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Abstract. A generic rectangular layout (for short, layout) is a subdivi-
sion of an axis-aligned rectangle into axis-aligned rectangles, no four of
which have a point in common. Such layouts are used in data visualiza-
tion and in cartography. The contacts between the rectangles represent
semantic or geographic relations. A layout is aspect ratio universal if it
can realize any assignment of aspect ratios to rectangles. We give two dif-
ferent characterizations for aspect ratio universal layouts, one in terms
of geometry and one in terms combinatorics: A layout is aspect ratio
universal if and only if it is one-sided and sliceable; and if and only if
its extended dual graph admits a unique transversal structure. Further-
more, we describe a quadratic-time algorithm that decides whether a
given graph G is the dual graph of an aspect ratio universal layout, and
finds such a layout if one exists.

Keywords: rectangular layouts · contact graphs · universality.

1 Introduction

A rectangular layout (a.k.a. mosaic floorplan or rectangulation) is a subdivision
of an axis-aligned rectangle into axis-aligned rectangle faces, it is generic if no
four faces have a point in common. All layouts in this paper are generic unless
stated otherwise. In the dual graph G(L) of a layout L, the nodes correspond to
rectangular faces, and an edge corresponds to a pair of rectangles whose common
boundary contains a line segment [5,24,25]. Two layouts are strongly equivalent
(for short, equivalent) if they have isomorphic dual graphs, and the correspond-
ing line segments between rectangles have the same orientation (horizontal or
vertical); see Fig. 1 for examples. Rectangular layouts have been studied for
more than 40 years, originally motivated by VLSI design [18,20,30] and cartog-
raphy [23], and more recently by data visualization [15].

An (abstract) graph is called a proper graph if it is the dual of a rectangular
layout. Every proper graph is a near-triangulation (a plane graph where every
bounded face is a triangle, but the outer face need not be a triangle). But not ev-
ery near-triangulation is a proper graph [24,25]. Ungar [29] gave a combinatorial
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Fig. 1: (a-b) Two equivalent layouts. (c) Dual graph. (d) Another layout with
the same dual graph. The layout in (d) is sliceable, none of them is one-sided.

characterization of proper graphs (see also [14,27]); and they can be recognized
in linear time [10,19,21,22].

In data visualization and cartography [15,23], the rectangles correspond to
entities (e.g., countries or geographic regions); adjacency between rectangles rep-
resents semantic or geographic relations, and the “shape” of a rectangle represent
data associated with the entity. It is often desirable to use equivalent layouts to
realize different statistics associated with the same entities. Eppstein et al. [5]
considered area universal layouts L, where any area assignment to the rectangles
can be realized by a layout equivalent to L. They showed that a layout is area
universal if and only if it is one-sided (defined below). However, no polynomial-
time algorithm is known for testing whether a given graph G is the dual of some
area-universal layout.

In some applications, the aspect ratios (rather than the areas) of the rectan-
gles are specified. For example, in word clouds adapted to multiple languages,
the aspect ratio of (the bounding box of) each word depends on the particular
language. The aspect ratio of an axis-aligned rectangle r is height(r)/width(r). A
rectangular layout L is aspect ratio universal if any assignment of aspect ratios
to the rectangles can be realized by a layout equivalent to L.

Our results. We characterize aspect ratio universal layouts.

Theorem 1. For a rectangular layout L, the following are equivalent:

(i) L is aspect ratio universal;
(ii) L is one-sided and sliceable;

(iii) the extended dual of L, G∗(L), admits a unique transversal structure.

The terms in (ii) and (iii) above are defined in Sec. 1.1; and we prove Theorem 1
in Sec. 2. It is not difficult to show that one-sided sliceable layouts are aspect
ratio universal; and admit a unique transversal structure. Proving the converses,
however, is more involved.

In some applications, the rectangular layout is not specified, and we are only
given the dual graph of a layout (i.e., a proper graph). This raises the following
problem: Given a proper graph G with n vertices, find an aspect ratio univer-
sal layout L such that G = G(L) or report that none exists. Using structural
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properties of one-sided sliceable layouts that we develop here, we present an
O(n2)-time algorithm for this problem (Theorem 4 in Section 3).

Thomassen [27] gave a linear-time algorithm to recognize proper graphs if
the nodes corresponding to corner rectangles are specified, using combinatorial
characterizations of layouts [29]. Kant and He [11,13] described a linear-time al-
gorithm to test whether a given graph G∗ is the extended dual of a layout, using
transversal structures. Later, Rahman et al. [10,19,21,22] showed that proper
graphs can be recognized in linear time (without specifying the corners). How-
ever, a proper graph may have exponentially many nonequivalent realizations,
and prior algorithms cannot report whether one-sided sliceable layout exits. Cur-
rently, no polynomial-time algorithm is known for recognizing the duals of one-
sided layouts; the problem is fixed-parameter tractable for a parameter related
to the number of vertex-disjoint separating 4-cycles [5].

1.1 Background and Terminology

A rectangular layout (for short, layout) is a rectilinear graph in which each
face is a rectangle, the outer face is also a rectangle, and the vertex degree is
at most 3. A sublayout of a layout L is a subgraph of L which is a layout. A
layout is irreducible if it does not contain any nontrivial sublayout. A rectangular
arrangement is a 2-connected subgraph of a layout in which bounded faces are
rectangles (the outer face need not be a rectangle).

One-sided layouts. A segment of a layout L is a path of collinear inner edges of
L. A segment of L that is not contained in any other segment is maximal. In a
one-sided layout, every maximal line segment s must be a side of at least one
rectangle R; in particular, any other segment orthogonal to s with an endpoint
in the interior of s lies in a halfplane bounded by s, and points away from R.

Sliceable layouts. A maximal line segment subdividing a rectangle or a rectan-
gular union of rectangular faces is called a slice. A sliceable layout (a.k.a. slicing
floorplan or guillotine rectangulation) is one that can be obtained through re-
cursive subdivision with vertical or horizontal lines; see Fig 1(d). The recursive
subdivision can be represented by a binary space partition tree (BSP-tree), which
is a binary tree where each vertex is associated with either a rectangle with a
slice, or just a rectangle if it is a leaf [3]. For a nonleaf vertex, the two subrectan-
gles on each side of the slice are associated with the two children. The number of
(equivalence classes of) sliceable layouts with n rectangles is known to be the nth
Schröder number [31]. One-sided sliceable layouts are in bijection with certain
pattern-avoiding permutations, closed formulas for their number has been given
by Asinowski and Mansour [2]; see also [17] and OEIS A078482 in the on-line
encyclopedia of integer sequences (https://oeis.org/) for further references.

A windmill in a layout is a set of four pairwise non-crossing maximal line
segments, called arms, which contain the sides of a central rectangle, and each
arm has an endpoint on the interior of another (e.g., the maximal segments
around r3 or r6 in Fig. 1 (a-b)). We orient each arm from the central rectangle
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to the other endpoint. A windmill is either clockwise or counterclockwise. It is
well known that a layout is sliceable iff it does not contain a windmill [1].

Transversal structure. The dual graph G(L) of a layout L encodes adjacency
between faces, but does not specify the relative positions between faces (above-
below or left-right). The transversal structure (a.k.a. regular edge-labelling) were
introduced by He [11,13] for the efficient recognition of proper graphs, and
later used extensively for counting and enumerating (equivalence classes of) lay-
outs [9]. The extended dual graph G∗(L) is the contact graph of the rectangular
faces and the four edges of the bounding box of L; it is a triangulation in an
outer 4-cycle without separating triangles; see Fig. 2.
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Fig. 2: (a) A layout L bounded by e1, . . . , e4. (b) Extended dual graph G∗(L)
with an outer 4-cycle (e1, . . . , e4). (c) Transversal structure.

A layout L is encoded by a transversal structure that comprises G∗(L) and
an orientation and bicoloring of the inner edges of G∗(L), where blue (resp.,
red) edges correspond to above-below (resp., left-to-right) relation between two
objects in contact. An (abstract) transversal structure is defined as a graph G∗,
which is a 4-connected triangulation of an outer 4-cycle (W,N,E, S), together
with a bicoloring and orientation of the inner edges of G∗ such that the all inner
edges incident to W , N , E, and S, respectively, are outgoing blue, outgoing red,
incoming blue, and incoming red; and at each inner vertex the counterclockwise
rotation of incident edges consists of four nonempty blocks of outgoing blue,
outgoing red, incoming blue, and incoming red edges.

Flips and Alternating 4-Cycles. It is known that transversal structures are in
bijection with the equivalence classes of layouts [7,9,13]. Furthermore, a sequence
of flip operations can transform any transversal structure with n inner vertices
into any other [6,9]. Each flip considers an alternating 4-cycle C, which comprises
red and blue edges alternating, and changes the color of every edge in the interior
of C; see Fig. 3. If, in particular, there is no vertex in the interior of C, then
the flip changes the color of the inner diagonal of C. Furthermore, every flip
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operation yields a valid transversal structure on G∗(L), hence a new layout L′
that is not equivalent to L. We can now establish a relation between geometric
and combinatorial properties.

a a
a

ab b b b

c c c
cd d d d

Fig. 3: A flip of an empty (left) and a nonempty (right) alternating cycle.

Lemma 1. A layout L is one-sided and sliceable if and only if G∗(L) admits a
unique transversal structure.

Proof. Assume that L is a layout where G∗(L) admits two or more transversal
structures. Consider a transversal structure of G∗(L). Since any two transversal
structures are connected by a sequence of flips, there exists an alternating 4-
cycle. Any alternating 4-cycle with no interior vertex corresponds to a segment
in L that is two-sided. Any alternating 4-cycle with interior vertices corresponds
to a windmill in L. Consequently, L is not one-sided or not sliceable.

Conversely, if L is not one-sided (resp., sliceable), then the transversal struc-
ture of G∗(L) contains an alternating 4-cycle with no interior vertex (resp., with
interior vertices). Consequently, we can perform a flip operation, and obtain an-
other transversal structure for G∗(L). ut

2 Aspect Ratio Universality

An aspect ratio assignment to a layout L is a function that maps a positive real
to each rectangle in L. An aspect ratio assignment to L is realizable if there
exists an equivalent layout L′ with the required aspect ratios (a realization).
A layout is aspect ratio universal if every aspect ratio assignment is realizable.
In this section, we characterize aspect ratio universal layouts (Theorem 2). We
start with an easy observation about sliceable layouts.

Lemma 2. Let L be a sliceable layout. If an aspect ratio assignment for L is
realizable, then there is a unique realization up to scaling and translation. Fur-
thermore, for every α > 0 there exists a realizable aspect ratio assignment for
which the bounding box of the realization has aspect ratio α.

Proof. To prove the first claim, we proceed by induction on k, the height of the
BSP-tree representing L. Basis step: A layout of height 0 comprises a single
rectangle, which is uniquely determined by its aspect ratio up to scaling and
translation. Induction step: Assume, for induction, that every sublayout at
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height k in the tree admits a unique realization in which all rectangles at the
leaves of the BSP-tree have the required aspect ratios. A rectangle r at height
k+1 of the BSP-tree is composed of two rectangles at height k, say r1 and r2, that
share an edge. Given a realization of r1, there is a unique scaling and translation
that attaches r2 to r1, and identifies their matching edges. Consequently, the
sublayout at height k+ 1 has a unique realization up to scaling and translation.

The second claim follows trivially: Start with a bounding box of aspect ratio
α, subdivide it recursively into a layout equivalent to L, and define an aspect
ratio assignment using the aspect ratios of the resulting leaf rectangles. ut

Corollary 1. If L is one-sided and sliceable, then it is aspect ratio universal.

Proof. Let α be an aspect ratio assignment to a one-sided sliceable layout L.
A (unique) realization L′ can be constructed by the induction in the proof of
Lemma 2. Indeed, in the basis step, a layout with a single rectangle is aspect ratio
universal. In the induction step, when a rectangle is composed of two rectangles
r = r1 ∪ r2 separated by a line segment `, then r1 or r2 is a leaf of the BSP-tree,
since L is one-sided. Consequently, the pairs of adjacent rectangles on opposite
sides of ` do not depend on the aspect ratio assignment, and the resulting layout
L′ is equivalent to L. ut

2.1 Sliceable and One-Sided Layouts

Next we show that any sliceable layout that is aspect ratio universal must be
one-sided. We present two simple layouts that are not aspect ratio universal, and
then show that all other layouts that are not one-sided or not sliceable can be
reduced to these prototypes.
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Fig. 4: Prototype layouts that are not aspect ratio universal: (a)–(d) brick layouts
are sliceable but not one-sided; (e)–(f) windmills are one-sided but nonsliceable.

Lemma 3. The layouts in Figure 4 are not aspect ratio universal.

Proof. Suppose w.l.o.g. that a brick layout L0 in Fig. 4a is aspect ratio universal.
Then there exists an equivalent layout L for the aspect ratio assignment α(r2) =
α(r3) = 1 and α(r1) = α(r4) = 2. Since width(r1) = width(r2) and α(r1) =
2α(r2), then height(r1) = 2 height(r2), and the left horizontal slice is below the



Aspect Ratio Universal Rectangular Layouts 7

median of r1 ∪ r2. Similarly, width(r3) = width(r4) and α(r4) = 2α(r2) imply
that the right horizontal slice is above the median of r3 ∪ r4. Consequently, r1
and r4 are in contact, and L is not equivalent to L0, which is a contradiction.

Suppose w.l.o.g. that the layout L1 in Fig. 4e is aspect ratio universal. Then
there exists an equivalent layout L for the aspect ratio assignment α(c) =
α(r1) = α(r2) = α(r3) = α(r4) = 1. In particular, r1, . . . , r4 are squares; de-
note their side lengths by si, for i = 1, . . . , 4. Note that one side of ri strictly
contains a side of ri−1 for i = 1, . . . , 4 (with arithmetic modulo 4). Consequently,
s1 < s2 < s3 < s4 < s1, which is a contradiction. ut

Lemma 4. If a layout is sliceable but not one-sided, then it is not aspect ratio
universal.

Proof. To show that a layout is not aspect ratio universal, it is sufficient to
show that any of its sublayouts are not aspect ratio universal, because any non-
realizable aspect ratio assignment for a sublayout can be expanded arbitrarily
to an aspect ratio assignment for the entire layout.

Let L be a sliceable but not one-sided layout. We claim that L contains a
sublayout equivalent to a layout in Figs. 4a–4d. Because L is not one-sided, it
contains a maximal line segment ` which is not the side of any rectangle. Because
L is sliceable, every maximal line segment in it subdivides a larger rectangle into
two smaller rectangles. We may assume w.l.o.g. that ` is vertical. Because ` is
not the side of any rectangle, the rectangles on the left and right of ` must be
subdivided horizontally in the recursion. Let `left and `right be the first maximal
horizontal line segments on the left and right of `, respectively. Assume that
they each subdivide a rectangle adjacent to ` into r1 and r2 (on the left) and r3
and r4 on the right. These rectangles comprise a layout equivalent to the one in
Figs. 4a–4d; but they may be further subdivided recursively. By Lemma 2 there
exists an aspect ratio assignment to L not realizable by an equivalent layout. ut

In the remainder of this section, we prove that if a layout is not sliceable,
then it contains a sublayout similar, in some sense, to a prototype in Figs. 4e–
4f. In a nutshell, our proof goes as follows: Consider an arbitrary windmill in a
nonslicable layout L. We subdivide the exterior of the windmill into four quad-
rants, by extending the arms of the windmill into rays `1, . . . , `4 to the bounding
box; see Fig. 5. Each rectangle of L lies in a quadrant or in the union of two
consecutive quadrants. We assign aspect ratios to the rectangles based on which
quadrant(s) it lies in. If these aspect ratios can be realized by a layout L′ equiv-
alent to L, then the rays `1, . . . , `4 will be “deformed” into x- or y-monotone
paths that subdivide L′ into the center of the windmill and four arrangements
of rectangles, each incident to a unique corner of the bounding box. We assign
the aspect ratios for the rectangles in L′ so that these arrangements can play the
same role as rectangles r1, . . . , r4 in the prototype in Figs. 4e–4f. We continue
with the details.

We clarify what we mean by a “deformation” of a (horizontal) ray `.

Lemma 5. Let a ray ` be the extension of a horizontal segment in a layout L
such that ` does not contain any other segment and it intersects the rectangles
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(a) A nonsliceable layout, a windmill,
where rays `1, . . . , `4 define quadrants.

c
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(b) An equivalent layout, where four
paths define rectangular arrangements.

Fig. 5: A rays `1, . . . , `4 deform into monotone paths in an equivalent layout.

r1, . . . , rk in this order. Suppose that in an equivalent layout L′, the correspond-
ing rectangles r′1, . . . , r

′
k are sliced by horizontal segments s1, . . . , sk. Then there

exists an x-monotone path comprised of horizontal edges s1, . . . , sk, and vertical
edges along vertical segment of the layout L′.

Proof. Assume w.l.o.g. that ` points to the right. Since ` does not contain any
other segment and it intersects the rectangles r1, . . . , rk in this order, then ri and
ri+1 are on opposite sides of a vertical segment for i = 1, . . . , k − 1. The same
holds for r′i and r′i+1 as L′ is equivalent to L. In particular, the right endpoint
of si and the left endpoint of si+1 are on the same vertical segment in L′, for all
i = 1, . . . k − 1. ut

The next lemma allows us to bound the aspect ratio of the bounding box of
a rectangular arrangement in terms of the aspect ratios of individual rectangles.

Lemma 6. If every rectangle in a rectangular arrangement has aspect ratio αm,
where m is the number of rectangles in the arrangement, then the aspect ratio of
the bounding box of the arrangement is at least α and at most αm2.

Proof. Consider an arrangement A with m rectangles and a bounding box R.
Let w be the maximum width of a rectangle in A. Then, width(R) ≤ mw. A
rectangle of width w has height αmw, and so height(R) ≥ αmw. The aspect
ratio of R is height(R)/width(R) ≥ (αmw)/(mw) = α.

Similarly, let h be the maximum height of rectangle in A. Then height(R) ≤
mh. A rectangle of height h has width h

αm , and so width(R) ≥ h
αm . The aspect

ratio of R is height(R)/width(R) ≤ mh/( h
αm ) = αm2, as claimed. ut

We can now complete the characterization of aspect ratio universal layouts.

Lemma 7. If a layout L is not sliceable, it is not aspect ratio universal.

Proof. Let R be a nonslicable layout of n rectangles in a bounding box of L.
We may assume that L is irreducible, otherwise we can choose a minimal non-
sliceable sublayout L∗ from L, and replace each maximal sublayout of L∗ with



Aspect Ratio Universal Rectangular Layouts 9

a rectangle to obtain an irreducible layout. By Lemma 2, a suitable aspect ratio
assignment to each sliceable sublayout of L∗ can generate any aspect ratio for
the replacement rectangle.

In particular, L thus contains no slices, as any slice would create two smaller
sublayouts. Every nonsliceable layout contains a windmill, which may be as-
sumed to be clockwise. Consider an arbitrary windmill in L, and let c be its
central rectangle. By extending the arms of the windmill into rays, `1, . . . , `4, we
subdivide R \ c into four quadrants, denoted by Q1, . . . , Q4 in counterclockwise
order starting with the top-right quadrant.

Note that at most one ray intersects the interior of a rectangle in L. Indeed,
any two points in two different rays, pi ∈ `i and pj ∈ `j , span an axis-parallel
rectangle that intersects the interior of c. Consequently, pi and pj cannot be in
the same rectangle in R \ c. It follows that every rectangle of L in R \ c lies in
one quadrant or in the union of two consecutive quadrants.

We define an aspect ratio assignment α as follows: Let α(c) = 1. If r ⊆ Q1

or r ⊆ Q3, let α(r) = 6n; and if r ⊆ Q2 or r ⊆ Q4, let α(r) = (6n2)−1. For a
rectangle r split by a ray, we set α(r) = 6n+ (6n2)−1 if r is split by a horizontal
ray `1 or `3; and α(r) = ((6n)−1 + (6n2))−1 if split by a vertical ray `2 or `4.

Suppose that a layout L′ equivalent to L realizes α. Split every rectangle of
aspect ratio 6n+ (6n2)−1 in L′ horizontally into two rectangles of aspect ratios
6n and (6n2)−1. Similarly, split every rectangle of aspect ratio ((6n)−1+(6n2))−1

vertically into two rectangles of aspect ratios 6n and (6n2)−1; see Fig. 5b. By
Lemma 5, there are four x- or y-monotone paths P1, . . . , P4 from the four arms
of the windwill to four distinct sides of the bounding box that pass through the
slitting segments. The paths P1, . . . , P4 subdivide the exterior of the windmill
into four arrangements of rectangles, A1, . . . , A4 that each contain a unique
corner of the bounding box. By construction, every rectangle in A1 and A3 has
aspect ratio 6n, and every rectangle in A2 and A4 has aspect ratio (6n2)−1.

LetR1, . . . , R4 be the bounding boxes ofA1, . . . , A4, respectively. By Lemma 6,
both R1 and R3 have aspect ratios at least 6, and both R2 and R4 have aspect
ratios at most 1

6 . By construction, the arrangements A1, . . . , A4 each contain an
arm of the windmill. This implies that width(c) < min{width(R1),width(R3)}
and height(c) < min{height(R2),height(R4)}. Consider the arrangement com-
prised of A1, c, and A3. It contains two opposite corners of R, and so its bounding
box is R. Furthermore, height(R) ≥ max{height(R1),height(R3)}, and

width(R) ≤ width(R1) + width(c) + width(R3) < 3 max{width(R1),width(R3)}

≤ 3 max

{
height(R1)

6
,

height(R3)

6

}
=

max{height(R1),height(R3)}
2

,

and so the aspect ratio of R is at least 2. Similarly, the bounding box of the
arrangement comprised of A2, c, and A3 is also R, and an analogous argument
implies that its aspect ratio must be at most 1

2 . We have shown that the aspect
ratio of R is at least 2 and at most 1

2 , a contradiction. Thus the aspect ratio
assignment α is not realizable, and so L is not aspect ratio universal. ut

We can now combine Corollary 1, Lemma 4, and Lemma 7.
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Theorem 2. A layout is aspect ratio universal iff it is one-sided and sliceable.

Together with Lemma 1, this completes the proof of Theorem 1.

2.2 Unique Transversal Structure

Subdividing a square into squares has fascinated humanity for ages [4,12,28].
For example, a perfect square tiling is a tiling with squares with distinct integer
side length. Schramm [26] (see also [16, Chap. 6]) proved that every near tri-
angulation with an outer 4-cycle is the extended dual of a (possibly degenerate
or nongeneric) subdivision of a rectangle into squares. The result generalizes to
faces of arbitrary aspect ratios (rather than squares):

Theorem 3. (Schramm [26, Thm. 8.1]) Let T = (V,E) be near triangulation
with an outer 4-cycle, and α : V ∗ → R+ a function on the set V ∗ of the inner
vertices of T . Then there exists a unique (but possibly degenerate or nongeneric)
layout L such that G∗(L) = T , and for every v ∈ V ∗, the aspect ratio of the
rectangle corresponding to v is α(v).

The caveat in Schramm’s result is that all rectangles in the interior of every
separating 3-cycle must degenerate to a point, rectangles in the interior of some
separating 4-cycles may also degenerate to a point, and four rectangles may have
a point in common. While this severely limits the scope of Schramm’s result, we
only use the uniqueness claim under the assumption that a nondegenerate and
generic realization exists for a given aspect ratio assignment.

Lemma 8. If a layout L is aspect ratio universal, then it admits a unique
transversal structure.

Proof. Consider the extended dual graph T = G∗(L) of an aspect ratio universal
layout L. As noted above, T is a 4-connected inner triangulation of a 4-cycle. If
T admits two different transversal structures, then there are two nonequivalent
layouts, L and L′, such that T = G∗(L) = G∗(L′), which in turn yield two
aspect ratio assignments, α and α′, on the inner vertices of T . By Theorem 3,
the (nondegenerate) layouts L and L′, that realize α and α′, are unique. Conse-
quently, neither of them can be aspect ratio universal. ut

Lemma 8 readily shows that Theorem 1(i) implies Theorem 1(iii), and pro-
vides an alternative proof for the geometric arguments in Lemmata 4 and 7.

3 Recognizing Duals of Aspect Ratio Universal Layouts

In this section, we describe an algorithm that, for a given graph G, either finds
a one-sided sliceable layout L whose dual graph is G, or reports that no such
layout exists (Theorem 4).

Assume that we are given a near-triangulationG (that is, a plane graph where
every bounded face is a triangle). A slice of a layout corresponds to an edge cut
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in the dual graph that contains at most two edges of the outer face. If a slice is
one-sided, the edges in the edge cut form a star; and the edge cut is determined
by its edges on the boundary of the outer face. A brute force algorithm would
guess a slice (i.e., edge cut), and recurse on the two subproblems; it would run in
exponential time. We obtain a polynomial-time algorithm using a key insight: If
we already know a slice, then in each subproblem, we know two corner rectangles.
Our algorithm will utilize partial information about the corner rectangles.

Problem formulation. The input of our recursive algorithm will be an instance
I = (G,C, P ), where G = (V,E) is a near-triangulation, C : V (G) → N0 is a
corner count, and P is a set of ordered pairs (u, v) of vertices on the outer face
of G. An instance I = (G,C, P ) is realizable if there exists a one-sided sliceable
layout L such that G is the dual graph of L, every vertex v ∈ V corresponds to
a rectangle in L incident to at least C(v) corners of L, and every pair (a, b) ∈ P
corresponds to a pair of rectangles in L incident to two ccw consecutive corners.
When we have no information about corners, then C(v) = 0 for all v ∈ V , and
P = ∅. For convenience, we also maintain the total count C(V ) =

∑
v∈V C(v),

and the set K = {v ∈ V (G) : C(v) > 0} of vertices with positive corner count.
In the remainder of this section, we prove structural results for one-sided

sliceable layouts (Section 3.1), and then present our algorithm (Section A.2).

3.1 Structural Properties of One-Sided Sliceable Layouts

In this section, we use a default notation: If an instance (G,C, P ) is realizable
by a one-sided sliceable layout L, then R denotes the bounding box of L, and rv
the rectangle in L corresponding to v. Note that any sublayout of a one-sided
sliceable layout is also one-sided and sliceable (both properties are hierarchical).

(a) (b) (c) (d)

rv rv

rw

rv

Fig. 6: (a-b) If v is a cut vertex of G, then rv is bounded by two slices. (c-d) If
there is no cut vertex, some rectangle rv is incident to two corners.

Lemma 9. Assume that (G,C, P ) admits a realization L and |V (G)| ≥ 2. Then
G contains a vertex v with one of the following (mutually exclusive) properties.

(I) Vertex v is a cut vertex in G. Then rv is bounded by two parallel sides of R
and by two parallel slices; and C(v) = 0. (See Fig. 6 (a-b).)
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(II) Rectangle rv is bounded by three sides of R and a slice; and 0 ≤ C(v) ≤ 2.
(See Fig. 6 (c-d).)

Proof. Let v be a cut vertex in G. Then rv intersects the boundary of R in
at least two disjoint arcs. Since both rv and R are axis-parallel rectangles and
rv ⊂ R, their boundaries can intersect in at most two disjoint arcs, which are two
parallel sides of rv. The other two parallel sides of rv form slices. In particular,
rv is bounded by two parallel sides of R and two slices, and so it is not incident
to any corner of R. In this case, v has property (I).

Assume that G does not have cut vertices. Since L is sliceable, it is subdivided
by a slice s which is a line segment between two opposite sides of R. Since L is
one-sided, s must be the side of a rectangle rv for some v ∈ V (G). If both sides of
rv parallel to s are in the interior of R, then rv is bounded by two sides of R and
by two slices. Since the sublayouts of L on the opposite sides of these slices are
disjoint, then v is a cut vertex in G, contrarily to our assumption. Consequently,
the other side of rv parallel to s must be a side of R. Then rv is bounded by
three sides of R and by s. Clearly, rv is incident to precisely two corners of R,
and so v has property (II). ut

Based on property (II), a vertex v of G is a pivot if there exists a one-sided
sliceable layout L with G ' G(L) in which rv is bounded three sides of R and
a slice. If we find a cut vertex or a pivot v in G, then at least one side of rv is
a slice, so we can remove v and recurse on the connected components of G− v.
We define the subproblems created by G− v in both cases:

Recursive calls. (I) For a cut vertex v of G in an instance, we define the operation
Split(G,C, P ; v). The graph G−v must have precisely two components, G1 and
G2. Let (u1, . . . , w1) and (u2, . . . , w2) be the sequence of neighbors of v in G1

and G2, resp., in cw order. Initialize C1 and C2 as the restriction of C to V (G1)
and V (G2), respectively. Set Ci(ui) ← Ci(ui) + 1 and Ci(wi) ← Ci(wi) + 1 for
i = 1, 2 (if ui = wi, we increment Ci(ui) by 2). For each pair (a, b) ∈ P , if both a
and b are in V (Gi) for some i ∈ {1, 2}, then add (a, b) to Pi. Otherwise, w.l.o.g.,
a ∈ V (G1) and b ∈ V (G2), and the ccw path (a, b) contains either u1, v, w2 or
w1, v, u2. The removal of v splits the path into two subpaths, that we add into
P1 and P2, accordingly. Finally we add (u1, w1) to P1 and (u2, w2) to P2. Return
the instances (G1, C1, P1) and (G2, C2, P2).

Lemma 10. Let v be a cut vertex of G. An instance (G,C, P ) is realizable iff
both instances in Split(G,C, P ; v) are realizable. (See Appendix A.1 for the
proof.)

(II) Let v be a pivot of G. We define the operation Remove(G,C, P ; v). Since v
is not a cut vertex, G−v has precisely one component, denoted G′. Let (u, . . . , w)
be the sequence of neighbors of v in G′ in cw order. Initialize C ′ as the restriction
of C to V (G′), and then set C ′(u) ← C ′(u) + 1 and C ′(w) ← C ′(w) + 1. If for
any (a, b) ∈ P , the ccw path from a to b in G contains v, then return False.
Otherwise, set P ′ = P , and add (u,w) to P ′. Return the instance (G′, C ′, P ′).
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Lemma 11. Let v be a vertex of the outer face of G, but not a cut vertex.
Then an instance (G,C, P ) is realizable with pivot v if and only if instance
Remove(G,C, P ; v) is realizable. (See Appendix A.1 for the proof.)

How to find a pivot. It is easy to find cut vertices in G, since G is internally
triangulated, then every cut vertex is incident to the outer face. In the absence
of cut vertices, however, any vertex of the outer face of G might be a pivot. We
use partial information on the corners to narrow down the search for a pivot.

Lemma 12. Assume that an instance (G,C, P ) admits a realization L and
|V (G)| ≥ 2. If C(v) ≥ 2 for some vertex v ∈ V (G), then v is a pivot.

Proof. The rectangle rv is incident to at least two corners of R. If rv is incident
to two opposite corners of R, then rv = R, contradicting the assumption that
G has two or more vertices. Hence rv is incident to two consecutive corners of
R, and so it contains some side s of R. The other side of rv parallel to s is a
maximal segment between two opposite sides of R, so it must be a slice. ut

Lemma 13. Assume that an instance (G,C, P ) is realizable; G is 2-connected,
it has 4 or more vertices; there exist two distinct vertices, u and v, such that
C(u) = C(v) = 1, and C(w) = 0 for all other vertices; and P = {(u, v)}. Then
u or v is a pivot; or else G has a 2-cut and a vertex of an arbitrary 2-cut can
be taken to be a pivot.

Lemma 14. Assume that (G,C, P ) admits a realization L and |V (G)| ≥ 2.

1. If |K| = 4, then G has a cut vertex.
2. If |K| = 3, then G has a cut vertex or some vertex v ∈ K(G) is a pivot.

Proof. If G has a cut vertex, the proof is complete. Assume otherwise. By
Lemma 9, for every realization L of the instance (G,C, P ), there exists a pivot
vertex v, and so rv is incident to two corners of R. As R has only four corners,
each of which is incident to a unique rectangle in L, then at most two additional
rectangles in L are incident to corners, hence |K| ≤ 3.

Assume that |K| = 3. Since R has only four corners, each of which is incident
to a unique rectangle in L, one of the vertices in K must be v. ut

Theorem 4. We can decide in O(n2) time whether a given graph G with n
vertices is the dual of a one-sided sliceable layout.

Proof. Given a graph G, we can decide in O(n) time whether G is a proper
graph [10,19,21,22]. If G is proper, then it is a connected plane graph in which
all bounded faces are triangles. Let an initial instance be I = (G,C, P ), where
C(v) = 0 for all vertices v, and P = ∅. We describe an analyze our recursive
algorithm for an instance I in Appendix ??. ut
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4 Conclusions

We have shown that a rectangular layout L is aspect ratio universal if and only
if L is one-sided and sliceable; and we can decide in O(n2)-time whether a given
graph G on n vertices is the dual of a one-sided sliceable layout. An immediate
open problem is whether the runtime can be improved. Cut vertices and 2-cuts
play a crucial role in our algorithm. We can show (Proposition 1) that the duals
of one-sided sliceable layouts have vertex cuts of size at most 3. Perhaps 3-
cuts can be utilized to find a pivot efficiently. Recall that no polynomial-time
algorithm is currently known for recognizing the duals of one-sided layouts [5].

Felsner [8] distinguished between strong, weak, and dual equivalence relations
over layouts. The strong equivalence is the same as the equivalence considered
in this paper; two layouts are dual equivalent if their dual graphs are isomor-
phic; and two layouts are weakly equivalent if there is a bijection between their
horizontal and vertical segments, resp., such that the contact graphs of the seg-
ments are isomorphic plane graphs. Felsner [8, Thm. 3] showed that every area
assignment to the faces of a layout can be realized by a weakly equivalent layout,
that is, every weak equivalence class is area-universal. It is an open problem to
characterize weak equivalence classes of layouts that are aspect ratio universal.
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9. Fusy, É.: Transversal structures on triangulations: A combinatorial study and

straight-line drawings. Discret. Math. 309(7), 1870–1894 (2009)
10. Hasan, M.M., Rahman, M.S., Karim, M.R.: Box-rectangular drawings of planar

graphs. J. Graph Algorithms Appl. 17(6), 629–646 (2013)
11. He, X.: On finding the rectangular duals of planar triangular graphs. SIAM J.

Comput. 22(6), 1218–1226 (1993)
12. Henle, F.V., Henle, J.M.: Squaring the plane. Am. Math. Mon. 115(1), 3–12 (2008)
13. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its appli-

cations in graph drawing problems. Theor. Comput. Sci. 172(1-2), 175–193 (1997)



Aspect Ratio Universal Rectangular Layouts 15
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A Appendix

A.1 Omitted Proofs

For convenience, we restate each lemma that we prove in this section.

Lemma 10. Let v be a cut vertex of G. An instance (G,C, P ) is realizable iff
both instances in Split(G,C, P ; v) are realizable. (See Appendix A.1 for the
proof.)

Proof. First assume that L is a realization of instance (G,C, P ). The removal of
rectangle rv splits L into two one-sided and sliceable sublayouts, L1 and L1. It
is easily checked that they realize (G1, C1, P1) and (G2, C2, P2), respectively.

Conversely, if both (G1, C1, P1) and (G2, C2, P2) are realizable, then they are
realized by some one-sided sliceable layouts L1 and L2, respectively. The union
of a square rv and scaled copies of L1 and L2 attached to two opposite sides rv
yields a one-sided sliceable layout L that realizes (G,C, P ). ut

Lemma 11. Let v be a vertex of the outer face of G, but not a cut vertex.
Then an instance (G,C, P ) is realizable with pivot v if and only if instance
Remove(G,C, P ; v) is realizable. (See Appendix A.1 for the proof.)

Proof. Assume that (G,C, P ) is realized by a one-sided scliceable layout L, and v
has property (II). The removal of rectangle rv from L creates a one-sided sliceable
sublayouts L′. It is easily checked that L′ realizes the instance (G′, C ′, P ′).

Conversely, assume that (G′, C ′, P ′) is realized by a layout L′. Then we can
attach a single rectangle rv to the bounding box of L′ between two consecutive
corners incident to ru and rw, and obtain a layout L that realizes (G,C, P ). ut

A.2 Algorithm and its Analysis for Theorem 4

Theorem 4. We can decide in O(n2) time whether a given graph G with n
vertices is the dual of a one-sided sliceable layout.

Proof. Given a graph G, we can decide in O(n) time whether G is a proper
graph [10,19,21,22]. If G is proper, then it is a connected plane graph in which
all bounded faces are triangles. Let an initial instance be I = (G,C, P ), where
C(v) = 0 for all vertices v, and P = ∅. We run the following recursive algorithm.
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1 Main(G,C, P )
2 begin
3 if |V (G)| = 1 then
4 return True

5 else if ∃v ∈ V (G) : C(v) > 2 then
6 return False

7 else if G has a cut vertex v then
8 Split(G,C, P ; v) yields (G1, C1, P1) and (G2, C2, P2)
9 return Main(G1, C1, P1) ∧ Main(G2, C2, P2)

10 else if G has a vertex v with C(v) = 2 then
11 return Main(Remove(G,C, P ; v))

12 else if P = {(u, v)} with C(u) = C(v) = 1 and K = 2 then
13 for all w ∈ {u, v} do
14 if Main(Remove(G,C, P ;w)) then
15 return True

16 for all vertices w ∈ {w1, w2} of an arbitrary 2-cut of G do
17 if Main(Remove(G,C, P ;w)) then
18 return True

19 else if |K| = 3 then
20 for all vertices v ∈ K do
21 if Main(Remove(G,C, P ; v)) then
22 return True

23 else if |K| = 0 then
24 for all vertices v in the outer face of G do
25 if Main(Remove(G,C, P ; v)) then
26 return True

27 return False

Correctness. We argue that algorithm Main(G,C, P ) correctly reports whether
an instance (G,C, P ) is realizable.

Lines 3–4. A graph with only one vertex corresponds to a layout containing
a single rectangle, which is clearly aspect ratio universal.

Lines 5–6. A rectangle that contains 3 or more corners of a layout must be
the only rectangle in the layout. However, the algorithm only reaches this step
if there are multiple vertices in the graph, so a vertex with a corner count of 3
or more is a contradiction.

Lines 7–9. The correctness of this step directly follows from Lemma 10.
Lines 10–26. In the absence of a cut vertex, we try to find a pivot. By

Lemma 11, the instance (G,C, P ) is realizable with a pivot v if and only if the
instance Remove(G,C, P ; v) is realizable.

(A) Lines 10–11. The correctness of this step follows from Lemma 12.
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(B) Lines 12–18. The correctness of this step follows from Lemma 13.
(D) Lines 19–22. By Lemma 14, when |K(G)| = 3, the pivot must be a vertex

in K, or else the instance is not realizable.
(E) Lines 23–26. If we have no information about the corners and there is no

cut vertex, one of the vertices in the outer face must correspond to a pivot
by Lemma 9, or else (G,C, P ) is not realizable.

Line 27. If we find neither a cut vertex nor a pivot, then the instance is not
realizable by Lemma 11.

Runtime analysis. Let T be the recursion tree of the algorithm for some initial
instance (G,C, P ). The number of vertices in G strictly decreases along each
descending path of T , and so the depth of the tree is O(n).

We distinguish between two types of nodes in T : If a step in Lines 8–9 is
executed, then the vertex set V (G) is partitioned among the recursive subprob-
lems; we call these partition nodes of T . In the steps in (B) Lines 12–18, (D)
Lines 19–22, and (E) Lines 23–26, however, |V (G)| − 1 vertices appear in all
four, three, or O(|V (G)|) recursive subproblems; we call these duplication nodes
of T .

We first analyze the special case that T does not have duplication nodes.
Then T is a binary tree with O(n) nodes. The algorithm maintains the property
that G is a connected plane graph and all bounded faces are triangles; this in
turn implies that any cut vertex of G is incident to the outer face. Indeed, both
operations Split(G,C, P ; v) and Remove(G,C, P ; v) remove a vertex from the
outer face. Any new cut vertex is incident to a vertex that has been removed.
Overall, the total time taken by maintaining the set of cut vertices and the
annotation C and P is O(n) over the entire algorithm.

Next, we analyze the impact of duplication nodes. We claim that steps (B),
(D) and (E) are reached at most once. Note first that the total corner count
C(V ) =

∑
v∈V C(v) monotonically increases along any descending path of T :

In the initial instance, we have C(V ) = 0. All Split and Remove operations
produce subproblems with C(V ) ≥ 2. Furthermore, if C(V ) = 4, then we will
never reach (A) or (B): Indeed, C(V ) = 4 implies K 6= ∅. If |K| = 2 or 3, there
would be a vertex v with C(v) = 2; and Remove(G,C, P ; v) in Lines 13-14
produces an instance with C(V ′) = 4, as the corner counts are incremented by
two. It follows that we can reach step (D) only if C(V ) = 3. Thus step (D) can
only be reached once, when C(V ) = 3 (after which point, C(V ) will be 4).

Overall, the duplication steps increase the upper bound on the runtime by a
factor of 12n, hence it is O(n2). ut

Lemma 15. Let L be a one-sided sliceable layout such that G(L) is 2-connected,
and has a 2-cut {u, v}. Then there exists a one-sided sliceable layout L′ with the
same dual graph such that the first slice separates the rectangles corresponding
to u and v. In particular, u or v is a pivot.

Furthermore, if there are two rectangles in L that are each incident to a
single corner of L, then the corresponding rectangles in L′ are also incident to
some corners in L′, or there exists a one-sided sliceable layout L′′ in which one
of these rectangles is a pivot.
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Proof. Let R be the bounding box of L; let ru and rv denote the rectangles
corresponding to u and v, and let s0 be the segment separating ru and rv. If
s0 connects two opposite sides of R, the proof is complete with L′ = L, so we
may assume otherwise. Because L is one-sided, whenever two rectangles are in
contact, a side of one rectangle fully contains a side of the other. We distinguish
between two cases:

Case 1: ru and rv contact opposite sides of R. We may assume w.l.o.g.
that ru and r − v contact the bottom and top side of R, respectively, and the
bottom side of rv is contained in the top side of ru, as in Fig. 7a. Since L is
one-sided, s0 is a side of some rectangle in L, and we may assume that s0 is
the bottom side of rv. The left (resp., right) side of rv lies either along ∂R or
in a vertical segments s1 (resp., s2). Since s0 does not reach both left and right
sides of R, then at least one of s1 and s2 exists. Assume w.l.o.g. that s1 exists.
Since the bottom-left corner of rv is the endpoint of s0, it lies in the interior of
segment s1. The bottom endpoint of s1 must be on the bottom side of R, or else
the clockwise winding path starting with s1 would create windmill (as it can
cross neither ru nor rv), contradicting the assumption that L is sliceable. As L
is one-sided, s1 is the side of a rectangle r1, which is necessarily to the left of s1.
Rectangle r1 contacts the top and bottom sides of R. Since G(L) is 2-connected,
is does not have a cut vertex, and r1 is the only rectangle in L to the left of s1.

ru

rv

s1

s0

L

R

r1

(a)

r′u

r′v

s′1

s′0

L′

R′

r′1

(b)

Fig. 7: (a) A one-sided sliceable layout L where ru and rv touch two opposite
sides of the bounding box. (b) The modified layout L′.

We can now modify L by extending s0 and rv horizontally to the right side
of R, and clip both s1 and r1 to s0, as in Fig. 7b. This modification changes the
contacts between rv and r1 from vertical to horizontal, but does not change any
other contacts in the layout, so it does not change the dual graph. If segment s2
exists, we can similarly extend s0 to the right side of R and clip s2. We obtain
a layout L′ with G(L) ' G(L′) in which the first slice s′0 separates r′u and r′v,
and rectangle r′v is a pivot. Furthermore, every rectangle incident to a corner in
L remains incident to some corner in L′.

Case 2: ru and rv do not contact opposite sides of R. Then they each
contact a single side of R, and these sides are adjacent. We may assume w.l.o.g.
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that ru contacts the bottom side of L, rv contacts the left side of L, and the
bottom side of ru contains the top side of rv; refer to Fig. 8a. Because L is
one-sided and s0 is not the first slice, s0 equals the bottom side of rv.

A3A1

A2

r3

rv

P

s1

s2r2
s3

s4r4
A4

r1
ru

s0

A0

A′
3

(a) {u, v} is a 2-cut of G(L).
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s′2
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(b) Layout L′, where r′v is a pivot.

Fig. 8: The construction of L′ from L.

We incrementally construct an x- and y-monotone increasing directed path
P (staircase) starting with edge s0, directed to its right endpoint p0. Initially,
let P = {s0} and i := 0. While pi is not in the top or right side of R, let pi+1

be the top or right endpoint of segment si, append the edge pipi+1 to P , and
let si+1 be the segment orthogonal to si that contains pi+1. Since the path P
is x- and y-monotonically increases, it does not revisit any segment. Thus the
recursion terminates, and P reaches the top or right side of R.

Assume that P is formed by the segments s0, s1, . . . , sk of L for some k ≥ 1.
We claim that if si is vertical, its bottom endpoint is on the bottom side of R,
and if si is horizontal, its right endpoint is on the right side of R. for i = 0
since s0 is the bottom side of rv, which contacts the left side of R. Suppose for
contradiction that the claim holds for si−1 but not for si. Then the the clockwise
or counterclockwise winding path starting with si would create windmill (as it
can cross neither si−1 nor si−2, where s−1 is the right side of ru), contradicting
the assumption that L is sliceable.

The segments s0, s1, . . . , sk jointly form a one-sided sliceable layout, that
is, they subdivide R into k + 2 rectangular regions, each of which contains a
sublayout of L. One of these regions is rv. Label the remaining k regions by
A0, A1, . . . , Ak in the order in which they occur along P (see Fig. 8a). In par-
ticular, we have ru ⊂ A0. For i = 1, . . . , k, region Ai is bounded by ∂R and
segments si, si+1, and si+2 (if they exist); and Ak is adjacent to the top-right
corner of R. Because L is one-sided, segment si is a side of a rectangle that we
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denote by ri, for i = 1, . . . , k; and ri ⊆ Ai as the opposite side of si is subdivided
by segment si−1.

Furthermore, we claim that Ak = rk. Indeed, Ak is bounded by segment sk
and three sides of B. If Ak 6= rk, then rk separates the subarrangement A \ rk
from r. This means that vrk would be a cut vertex in G(L), contradicting the
assumption that G(L) is 2-connected.

We recursively construct a one-sided sliceable L′ by placing rectangles and
subarrangement corresponding to those in L such that G(L) ' G(L′); refer to
Fig. 8b. Let R′ be the bounding box of L′. First subdivide R′ by a horizontal
segment s′0; and let r′v be the rectangle below s′0. This ensures that s′0 is the
first slice and r′v is a pivot. Subdivide the region above s′0 by a vertical segment
s′1 into two rectangular regions. Denote the right region by A′0, and subdivide
the left region as follows: For i = 2, . . . , k, recursively subdivide the rectangle
incident to the top-left corner of R′ by a segment s′i orthogonal to si.

Segments s′0, . . . , s
′
k jointly subdivide R′ into k+2 rectangular regions: r′v and

A′0, A
′
1, . . . , A

′
k in the order in which they are created, where A′k is incident to the

top-left corner of R′; and all other regions contact either the left or the top side
of R′. We insert a sublayout in each region A′i. First insert a 180◦-rotated affine
copy of A0 into A′0. For i = 1, . . . , k−1, insert r′i into A′i such that its top or left
side is s′i+1; and if Ai−2 \ri−2 is nonempty, insert an affine copy of the sublayout
Ai−1 \ri−1 into A′k, as well. Finally, for i = k, subdivide A′k into three rectangles
by slices orthogonal to s′k: If Ak−2 \ rk−2 or Ak−1 \ rk−1 is nonempty, insert an
affine copy in the first and third rectangle in A′k; and fill all remaining space by
r′k. This completes the construction of layout L′ (see Fig. 8b). By construction,
we have G(L) ' G(L′).

It remains to track the rectangles incident to the corners of L and L′. In the
original layout L, rectangle rk is incident to two corners of R. Assume w.l.o.g.
that rk is incident to the two top corners of R (as in Fig. 8a), and two distinct
rectangles rleft ⊂ A0 and rright ⊂ Ak−1 are incident to the bottom-left and
bottom-right corners of R, respectively. The sublayout A0 was inserted into A′0
after a 180◦ rotation, and so r′left ⊂ A′0 is incident to the top-right corner in L′.
If rright ⊂ Ak−1 \ rk−1, then Ak−1 \ rk−1 is nonempty and it was inserted into
the top third of A′k after a 180◦ rotation, and so r′right is incident to the top-left
corner in L′. Otherwise Ak−1 = rk−1, and then rright = rk−1. In this case r′k is
incident to the top-left corner in L′. However, we can modify L by extending
rk−1 and sk−1 to the top side of R, and obtain a one-sided sliceable layout L′′
in which r′′right = r′′k−1 is a pivot. This completes the proof in Case 2. ut

Lemma 13. Assume that an instance (G,C, P ) is realizable; G is 2-connected,
it has 4 or more vertices; there exist two distinct vertices, u and v, such that
C(u) = C(v) = 1, and C(w) = 0 for all other vertices; and P = {(u, v)}. Then
u or v is a pivot; or else G has a 2-cut and a vertex of an arbitrary 2-cut can
be taken to be a pivot.

Proof. Assume that (G,C, P ) is realized by a one-sided sliceable layout L. The
graph G is 2-connected, so it has no cut vertices. Therefore, the pivot must corre-
spond to a rectangle in L that contains two corners. So, if u and v correspond to
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rectangles containing opposite corners of L, then one of them must also contain
another corner, and thus be a pivot.

We will assume, then, that u and v correspond to rectangles ru and rv which
contain adjacent corners of L, which we may assume w.l.o.g. to be the top-left
and bottom-left corners, respectively. If either spans the width of L and contains
another corner, then it corresponds to a pivot and we are done.

If ru and rv each contain only one corner of L, there must be some rectangle
rp which contains the top-right and bottom-right corners of L, or else there would
be no pivot, contradicting Lemma 9. If ru contacts rp, then we may reverse the
contact between ru and rp by extending the bottom side of ru to the right side
of R, and removing the segment of the left side of rp above the extended side.
This reverses the contact between the two, but yields a layout with an equivalent
contact graph in which ru contains two corners, and thus u can be taken as a
pivot. The same argument can be made for v as a pivot if rv contacts rp.

If neither ru nor rv contacts rp, then they do not contact one another either,
or else the line segment separating them would not be one-sided. The layout L
is sliceable and G is 2-connected, so there must be at least one horizontal slice
from the left side of R to the left side of rp. Let s1 be the topmost such slice.
As L is one-sided, then s1 must be the side of some rectangle r1. The rectangle
r1 can be neither ru nor rv, since they do not contact rp. The vertices in G
corresponding to r1 and rp form a 2-cut, so G has a 2-cut. Because rectangles
ru and rv are each incident to a single corner of L, Lemma 15 guarantees that u
or v is a pivot; or for any 2-cut, there exists a one-sided sliceable layout L′ that
realizes (G,C, P ) and has one of the vertices in the 2-cut as a pivot. ut

B Dual Graphs of One-Sided Sliceable Layouts

In this section, we prove a remarkable property of one-sided sliceable layouts:
Their dual graphs have cuts of size at most three. In contrast, the minimum ver-
tex cut in the duals of one-sided layouts (resp., sliceable layouts) is unbounded.

Proposition 1. Let G be the dual graph of a one-sided sliceable layout. If G has
4 or more vertices, then it contains a vertex cut of size at most 3.

Proof. Let L be a one-sided sliceable layout with n ≥ 4 rectangles in a bounding
box B, and with dual graph G = G(L). For a rectangle r in L, let v(r) denote the
corresponding vertex in G. If G is outerplanar, then either G has a cut vertex, or
G is a triangulated n-cycle, hence any diagonal forms a 2-cut. We may assume
that G has an interior vertices.

Consider a sequence of segments that incrementally slice B into the layout
L; and let us focus on the first step that created a rectangle R0 that lies in
the interior of B. We may assume w.l.o.g. that R0 is bounded by the segments
s1, . . . , s4 in counterclockwise order, s4 sliced a rectangle R into R0 and R1, and
s4 is the bottom side of R0. Since L is one-sided, then s1 is the right side of some
rectangle r1, and then s3 is the left side of some rectangle r3 of L; see Fig. 9a.
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Fig. 9: Schematic views of the arrangements in the proof of Lemma ??.

We claim that at most two horizontal segments in L intersect both s1 and
s3. Indeed, if there are three or more such segments (Fig. 9b), let s′ be one of
them other than the lowest or highest. Then s′ is a side of some rectangle r′

in L, which is adjacent to both r1 and r3, but not adjacent to the boundary
of B, hence {v(r1), v(r′), v(r3)} is a 3-cut in G. It follows that s2 (s4) is the
highest (lowest) horizontal segment that intersects both s1 and s3. Since L is
one-sided, then s4 is the side of some rectangle r4 in L. If s4 is the bottom side
of a rectangle r4 in L, then {v(r1), v(r2), v(r3)} is a 3-cut in G. We may assume
that s4 is the top side of a rectangle r4 in L. Since no segment intersects both
s1 and s3 below s4, then r4 = R1 (as in Fig. 9c).

If R0 is not sliced further recursively, then {v(r1), v(R0), v(r3), } is a 3-cut in
G. Let s5 be the first segment that slices R0. Segment s5 cannot be horizontal,
as it would intersect both s1 and s3. So s5 is vertical (Fig. 9c), and it is a side of
some rectangle r5 of L, which is adjacent to s2 and s4. This further implies that
s2 is the bottom side of some rectangle r2 of L. If r2 is adjacent to the boundary
of B, then {v(v4), v(r5), v(r2), } is a 3-cut; else r2 lies in the interior of B and
{v(r1), v(r2), v(r3)} is a 3-cut in G. ut
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