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Abstract
We consider bichromatic point sets with n red and n blue points and study straight-line bichromatic
perfect matchings on them. We show that every such point set in convex position admits a matching
with at least 3n2

8 − O(n) crossings. Moreover, this bound is asymptotically tight since for any
k > 3n2

8 there exist bichromatic point sets that do not admit any perfect matching with k crossings.

1 Introduction

Let P = R ∪ B, |R| = |B| = n be a point set in general position, that is, no three points
of P are collinear. We refer to R and B as the set of red and blue points, respectively.
A straight-line matching M of P where every point in R is uniquely matched to a point in B

is called a straight-line bichromatic perfect matching (all matchings considered in this work
are straight-line, so we will mostly omit this term). In this work, we study the existence of
bichromatic perfect matchings with a fixed number k of crossings on P , where 0 ≤ k ≤

(
n
2
)
.

It is well known and easy to see that there exists a crossing-free (that is, k = 0) such
matching for every P [7]. Perfect matchings with k crossings on uncolored point sets have
been considered in [2]. There it is shown that for every k ≤ n2

16 −O(n
√

n), every point set of
size 2n admits a perfect matching with exactly k crossings and that there exist such point
sets where every perfect matching has fewer than 20n2

72 crossings. As a direct consequence,
there exist bichromatic point sets which do not admit bichromatic perfect matchings with k

crossings for k > 20n2

72 . On the other hand, 2n uncolored points in convex position admit
perfect matchings with k crossings for all k, where 0 ≤ k ≤

(
n
2
)
[2]. But when we color the

points, the situation changes quite drastically.
Consider a point set P of 2n points in convex position (convex point set, for short) with

an alternating coloring, that is, every second point along the convex hull is red (and the other
points are blue). Moreover, let the number n of red (and blue) points be even. Then the
number of crossings in a bichromatic perfect matching M on P is at most n(n−2)

2 =
(

n
2
)
− n

2 .
The idea is as follows: Label the points of P as p0, p1, . . . , p2n−1 along the boundary of the
convex hull. The point pi cannot be matched to pi+n since both points are of the same
color. Hence, for any edge e in such a matching M of P , the number of crossings of e is at
most n− 2. As every crossing involves two edges, the number of crossings in M is at most
n(n−2)

2 =
(

n
2
)
− n

2 . This bound is tight, since it is possible to construct a bichromatic perfect
matching M on P with exactly

(
n
2
)
− n

2 crossings as follows. For 0 ≤ i ≤ n− 1, match the
point pi to the point pi+n+1, when i is even. Otherwise, match pi to pi+n−1. Together this
leads to the following question.
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I Open Problem 1. For which values of k does every bichromatic convex point set P = R∪B,
|R| = |B| = n, admit a straight-line bichromatic perfect matching with exactly k crossings?

The above example implies that if k >
(

n
2
)
− n

2 , there exist bichromatic point sets with n

red and n blue points that do not have any bichromatic perfect matching with k crossings.
Thus, Open Problem 1 can be true only for k ≤

(
n
2
)
− n

2 . In this paper, we further improve
the bound on k as follows.

I Theorem 1.1. For any k > 3n2

8 , there exists a bichromatic convex point set with n red and
n blue points that does not have a straight-line bichromatic perfect matching with k crossings.

Related work: A survey by Kano and Urrutia [6] gives an overview of various problems
on bichromatic point sets, including matching problems. Crossing-free bichromatic perfect
matchings have been studied from various perspectives such as their structure [5, 8], linear
transformation distance [1], and matchings compatible to each other [3, 4]. Sharir and
Welzl [9] proved that the number of crossing-free bichromatic perfect matchings on 2n

points is at most O(7.61n). However, not much is known about the number or existence of
bichromatic perfect matchings with k crossings, for k > 0.

2 Bichromatic Convex Point Sets

Let Cn,n be the collection of all bichromatic convex point sets P = R∪B with |R| = |B| = n.
For a point set P ∈ Cn,n, we label the points in P in clockwise direction along the convex hull
as p0, p1, . . . , p2n−1 and refer to this as the clockwise ordering. We will consider all indices
modulo 2n. The number of crossings in any birchromatic perfect matching MP of P is
denoted by cr(MP ). If MP has the maximum number of crossings among all such matchings
of P , then it is called a max-crossing matching on P . Among all max-crossing matchings for
all P ∈ Cn,n, we are interested in max-crossing matchings which have the minimum number
of crossings. We call such a matching a min-max-crossing matching of Cn,n. Further, from
now on, we refer to bichromatic perfect matchings just as matchings, unless otherwise stated.

For P ∈ Cn,n we define the collection of all points of the same color which are consecutive
in clockwise order as a block. For example, if R1 = {pa, pa+1, . . . , pa+s} is a block of red
points, then pa−1 and pa+s+1 are blue, and the next collection will be a block of blue points
including pa+s+1. By repeating the process along the boundary of the convex hull of P , we
get a collection of blocks {R1, B1, R2, B2, . . . , Rs, Bs} w.r.t. the clockwise order such that
|R1∪R2∪. . .∪Rs| = |B1∪B2∪. . .∪Bs| = n. These blocks are non-empty and alternate in color.
A bichromatic convex point set with the collection of blocks {R1, B1, R2, B2, . . . , Rs, Bs}
is called a 2s–block coloring. For example, a 2n–block coloring is an alternating coloring.
If all 2s blocks have the same cardinality, then the coloring is called a balanced 2s–block
coloring. See Figure 2(a) for a bichromatic point set with a balanced 4–block coloring.
Strictly speaking, a balanced 4–block coloring can only be achieved if n is even. If n is
odd, the cardinalities of some blocks differ by at least ±1. We call a 4–block coloring with
maximum cardinality difference of ±1 nearly balanced. Considering the properties that we
discuss in this paper, nearly balanced 4–block colorings and balanced 4–block colorings
behave very similarly. So abusing the terminology a bit, we will mostly refer to all of them as
balanced 4–block colorings. With these definitions we can now formulate a stronger version
of Theorem 1.1.

I Theorem 2.1. Let P ∈ Cn,n have a balanced 4–block coloring and let M∨P be a max-crossing
matching of P . Then cr(M∨P ) = 3n2

8 −O(n). Moreover, M∨P is a min-max-crossing matching
of the set Cn,n.
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Clearly, Theorem 2.1 implies Theorem 1.1, as any bichromatic convex point set with a
balanced 4–block coloring satisfies Theorem 1.1. Theorem 2.1 will follow from Lemma 2.4
and Lemma 2.5 below which are stated and shown in the next sections.

2.1 Min-Max-Crossing Matching for 4–block colorings
In this section, we construct a min-max-crossing matching among all bichromatic convex
point sets with a 4–block coloring.

I Lemma 2.2. Let P ∈ Cn,n have a 4–block coloring with blocks R1, B1, R2, B2 and let
M∨P be a max-crossing matching on P . Then for any block X ∈ {R1, R2, B1, B2}, the edges
emanating from X form a crossing family, that is, every pair of these edges forms a crossing.

Proof. Let e and f be two edges of M∨P such that e = ribi′ and f = rjbj′ where ri, rj ∈ X

with i < j. For the sake of contradiction, assume that e and f do not cross. By replacing
e and f by e′ = ribj′ and f ′ = rjbi′ , we get a new matching, say M ′

P . As all points are in
convex position, the edges crossing e and f will also cross the new edges e′ and f ′. Also,
the edges crossing exactly one of e and f will cross exactly one of e′ and f ′. In addition,
e′ and f ′ cross each other. Hence the number of crossings of M ′

P is strictly larger than the
number of crossings of M∨P , a contradiction. J

Recall the clockwise ordering of the points in P . Without loss of generality, assume that
R1 = {p1, p2, . . . , p|R1|}. Let M∨P be a max-crossing matching of P . Assume that in M∨P , the
point pi ∈ R1 is matched to a point (say p′i) in B2, and pj ∈ R1 is matched to a point (say p′j)
in B1 such that i < j. By the clockwise ordering of P , i < j < j′ < i′ and hence pip

′
i does

not cross pjp′j . This is a contradiction by Lemma 2.2. Thus, in M∨P , if pi ∈ R1 is matched to
a point in B2, then all pj ∈ R1 with i < j must be matched to a point in B2. More precisely,
there exists an integer a1 for R1 such that all pi ∈ R1 with i ≤ a1 are matched to B1 and all
pi ∈ R1 with i > a1 are matched to B2. In a similar way we can show that all pi ∈ B1 with
i ≤ |R1|+ |B1| − a1 have to be matched to R2 and the remaining unmatched points have to
be matched to R1. In other words, there exists an integer a1 such that first a1 points of R1
are matched to the last a1 points of B1 (as a crossing family). The remaining last |R1| − a1
points of R1 have to be matched to the first |R1| − a1 points of B2 (as a crossing family).
This fixes the remaining edges of M∨P . That is, the remaining last n− |B1| − |R1|+ a1 points
of B2 must be matched, as a crossing family, to the first n− |B1| − |R1|+ a1 points of R2
(see Figure 1). Finally, match the remaining points as a crossing family. Hence, to get a
max-crossing matching on P , it is sufficient to determine the optimal value of a1.

I Lemma 2.3. Let P ∈ Cn,n have a 4–block coloring with blocks R1, B1, R2, and B2.
Let MP be a matching on P such that the first x points of the set R1 are matched to the
last x points of B1, as a crossing family. Then MP is a max-crossing matching on P iff
x = 1

2 (|R1|+ |B1| − n
2 ).

Proof. Consider a matching MP with the above property. Assume that |R1| = r1 ≥ n
2

and |B1| = b1 ≥ n
2 . The number of pairs of non-crossing edges in MP is obtained by

(r1−x)(b1−x) + x(n− r1− b1 + x) = r1b1− 2xb1− 2xr1 + nx + 2x2. As we want to find the
value of x that gives the maximum number of crossings, we calculate the value of x such that
f(x) = (n− 2r1 − 2b1)x + 2x2 + r1b1 attains the minimum. This is achieved by setting the
first derivative of f(x) to zero as f ′′(x) > 0. We get f ′(x) = 0 for x = 1

2 (r1 + b1 − n
2 ). J

By the proof of Lemma 2.3 the minimum number of pairs of non-crossing edges in M∨P is
r1b1 − 1

2 (r1 + b1 − n
2 )2. This gives the exact structure and the number of crossings in M∨P .

EuroCG’23
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R1

R2

B1
B2

{ {

{

a1 |R1| − a1

|B1| − a1

n− |R1| − |B1| + a1

{
Figure 1 Structure of a max-crossing matching in a 4–block coloring.

The number of crossings cr(M∨P ) can be obtained by subtracting the number of non-crossing
edge pairs from the theoretical maximum number of the crossing edge pairs in M∨P . That is,
cr(M∨P ) =

(
n
2
)
− (r1b1 − 1

2 (r1 + b1 − n
2 )2). Next we check which coloring, among all 4–block

colorings, produces a min-max-crossing matching for all 4–block colorings. Full proofs for
statements marked with (?) can be found in the full version of this paper.

I Lemma 2.4. (?) Let P ∈ Cn,n have a balanced 4–block coloring and let M∨P be a max-
crossing matching of P . Then cr(M∨P ) = 3n2

8 −O(n). Moreover, M∨P is a min-max-crossing
matching for all the 4-block colored point sets of size 2n.

Proof sketch. The minimum number of pairs of non-crossing edges in M∨P is given by
h(r1, b1) = r1b1 − 1

2 (r1 + b1 − n
2 )2. Since we want to find the values of r1 and b1 that

minimizes the number of crossings among max-crossing matchings of the 4–block colorings,
we need to maximize h(r1, b1) for r1, b1 ≥ n

2 . By analyzing the partial derivatives of the
function h, it follows that h attains its maximum when r1 = b1 = n

2 . This shows that the
number of crossings in a max-crossing matching is minimized on a balanced 4–block coloring.
If n is a multiple of 4, then cr(M∨P ) = 3n2

8 −
n
2 . Otherwise, cr(M∨P ) is either b 3n2

8 −
n
2 c or

d 3n2

8 −
n
2 e. These values are obtained for r1 = b1 = dn

2 e and x = 1
2 (r1 + b1− n

2 ) by analyzing
the structure of matchings in each of the remaining cases. J

We remark that the balanced 4–block coloring is not the only coloring that gives the
min-max-crossing matching. See Figure 2(a) for the matching constructed in the above proof
and Figure 2(b) for a different example.

2.2 Min-Max-Crossing Matching for all colorings
In the following, we extend Lemma 2.4 to all bichromatic convex point sets. Let P ∈ Cn,n.
For any point v ∈ P , the point w ∈ P is called the antipodal point of v, if the line through v

and w partitions P into two equal sized halves (this is possible as we have an even number
of points). If the antipodal points v and w are of the same color, then they are called
monochromatic antipodal points (in short m-antipodal points) and if they have different colors
then they are called bichromatic antipodal points (in short b-antipodal points).
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R1

R2

B1

B2

(a) (b)

B1

R1

B2

R2

Figure 2 A balanced 4–block coloring (a) and a slightly unbalanced 4–block coloring (b) on 16
points and max-crossing matchings on them, each with 20 crossings.

I Lemma 2.5. (?) Let P ∈ Cn,n and let M∨P be a max-crossing matching of P . Then
cr(M∨P ) ≥ 3n2

8 −O(n). Moreover, if Q ∈ Cn,n has a balanced 4–block coloring and M∨Q is a
max-crossing matching of Q, then M∨Q is a min-max-crossing matching of the set Cn,n.

To prove Lemma 2.5, we make use of the following well-known theorem.

I Theorem 2.6 (Ham sandwich theorem [10]). For any bichromatic point set P = R ∪ B

there exists a halfplane H such that |R ∩H| = b |R|2 c and |B ∩H| = b |B|2 c.

Proof sketch of Lemma 2.5. For a point set P ∈ Cn,n, construct a new bichromatic point
set with 4–block coloring using the following steps S1-S4.
S1: Remove all b-antipodal points from P , name the obtained bichromatic point set as S.
S2: Partition the set S into 4 groups as follows. First, partition S into two halves, say L

and R, each having an equal number of red and blue points. Using the ham sandwich
theorem partition one of the two halves such that each partition has an equal number of
red and blue points. This partition can be duplicated on the other half as S consists only
of m-antipodal points. Thus, we get 4 groups, each having an equal number of red and
blue points. They are labeled as RU , RL, LL, LU w.r.t. clockwise order (see Figure 3).

S3: Add all the removed b-antipodal points back to S to get P and the partition of S induces
a partition RP U , RP L, LP L, LP U in P . Here the number of red (blue) points of RP U and
the number of blue (red) points of LP L are equal. The same holds for RP L and LP U .
Sort the points in RP U and LP L such that all the red points appear before the blue
points w.r.t. the clockwise order. Then sort the points in RP L and LP U such that all the
blue points appear before the red points. This gives a bichromatic point set K with the
partition RKU , RKL, LKL, LKU . See Figure 4.

S4: Define the matchings MP and MK on P and K, respectively, as follows. For any
pair (X, Y ) ∈ {(RP U , LP L), (RP L, LP U ), (RKU , LKL), (RKL, LKU )}, the points in X are
matched to points in Y such that any two of the matching edges emanating from the
same colored points on X cross each other. Hence the matching edges of X give two
crossing families, where the size of each family is determined by the number of points
in X of each color. By our construction, the size of the crossing families is the same
in both P and K. But in P , these crossing families cross each other and in K, these

EuroCG’23
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` `

R RL L

RU

RL

RU

RL

LL

LU

LL

LU

Figure 3 A bichromatic point set S with 16 points (left) and 20 points (right). In both cases,
dotted lines represent a partition w.r.t. the ham sandwich theorem on the set R and L.

RPU RKU

RPL
RKL

LPL

LPU

LKL

LKU

Figure 4 An example of bichromatic point set P (left) and the corresponding K (right) with 24
points. Also, the partial matching MP and MK .

crossing families do not cross each other. Hence, cr(MP ) ≥ cr(MK). By construction,
K ∈ Cn,n has a 4–block coloring. But it might not be a balanced 4–block coloring. Thus,
by Lemma 2.4, cr(MK) ≥ cr(M∨Q). Also, the constructed matching MP might not be
a max-crossing matching of P . Hence, if M∨P is a max-crossing matching for P , then
cr(M∨P ) ≥ cr(MP ). This implies cr(M∨P ) ≥ cr(M∨Q), which completes the proof. J

As mentioned, Theorem 2.1 now follows directly from Lemma 2.4 and Lemma 2.5.

3 Conclusion

We showed that for any k > 3n2

8 there exists a bichromatic point set with n red and n

blue points that does not admit any bichromatic perfect matching with k crossings. By
straight-forward calculations, we can show that, for n even, bichromatic convex point sets
containing n red and n blue points with alternating coloring cannot have a bichromatic
perfect matching with one or two crossings. In ongoing work, we study the range k ∈ [3, 3n2

8 ]
for bichromatic convex point sets and also work on extending our results to bichromatic
point sets in general (non-convex) position.
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