane graph are explained in Subsection 2.4.
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3.2 Schnyder-like properties for weak labelings

Let G be a plane graph with a weak labeling. As before, we denote by Ti the set of oriented
edges colored i and by T−1

i the set of edges colored i with reversed orientation.
The following proposition is very much like Schnyder’s main lemma in [20]. However, in

a weak labeling a vertex can have out-degree two in Ti wherefore Ti need not be a tree, see
e.g. Figure 10.

Proposition 3.6. If G is a plane graph with a weak labeling, then there is no directed cycle
in T0 ∪ T−1

1
, nor in T1 ∪ T−1

0
.

Proof. Suppose that there is a directed cycle C in T0∪T−1
1

. Clearly we may assume that C is
simple, hence, has a well defined interior. Consider G with the original 2-orientation T0 ∪ T1

and define the following counters:

k = #vertices on C.

t = #vertices in the interior of C.

s = #faces in the interior of C.

p = #edges pointing in T0 ∪ T1 from C into the interior.

q = #edges on C with two different labels on the inner side.

0 0

1

c

1 1

i

0 0

d

0
1

1

e

0

1

1
1

f

0
0

1

0 0

b

0
0

1

0 0

a

1

11 1

Figure 11: Vertex types on C, where the vertical edges are those on C and the interior of C
is assumed to be to the left of them. The schematic drawings show only the edges that are
relevant for the counting argument.

Claim A. p = q.

Figure 11 shows all types of vertices which can occur on C; for type d the label i can be 0 or
1. Associate each edge that has two different labels on the inner side with its tail-vertex. We
find that q equals the number of vertices of types a, d and e. The value of p is the number of
vertices of types a, c and e. Since vertices of type d correspond to a transition from 0-colored
edges to 1-colored edges while vertices of type c correspond to a transition from 1-colored to
0-colored edges, it follows that they are equinumerous. This proves the claim. △

We now observe that the number g of edges which are on C or in the interior of C can be
expressed in several ways:

g = (k + t) + (s + 1) − 2 (2)

g = 2t + k + p (3)

g = 2s + k − q (4)
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Formula (1) is nothing but Euler’s formula for the graph restricted to C and its interior.
Formula (2) is obtained by counting the out-degrees: Every vertex in the interior of C has
out-degree 2 and the sum of all out-degrees of vertices on C is k+p. Formula (3) follows from
counting changes of labels along edges: By the edge rule (G2) the number of these changes
equals the number of edges. By the weak face rule (G3w) each of the s faces interior to C
contributes two such changes. In addition there are k − q edges on C which have the label
change in the outside.

Subtracting (2) and (3) from the double of (1) yields 0 = −2−p+q, which is a contradiction
to Claim A.

4 Generalized strong labelings

In Section 3 we introduced weak labelings, which can only exist for plane graphs with n vertices
and 2n − 4 edges. In Section 2 we studied strong labelings, i.e., conditions (G0), (G1), (G2)
and (G3), and saw that the existence of strong labelings characterizes quadrangulations. In
this section we modify the edge rule (G2) in order to have similar labelings for a larger class of
bipartite plane graphs. The following is inspired by the generalization [5] of Schnyder woods
for 3-connected plane graphs. We will always assume that one color class of a bipartite graph
has been selected to be the white class, the other one is the black class.

Definition 4.1. A generalized strong labeling for a bipartite plane graph with special vertices
s0 and s1 on the outer face is a mapping from its angles to the set {0, 1} which satisfies:

(G0) Special vertices: All angles incident to si are labeled i.

(G1) Vertex rule: For each vertex v /∈ {s0, s1}, the incident labels form a non-empty interval
of 1s and a non-empty interval of 0s.

(G2g) Generalized edge rule: For each edge, the incident labels form one of the six patterns
shown in Figure 12.

(G3g) Generalized face rule: Each face has exactly one pair of adjacent 0-labels and one
pair of adjacent 1-labels.
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1 1

1

1

1 1

0

1

0 0

0

0

0 0

1

1

0 1

0

0

1 0

1

Figure 12: Generalized edge rule.

Observe that the generalized face rule (G3g) coincides with the face rule (G3) for the case of
quadrangulations. Figure 17 shows several examples of generalized strong labelings. It should
be noted that the degree of the special vertices s0 and s1 in a graph with such a labeling can
be one, e.g., the 2-path s0—v—s1 admits a generalized strong labeling.

Another useful fact that can be seen from (G0) together with (G2g) is that the edge on
the outer face Fout which contains s0 and which has Fout to its right when traversed from its
white vertex to the black vertex has two adjacent labels 0 in Fout.
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Lemma 4.2. A generalized strong labeling of a quadrangulation has only edges of the four
types of the edge rule (G2), which verify Lemma 2.4, i.e., it has no bidirected edge.

Proof. A quadrangulation on n vertices has n − 2 faces and 2n − 4 edges. Rules (G3g) and
(G0) imply that there are at most two color changes in the face walk of each face. In total
this yields 2n − 4 color changes. Since each edge contributes at least one color change there
can be no edge contributing two color changes.

Lemma 4.3. A face in a graph equipped with a generalized strong labeling is labeled as shown
in Figure 13.

Proof. Rule (G3g) implies that in F there is a pair of adjacent 0-labels. Let u0 and u1 be
the vertices of this edge numbered such that in clockwise order u0 precedes u1. Inspecting
Figure 12, i.e., rule (G2g), we find that u0 is white and u1 is black. Similarly, if v0 and
v1 are the two vertices with adjacent 1-labels in clockwise order then v0 is white and v1 is
black. Between the two special edges there are alternations of labels and colors of some even
length on both sides. Note that rule (G2g) allows to identify the complete labeling of edges
(u2k, u2k+1) and (v2k, v2k+1) for all k ≥ 1. They are bidirected.

The generic picture of labels in a face also holds for Fout if the appropriate ‘clockwise’ order
for this face is used, i.e., relative to some point in Fout if G is embedded on the sphere.

1
0

1

0

1 1

0

1

00
u0u1

u2

u3

u4

u5

v0
v1

v2

v3

Figure 13: A generic face in a generalized strong labeling.

Bonichon et al. [3] have introduced operations on Schnyder woods which they call merge
and split. A split takes a bidirected edge and makes it unidirected to account for the reduced
out-degree at one of the vertices of the edge a new edge is introduced. A merge is the inverse
operation; it takes an angle with two unidirected edges, one of them incoming the other
outgoing. The outgoing edge is removed and the incoming edge is made bidirected. We
define similar operations for generalized strong labelings. The four possible instances for split
and merge are defined by Figure 14: a split is done by replacing a situation from the upper
row by the situation below; a merge, conversely, replaces a situation in the lower row by the
one above it. Note that a bidirected edge can be split in two ways but the new edge of both
splits is introduced in the same face.

Lemma 4.4. If G is a bipartite graph with a generalized strong labeling B and a labeling
B′ of G′ is obtained from (G, B) by a split or merge, then B′ is a generalized strong labeling
of G′.

Proof. The labeling B′ inherits (G0) and (G1) from B. All edges in the figure are legal in
the sense of (G2g). The least trivial thing is to verify (G3g) for the split. Let us concentrate
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Figure 14: Split and merge for generalized strong labelings.

on the split of the first column where we have given names to the objects. From the generic
labeling of a face (Figure 13) it follows that v = u2k and u = u2k+1 for some k ≥ 1. Since
the two black vertices u and x have different labels in F we can conclude that x = v2l+1 for
some l ≥ 0. It is now readily seen that the labels used at the split-edge complete a legal face
labeling on either side.

Lemma 4.5. Let G be a bipartite graph with a generalized strong labeling. If G has an inner
face which is not a quadrangle, then there is a bidirected edge which can be used in a split.

Proof. If G is not a quadrangulation then there is a face F with at least six edges. The
generic labeling of a face (Lemma 4.3) implies that there is a bidirected edge (u2k, u2k+1) or
(v2k, v2k+1). From the previous lemma we conclude that such an edge can be split (in two
ways) and the resulting labeling is a generalized strong labeling.

If the outer face has more than four edges and the special vertices are of the same color,
then again there is a bidirected edge that can be split. If the special vertices are of distinct
color, however, it may happen that every split closes a cycle that separates the special vertices,
thus violating (G0).

Corollary 4.6. If G is a bipartite graph with a generalized strong labeling and the special
vertices of G are of the same color, then there is a sequence of edge splittings which lead to a
quadrangulation with a strong labeling.

If e = uv is a bidirected edge, then we regard e as outgoing at both vertices u and v. With
this in mind we conclude from the strong edge rule (G2g):

Lemma 4.7. The turning rule (Lemma 2.5 and Figure 3) holds for generalized strong label-
ings.

Given a graph G with a generalized strong labeling, let T0 be the set of oriented gray
edges and let T1 be the set of oriented black edges. Again T−1

i is the set of edges of Ti with
reversed orientation.

Lemma 4.8. T0 ∪ T−1
1

and T1 ∪ T−1
0

are acyclic. Moreover, Ti, i ∈ {0, 1}, is a directed tree
with sink si that spans all vertices but s1−i.

Proof. If the special vertices are of different color add a new special vertex s∗0 connected to s0

with a new edge. The labeling is easily extended as to make s∗0 and s1 the special vertices.
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Use edge splits to get to a quadrangulation Q. The acyclicity of T0∪T−1
1

where Ti are the
edge sets defined by the orientation of Q was shown in Lemma 2.8. Note that since a merge
has precisely the effect of deleting an edge from T0 ∪ T−1

1
, this cannot introduce cycles.

The statement about the trees follows from the acyclicity of Ti and the fact that every
non-special vertex has outdegree one in Ti.

The lemma implies that, again, we can define the i-path Pi(v), of a vertex v as the directed
path in Ti from v to the sink si. These paths allow, in turn, the definition of the regions Ri(v)
of a vertex. Consider the numbers f0(v) counting the number of faces in R0(v), i.e., the region
to the right of P0(v). These numbers again obey a nice alternation property, namely, if xy is
an edge of color 0 with black vertex x and white vertex y, then f0(x) ≤ f0(y). If the color of
x, y is 1 and x is black and y white, then f0(x) ≥ f0(y). However, we lose the property that
the numbering f0 yields a 2-book embedding; this is due to the fact that a 0-path P0(u) and
a 1-path P1(v) can cross by using the two directions of a bidirected edge.

4.1 Distributive lattice and flips for generalized strong labelings

In Section 2 we showed that strong labelings for quadrangulations are in bijection to 2-
orientations. This allowed us to identify a flip operation on strong labelings which generates
a distributive lattice on the set of all strong labelings. The following construction allows to
prove equivalent results in the case of generalized strong labelings.

The orientation induced by a generalized strong labeling on G has the somewhat strange
property that it may contain bidirected edges. We encode this orientation by a “regular”
orientation of a larger graph: Let G be a connected bipartite plane graph with distinguished
color classes black and white. Define a graph SG as follows: As vertices of SG take the union
of the vertices, edges and faces of G. Every edge-vertex has degree three and is connected to
the two endpoints and to the face on its right when traversed from white to black. Figure 15
shows an example. The construction is inspired by the completion of a plane graph as used
in the proof of Proposition 3.4. Similar constructions have been considered in the context of
Schnyder woods, see e.g. [6].

Figure 15: A graph G (left) and the corresponding SG (right).
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Proposition 4.9. Generalized strong labelings of G with s0 and s1 on the outer face are in
bijection with orientations of SG which have the following outdegrees

outdeg(x) =





0 if x ∈ {s0, s1},

1 if x is an edge-vertex,

2 otherwise.

Proof. Figure 16 shows how to translate from a generalized strong labeling of G to an ori-
entation of SG. There is a clear correspondence between the rules (G0) and (G1) and the

i

ī i

ī

i

ī i

i i

i ī

i

Figure 16: Translating orientations from G to SG and back. ī denotes the label 1 − i.

prescribed outdegrees of original vertices. The generalized edge rule and outdegree 1 for
edge-vertices are both assumed for the translation. From the face rule (G3g) together with
the restriction of the labeling at edges (G2g) we conclude that face-vertices have outdegree 2.
Note that this also holds for the outer face, the two edges on the outer face which should
have repeated labels to satisfy (G3g) connect to the vertices s0 and s1 which have prescribed
outdegree 0. Therefore, these two edge-vertices receive the two outgoing edges of the vertex
of the outer face.

Conversely, if an orientation of SG withe the prescribed outdegrees is given we can recover
the labeling by starting at s0 where the labels are known and extending the labeling along
edges via the scheme given in Figure 16.

The orientations of SG described in the proposition are α-orientations in the sense of [6].
Hence, the set of all generalized strong labelings of G can be ordered as a distributive lattice.
In particular the generalized strong labelings are again flip-connected, where a flip is defined
as the complementation of all labels inside a cycle C which is directed in the corresponding
orientation of SG.

Recall from the discussion preceeding Theorem 3.5 that for given G and a fixed function α,
the existence of an α-orientation can be decided in polynomial time. Together with the
proposition, this yields:

Theorem 4.10. Plane graphs admitting a generalized strong labeling can be recognized in
polynomial time.

4.2 Graphs admitting a generalized strong labeling

So far we have shown that generalized strong labelings have a nice structure. The correspon-
dence with orientations of SG yields polynomial time recognition and an implicit characteri-
zation via the criterion for α-orientations given on page 13. In this subsection we provide an
explicit characterization.
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To introduce into the topic we have two figures. Figure 17 shows some examples of graphs
with generalized strong labelings. The four examples on the left illustrate how the colors of the
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Figure 17: Examples of generalized strong labelings.

special vertices influence the labeling along the outer face. The generalized strong labelings
in these cases are unique. The generalized strong labeling of the larger graph on the right
is not unique, e.g., exchanging the two underlined labels leads to another generalized strong
labeling. Figure 18 shows some graphs which do not admit generalized strong labelings. The

s1

s0
s0

s1

s0

s1

z

x

a

b

x
s1

s0

Figure 18: Some graphs which do not admit a generalized strong labeling.

first two examples fail to admit a generalized strong labeling simply because their two special
vertices are adjacent. Rule (G0) would force the connecting edge to have two identical labels
on both of its vertices, which is infeasible by the edge rule. In the middle example there is
a cut vertex between x and the two special vertices. The two paths P0(x) and P1(x) would
both contain z which forces a cycle in T0 ∪ T−1

1
, which is impossible by Lemma 4.8.

An undirected graph with special vertices s0 and s1 is called weakly 2-connected if it is
2-connected or adding an edge s0s1 makes it 2-connected. This is equivalent to saying that
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every vertex x has a pair of vertex-disjoint paths one leading to s0 and the other to s1. From
the above it follows that being weakly 2-connected is a necessary condition for admitting a
generalized strong labeling.

Now consider the sketch on the right of Figure 18. It illustrates the following situation:
There is an edge ab, vertex a is black and vertex b white. Removing a and b we disconnect
a component C with x ∈ C from the special vertices s0 and s1. Moreover, component C
is to the left of ab. If a graph contains such an edge we say that it contains a block with a
right chord. Suppose that a graph containing a block with a right chord admits a generalized
strong labeling. Disjointness forces the two paths P0(x) and P1(x) to leave the component C
through vertices a and b. Now consider the orientation of the edge ab, if it is directed from
b to a, then the turning rule for white vertices makes the path Pi(x) leaving at b continue
through a where the two paths meet, contradiction. If the direction of ab is from a to b, then
it is the turning rule for the black vertex a which leads to the same kind of contradiction.

With the three cases we have identified all the obstructions against admitting a generalized
strong labeling:

Theorem 4.11. Let G be a bipartite plane graph with color classes black and white and two
special vertices s0, s1 on the outer face. G admits a generalized strong labeling if and only if
the following conditions are satisfied.

(1) s0 and s1 are nonadjacent,

(2) G is weakly 2-connected,

(3) G contains no block with a right chord.

Proof. The “only if” part comes from the above discussion. The proof for the “if” part is by
induction on the number of edges. Let G be a graph satisfying the conditions. We concentrate
on the case where s0 is a black vertex.

Let e = s0v be the first edge in clockwise order which is incident to s0 and belongs to the
boundary of the outer face (in Figure 17 it is the leftmost edge at s0). Rule (G2g) implies
that e has the duplicate label 0 on the outer face. Now, remove e from G and let G′ be the
resulting graph. There are several cases. The easy cases, discussed first, are considered in
Figure 19.

The first case is that G′ satisfies the conditions. Induction implies a generalized strong
labeling for G′. Consider the edge uv on the boundary of the outer face of G′ which is interior
in G. In the labeling of G′ on the outer face the black vertex u has label 1 and the white
vertex v has label 0. The generalized edge rule (G2g) implies that the labels on the opposite
side of this edge are inverse, 0 at u and 1 at v. Therefore, it is consistent with edge and vertex
rules to label the angle between e and uv with 1 and the outer angle of e at v with 0. This
yields a generalized strong labeling of G.

Now suppose that G′ does not satisfy the conditions because condition (2) fails. If G′

is not connected it has s0 as an isolated vertex. Choose v as the special vertex s′0 for the
component of G′ which contains s1. If this component admits a generalized strong labeling
we can extend this to the full graph. Otherwise, condition (1) is not satisfied. Hence either
the component is just the single edge s′0s1 or this edge is a left chord to a block which satisfies
all three conditions. In both cases it is easy to get to a generalized strong labeling of G.

If G′ is connected but fails to satisfy (2), then it has a cut vertex. Let w be the cut vertex
such that one of the components is weakly 2-connected between v and w and the other is
weakly 2-connected between s0 and s1. The first of these components is either a single edge or
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Figure 19: Constructing the generalized strong labeling in the inductive proof. Underlined
labels are inverted in the labeling of G.

it satisfies the conditions. The second component also satisfies the conditions. By induction
both components have generalized strong labelings. Again it is straightforward to define a
generalized strong labeling based on the generalized strong labelings of the components. The
right part of Figure 19 shows the case where w is a white vertex.

It remains to consider the case where condition (3) does not hold for G′, Figure 20 illus-
trates the situation. Removing edge e = s0v generates a new block B with a right chord uw.
Split the graph into two parts. One part consists of block B together with the edge uw, let
v = s′0 and w = s′1 be the special vertices for this part. This part of the graph fulfills the
condition so that by induction a generalized strong labeling exists. The other part also has a
generalized strong labeling. The left part of the figure shows some of the labels that can be
derived by applying Lemma 4.3 to the outer faces. The right part of the figure shows how to
recombine them to form a generalized strong labeling of the full graph.
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Figure 20: How to deal with the case when removing e results in a block with a right chord.
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