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A k-height on a graph G = (V,E) is an assignment V → {0, . . . , k} such that
the value on ajacent vertices differs by at most 1. We study the Markov chain on
k-heights that in each step selects a vertex at random, and, if admissible, increases
or decreases the value at this vertex by one. In the cases of 2-heights and 3-heights
we show that this Markov chain is rapidly mixing on certain families of grid-like
graphs and on planar cubic 3-connected graphs.

The result is based on a novel technique called block coupling, which is derived
from the well-established monotone coupling approach. This technique may also be
effective when analyzing other Markov chains that operate on configurations of spin
systems that form a distributive lattice. It is therefore of independent interest.

1. Introduction

Markov chains are a generic approach to randomly sample an element from a collection of
combinatorial objects. Examples where Markov chains have been proven useful include linear
extensions [19, 11, 6, 29, 16], eulerian orientations [23], graph colorings [12] and chambers in
hyperplane arrangements [4]. See [18] or [20] for more examples. One is usually interested in
rapidly mixing Markov chains, i.e., Markov chains which converge fast towards their stationary
distribution. Here we study a natural Markov chain M that operates on the set of so called
k-heights of some fixed graph G. We identify a condition on a family G of graphs which implies
thatM is rapidly mixing on graphs in G.

For a fixed graph G = (V,E) and a fixed integral upper bound k ∈ N, a k-height is an
assignment φ : V → {0, . . . , k} such that |φ(v) − φ(w)| ≤ 1 for every edge {v, w} ∈ E. See
Figure 1 for an example. In the case in which G is a grid-like planar graph one may consider
a k-height as height values of grid points or as a landscape satisfying a certain smoothness
condition. The set of k-heights can also be described as feasible configurations of a certain spin
system with uniform weights; in Section 5 we discuss this connection.

1.1. Obtaining k-heights from α-orientations

A motivation for studying k-heights stems from their connection to α-orientations as studied
in [10]. Given an embedded plane graph G = (V,E) and a mapping α : V → N, an α-orientation
of G is an orientation of E in which each vertex v ∈ V has out-degree outdeg(v) = α(v). In
the example shown in Figure 2 we have α(v) := 2 for all v ∈ V .
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Figure 1: Example of a 2-height. Colors visualize the values as a heat map.

The set of all α-orientations of a planar graph G forms a distributive lattice. There is a unique
minimum α-orientation

−→
Emin in which there is no bounded face whose bounding edges form a

counterclockwise oriented cycle. The minimum
−→
Emin can be reached from every α-orientation

by a sequence of flips. A flip1 reverts the counterclockwise oriented bounding edges of a face
into clockwise orientation, see the example in Figure 2.
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Figure 2: (a) Example of an α-orientation
−→
E 0. (b) the α-orientation obtained by flipping the

face bounded by the red arcs. (c) Minimal α-orientation
−→
Emin. Red numbers record

the number of face flips needed to reach
−→
E 0.

The numbers of flips on each bounded face that are necessary to reach
−→
Emin from

−→
E 0 are

independent of the choice of the flip sequence and uniquely determine
−→
E 0. For a sufficiently

large k ∈ N, they form a k-height of the dual graph of G, in which the vertex corresponding to
the unbounded face has value 0; see Figure 2c.

1.2. Rapidly mixing Markov chains on k-heights

The state space of the up/down Markov chain M is the set of k-heights of G. A transition
of M depends on a vertex ṽ ∈ V and a direction △ ∈ {−1,+1}; both are chosen uniformly at
random. According to △, the value at ṽ is decremented or incremented. If the result is again
a valid k-height, it is accepted as next state; otherwise, M stays at the same state. It is easy
to see that the up/down Markov chain M is aperiodic, irreducible and symmetric, hence it
converges towards the uniform distribution on the set of k-heights of G.

We could not prove thatM is rapidly mixing via a direct application of one of the standard
methods such as coupling or canonical paths (cf. [13]). Therefore, we introduce an auxiliary
Markov chainMB. It depends on some family B ⊂ P(V ) of blocks. A block is a set of vertices;

1Here we implicitly assume that α and G are such that there are no rigid edges. Without this assumption it
may be necessary to flip non-facial cycles, see [10].
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together they cover V , i.e., each vertex v ∈ V is contained in at least one block B ∈ B. The
chainMB also operates on the set of k-heights, but in each transition it does not just alter the
value at a single vertex. Instead, it resamples the assgined values on an entire block at once.

A transition of MB can be simulated by a sequence of transitions of M. Therefore, the
comparison theorem of Randall and Tetali (2000) can be used to transform an upper bound
on the mixing time of MB to an upper bound on the mixing time of M. The idea to study a
Markov chainM by first studying a boosted chainMB that performs block moves rather than
single moves is also known in the context of Glauber dynamics under the term block dynamics;
see [7, 22, 28].

Our main result is an upper bound on the mixing time ofM that depends on a careful choice
of B. In the statement of the theorem we let ∂B denote the boundary of a block B ∈ B, i.e.,
the set of vertices outside of B that are adjacent to B. The block divergence EB,v measures the
influence of an increment on v ∈ ∂B when resampling B. We will provide a precise definition
of EB,v in Subsection 2.4.

Theorem 1. Let G = (V,E) be a finite graph, and B be a finite family of blocks, such that for
every vertex v ∈ V there is at least one B ∈ B with v ∈ B. If there exists β < 1 such that for
all v ∈ V

1− 1

2|B|

#{B ∈ B | v ∈ B} −
∑

B∈B | v∈∂B

(EB,v − 1)

 ≤ β < 1 ,

then for the mixing time τ(ε) of the up/down Markov chain M on k-heights of G we have

τ(ε) ≤ cB,k ·

((
log(1ε ) · |V |

)
+ |V |2 · log(k + 1)

)
· log

(
k|V |
ε

)
log( 1

2ε)
,

where

cB,k :=
8 · bmk(k + 1)b

(1− β)|B|
with m := maxv∈V #{B ∈ B | v ∈ B} and b := maxB∈B |B|.

A simplified but weaker version of Theorem 1 is given by its following corollary:

Corollary 1. Let G = (V,E) be a finite graph, and B be a finite family of blocks such that
each vertex v ∈ V is contained in at least m̌ blocks and in at most s boundaries of blocks, and
let Emax := maxB∈B,v∈∂B EB,v. If there is a β < 1 such that

1− 1

2|B|
(m̌− s · (Emax − 1)) ≤ β ,

then the upper bound on τ(ε) given in Theorem 1 holds.

Below, we present various applications of Theorem 1 by showing that the assumptions are
satisfied for different families of graphs and carefully selected families of blocks B. Due to
limited computational power, so far we were able to find appropriate upper bounds on Emax
only in the cases k ∈ {2, 3}. Note that the up/down Markov chainM is trivially rapidly mixing
when k ∈ {0, 1}.
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A bound for the mixing time of the up/down Markov-chain M operating on k-heights of G
which is of the form

τ(ε) < ck ·
((
log(1ε ) · n

)
+ n2 · log(k + 1)

)
· log

(
kn
ε

)
log( 1

2ε)
∈ O

(
n2 log n

)
,

can be shown for the following pairs of an n vertex graph G and a k:

• Graph G is a toroidal hexagonal grid graph and k ∈ {2, 3} with corresponding constants
c2 = 1.747648 · 105 and c3 = 1.052669 · 107. (This is Theorem 7 in Subsection 4.2.)

• Graph G is a toroidal rectangular grid graph and k ∈ {2, 3} with corresponding constants
c2 = 2.844202 · 1010 and c3 = 1.333706 · 1013. (This is Theorem 6 in Subsection 4.1.)

• Graph G is a simple 2-connected 3-regular planar graph and k = 2 with corresponding
constants c2 = 4.391132 · 107. (This is Theorem 8 part (1) in Subsection 4.3.)

• Graph G is a simple 3-connected 3-regular planar graph and k ∈ {2, 3} with corresponding
constants c2 = 2.195097 · 107 and c3 = 4.852027 · 109.
If G is the dual graph of a 4-connected triangulation, the constant for the case k = 2 can
be improved to c2 = 1.489256 · 107.
(This is Theorem 8 parts (2) and (3) in Subsection 4.3.)

We conjecture that the up/down Markov-chain is rapidly mixing on the k-heights of these
graph classes for all k.

Our method can be applied to further families of graphs. The crucial step is to find an
appropriate family of blocks B and a sharp analysis of EB,v. Moreover, we believe that block
coupling can be applied for proving that several other related Markov chains which also operate
on a distributive lattice structure are rapidly mixing. An example could be generalized k-heights
which allow a larger difference between the assigned values of two adjacent vertices.

Preliminary work of this research can be found in a PhD thesis [15].

1.3. Outline

In Section 2 we fix standard terminology related to Markov chains, give formal definitions for
both Markov chainsM andMB and introduce the proof ingredients for Theorem 1. The proof
of Theorem 1 itself is presented in Section 3 and consists mainly of defining and analysing a
monotone coupling of the Markov chainMB. In Section 4 we show how to apply Theorem 1 and
Corollary 1 in order to prove Theorem 7, Theorem 6 and Theorem 8. Finally, in Section 5 we
relate k-heights to spin systems and discuss the applicability of a recent result by Blanca et al. [3]
on bounding the mixing time of corresponding Glauber dynamics.

2. Preliminaries

2.1. Markov chains, mixing time and couplings

For a thorough introduction to the theory of discrete-time Markov chains we refer the reader
to the recent book by Levin, Peres & Wilmer [20] or to the book by Jerrum [17, ch. 3-5].
Throughout this article, all Markov chains C = (Xt)t∈N are discrete-time Markov chains on
some finite state space X . Moreover, they fulfill the following properties:
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• Homogeneous: The transition probabilities

C(x, y) := Prob[Xt+1 = y | Xt = x]

are constant over time, i.e. independent of t.

• Irreducible: Each state can be reached from any other state in a sequence of transitions
with non-zero probability.

• Aperiodic: The possible number of steps for returning from a state to the same state
again are not only multiples of some period m ∈ N,m ≥ 2.

• Symmetric: We have C(x, y) = C(y, x) for all x, y ∈ X .

It is well-known that under these conditions the distribution of Xt converges towards the
uniform distribution on X , which we denote by U(X ). We want to analyse whether this
convergence happens in polynomial time. To make this precise, let

Ct(x, y) := Prob[Xt = y | X0 = x]

and let Ct(x, ·) be the distribution of Xt when C starts in state X0 = x. For any two probability
measures µ, µ′ on X the total variation distance is defined as

∥µ− µ′∥TV := max
A⊂X

|µ(A)− µ′(A)| .

Now,
d(t) := max

x∈X
∥Ct(x, ·)− U(X )∥TV

measures the worst-case distance of C to the uniform distribution after t steps. Hence, the
mixing time defined as

τ(ε) := min{t ∈ N | d(t) < ε} ,

measures the number of time steps required for C to be ε-close to the uniform distribution. We
say that C is rapidly mixing, if τC(ε) is upper bounded by a polynomial in log(|X |) and log(ε−1).

A common technique to prove that a Markov chain is rapidly mixing is by using a coupling.
A coupling of a Markov chain C is another Markov chain (Xt, Yt) operating on X × X whose
components (Xt) and (Yt) are copies of C, i.e., their transition probabilities are the same as
those of C. The Markov chains (Xt) and (Yt) are typically not independent though. If there is
a partial order ≤ defined on X , then we call the coupling a monotone coupling, if

Prob[Xt+1 ≤ Yt+1 | Xt ≤ Yt] = 1.

If X0 ≤ Y0, this implies Xt ≤ Yt for all t. We use the term (monotone) coupling also to refer to
the random transition (Xt, Yt) 7→ (Xt+1, Yt+1) that defines a (monotone) coupling (Xt, Yt)t∈N.

One usually aims for a monotone coupling in which in each transition Xt and Yt get closer in
expectation with respect to some distance measure, since then an upper bound on the mixing
time of C is provided by the classical result in Theorem 2.

Theorem 2 (Dyer & Greenhill, Theorem 2.1 in [8]). Let (Xt, Yt) 7→ (Xt+1, Yt+1) be a coupling
of a Markov chain C operating on a state space X , let d : X × X → N0 be any integer value
metric and let

D := max{d(x, y) | (x, y) ∈ X × X}.
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Suppose there exists β < 1 such that

E[d(Xt+1, Yt+1)] < β · d(Xt, Yt)

for all t. Then the mixing time τC(ε) is upper bounded by

τC(ε) ≤
log

(
D
ε

)
1− β

.

For the Markov chainM on k-heights discussed in the introduction we have no monotone cou-
pling for which Theorem 2 can directly be applied. This is the reason for introducing a boosted
Markov chainMB on k-heights, in which a transition is typically changing the values on a larger
set of vertices. For finding a monotone coupling, we use the path coupling technique introduced
by Bubley and Dyer [5]. That is we define a monotone coupling (Xt, Yt)→ (Xt+1, Yt+1) on pairs
of k-heights that differ by one on a single vertex. Using the following theorem this coupling
can be extended to arbitrary pairs of k-heights.

Theorem 3 (Dyer & Greenhill, Theorem 2.2 in [8]). Suppose C is a Markov chain operating
on X . Let δ be an integer valued metric defined on X × X which takes values in {0, . . . , D},
and let S be a subset of X × X such that for all (x, y) ∈ X × X there exists a path

γx,y : x = x0, x1, . . . , xr = y

with (xi, xi+1) ∈ S, that is a shortest path, i.e.,

r−1∑
l=0

δ(xl, xl+1) = δ(x, y).

Let (x, y) 7→ (x′, y′) be a coupling of C that is defined for all (x, y) ∈ S. For any (x, y) ∈ X × X ,
apply this coupling along the path γx,y to obtain a new path x′ = x′0, . . . , x

′
r = y′. Then,

(x, y) 7→ (x′, y′) defines a coupling of C on all tuples (x, y) ∈ X × X . Moreover, if there ex-
ists β < 1 so that

E[δ(x′, y′)] < β · δ(x, y)

for all (x, y) ∈ S, then the same inequality holds for all (x, y) ∈ X × X in the extended coupling.

For some families of graphs and choices of blocks this theorem allows to conclude that MB
is rapidly mixing. A transition of MB can be simulated by a sequence of transitions of the
original Markov chain M. Using the comparison technique that is manifested in the following
theorem we can push a mixing result fromMB to the original chainM.

Theorem 4 (Randall & Tetali, Theorem 3 in [24]). Let C and C̃ be two reversible Markov
chains on the same state space X and having the same stationary distribution π. Let E(C) be
the set of transitions of C and E(C̃) be the set of transitions of C̃.

Suppose that for each transition (x, y) ∈ E(C̃) there is a path γx,y : x = x0, . . . , xk = y of
transitions (xi, xi+1) ∈ E(C). For a transition (u, v) ∈ E(C) let

Γ(u, v) :=
{
(x, y) ∈ E(C̃) | (u, v) ∈ γx,y

}
,
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and let

A := max
(u,v)∈E(C)

 1

π(u)C(u, v)
∑

(x,y)∈Γ(u,v)

|γx,y| π(x) C̃(x, y)

 ,

where |γx,y| denotes the length of γx,y and C(u, v) := ProbC [Xt+1 = v | Xt = u] is the probability
of the transition (u, v) in C. Then the mixing time τC of C can be bounded in terms of the mixing
time τC̃ as by

τC(ε) ≤
4 log (1/(ε · πmin))

log (1/(2ε))
·A · τC̃(ε),

where πmin := min{π(x) | x ∈ X}.

2.2. The up/down Markov chain

For a graph G = (V,E) let Ωk
G denote the set of k-heights of G. The up/down Markov chain

M(G, k) operates on Ωk
G. It starts with any k-height X0 ∈ Ωk

G and its transitions are given by
Algorithm 1. We usually consider G and k as fixed parameters, which is why we write just Ω
andM for simplicity.

Algorithm 1: Transition of up/down Markov chainM: Xt → Xt+1

Sample v ∈ V , and △ ∈ {−1, 1}, and p ∈ [0, 1] uniformly at random

φ(v) :=

{
Xt(v) +△ v = ṽ

Xt(v) v ̸= ṽ

if φ is a valid k-height and p ≤ 1
2 then

Xt+1 ← φ
else

Xt+1 ← Xt

return Xt+1

Performing a transition only if p ≤ 1
2 is known as making the chain lazy, it ensures aperiodicity

of the Markov chain.
For two k-heights X,Y ∈ Ω we write X ≤ Y if X(v) ≤ Y (v) for all v ∈ V . This makes Ω a

poset. Furthermore, equipped with the operations

(X ∧ Y )(v) := min{X(v), Y (v)} and (X ∨ Y )(v) := max{X(v), Y (v)}

the set Ω becomes a distributive lattice. The chain M can be seen as a random walk on the
diagram of Ω. For X,Y ∈ Ω we introduce the distance between X and Y defined as

δ(X,Y ) =
∑
v∈V
|X(v)− Y (v)|.

Lemma 1. Let X,Y ∈ Ω. Then δ(X,Y ) is the smallest number of transitions of M to get
from state X to state Y .

Proof. In each step of the Markov chainM = (Xt), the value d(Xt, Y ) changes by at most one.
Hence,M cannot reach Y from X in less than δ(X,Y ) steps.

7



Suppose X ̸= Y . We claim that there is a X ′ ∈ Ω, such that (X,X ′) is a transition of M
and δ(X ′, Y ) < δ(X,Y ). By symmetry, we can assume that S := {v | X(v) < Y (v)} is
nonempty and choose v0 ∈ S with X(v0) being minimal. If increasing the value of X at v0
results in a valid k-height we have found X ′. Otherwise there must be a vertex v1 adjacent
to v0 with X(v1) < X(v0). Because of this and because Y is a k-height,

X(v1) ≤ X(v0)− 1 < Y (v0)− 1 ≤ Y (v1) .

Hence, v1 ∈ S and X(v1) < X(v0). This contradicts the choice of v0.

For the Markov chain M a natural monotone coupling is given by using the same random
vertex v, random p, and offset △ for both Xt and Yt. Unfortunately, this coupling does not
satisfy E[δ(Xt+1, Yt+1)] < δ(Xt, Yt). For an example consider a 2-path a — b — c as graph and
k = 3, if Xt(a) = Yt(a) = Xt(c) = Yt(c) = 1, Xt(b) = 0, and Yt(b) = 2, then δ(Xt, Yt) = 2 and
E[δ(Xt+1, Yt+1)] =

1
22 +

1
2(

4
63 +

2
61) =

13
6 > 2.

2.3. The block Markov chain

In this section B will always be a family of blocks of a graph G, that is B is a (multi)set of
subsets of the vertices of G which forms a cover, i.e., for each vertex v ∈ V there is a B ∈ B
with v ∈ B.

Typically a family of blocks consists of well connected subsets of the graph. For instance,
if G is a a× b grid, then B could be the family of all 4× 4 subgrids.

The boundary of a block B ∈ B is the set ∂B := {v ∈ V \B | {v, w} ∈ E for some w ∈ B}.
With ΩB we denote the set of k-heights of the subgraph of G induced by B, i.e.,

ΩB := {φ : B → {0, . . . , k} | φ k-height w.r.t. G[B]} .

For X ∈ Ω and any φ : B → {0, . . . , k}, we define [X|φ] : V → {0, . . . , k} as the assignment
which maps a v ∈ B to φ(v) and a v ∈ V \B to X(v).

With ΩB|X we denote the set of admissible fillings of B in X, this set consists of all k-heights
in ΩB which extend X, i.e.,

ΩB|X := {φ ∈ ΩB | [X|φ] ∈ Ω} .

Note that if two k-heights X,X ′ ∈ ΩB agree on ∂B, i.e., X(v) = X ′(v) for all v ∈ ∂B,
then, ΩB|X = ΩB|X′ . This allows us to use the notation ΩB|X also in the case where the k-
height X is only defined on ∂B, we call such a X ∈ Ω∂B a boundary constraint. A boundary
constraint X ∈ Ω∂B is called extensible, if ΩB|X ̸= ∅.

For a fixed family of blocks B the block Markov chain MB operates on the set of k-heights Ω.
A transition depends on a block B ∈ B and an admissible filling φ ∈ ΩB|Xt

chosen at random:
Chain MB can be seen as a boosted version of the up/down chain M, as in each transition

the values of an entire block are updated. Assuming that all blocks of B are of constant small
size, one can implement a computer simulation ofMB efficiently by preprocessing all sets ΩB|X .
Hence, the mixing behaviour ofMB is a problem of independent interest. For us, however,MB
will mainly serve as an auxiliary tool for proving that the up/down chainM is rapidly mixing.

The existence of a monotone coupling of MB is non-trivial, it will be the main part of our
proof in Section 3. The fact that monotone couplings exist forM as well as forMB enables us
to directly apply coupling from the past introduced by Propp and Wilson (see [20]) for uniform
sampling from Ω and for empirically estimating the mixing times τM(ε) and τMB(ε).
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Algorithm 2: Transition of block Markov chainMB: Xt → Xt+1

Sample B ∈ B, and φ ∈ ΩB|Xt
, and p ∈ [0, 1] uniformly at random

if p ≤ 1
2 then

Xt+1 ← [Xt|φ]
else

Xt+1 ← Xt

return Xt+1

2.4. A discrete version of a theorem by Strassen and the block divergence

Let P be a finite partially ordered set and µ1, µ2 : P → [0, 1] probability distributions on the
elements of P . A set U ⊂ P is an upset of P if x ∈ U and x ≤ y implies y ∈ U . We say µ1 is
stochastically dominated by µ2, if µ1(U) ≤ µ2(U) for all upsets U ⊂ P .

The following theorem is a discrete application of a theorem by Strassen [27, Theorem 11].
Its application to Markov chains is also covered in a very accessible way in [21]. In the problem
set [26] a purely discrete proof using a MinFlow-MaxCut argument is suggested.

Theorem 5. Let µ1 and µ2 be probability distributions on a finite partially ordered set P such
that µ1 is stochastically dominated by µ2. Then there exists a probability distribution λ on P×P
with the following properties:

1) λ is a joint distribution of µ1 and µ2, i.e.,

∀x ∈ P :
∑
y∈P

λ(x, y) = µ1(x), and

∀y ∈ P :
∑
x∈P

λ(x, y) = µ2(y) .

2) If λ(x, y) > 0, then x ≤ y in P .

We will make use of Theorem 5 later when constructing a monotone coupling (Xt, Yt) ofMB.
For the rapid convergence between Xt and Yt, the block divergence, as introduced in the follow-
ing, plays a key role.

We call a pair (X,Y ) ∈ Ω × Ω of k-heights a cover pair, if X ≤ Y and δ(X,Y ) = 1, i.e., X
and Y differ at a single vertex v where Y (v) = X(v) + 1. Let B ∈ B be some block. If v ∈ ∂B,
then the sets of admissible fillings ΩX|B and ΩY |B may differ. Let U(ΩB|X) and U(ΩB|Y ) denote
the uniform distributions on ΩB|X and ΩB|Y , respectively. We can view U(ΩB|X) and U(ΩB|Y )
as distributions on the partially ordered set ΩB. Later we will see that U(ΩB|X) is stochastically
dominated by U(ΩB|Y ). Hence, Theorem 5 provides a distribution λB,X,Y on ΩB ×ΩB, which
in fact is a distribution on ΩB|X × ΩB|Y , as other elements of ΩB × ΩB have zero probability.

When constructing the monotone coupling of MB we aim for a rapid convergence of Xt

and Yt. For this it will turn out to be crucial that when (X ′, Y ′) is drawn from λB,X,Y , then
the distance δ(X ′, Y ′) :=

∑
v∈B Y ′(v)−X ′(v) is small in expectation. We call this quantity

EB,v := max

{
EλB,X,Y

[δ(X ′, Y ′)]

∣∣∣∣∣ (X,Y ) ∈ Ω× Ω cover pair,
Y (v) = X(v) + 1

}
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the block divergence for block B ∈ B and boundary vertex v ∈ ∂B.
The distribution λB,X,Y only depends on the values that X and Y take on ∂B; so for com-

puting EB,v, we only need to maximize over pairs (X,Y ) ∈ Ω∂B × Ω∂B of extensible bound-
ary constraints that are cover relations on ∂B. But how can we compute EλB,X,Y

[d(X ′, Y ′)]?
Lemma 2 gives an answer.

For an admissible filling φ ∈ ΩB, let w(φ) :=
∑

v∈V φ(v) be its weight.

Lemma 2. Let (X,Y ) ∈ Ω× Ω be a cover relation and B ∈ B some block. Let φ1 ∼ U(ΩB|X)
and φ2 ∼ U(ΩB|Y ) be random variables drawn uniformly from the admissible fillings of B with
respect to X and Y , and k. Then it holds:

EλB,X,Y
[δ(X ′, Y ′)] = E[w(φ2)]− E[w(φ1)]

Proof. In the calculation we use that (X ′, Y ′) is a pair drawn from the distribution λB,X,Y with
marginals ΩB|X and ΩB|Y provided by Theorem 5. In particular X ′ ≤ Y ′, i.e., X ′(v) ≤ Y ′(v)
for all v.

EλB,X,Y
[d(X ′, Y ′)] =

∑
v∈B

EλB,X,Y
[Y ′(v)]− EλB,X,Y

[X ′(v)]

=
∑
v∈B

EU(ΩB|Y )[Y
′(v)]− EU(ΩB|X)[X

′(v)]

= E[w(φ2)]− E[w(φ1)].

3. Mixing time of up/down and block Markov chain

3.1. Stochastic dominance in block Markov chain

To apply Theorem 5 in our context we need to verify stochastic dominance between U(ΩB|X)
and U(ΩB|Y ). This will be done in Proposition 1. In the proof we make use of the Ahlswede–
Daykin 4 Functions Theorem.

Lemma 3 (4 Functions Theorem). Let D be a distributive lattice and f1, f2, f3, f4 : D → R≥0,
such that for all a, b ∈ D:

f1(a)f2(b) ≤ f3(a ∨ b)f4(a ∧ b).

Then for all A,B ⊂ D:
f1(A)f2(B) ≤ f3(A ∨B)f4(A ∧B),

where fi(A) =
∑

a∈A fi(a), A∨B = {a∨b | a ∈ A, b ∈ B} and A∧B = {a∧b | a ∈ A, b ∈ B}.

The original proof of the 4 Functions Theorem can be found in Ahlswede and Daykin [1],
another source is The Probabilistic Method by Alon and Spencer [2].

Lemma 4. Let X,Y ∈ Ω, X ≤ Y be k-heights of G = (V,E), and let B ⊂ V be a block.
Let D be the smallest distributive sublattice of ΩB containing ΩB|X ∪ ΩB|Y . Then ΩB|X forms
a downset and ΩB|Y forms an upset in D.
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Proof. By symmetry, it suffices to show that ΩB|X is a downset in D. So let g, h ∈ D, with g ≤ h
and h ∈ ΩB|X . We have to show g ∈ ΩB|X .

Suppose g /∈ ΩB|X , then since g ∈ ΩB, we must have |g(v)−X(v′)| > 1 for two adjacent
vertices v ∈ B and v′ ∈ ∂B. With h ∈ ΩB|X we conclude g(v) ≤ h(v) ≤ X(v′) + 1 so that

g(v) < X(v′)− 1 .

For all f ∈ ΩB|X we have f(v) ≥ X(v′) − 1 by definition. Also for all f ∈ ΩB|Y we
have f(v) ≥ Y (v′)− 1 and using Y ≥ X we get f(v) ≥ X(v′)− 1 as well. Therefore,

(minD)(v) = min{f(v) | f ∈ ΩB|X ∪ ΩB|Y } ≥ X(v′)− 1 > g(v).

This is a contradiction to g ∈ D.

Proposition 1. Let X,Y ∈ Ω, with X ≤ Y be k-heights of G = (V,E), and let B ⊂ V be a
block. Then on ΩB, U(ΩB|X) is stochastically dominated by U(ΩB|Y ).

Proof. Let D be the smallest distributive sublattice of ΩB containing ΩB|X∪ΩB|Y , and consider
U(ΩB|X) and U(ΩB|Y ) as distributions on D with zero probability outside of ΩB|X and ΩB|Y ,
respectively. In particular, ΩB|X and ΩB|Y have zero probability on ΩB \ D. Therefore, it
suffices to show that ΩB|X(U) ≤ ΩB|Y (U) for any upset U in D. This is equivalent to

0 ≤ U(ΩB|Y )(U)− U(ΩB|X)(U) =
|U ∩ ΩB|Y |
|ΩB|Y |

−
|U ∩ ΩB|X |
|ΩB|X |

.

Define four functions f1, f2, f3, f4 : D → R≥0 as

f1(h) := χU∩ΩB|X (h)

f3(h) := χU∩ΩB|Y (h)

f2(h) := χΩB|Y (h)

f4(h) := χΩB|X (h)

for all h ∈ D, where χS denotes the characteristic function of the set S. By Lemma 4, ΩB|X
forms a downset and ΩB|Y forms an upset in D. Aiming for an application of Lemma 3, we
have to verify that

f1(h)f2(g) ≤ f3(h ∨ g)f4(h ∧ g)

for all h, g ∈ D. If f1(h)f2(g) = 0, this holds trivially, so we assume f1(h) = f2(g) = 1. This
implies h ∈ U ∩ ΩB|X and g ∈ ΩB|Y . Because h ∨ g ≥ g and ΩB|Y is an upset, h ∨ g ∈ ΩB|Y ,
and because h∨g ≥ h and U is an upset, h ∨ g ∈ U . Hence, h∨g ∈ U ∩ΩB|Y and f3(h ∨ g) = 1.
Moreover, h ∧ g ≤ h ∈ ΩB|X implies h ∧ g ∈ ΩB|X , because ΩB|X is a downset. Hence, we also
get f4(h ∧ g) = 1. Therefore, f3(h ∨ g)f4(h ∧ g) = 1 and the assumption of Lemma 3 holds.
Lemma 3 applied on A = B = D yields

0 ≤ f3(D)f4(D)− f1(D)f2(D) = |U ∩ ΩB|Y | · |ΩB|X | − |U ∩ ΩB|X | · |ΩB|Y |,

division by |ΩB|X | · |ΩB|Y | yields the inequality we need.
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3.2. Block coupling

We are now ready to define the block coupling, which is a monotone coupling (Xt, Yt) of
the block Markov chain MB. Recall that Xt ≤ Yt is a cover relation if d(Xt, Yt) = 1. In
this situation, we will randomly select a block B ∈ B and compute the joint distribution
of U(ΩB|Xt

) and U(ΩB|Yt
) as described in Theorem 5. A sample from this joint distribution

yields k-heights Xt+1, Yt+1 which also satisfy Xt+1 ≤ Yt+1. Hence, we have a monotone
coupling (Xt, Yt) 7→ (Xt+1, Yt+1) on the set

S := {(X,Y ) ∈ Ω× Ω | (X,Y ) is a cover relation}

By Theorem 3 the coupling defined on S × S can be extended to a coupling defined on Ω×Ω.
From the construction of the extended coupling it follows that the monotonicity of the coupling
on S×S is inherited by the extended coupling. The transition (Xt, Yt) 7→ (Xt+1, Yt+1) is detailed
in Algorithm 3.

Algorithm 3: Monotone coupling (Xt ≤ Yt) 7→ (Xt+1 ≤ Yt+1) ofMB

Sample p ∈ [0, 1] uniform at random

if p ≤ 1
2 then

if d(Xt, Yt) ≤ 1 then
Sample B ∈ B uniformly at random
if Xt(v) = Yt(v) for all v ∈ ∂B then

Sample φ from U(ΩB|Xt
) /* Note that U(ΩB|Xt

) = U(ΩB|Yt
) */

(Xt+1, Yt+1)← ([Xt|φ], [Yt|φ])
else

Apply Strassen’s Theorem on U(ΩB|Xt
) and U(ΩB|Yt

)

Sample (φX , φY ) from the joint distribution λB,Xt,Yt on ΩB|Xt
× ΩB|Yt

(Xt+1, Yt+1)← ([Xt|φX ], [Yt|φY ])

else
Define (Xt+1, Yt+1) using path coupling (Theorem 3)

else
(Xt+1, Yt+1)← (Xt, Yt)

return (Xt+1, Yt+1)

The intermediate step of first defining a coupling on cover relations before extending it via
path coupling is for the sake of the analysis of the mixing time. In fact, as we have stochastic
dominance between U(ΩB|Xt

) and U(ΩB|Yt
) for any Xt ≤ Yt, not just for cover relations, so we

could use Strassen’s Theorem (Theorem 5) directly to define a monotone coupling on Ω × Ω.
However, it is easier to analyse E[d(Xt+1, Yt+1)] when Xt ≤ Yt is a cover relation and to rely
on path coupling (Theorem 3) for the general case.

Lemma 5. If β is chosen such that

1− 1

2|B|

#{B ∈ B | v ∈ B} −
∑

B∈B | v∈∂B

(EB,v − 1)

 ≤ β
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for all vertices v ∈ V , and X ≤ Y is a cover relation in Ω × Ω, and (X,Y ) 7→ (X ′, Y ′) is a
transition of the block coupling (Algorithm 3), then the expected distance of X ′ and Y ′ satisfies

E[d(X ′, Y ′)] ≤ β.

Proof. Let Y (v) = X(v)+1, hence, Y (w) = X(w) for all w ̸= v. Either the coupling is inactive
due to p > 1

2 or some block B ∈ B is chosen at random. The probabilities in the following
three cases are conditioned on p ≤ 1

2 .
Case I: v ∈ B. Then, X and Y are equal on V \ B, in particular on ∂B. So the same

admissible filling φ ∈ ΩB is chosen for both X and Y . Then X ′ = [X|φ] and Y ′ = [Y |φ] are
identical and d(X ′, Y ′) = 0. This case happens with probability #{B ∈ B | v ∈ B}/|B|.

Case II: v ∈ ∂B. For each block B ∈ B with v ∈ ∂B, the probability for this to happen
is 1/|B|, and by definition of the block divergence E[d(X ′, Y ′)] ≤ EB,v.

Case III: v /∈ (B ∪ ∂B). As in case I, the same admissible filling φ is sampled uniformly
from ΩB|X = ΩB|Y , but Y ′(v) = X ′(v) + 1 is being preserved, so d(X ′, Y ′) = 1.

Putting all cases together gives

E[d(X ′, Y ′)] ≤ 1

2
+

1

2

[
#{B ∈ B | v ∈ B}

|B|
· 0 + 1

|B|
∑

B∈B | v∈∂B

EB,v

+

(
1− #{B ∈ B | v ∈ B}

|B|
− #{B ∈ B | v ∈ ∂B}

|B|

)]

= 1− 1

2|B|

#{B ∈ B | v ∈ B} −
∑

B∈B | v∈∂B

(EB,v − 1)


≤ β

Proof of Theorem 1. We bound the mixing time ofMB using block coupling. Lemma 5 together
with the assumptions in the theorem imply

E[d(Xt+1, Yt+1)] ≤ β · E[d(Xt, Yt)]

when (Xt, Yt) is a cover relation. For a pair (X,Y ) ∈ Ω × Ω with X ≤ Y one can find a
path X = x0, . . . , xr = Y , where each (xi, xi+1) is a cover relation. Therefore, path coupling
(Theorem 3) yields a coupling ofMB on all such pairs with the property

E[d(Xt+1, Yt+1)] ≤ β · E[d(Xt, Yt)] .

With Theorem 2 we then get

τMB(ε) ≤
log

(
D
ε

)
1− β

.

To bound the mixing time of the up/down Markov chain M, we want to use the comparison
technique from Theorem 4. Hence, we need a bound on the value of the A in the theorem.

Let b := max{|B| | B ∈ B} and let X 7→ Y be a transition of the block Markov chain,
i.e., (X,Y ) ∈ E(MB). There is a block B so that the k-heights X and Y differ only on B.
By Lemma 1, there is a path γX,Y from X to Y of length |γX,Y | = d(X,Y ) ≤ k · |B| ≤ k · b
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consisting of transitions in E(M). Choosing γX,Y as paths of length d(X,Y ) guarantees that
along γX,Y only values of vertices in B are changed.

For X,Y ∈ Ω and B ∈ B, let MB(X,Y |B) denote the transition probability of MB for
moving from state X to state Y given that in the first line of Algorithm 2 block B is chosen
and p ≤ 1

2 . For X ̸= Y by the law of total probability we have

MB(X,Y ) =
1

2|B|
∑
B∈B
MB(X,Y |B) . (1)

Now, fix some (Q,R) ∈ E(M) which is not a loop and let v be the vertex on which Q and R
differ. The probability of this transition is

M(Q,R) =
1

4|V |
.

As in the statement of Theorem 4, consider the set

Γ(Q,R) := {(X,Y ) ∈ E(MB) | (Q,R) ∈ γX,Y }

of transitions inMB whose path inM uses (Q,R). Let (X,Y ) ∈ Γ(Q,R) and let B be a block
for which MB(X,Y |B) > 0. Then the k-heights X and Y can only differ on vertices in B.
Moreover, since γX,Y uses (Q,R), we must have X(v) ̸= Y (v) and therefore v ∈ B. For an
arbitrary block B ∈ B observe∑

(X,Y )∈Γ(Q,R)

MB(X,Y |B) ≤
∑

X′,Y ′∈ΩB

1

|ΩB|
= |ΩB| ≤ (k + 1)b, (2)

and the left hand side of (2) equals zero if v /∈ B. By (1) and (2) we get∑
(X,Y )∈Γ(Q,R)

MB(X,Y ) ≤ 1

2|B|
∑

B∈B,v∈B

∑
(X,Y )∈Γ(Q,R)

MB(X,Y |B) (3)

≤ 1

2|B|
#{B ∈ B | v ∈ B}(k + 1)b . (4)

Now consider

AQ,R :=
1

π(Q)M(Q,R)

∑
(X,Y )∈Γ(Q,R)

|γX,Y | · π(X) · MB(X,Y ) .

Since π(Q) = π(X), andM(Q,R) = 1/(4|V |) and |γX,Y | ≤ kb we get

AQ,R ≤ 4kb|V |
∑

(X,Y )∈Γ(Q,R)

MB(X,Y )

≤ 2bk(k + 1)b · |V |
|B|

·#{B ∈ B | v ∈ B}
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By using πmin = 1
|Ω| ≥

1
(k+1)|V | and A := max(Q,R)∈E(M)AQ,R in Theorem 4, as well as

m = max#{B ∈ B | v ∈ B} and D = max d(X,Y ) ≤ k|V | we obtain the result:

τM(ε) ≤
4 log

(
1

ε·πmin

)
log

(
1
2ε

) ·A · τMB(ε)

≤
4 log

(
(k+1)|V |

ε

)
log

(
1
2ε

) · 2bk(k + 1)b · |V |
|B|

·#{B ∈ B | v ∈ B} ·
log

(
D
ε

)
1− β

≤ 8bmk(k + 1)b

(1− β)|B|︸ ︷︷ ︸
cB,k

·

((
log(1ε ) · |V |

)
+ |V |2 · log(k + 1)

)
· log

(
k|V |
ε

)
log( 1

2ε)

4. Applications

In this section we will present how Theorem 1 and Corollary 1 can be applied on grid like
graphs and 3-regular graphs. The results are based on computations of the block divergence.
The relevant data for 3-regular graphs (Subsection 4.3) can be found in Table 3 and Table 4
in Appendix A. The code used for all computations is available in [25].

4.1. k-heights on toroidal rectangular grid graphs

For fixed g, h ∈ N we consider the toroidal rectangular grid graph G ∼ (Z/gZ) × (Z/hZ),
i.e., the vertices are integer points (x, y) with horizontal edges {(x, y), (x+ 1, y)} and vertical
edges {(x, y), (x, y + 1)}, where we take the x- and the y-coordinate modulo g and modulo h,
respectively; see Figure 3.

0

8

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 0 1

Figure 3: Toroidal rectangular grid graph of size 12× 9.

For showing that the up/down Markov chain on 2-heights or 3-heights of G is rapidly mixing,
we use the family B consisting of all contiguous 4 × 4 blocks. In Figure 3, such a block is
highlighted in red. Assuming that g, h are sufficiently large, there are exactly |B| = g · h such
blocks, each vertex is contained in exactly 16 blocks and forms part of 16 block boundaries.
Aiming for an application of Corollary 1, we have to bound the block divergence. We do this
on the basis of of massive computations.
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The boundary ∂B consists of four paths of length 4 (blue vertices in Figure 3). In every
boundary constraint X ∈ Ω∂B, the values of two successive vertices on one of these paths can
differ by at most 1. Further, in an extensible boundary constraint, the values of the last vertex
of one path and the first vertex of the next path differ by at most 2, because otherwise there
is no possible value for the vertex in the corner of B.

If we consider the boundary as a chain of 16 transitions, we can compute the number of the
extensible boundary constraints as

tr(QkP
3
kQkP

3
kQkP

3
kQkP

3
k ) = tr

(
(QkP

3
k )

4
)
,

where Pk and Qk are both matrices of size k × k with

(Pk)i,j :=

{
1 if |i− j| ≤ 1

0 otherwise
(Qk)i,j :=

{
1 if |i− j| ≤ 2

0 otherwise
.

If k = 2 this gives 2.825.761 extensible boundary constraints; if k = 3 we get 15.784.802
extensible boundary constraints. For any block B ∈ B and v ∈ ∂B, when we want to com-
pute EB,v, Lemma 2 tells us that this is the maximum of E[w(u)] − E[w(ℓ)] with random
admissible fillings ℓ ∼ U(ΩB|X) and u ∼ U(ΩB|Y ) for two k-heights X,Y that differ in a single
vertex v ∈ ∂B, X(v) = Y (v)− 1. For symmetry reasons, it is sufficient for the maximization
to compute EB,v for the two vertices v ∈ ∂B which are encircled in Figure 3.

Given a boundary constraint X ∈ Ω∂B we compute E[w(ℓ)] for ℓ ∼ U(ΩB|X) with a dynamic
programming approach. For each row of the block we consider all the fillings consistent with the
boundary conditions as vectors. By going from row to row we compute for each vector the num-
ber and total weight of all consistent assignments of vectors to previous rows. This then allows
to compute the total weight

∑
ℓ∈ΩB|X

w(ℓ) of all admissible fillings and their number |ΩB|X |.
The value of E[w(ℓ)] is the quotient of the two numbers.

We do this computation for each boundary constraint X ∈ Ω∂B and store the result.
Next, we iterate over all cover relations X,Y ∈ Ω∂B (up to symmetry) in order to com-
pute max{EB,v : v ∈ ∂B}. The results are shown in Table 1. In the case k = 4, we interrupted
the execution but had already found a cover relation that gives the lower bound in the table.

k max{EB,v : v ∈ ∂B}
2 ≈ 1.225092
3 ≈ 1.752678
4 > 2.27

Table 1: Block divergence for blocks of size 4× 4 in rectangular grid.

Theorem 6. Let G = (V,E) be a toroidal rectangular grid graph, n = |V |. For k ∈ {2, 3} the
up/down Markov-chain M operating on k-heights of G is rapidly mixing. More precisely, the
mixing time is upper bounded by

τ(ε) < ck ·
((
log(1ε ) · n

)
+ n2 · log(k + 1)

)
· log

(
kn
ε

)
log( 1

2ε)
∈ O

(
n2 log n

)
,

where c2 = 2.844202 · 1010 and c3 = 1.333706 · 1013.
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Proof. In the notation of Corollary 1, for the family B of all contiguous blocks of size 4× 4 we
have m̌ = s = 16. We obtain

1− 1

2|B|
(m̌− s · (Emax − 1)) =: βk < 1

if and only if Emax < 2. This holds for k ∈ {2, 3} as seen by the computational results in
Table 1. Hence, Corollary 1 implies that the up/down Markov chain is rapidly mixing in these
two cases and that the mixing times are upper bounded as in Theorem 1.

In the case k = 3, we know Emax < 1.752678, from which we get

β3 = 1− 1

2|B|
(m̌− s · (Emax − 1)) < 1− 1.978576

|B|
,

and in the notation as in Theorem 1, using b = m = 16, we obtain

cB,3 =
8 · bmk(k + 1)b

(1− β3)|B|
<

8 · bmk(k + 1)b

1.978568
< 1.333706 · 1013.

In the case k = 2, we do the same calculation based on Emax < 1.225093 and obtain
cB,2 < 2.844202 · 1010.

For k = 4 our computation shows Emax > 2 (Table 1), which means that in Corollary 1
we cannot find such a β4 < 1. We believe that the up/down Markov chain is rapidly mixing
independently of k. We tried to use larger blocks for B but ran out of computational power.

4.2. k-heights on toroidal hexagonal grid graphs

For fixed g, h ∈ N we consider the triangular grid graph on (Z/gZ)×(Z/hZ), i.e., the vertices are
points (x, y) ∈ Z×Z with horizontal edges {(x, y), (x+ 1, y)}, vertical edges {(x, y), (x, y + 1)}
and diagonal edges {(x, y), (x+ 1, y + 1)}, and we consider the x- and y-coordinates modulo g
and modulo h; respectively. Of the so obtained plane graph we take the dual graph G, whose
vertices correspond to the 2 ·g ·h triangular faces and edges in G correspond to pairs of triangles
that share a side; see Figure 4. The graph G is a hexagonal grid.

(a) (b)

Figure 4: Hexagonal grid (a) or dual (b) of toroidal triangle grid of size 10× 8. Red vertices or
faces form a block; blue vertices or faces are part of the boundary ∂B.

Every point (x, y) ∈ Z×Z defines a block Bx,y consisting of 6 vertices that correspond to the
triangular faces incident to the vertex (x, y); one such block is indicated in red in Figure 4. We
use the family B := {Bx,y : x, y ∈ Z}, which for sufficiently large g, h has g ·h blocks, each vertex
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is contained in 3 blocks and 3 block boundaries. Using the matrix Pk defined in Section 4.1,
we can compute the number of k-heights on a block as |ΩB| = tr(P 6

k ).
For every block B, the boundary ∂B consists of 6 isolated vertices. Therefore, there are

exactly |Ω∂B| = (k + 1)6 legal boundary constraints. If k ≥ 4, some of them are not extensible,
hence we could skip them in our computation. We iterated over all boundary constraints Ω∂B

and fillings ΩB, as their cardinalities are small; see Table 2. The computation detects non
extensible boundary constraints and simply ignores them. For symmetry reasons, when com-
puting E[w(u)] − E[w(ℓ)] where ℓ ∼ U(ΩB|X) and u ∼ U(ΩB|Y ), we only need to do this for
cover relations (X,Y ) on ∂B that differ in a fixed vertex v ∈ ∂B.

k |ΩB| |Ω∂B| max{EB,v : v ∈ ∂B}
2 199 729 ≈ 0.798658
3 340 4096 ≈ 1.831905
4 481 15625 ≈ 2.892857
5 622 46656 3.0
6 763 117649 3.0

Table 2: Block divergence for blocks of 6 hexagonal shaped vertices.

Theorem 7. Let G = (V,E) be a toroidal hexagonal grid graph, n = |V |. For k ∈ {2, 3} the
up/down Markov-chain M operating on k-heights of G is rapidly mixing. More precisely, the
mixing time is upper bounded by

τ(ε) < ck ·
((
log(1ε ) · n

)
+ n2 · log(k + 1)

)
· log

(
kn
ε

)
log( 1

2ε)
∈ O

(
n2 log n

)
,

where c2 = 1.165099 · 105 and c3 = 7.017788 · 106.

Proof. In the notation of Corollary 1, for the family of blocks B that we have described above
we have m̌ = s = 3. We obtain

1− 1

2|B|
(m̌− s · (Emax − 1)) =: βk < 1

if and only if Emax < 2. This holds for k ∈ {2, 3} as seen by the computational results in Table 1.
Hence, Corollary 1 implies that the up/down Markov chain is rapidly mixing in these two cases
and that the mixing times are upper bounded as in Theorem 1.

In the case k = 3, we know Emax < 1.831906, from which we get

β3 = 1− 1

2|B|
(m̌− s · (Emax − 1)) < 1− 0.252141

|B|
,

and in the notation as in Theorem 1, using b = 6 and m = 3 we obtain

cB,3 =
8 · bmk(k + 1)b

(1− β3)|B|
<

8 · bmk(k + 1)b

0.252141
< 7.017788 · 106.

In the case k = 2, we do the same calculation based on Emax < 0.798659 and obtain the bound
cB,2 < 1.165099 · 105.

Again, for k = 4 our computation shows Emax > 2 (Table 2), which means that in Corollary 1
we cannot find such a β4 < 1.
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4.3. k-heights on planar 3-regular graphs

Figure 5: Example of a dual graph (black, solid) of a 4-connected triangulation (orange, dashed)

Theorem 8. Let G = (V,E) be a simple 2-connected 3-regular planar graph, and let n = |V |.

(1) The mixing time τ(ε) of the up/down Markov chain M operating on 2-heights is upper
bounded by

τ(ε) < ck ·
((
log(1ε ) · n

)
+ n2 · log(k + 1)

)
· log

(
kn
ε

)
log( 1

2ε)
∈ O

(
n2 log n

)
,

where c2 = 4.391132 · 107.

(2) If G is even 3-connected, then, for k ∈ {2, 3}, the mixing time τ(ε) of the up/down Markov
chain M operating on k-heights is upper bounded by the same expression as in (1) with
constants c2 = 2.195097 · 107 and c3 = 4.852027 · 109.

(3) If G is the dual graph of a 4-connected triangulation, then, for k ∈ {2, 3}, the mixing
time τ(ε) of the up/down Markov chain M operating on k-heights is upper bounded by
the same expression as in (1) with constants c2 = 1.489256 · 107 and c3 = 4.852027 · 109.

For a fixed plane embedding of G we construct a family B of blocks of the following two
types. For every face F of degree d ≤ 10 we consider the block consisting of all d boundary
vertices and call it a block of type 1, or, more specifically, a block of type 1d; see Figure 6a.
In B we include 8 identical copies of each such block. For every face F of degree d > 10, we
consider all sets of 8 successive vertices on the boundary of F and call them blocks of type 2.
We include each of these d blocks (a single time) in B; see Figure 6b for an example.

As a first consequence of this construction, each vertex v is contained in exactly 24 blocks
in B: As deg(v) = 3 and G is 2-connected, vertex v belongs to 3 distinct faces, each of which
contributes 8 blocks containing v.

When computing the block divergence EB,v for some v ∈ ∂B, we distinguish different cases
depending on the type of B and the adjacency relations between B and v. If B is of type 1d,
we label the vertices in clockwise order around F as 1, . . . , d. In fact, due to symmetry, it will
not be relevant at which vertex the numbering starts. If B is of type 2, we label its vertices in
clockwise order as 1, . . . , 8.

Note that v ∈ ∂B can be adjacent to one, two or three vertices of B. The cases in the following
case distinction will be tagged by the type of B followed by the labels of the neighbors of v
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F

(a)

F

(b)

Figure 6: Red vertices form a block of type 19 in (a) and a block of type 2 in (b). Blue vertices
are part of the boundary ∂B.

in square brackets. For instance, Case 15[1] describes the scenario in which v is adjacent to a
single vertex of a block of type 15. Due to symmetry, the cases 15[x] with x ∈ {1, . . . , 5} are all
equivalent to Case 15[1]; they result in the same block divergence EB,v. As another example,
Figure 7 shows Case 2[2, 5], i.e., v is adjacent to vertices 2 and 5 of a block of type 2. This case
is symmetrical to Case 2[4, 7], both result in the same block divergence EB,v.

F

1
2

3

4

5

6

78

v

Figure 7: Case 2[2, 5]: Vertex v is adjacent to vertices 2 and 5 from a block B which is of type 2.
The block divergence EB,v is the same as in Case 2[4, 7].

In a block B of type 2, vertices 1 and 8 have two neighbors in ∂B. Note that when v is one
of these two neighbors, our tag will not tell whether v belongs to the boundary of F . This
information would not affect EB,v.

Further, note that for a block B of any type, so far we did not consider the cases in which
some boundary vertex other than v is adjacent to multiple vertices in B. For instance, in
the example in Figure 7, vertices 3 and 4 or some of the vertices 1, 6, 7, 8 could be adjacent
to a common boundary vertex. However, these cases are already covered in our computation
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of EB,v, where we consider all boundary constraints Ω∂B, including those where some of the
boundary vertices are assigned the same value. Hence, these further cases can only have a
smaller block divergence.

For k = 2 and k = 3, we used a computer program to compute EB,v for all cases described
above; see Table 3 for cases where B is of type 1 and Table 4 for cases where B is of type 2.
Whenever multiple cases result in the same block divergence EB,v for symmetry reasons, the
tables contain only one of them.

It turns out that in this setting Corollary 1 is not strong enough for proving thatM is rapidly
mixing: Each vertex is contained in exactly m̌ = 24 blocks and in at most s = 30 boundaries
of blocks; and even in the case k = 2 we have Emax ≈ 2.367241 (with Case 110[1, 3, 7] being
the extremal case; see Table 3 and Table 4), which gives m − s(Emax − 1) < −17.0172 < 0.
Therefore, instead of applying Corollary 1, we will apply Theorem 1 directly.

Lemma 6. If G = (V,E) is a simple 2-connected 3-regular planar graph, then, with the family B
of blocks described above and k = 2, we have

#{B ∈ B | v ∈ B} −
∑

B∈B | v∈∂B

(EB,v − 1) > 10.32755

for all v ∈ V .

Proof. We have already observed # {B ∈ B | v ∈ B} = 24. For analysing the sum on the right
hand side, we have to consider all blocks B ∈ B with v ∈ ∂B and look up the corresponding
cases in Table 3 and Table 4. As v has degree 3 and G is 2-connected, v is incident to exactly
three pairwise distinct faces H1, H2 and H3. Its three neighbors w1, w2 and w3 are incident to
three further faces F1, F2 and F3, as shown in Figure 8.

v

H1H2

H3

F3F2

F1

w1

w3w2

Figure 8: A vertex v can only be in the boundary of a block induced from any of the faces H1,
H2, H3, F1, F2 and F3.

There are at most 30 blocks B ∈ B with v ∈ ∂B: At most 8 induced by each of the faces F1, F2

and F3, and at most 2 induced by each of the faces H1, H2 and H3.
In the case in which the faces H1, H2, H3, F1, F2, F3 are pairwise distinct, every block B ∈ B

contains at most one vertex adjacent to v. In the corresponding cases in Table 3 and Table 4,
we have EB,v < 0.80456, with 110[1] being the extremal case. Moreover, there are at least 24
blocks B ∈ B with v ∈ ∂B, namely the 8 blocks induced by each of the faces F1, F2 and F3.
From this we directly get

#{B ∈ B | v ∈ B} −
∑

B∈B | v∈∂B

(EB,v − 1) > 24 + 24 · 0.19544 > 28.
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However, the faces F1, F2 and F3 do not need to be pairwise distinct, and they can be identical
to a face H1, H2 or H3. In such cases, blocks may occur that contain two or three vertices
adjacent to v, which requires a refined analysis.

From the data in Table 3 and Table 4 we get

E∗ := max
B∈B | v∈∂B

EB,v − 1

# {w ∈ B : {v, w} ∈ E}
< 0.455748,

with Case 110[1, 3, 7] being the extremal case. Now we have:∑
B∈B | v∈∂B

EB,v − 1 =
∑

B∈B | v∈∂B

# {w ∈ B : {v, w} ∈ E}
EB,v − 1

# {w ∈ B : {v, w} ∈ E}

≤ E∗ ·
3∑

i=1

# {B ∈ B : wi ∈ B, v /∈ B}

< 0.455748 · 30 = 13.67245

In the last inequality we used that there are at most 10 blocks B ∈ B with wi ∈ B and v /∈ B:
At most 8 induced by Fi and at most one induced by each of the two faces Hj that are incident
to wi. Finally, we obtain

#{B ∈ B | v ∈ B} −
∑

B∈B | v∈∂B

(EB,v − 1)

> 24− 13.67245 = 10.32755 .

Lemma 7. If G = (V,E) is a 3-connected 3-regular planar graph, then, with the family B of
blocks constructed above and in the case k ∈ {2, 3}, we have

#{B ∈ B | v ∈ B} −
∑

B∈B | v∈∂B

(EB,v − 1) >

{
20.659512 k = 2

2.489598 k = 3

for all v ∈ V .

Proof. The proof is similar to the proof of Lemma 6, but the 3-connectivity allows us to exclude
cases that would imply a 2-separator. For instance, in Case 2[2, 5], depicted in Figure 7, the
vertices 2 and 5 form a 2-separator, hence, it cannot occur in G. Indeed, we can exclude all
cases in which v is adjacent to two non-consecutive vertices on B (For example, Case 2[2, 5])
or adjacent to three vertices on B (For example, Case 2[2, 4, 5]). The remaining cases are those
in which v has only one neighbor in B (For example, Case 2[3]) or exactly two neighbors that
lie consecutively on B (For example, Case 2[3, 4]).

First, we treat the case k = 3. For upper bounding E∗ as in the proof of Lemma 6, we
maximize over the cases that we did not exclude. Using the values from Table 3 and Table 4,
we obtain E∗ < 0.848707 with Case 110[1] being the extremal case.

Recall the notation from Figure 8. From the 3-connectivity of G it follows that each of
the faces F1, F2 and F3 is distinct to the faces {H1, H2, H3}: Clearly, F1 is distinct to H1

and H2, since otherwise, the vertex w1 would be a separator. Further, F1 is distinct to H3,
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as otherwise, the vertices {v, w1} would separate w3 from w2. The statement for F2 and F3

follows by symmetry.
Let BF ⊂ B be the set of blocks that are induced by the faces {F1, F2, F3}, and let BH ⊂ B be

the set of blocks that are induced by the faces {H1, H2, H3}. Using the fact that {H1, H2, H3}
are distinct from {F1, F2, F3}, we can get the following: The only way in which v can be in
the boundary of a block B induced by Hi is when Hi has degree larger than 10 and B is of
type 2 consisting of the 8 consecutive vertices either before or behind v on the boundary of Hi.
These are Case 2[8] and Case 2[1], which lead to the same block divergence EB,v ≈ 1.190238;
see Table 4.

This allows us to refine the analysis that we already did in the proof of Lemma 6:∑
B∈B | v∈∂B

EB,v − 1

=

 ∑
B∈BH | v∈∂B

EB,v − 1

+

 ∑
B∈BF | v∈∂B

EB,v − 1


< 6 · (1.190239− 1) + E∗ ·

3∑
i=1

# {B ∈ BF : wi ∈ B, v /∈ B}

< 6 · 0.190239 + 0.848707 · 24 = 21.510402

From this we obtain our result for the case k = 3:

#{B ∈ B | v ∈ B} −
∑

B∈B | v∈∂B

(EB,v − 1)

> 24− 21.510402 = 2.489598

The result for k = 2 is obtained using the very same calculations. From Table 3 and Table 4
we get E∗ < 0.212547 (with Case 110[1, 2] being the extremal case), for Case 2[8] and Case 2[1]
we have EB,v ≈ 0.706599 and obtain

#{B ∈ B | v ∈ B} −
∑

B∈B | v∈∂B

(EB,v − 1)

> 24− (6 · (0.706560− 1) + 0.212547 · 24) = 20.659512

Lemma 8. If G = (V,E) is the dual graph of a 4-connected triangulation, then, with the
family B of blocks constructed above and in the case k ∈ {2, 3}, we have

#{B ∈ B | v ∈ B} −
∑

B∈B | v∈∂B

(EB,v − 1) >

{
30.4512 k = 2

2.489598 k = 3

for all v ∈ V .

Proof. We know that G is 3-connected as the dual of a 4-connected triangulation, so we could
directly refer to Lemma 7. However, the fact that G is the dual of a 4-connected triangulation
allows to exclude further cases, namely all cases in which v has more than one neighbor in B.
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Apart from this further restriction, the proof is exactly the same. We just mention the relevant
data: From Table 3 and Table 4 we get for k = 2 the bound E∗ < −0.195440 and for k = 3 the
bound E∗ < 0.848707 (with Case 110[1] being the extremal case for both k ∈ {2, 3}).

Proof of Theorem 8. We apply Theorem 1. In the case of planar 2-heights on 2-connected
3-regular graphs, by Lemma 6, we have

β2 := 1− 1

2|B|

#{B ∈ B | v ∈ B} −
∑

B∈B | v∈∂B

(EB,v − 1)


< 1− 5.163775

|B|
,

and in the notation as in Theorem 1, using b = 10 and m = 24, we obtain

cB,2 =
8 · bmk(k + 1)b

(1− β2)|B|
<

8 · bmk(k + 1)b

5.163775
< 4.391132 · 107.

Part (2) and (3) follow using the same calculation and Lemma 7 and Lemma 8.

5. Glauber dynamics

A spin system consists of a graph G = (V,E), where the vertices V are also called sites,
a finite set Q = {1, . . . , q} of possible spins and a set of feasible configurations Ω ⊂ QV ,
where QV := {φ : V → Q}. Examples include proper q-colorings, independent sets (hardcore
model) and magnetic states (Ising model); see [3], from which we take the following notation.

Spin systems are inspired by physics; in a configuration φ ∈ QV there are interacting forces
between neighbor sites depending on their spins, making some of the configurations less likely
or infeasible. This is expressed by a weight or "inverse energy" function w : QV → R≥0,

w(φ) =
∏

{v,w}∈E

Avw(φ(v), φ(w))
∏
v∈V

Bv(φ(v)) ,

where Avw : Q × Q → R≥0 are symmetric functions that represent the interaction between
any two neighbor sites, and Bv : Q → R≥0 measures the influence of an "external field"
on v. Then, typically, one chooses Ω := {φ ∈ QV : w(φ) > 0}. The Gibbs distribution µ is the
probability distribution on Ω in which the probability of an element φ is proportional to its
weight, i.e., µ(φ) = w(φ)/Zw, where Zw =

∑
ϕ∈Ωw(ϕ).

In general, sampling from µ is hard; in most cases, computing Zw is already as hard as
counting Ω. This is where Glauber dynamics come into play. These are Markov chains (φt)
that operate on Ω an converge towards µ. In each step, they randomly select a site v (or
traverse all sites in some order) and randomly update its spin φt(v) according to a distri-
bution νφt,v : Q→ [0, 1], which is called update rule. A remarkable result due to Hayes and
Sinclair [14] is that for any Glauber dynamics that is based on a local and reversible update
rule, Ω(n log n) is a lower bound on the mixing time on graphs of bounded degree. Local means
that νφ,v may only depend on the current spins of v and its neighbors. An update rule is
reversible if µ(φ) · νφ,v(q′) = µ(φ′) · νφ′,v(q) whenever φ(v) = q and φ′ is obtained from φ by
changing the spin at v to q′.
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Clearly, by setting Q = {0, . . . , k} and with

Avw(q1, q2) :=

{
1 if |q1 − q2| ≤ 1

0 otherwise
, Bv :≡ 1 ,

the set of feasible configurations Ω coincides exactly with the set of k-heights, each element
has the same weight, and hence, the Gibbs distribution equals the uniform distribution U(Ω).
The up/down Markov chainM = (Xt) selects in each iteration uniformly a site v and updates
its spin Xt(v) depending on a coin flip and depending on the spins of the neighbors of v.
Clearly, this up/down update rule is local and also symmetric, hence reversible. This implies
an Ω(n log n) lower bound on its mixing time for all classes of graphs that we studied in
Section 4, because their vertex degree is bounded.

In [3] they study heat-bath update rules and conditions that imply that the asymptotic lower
bound is tight, i.e., the mixing time is Θ(n log n). An update rule is a heat-bath update rule, if
the updated spin for v is sampled according to µ conditioned on the spins of all other vertices;
more precisely,

νφ,v(q) = Probµ[ϕ(v) = q | ϕ(w) = φ(w) for all w ̸= v] .

It is easy to see that the heat-bath update rule coincides exactly with the block Markov
chain MB for a family of singleton blocks B = {{v} : v ∈ V }. In fact, the authors in [3] also
generalize their results to so called block dynamics, i.e., to resampling larger blocks, just asMB
does.

Theorem 9 (Blanca et al., Theorem 1.6 in [3]). For an arbirary spin system on a graph of
maximum degree ∆, if the system is η-spectrally independent and b-marginally bounded, then
there exists a constant C = C(b, η,∆) such that the mixing time of the Glauber dynamics is
upper bounded by τ(ε) < C · n log n, where C =

(
∆
b

)O(1+ η
b
).

With the next lemma we show that the spin system of k-heights is b-marginally bounded.
After that we comment on the other condition of Theorem 9: spectral independence.

Recall the definitions of ΩB and ΩB|X in Subsection 2.3. They naturally generalize to
spin systems other than k-heights. Let µB|X denote the distribution on ΩB|X which is the
Gibbs distribution conditioned on the spin values of X in the set V \ B. In the case of
k-heights, µB|X = U(ΩB). A spin system is called b-marginally bounded, if for every X ∈ Ω,
for every B ⊂ V , for every site v ∈ B and for any spin q for which there exists a φ ∈ ΩB|X
with φ(v) = q, the probability under µB|X of seeing spin q at site v is lower bounded by b,
i.e., ProbµB|X [ϕ(v) = q] ≥ b.

In a graph G we let Br(v) := {w ∈ V : dist(v, w) < r} be the ball of radius r around v.

Lemma 9. With respect to the spin system of k-heights on G, the Gibbs distribution µ = U(Ω)
is b-marginally bounded with

b :=
1

(k + 1)(∆−1)k−1 ,

where ∆ denotes the maximum degree of G.

Proof. Fix X ∈ Ω, a set B ⊂ V , a site v ∈ B and spin q ∈ Q. Define k-heights L,U ∈ ΩB by

L(w) := max{q − dist(v, w), 0}
U(w) := min{q + dist(v, w), k}
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for any w ∈ B, where dist(v, w) =∞ if there is no v − w path in B. Let

f : ΩB → ΩB, Y 7→ (Y ∨ U) ∧ L ,

where ∨ resp. ∧ denotes the pointwise minimum resp. maximum of two k-heights. Indeed, f is
well defined, as ΩB is closed under these operations. Note that f(Y )(v) = q, and Y and f(Y )
can only differ on sites in the ball Bk(v).

We will now show that Y ∈ ΩB|X implies f(Y ) ∈ ΩB|X . Let (w,w′) be an edge with w ∈ B
and w′ ̸∈ B, i.e., w′ ∈ ∂B. The claim is that X(w′)−1 ≤ f(Y )(w) ≤ X(w′)+1. By assumption,
there exists φ ∈ ΩB|X with φ(v) = q. We know φ(w) ≥ q − dist(v, w) by the k-height property,
hence, L(w) ≤ φ(w) ≤ X(w′) + 1. Since Y ∈ ΩB|X we have Y (w) ≤ X(w′) + 1, and we obtain

f(Y )(w) = ((Y ∨ U) ∧ L)(w) ≤ (L ∧ Y )(w)

= max{L(w), Y (w)} ≤ X(w′) + 1 .

A similar argument shows f(Y )(w) ≥ X(w′) − 1: first show that Y (w) and U(w) and hence
also (Y ∨ U)(w) are lower bounded by X(w′)−1, therefore, X(w′)−1 is also a lower bound for
the pointwise maximum ((Y ∨U)∧L)(w) = f(Y )(w). This completes the proof of f(Y ) ∈ ΩB|X .

Let W := B \ Bk(v). For an admissible filling φ ∈ ΩB|X , let φ|W ∈ ΩW be the restriction
on W and let Ω∗

W := {ϕ ∈ ΩW | ∃φ ∈ ΩB|X : φ|W = ϕ}. By definition, every ϕ ∈ Ω∗
W can be

extended to an admissible filling φ ∈ ΩB|X , but by applying f on any such extension, it can be
even extended to an admissible filling φ ∈ ΩB|X with φ(v) = q. In other words, out of at most

(k + 1)|B∩Bk(x)| ≤ (k + 1)|Bk(x)| ≤ (k + 1)(∆−1)k−1
= b−1

ways to extend ϕ ∈ Ω∗
W to an admissible filling φ ∈ ΩB|X , there exists at least one which

fulfills φ(v) = q. For a random admissible filling φ ∼ U(ΩB|X) we conclude:

Prob[φ(v) = q] ≥ b .

The second condition of Theorem 9 requires the spin system to be η-spectrally independent.
This is defined in [3] in terms of the ALO influence matrix. Let B ⊂ V , X ∈ Ω, let T = V ×Q
and let JB|X ∈ RT ×T be the ALO influence matrix defined as

JB|X(v, q, v′, q′) := ProbµB|X [φ(v) = q | φ(v′) = q′]− ProbµB|X [φ(v) = q] .

Now, the spin system is said to be η-spectrally independent if for all B ⊂ V and X ∈ Ω the
largest eigenvalue λ1 of JB|X satisfies λ1 < η.

Blanca et al. [3] relate η-spectral independence with the existence of contracting couplings
as in Theorem 2. Let U ⊂ V . For a so called pinning τ : U → Q, the restricted Glauber
dynamics (φτ

t ) operates on the set ΩV \U |τ ; in each step it updates a site in V \ U using the
heat bath update rule w.r.t. the distribution µV \U |τ . They prove the following result:

Theorem 10 (Blanca et al., Theorem 1.10 in [3]). If for every pinning τ : U → Q there is a
coupling (Xt, Yt) of the restricted Glauber dynamics (ϕτ

t ) and a β < 1 such that

E[d(Xt+1, Yt+1)] < β · d(Xt, Yt) ,

where d(X,Y ) := #{v ∈ ΩV \U : X(v) ̸= Y (v)}, then the spin system is η-spectrally independent
with constant η = 2

(1−β)n .
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This result can be extended to block dynamics operating on ΩV \U |τ using an arbitrary family
of blocks B ⊂ P(V \ U); see Theorem 1.11 in [3]. Under the conditions of Theorem 1 the
block coupling that we constructed in Algorithm 3 is a contracting coupling as required by
Theorem 10 in the absence of any pinning (U = ∅). However, it seems difficult for us to
establish a contracting block coupling that is compatible with the restriction under an arbitrary
pinning τ : U → V .

We leave it as an open question in which cases the spin system of k-heights satisfies η-spectral
independence. This would imply an optimal mixing time of Θ(n log n) forMB using singleton
blocks B = {{v} : v ∈ V }.

6. Conclusion

In this work we studied a natural up/down Markov chain M operating on k-heights, which
can also be considered as valid configurations σ : V → {0, · · · , k} of a spin systems with hard
constraints |σ(v) − σ(w)| ≤ 1 for all {v, w} ∈ E. We established a criterion for the boosted
block Markov chainMB to be rapidly mixing, which implies thatM is rapidly mixing as well,
and showed several examples of graph classes to which it applies.

Question 1. Is the up/down Markov chain M on the graph classes discussed in Theorem 6,
Theorem 7 and Theorem 8 rapidly mixing for all values of k?

For some smaller values of k, using larger blocks B and more computational power, one might
be able to show that Theorem 1 can still be applied, hence, M mixes rapidly. A completely
affirmative answer of Question 1, i.e. for arbitrary large values of k, could consist of an argument
which guarantees that one can always choose the blocks large enough so that the conditions of
Theorem 1 are satisfied.

Intuitively, for a vertex v ∈ ∂B and a vertex w ∈ B with large distance dist(v, w), an increase
of X(v) should not greatly affect the distribution of X ′(w) when X ′ ∼ U(ΩB|X). This intuition
is captured by the concept of spatial mixing. The spin system of k-heights has strong spatial
mixing, if there exist constants β and α > 0 so that for all B′ ⊂ B ⊂ V and for any pair of
boundary constraints X,Y ∈ ∂B that differ only in a single vertex v ∈ ∂B we have

∥U(ΩB|X)− U(ΩB|Y )∥B′ < β · |B′| · exp(−α · dist(v,B′)) ,

where ∥µ−µ′∥B′ denotes the total variation distance of the projections of µ, µ′ on B′. Dyer, Sin-
clair, Vigoda and Weitz [9] have shown that spatial mixing implies a mixing time of O(n log n)
if the system is monotone. In fact, the system of k-heights is monotone by Proposition 1.
Hence, the following question becomes relevant:

Question 2. For which classes of graphs and for which values of k does the system of k-heights
have strong spatial mixing with respect to the uniform distribution?

Finally, we want to mention thatM is clearly not rapidly mixing on any graph. The easiest
example is the complete graph Kn on n vertices and k = 2. There are three disjoint classes
of k-heights which form a partition of Ω:

Ω> := {X ∈ Ω | ∃v ∈ V : X(v) = 0} |Ω>| = 2n − 1

Ω< := {X ∈ Ω | ∃v ∈ V : X(v) = 2} |Ω<| = 2n − 1

Ω= := {X1 ≡ 1} |Ω=| = 1
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Every sequence of transitions between Ω< and Ω> must contain X1, and X1 is incident to
exactly n transitions to each of the other two classes. Clearly, this is a bottleneck which shows
thatM is not rapidly mixing; see [20, Theorem 7.4].

Question 3. Is the up/down Markov chain M on k-heights rapidly mixing on all graphs of
maximum degree bounded by ∆, for some or arbitrary values ∆ ≥ 2?
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A. Block divergence on 3-regular graphs

Table 3: Block divergence for blocks of type 1.

k Case |ΩB | |Ω∂B | maxEB,v

2 13[1] 15 27 ≈ 0.727273
2 14[1] 35 81 ≈ 0.769231
2 15[1] 83 243 ≈ 0.790323
2 16[1] 199 729 ≈ 0.798658
2 17[1] 479 2187 ≈ 0.802228
2 18[1] 1155 6561 ≈ 0.803695
2 19[1] 2787 19683 ≈ 0.804306
2 110[1] 6727 59049 ≈ 0.804559
2 13[1, 2] 15 9 ≈ 1.327273
2 14[1, 2] 35 27 ≈ 1.384615
2 14[1, 3] 35 27 ≈ 1.435897
2 15[1, 2] 83 81 ≈ 1.415323
2 15[1, 3] 83 81 ≈ 1.540323
2 16[1, 2] 199 243 ≈ 1.426863
2 16[1, 3] 199 243 ≈ 1.574777
2 16[1, 4] 199 243 ≈ 1.552082
2 17[1, 2] 479 729 ≈ 1.431858
2 17[1, 3] 479 729 ≈ 1.591048
2 17[1, 4] 479 729 ≈ 1.579371
2 18[1, 2] 1155 2187 ≈ 1.433892
2 18[1, 3] 1155 2187 ≈ 1.597510
2 18[1, 4] 1155 2187 ≈ 1.592294
2 18[1, 5] 1155 2187 ≈ 1.586912
2 19[1, 2] 2787 6561 ≈ 1.434741
2 19[1, 3] 2787 6561 ≈ 1.600246
2 19[1, 4] 2787 6561 ≈ 1.597410
2 19[1, 5] 2787 6561 ≈ 1.598880
2 110[1, 2] 6727 19683 ≈ 1.435092
2 110[1, 3] 6727 19683 ≈ 1.601372
2 110[1, 4] 6727 19683 ≈ 1.599577
2 110[1, 5] 6727 19683 ≈ 1.603594
2 110[1, 6] 6727 19683 ≈ 1.600502
2 13[1, 2, 3] 15 3 ≈ 1.500000
2 14[1, 2, 3] 35 9 ≈ 1.869231
2 15[1, 2, 3] 83 27 ≈ 1.905707
2 15[1, 2, 4] 83 27 ≈ 2.051192
2 16[1, 2, 3] 199 81 ≈ 1.923658
2 16[1, 2, 4] 199 81 ≈ 2.150510
2 16[1, 3, 5] 199 81 ≈ 2.150510
2 17[1, 2, 3] 479 243 ≈ 1.930434
2 17[1, 2, 4] 479 243 ≈ 2.189825
2 17[1, 2, 5] 479 243 ≈ 2.159796
2 17[1, 3, 5] 479 243 ≈ 2.235299
2 18[1, 2, 3] 1155 729 ≈ 1.933325
2 18[1, 2, 4] 1155 729 ≈ 2.206921
2 18[1, 2, 5] 1155 729 ≈ 2.195117
2 18[1, 3, 5] 1155 729 ≈ 2.264221
2 18[1, 3, 6] 1155 729 ≈ 2.315401
2 19[1, 2, 3] 2787 2187 ≈ 1.935014
2 19[1, 2, 4] 2787 2187 ≈ 2.213945
2 19[1, 2, 5] 2787 2187 ≈ 2.209698
2 19[1, 2, 6] 2787 2187 ≈ 2.207776
2 19[1, 3, 5] 2787 2187 ≈ 2.277630
2 19[1, 3, 6] 2787 2187 ≈ 2.342016
2 19[1, 4, 7] 2787 2187 ≈ 2.334910
2 110[1, 2, 3] 6727 6561 ≈ 1.936494
2 110[1, 2, 4] 6727 6561 ≈ 2.216879
2 110[1, 2, 5] 6727 6561 ≈ 2.215781
2 110[1, 2, 6] 6727 6561 ≈ 2.222741
2 110[1, 3, 5] 6727 6561 ≈ 2.282993
2 110[1, 3, 6] 6727 6561 ≈ 2.354501
2 110[1, 3, 7] 6727 6561 ≈ 2.367241
2 110[1, 4, 7] 6727 6561 ≈ 2.363205

k Case |ΩB | |Ω∂B | maxEB,v

3 13[1] 22 64 ≈ 1.600000
3 14[1] 54 256 ≈ 1.789474
3 15[1] 134 1024 ≈ 1.804348
3 16[1] 340 4096 ≈ 1.831905
3 17[1] 872 16384 ≈ 1.840096
3 18[1] 2254 65536 ≈ 1.845752
3 19[1] 5854 262144 ≈ 1.847792
3 110[1] 15250 1048576 ≈ 1.848706
3 13[1, 2] 22 16 ≈ 2.000000
3 14[1, 2] 54 64 ≈ 2.142857
3 14[1, 3] 54 64 ≈ 2.000000
3 15[1, 2] 134 256 ≈ 2.546154
3 15[1, 3] 134 256 ≈ 2.615385
3 16[1, 2] 340 1024 ≈ 2.577465
3 16[1, 3] 340 1024 ≈ 2.826087
3 16[1, 4] 340 1024 ≈ 3.216327
3 17[1, 2] 872 4096 ≈ 2.624362
3 17[1, 3] 872 4096 ≈ 2.818584
3 17[1, 4] 872 4096 ≈ 3.324534
3 18[1, 2] 2254 16384 ≈ 2.635011
3 18[1, 3] 2254 16384 ≈ 2.856485
3 18[1, 4] 2254 16384 ≈ 3.403828
3 18[1, 5] 2254 16384 ≈ 3.633238
3 19[1, 2] 5854 65536 ≈ 2.641197
3 19[1, 3] 5854 65536 ≈ 2.863505
3 19[1, 4] 5854 65536 ≈ 3.426333
3 19[1, 5] 5854 65536 ≈ 3.626901
3 110[1, 2] 15250 262144 ≈ 2.643553
3 110[1, 3] 15250 262144 ≈ 2.868846
3 110[1, 4] 15250 262144 ≈ 3.438075
3 110[1, 5] 15250 262144 ≈ 3.651213
3 110[1, 6] 15250 262144 ≈ 3.620821
3 13[1, 2, 3] 22 4 ≈ 3.000000
3 14[1, 2, 3] 54 16 ≈ 2.964286
3 15[1, 2, 3] 134 64 ≈ 2.966667
3 15[1, 2, 4] 134 64 ≈ 2.982759
3 16[1, 2, 3] 340 256 ≈ 3.110112
3 16[1, 2, 4] 340 256 ≈ 3.200000
3 16[1, 3, 5] 340 256 ≈ 3.000000
3 17[1, 2, 3] 872 1024 ≈ 3.164596
3 17[1, 2, 4] 872 1024 ≈ 3.525963
3 17[1, 2, 5] 872 1024 ≈ 3.871287
3 17[1, 3, 5] 872 1024 ≈ 3.617647
3 18[1, 2, 3] 2254 4096 ≈ 3.194189
3 18[1, 2, 4] 2254 4096 ≈ 3.535367
3 18[1, 2, 5] 2254 4096 ≈ 4.042553
3 18[1, 3, 5] 2254 4096 ≈ 3.831169
3 18[1, 3, 6] 2254 4096 ≈ 4.222115
3 19[1, 2, 3] 5854 16384 ≈ 3.202434
3 19[1, 2, 4] 5854 16384 ≈ 3.578054
3 19[1, 2, 5] 5854 16384 ≈ 4.114039
3 19[1, 2, 6] 5854 16384 ≈ 4.387895
3 19[1, 3, 5] 5854 16384 ≈ 3.820580
3 19[1, 3, 6] 5854 16384 ≈ 4.332220
3 19[1, 4, 7] 5854 16384 ≈ 4.846281
3 110[1, 2, 3] 15250 65536 ≈ 3.206722
3 110[1, 2, 4] 15250 65536 ≈ 3.585695
3 110[1, 2, 5] 15250 65536 ≈ 4.139175
3 110[1, 2, 6] 15250 65536 ≈ 4.390973
3 110[1, 3, 5] 15250 65536 ≈ 3.859528
3 110[1, 3, 6] 15250 65536 ≈ 4.408656
3 110[1, 3, 7] 15250 65536 ≈ 4.648191
3 110[1, 4, 7] 15250 65536 ≈ 5.051252
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Table 4: Block divergence for blocks of type 2.

k Type |ΩB | |Ω∂B | maxEB,v

2 2[1] 1393 59049 ≈ 0.706599
2 2[2] 1393 59049 ≈ 0.782333
2 2[3] 1393 59049 ≈ 0.792046
2 2[4] 1393 59049 ≈ 0.797591
2 2[1, 2] 1393 19683 ≈ 1.412481
2 2[1, 3] 1393 19683 ≈ 1.411765
2 2[1, 4] 1393 19683 ≈ 1.477771
2 2[1, 5] 1393 19683 ≈ 1.491765
2 2[1, 6] 1393 19683 ≈ 1.493956
2 2[1, 7] 1393 19683 ≈ 1.486392
2 2[1, 8] 1393 19683 ≈ 1.412481
2 2[2, 3] 1393 19683 ≈ 1.411765
2 2[2, 4] 1393 19683 ≈ 1.473715
2 2[2, 5] 1393 19683 ≈ 1.541176
2 2[2, 6] 1393 19683 ≈ 1.557661
2 2[2, 7] 1393 19683 ≈ 1.557944
2 2[3, 4] 1393 19683 ≈ 1.411765
2 2[3, 5] 1393 19683 ≈ 1.540578
2 2[3, 6] 1393 19683 ≈ 1.544729
2 2[4, 5] 1393 19683 ≈ 1.417639
2 2[1, 2, 3] 1393 6561 ≈ 1.911765
2 2[1, 2, 4] 1393 6561 ≈ 2.065098
2 2[1, 2, 5] 1393 6561 ≈ 2.152505
2 2[1, 2, 6] 1393 6561 ≈ 2.180995
2 2[1, 2, 7] 1393 6561 ≈ 2.185449
2 2[1, 2, 8] 1393 6561 ≈ 2.115907
2 2[1, 3, 4] 1393 6561 ≈ 2.011765
2 2[1, 3, 5] 1393 6561 ≈ 2.138765
2 2[1, 3, 6] 1393 6561 ≈ 2.161765
2 2[1, 3, 7] 1393 6561 ≈ 2.176471
2 2[1, 3, 8] 1393 6561 ≈ 2.113422
2 2[1, 4, 5] 1393 6561 ≈ 2.085655
2 2[1, 4, 6] 1393 6561 ≈ 2.212074
2 2[1, 4, 7] 1393 6561 ≈ 2.219646
2 2[1, 4, 8] 1393 6561 ≈ 2.171541
2 2[1, 5, 6] 1393 6561 ≈ 2.101420
2 2[1, 5, 7] 1393 6561 ≈ 2.164148
2 2[1, 5, 8] 1393 6561 ≈ 2.171541
2 2[1, 6, 7] 1393 6561 ≈ 2.111765
2 2[1, 6, 8] 1393 6561 ≈ 2.113422
2 2[1, 7, 8] 1393 6561 ≈ 2.115907
2 2[2, 3, 4] 1393 6561 ≈ 1.911765
2 2[2, 3, 5] 1393 6561 ≈ 2.138220
2 2[2, 3, 6] 1393 6561 ≈ 2.150153
2 2[2, 3, 7] 1393 6561 ≈ 2.171258
2 2[2, 4, 5] 1393 6561 ≈ 2.085655
2 2[2, 4, 6] 1393 6561 ≈ 2.203284
2 2[2, 4, 7] 1393 6561 ≈ 2.213514
2 2[2, 5, 6] 1393 6561 ≈ 2.139037
2 2[2, 5, 7] 1393 6561 ≈ 2.213514
2 2[2, 6, 7] 1393 6561 ≈ 2.171258
2 2[3, 4, 5] 1393 6561 ≈ 1.917639
2 2[3, 4, 6] 1393 6561 ≈ 2.148560
2 2[3, 5, 6] 1393 6561 ≈ 2.148560

k Type |ΩB | |Ω∂B | maxEB,v

3 2[1] 3194 1048576 ≈ 1.190238
3 2[2] 3194 1048576 ≈ 1.704828
3 2[3] 3194 1048576 ≈ 1.814364
3 2[4] 3194 1048576 ≈ 1.826600
3 2[1, 2] 3194 262144 ≈ 1.834042
3 2[1, 3] 3194 262144 ≈ 2.169631
3 2[1, 4] 3194 262144 ≈ 2.726797
3 2[1, 5] 3194 262144 ≈ 2.971795
3 2[1, 6] 3194 262144 ≈ 2.961434
3 2[1, 7] 3194 262144 ≈ 2.881866
3 2[1, 8] 3194 262144 ≈ 2.374306
3 2[2, 3] 3194 262144 ≈ 2.417989
3 2[2, 4] 3194 262144 ≈ 2.702039
3 2[2, 5] 3194 262144 ≈ 3.341018
3 2[2, 6] 3194 262144 ≈ 3.484726
3 2[2, 7] 3194 262144 ≈ 3.368019
3 2[3, 4] 3194 262144 ≈ 2.604027
3 2[3, 5] 3194 262144 ≈ 2.822416
3 2[3, 6] 3194 262144 ≈ 3.324534
3 2[4, 5] 3194 262144 ≈ 2.596933
3 2[1, 2, 3] 3194 65536 ≈ 2.470549
3 2[1, 2, 4] 3194 65536 ≈ 2.825476
3 2[1, 2, 5] 3194 65536 ≈ 3.323843
3 2[1, 2, 6] 3194 65536 ≈ 3.603125
3 2[1, 2, 7] 3194 65536 ≈ 3.491267
3 2[1, 2, 8] 3194 65536 ≈ 3.008458
3 2[1, 3, 4] 3194 65536 ≈ 2.860181
3 2[1, 3, 5] 3194 65536 ≈ 3.149485
3 2[1, 3, 6] 3194 65536 ≈ 3.702780
3 2[1, 3, 7] 3194 65536 ≈ 3.832265
3 2[1, 3, 8] 3194 65536 ≈ 3.308712
3 2[1, 4, 5] 3194 65536 ≈ 3.422874
3 2[1, 4, 6] 3194 65536 ≈ 3.704301
3 2[1, 4, 7] 3194 65536 ≈ 4.225000
3 2[1, 4, 8] 3194 65536 ≈ 3.865275
3 2[1, 5, 6] 3194 65536 ≈ 3.721368
3 2[1, 5, 7] 3194 65536 ≈ 3.838751
3 2[1, 5, 8] 3194 65536 ≈ 3.865275
3 2[1, 6, 7] 3194 65536 ≈ 3.557971
3 2[1, 6, 8] 3194 65536 ≈ 3.308712
3 2[1, 7, 8] 3194 65536 ≈ 3.008458
3 2[2, 3, 4] 3194 65536 ≈ 3.040346
3 2[2, 3, 5] 3194 65536 ≈ 3.373874
3 2[2, 3, 6] 3194 65536 ≈ 3.853886
3 2[2, 3, 7] 3194 65536 ≈ 4.066123
3 2[2, 4, 5] 3194 65536 ≈ 3.396416
3 2[2, 4, 6] 3194 65536 ≈ 3.676782
3 2[2, 4, 7] 3194 65536 ≈ 4.215385
3 2[2, 5, 6] 3194 65536 ≈ 4.042553
3 2[2, 5, 7] 3194 65536 ≈ 4.215385
3 2[2, 6, 7] 3194 65536 ≈ 4.066123
3 2[3, 4, 5] 3194 65536 ≈ 3.164613
3 2[3, 4, 6] 3194 65536 ≈ 3.535367
3 2[3, 5, 6] 3194 65536 ≈ 3.535367
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