A 3/2-Approximation Algorithm for the
Jump Number of Interval Orders*

Stefan Felsner

TU Berlin

The jump number of a partial order P is the minimum number
of incomparable adjacent pairs in some linear extension of P.
The jump number problem is known to be NP-hard in general.
However some particular classes of posets admit easy calculation
of the jump number.

The complexity status for interval orders still remains unknown.
Here we present a heuristic that, given an interval order P, gen-
erates a linear extension A, whose jump number is less than 3/2
times the jump number of P.

1 Introduction

A partial order will be denoted by P = (X, <p), where X is a finite base
set and <p is the order relation. In the special case of a linear order we will
write L = x1x5 ... x,, where the left to right ordering defines the relation <y,
ie. x; <, xjiff i < j. A linear extension of a partial order P = (X, <p) is a
linear order L = 125 ...z, respecting the order relations of P, i.e. z; <p z;
implies ¢« < j for all z;, ; € X. A more dynamic definition would be that
L is a linear extension of P iff x; € Min(Q;) for 1 < i < n, where Min(Q;)
denotes the set of minimal elements of Q; = P\ {x1,..., 2,1}

Let L be a linear extension of P. Two consecutive elements x;x;,1 of L
are separated by a jump iff x; is incomparable to x;,; in P; sometimes we

*This work was supported by the Deutsche Forschungsgemeinschaft (DFG).

call this the ‘jump after z;". If z; < ;4 the pair x;x;,, is called a bump. The
total number of jumps of L is denoted by sp(L) or s(L). The jump number
s(P) of P is the minimum number of jumps in some linear extension, i.e.

s(P) = min{sp(L) : L is a linear extension of P}

A linear extension L of P with sp(L) = s(P) will be called optimal.

The jump number has been introduced by Chein and Martin [1972]. The
minimization problem, ‘determine s(P) and find an optimal linear extension’,
has been shown to be NP-hard even for bipartite orders (Pulleyblank [1982]).
Nevertheless efficient methods for jump-minimization have been found for
large classes of partially ordered sets such as N-free orders (Rival [1983]),
cycle-free orders (Duffus, Rival, Winkler [1982]) or orders with bounded de-
composition width (Steiner [1985]). For some further wellknown classes, i.e.
the 2—dimensional and the interval orders the complexity of the problem re-
mains open. In both cases, however, computation of the jump number is
easy on the subclass of bipartite orders (Steiner, Stewart [1987]).

Probably the most interesting result on jump numbers is the one con-
cerning the N-free orders. For these any linear extension generated by the
greedy algorithm is optimal.

GREEDY algorithm
N=0,L=0,
while P # () do
if N #0 do
choose(z € N) : bump
else
choose(r € Min(P)), : jump
L =L+ =z,
P:=P\{z},
N := Suc(z) N Min(P).

A great amount of work has been invested to extend this result (Systo [1984];
Faigle, Gierz, Schrader [1985]).
An interval order is an ordered set P = (X, <p), whose elements are in a

one to one correspondence with intervals on the real axis (x <> I,;) such that
x <py iff supl, < infl,.

For z € P let Suc(x) = {y € P : x <p y} be the successorset of x. If
P is an interval order, then it is clear from the interval representation that
for any two elements x,y € P we have Suc(z) C Suc(y) or Suc(z) 2 Suc(y).
This and putting z < y iff Suc(y) C Suc(z) defines a new order P, = (X, <)
on the same base set. The order P, extends the given order P, i.e. v <p y
implies © < y, and P, is already quite close to a linear order, in fact, it is a
weak order. Another trivial but important property of interval orders is that
the induced order on the subset of an interval order is an interval order too.

T. Ghazal et al. [1988] characterized greedy interval orders (interval orders
with the property that any optimal linear extension is greedy, i.e. can be
generated by the greedy algorithm).

Faigle and Schrader [1985] gave the following greedy-heuristic for jump-
minimization in interval orders: Construct a greedy linear extension L of P,
that ommits P-jumps whenever possible. They asserted sp(L) < 2s(P). The

factor of two, however, is n%@%@qﬁ@tﬁ?@ﬁer this interval order:
[o | e I h |

lall ¢ JL_F |

A linear extension of P, that is a linear extension of P, too, has at least 7
jumps (e.g. alb|c|d|e|f|gilh). The optimal linear extension of P only has 3
jumps, it is ad|be|cfh|gi. However, it is easy to rewrite our Theorem 1, to
show that the real factor to their method is less then 3.

The heuristic presented here generates (given an interval order P) a linear
extension A, whose jump number is less than 3/2 times the jump number of
P, ie. sp(A) < 3s(P).

2 Starting elements

Let Start(P) denote the set of starting elements, i.e. those elements a €
Min(P) that appear as minimal (first) element in some optimal linear exten-
sion of P.

First we state the following two lemmas, which are valid for the starting
elements of arbitrary partial orders. If P = (X, <), we will use the abbrevi-
ation P, to denote the induced order on the set X \ {a}.

Lemma 1 If a € Min(P) and s(P) = s(P,) + 1, then a € Start(P).

Proof. Take any optimal extension L' of P,. Since a is a minimal element of
P the concatenation I = a + L' is a linear extension of P. Counting jumps
proves the optimality of L. O

Lemma 2 If a € Start(P) and s(P) = s(P,), then Suc(a) N Start(P,) # 0.

Proof. Let L = a+b+ L' be any optimal linear extension of P starting with
a. If b ¢ Suc(a), or equivalently if (a,b) is jump, then s(P,) < sp,(b+ L") =
sp(L) — 1 = s(P) — 1 would contradict s(P) = s(P,), so b € Suc(a). The
equalities s(P,) = s(P) = s(L) = s(b+ L') then show the optimality of b+ L'
for P,, so b € Start(P,) too. O

We now state an algorithm, which is very similar to the greedy algorithm.
In contradistinction to the latter, the starty algorithm never fails to generate
optimal linerar extensions.

STARTY algorithm
N=0,L=0,
while P # () do
if N #0 do
choose(z € N) : bump
else
choose(z € Start(P)), : jump
L =L+ =z,
P := P\ {z},
N := Suc(z) N Start(P).

Lemma 3 If the linear extension L of P is generated by the starty algorithm,
then sp(L) = s(P), i.e. L is optimal.

Proof. For the proof we use induction on | P|. First note that if L = a+ L'
is generated by the starty algorithm with input P, then with input P, there
is a run of the starty algorithm producing L'. Comparing the jump number
of L and L’ we find two possibilities:

e If s(L) = s(L'), then the trivial inequality s(P) > s(P,) and the opti-
mality of L' for P, implies the optimality of L.

e Otherwise, i.e. if s(L) = s(L') + 1, then there is a jump after a, hence
Suc(a) N Start(P,) = 0 and, by Lemma 2, s(P) = s(P,) + 1. Again the
optimality of L is deduced from the optimality of L'. O

Corollary. The NP-hardness of the jump number problem implies that, in
general, the identification of starting elements is hard, too.

In the case of interval orders we have slightly more information on starting
elements than given in the previous lemmas.

Lemma 4 [Faigle,Schrader 85| Let P be an interval order, a € Min(P), then
a € Start(P) iff a is a <-minimal element of P or s(P) = s(P,) + 1.

Proof. In an interval order there can be at most one starting element with
s(P) = s(P,), since only to the (in this case unique) <{-minimal element
there may exist b € Suc(a) N Min(P,) as needed by Lemma 2 (Start C Min).
Any other a € Start(P) thus fulfills the equation s(P) = s(P,) + 1.

So it only remains to prove that a <1-minimal element a is a starting
element. First note that if L = xy25... 2, is optimal and ¢ = z;, then the
set {z1,...,;} is an antichain in P, since Suc(x;_1) C Suc(a). Let z; be
the first element of L with z;, >p x;, then k¥ > i and g : L — g(L) =
To...Tp_1X1Xy ... T, is an operation, which does not increase the number of
jumps. The linear extension g* '(L) is optimal and starts with a. O

3 Some algorithms

In this section we will be concerned with interval orders only. The first
algorithm transforms a given interval order into an auxiliary list £(P), which
will than be the input to three further algorithms. This procedure allows
us to compare the jump number of the linear extensions generated by the
three algorithms and enables us to prove the 3/2 performance bound of our
heuristic.

Let min, M be the (whith respect to P) </-minimal element of M that
has the maximal set of predecessors. As in the greedy algorithm the set
of admissible successors of an element z; will be denoted by N. In the list
L(P) the elements of P appear in </-order, however, if after x;, none of the

admissible successors of x; is </-minimal, a ‘box’ is generated and they are
stored as candidates for further insertion. The further algorithms then use
different insertion-strategies.

Auxiliary Algorithm
N: =0, L:=0,
while P # () do
x = ming P,
if N#£0 do
if x Amin, N do

x = ming N,

L:=L+zx : bump
else
L:=L+0y+ux, : jump
else
L:=1L+z, : jump
Pi=P\{a},

N := Suc(z) N Min(P).

The algorithm gives the following list:
L(P)=L"+0y + L+ 0Oy, +...+ L + Oy, + L7

Remark. 1) Note that in each loop z € Min(P). So if we ommit the boxes,
we may see L£(P) as a linear extension of P. This justifies the comments
given in the algorithm. However, to get things right, we will transforme £
to the linear extension A; using a trivial algorithm, c.f. Lin_Ext_1.

2) An element y may at most once appear in a set N = Suc(z) N Min(P),
hence the N; are pairwise disjoint.

3) If y € N;, for some 7, then y is a minimal element of the remaining poset,
hence in £ there must be a jump just before y.

Lin Ext_1
A =L+ L%+ ... LPHL,

Note that in the auxiliary algorithm the new element x is always choosen
as a <|-minimal element, hence A, is even a linear extension of P..

There are two types of jumps in the linear extension A;. Jumps of the
first type correspond to the boxes in £(P), let their number be 3. The other
jumps arise if N = (), let their number be a = 3 s(L*). Thus s(A;) = a + (.

Example.
[7]
| c L g |
L b [e J[h]
La] d |
Given this interval order P we get L(P) = a0y[b0.¢|c0,|d|eh|f|g and A;(P) =
alblc|d|eh|f|g. As indicated, there are 6 jumps, 3 of them are counted by £.

For the second algorithm we will need a further notion. Let an element
b € P be called jumpreducing in L (L is a linear extension of P) if and only
if sp,(Ly) < sp(L). Here Ly is derived from L just as we get P, from P, i.e.
Ly =z ...0qxip1 ... 2y i L=21...2;_1bxiy1...2,. Let Red(L) denote
the set of all jumpreducing elements of L

Lin_Ext_2
L:= L(P)
while there is a last O in L do
L=L+0Oy+1L : decompose L
if NN Red(L) # () do
choose(n € NN Red(L)),
L=L+n+L,
else
L:=L+L
ANy := L.

Example. If the input of Lin Ext_ 2 is £(P) = a04/b0.f|cO,|d|eh|f]|g,
the list constructed in the preceding example, then there are two possible
outcomes, namely Ay = albe|cg|dh|f with 4 jumps, or Ay = ad|bf|cgleh
with 3 jumps. Which of the two alternatives occures, depends on whether
we choose e or f as the jumpreducing element to be pulled into the second
box. As the width of P equals 4 the linear extension with 3 jumps must be

optimal, in fact it is the unique optimal linear extension of P.

Lemma 5 If the linear extension L of P is generated by Lin_Ext_ 2, i.e.
L = Ay(P), then x € Red(L) implies s(L) = s(L,) + 1.

Proof. By definition of jumpreducing, s(L) > s(L,), and trivially s(L,) >
s(L) — 2. We thus only have to exclude the case s(L,) = s(L) — 2.

Now assume s(L,) = s(L) — 2, we find that L = ...alz|b..., with b €
Suc(a), b ¢ Suc(z). Hence a < x < b and in L(P) the elements a, z, b did
appear in the same order, moreover L(P) = ...a0y, 0y, b. .., with b € N,.

If Lin_Ext_2 does find a jumpreducing element in N, then in Ay(P) there
is a bump after z, if not, then b € N, is jumpreducing and in Ay(P) there is
a bump after a. Together this contradicts the assumption L = Ay(P). O

Lemma 6 Let p count the number of times that the if condition is true in a
run of algorithm Lin_Ext_2. Then s(Ag) = s(A1) —p=a+ [— p.

Proof. The algorithm searches for the last box in £ and decomposes £ =
L'+ Oy + L. Since L then is a linear extension for some subset () = {L} of
P, in fact L = Ay(Q), we can ask whether n € N is jumpreducing in L with
respect to (). If in L we find a jumpreducing n € N, then we pull n foreward
and thus reduce the number of jumps by one. The number p just counts the
jumps reduced in this way.
A bit more formally — the following formula has to be verified:
s(M(L'+n+Ly)=s(M(L'+0v+ L)) — 1.

The jumps in L'agree. Since n is a successor of the last element z of L', we
may charge the jump after z in Ay(L' + Oy + L) with the jump after n in
A (L' +n+ Ly,). Finaly n is jumpreducing in L = Ay(Q), so we may apply
Lemma 5 to get s(L,) = s(L) — 1. O

Lemma 7 Let the linear extension Ay and Ay of the interval order P be
generated by Lin_Ext_1 and Lin_Ext_ 2. If o and 3 are the ‘jumpcounters’ of
Ay introduced above. Then s(Ag) < a + g

Proof. From Lemma 6 we know that s(Ay) = a+ 3 — p, so we only have to
prove p > 3/2. Let L = L'+ Oy + L be any decomposition occurring in the
run of Lin_Ext_2. Take n € N and suppose that n is not jumpreducing. Now
let @ = {L}, then n € Min(Q), hence there must be a jump between the

8

immediate predecessor x of n in L and n. Let y be the immediate successor
of nin L. If (n,y) is a jump, or if n is the last element in L, then n is seen to
be jumpreducing. Hence (n,y) must be a bump, i.e. y € Suc(n). For n not
to be jumpreducing we need in addition that y ¢ Suc(z). Altogether this
implies Suc(z) C Suc(n) or equivalently n <1 z. Since, as we saw before, A;
is a linear extension of P,, the element z comes after n in A; and as well in
L(P). We conclude that the element = has been pulled foreward into a box
in some earlier step.

Let I be the set of indices of boxes that had to remain empty and let .J
be the set of indices of filled boxes, i.e. U .J = {1...8}. To a box Oy that
could not be filled and each n € N we did find the immediate predecessor x
of n in a box filled with x. Hence we have a injective function

O : UiEI N, — J.
Since | N; |[> 1 for all ¢ we get | I |<| J |= p (c.f. the definition of p in
Lemma 6). This last inequality, together with |I| + |.J|= [gives p > (/2.

O
The last algorithm of this section converts £(P) into an optimal linear
extension of P. This algorithm is based upon the recognition of starting

elements, so it is impracticable, however, it enables us to relate s(P) to «
and (3 and will thus help us to show s(As) < (3/2)s(P).

Lin_Ext_3
L:=L(P)
while there is a first O in £ do
L=L+0y+/L : decompose £
Q= (L1,
if NN Start(Q) # 0 do
choose(n € N N Start(Q)),
L:=L+n+L(Q\{n})
else
L=L+/L
As := L.

Lemma 8 The linear extension A3 = A3(L(P)) generated by the preceeding

algorithm is an optimal linear extension of P.

Proof. With reference to Lemma 3 it suffices to show that there is a run
of the starty algorithm with input P that generates A3(L(P)). Let Az =
1%y ...T,, the element z; is <-minimal, so by Lemma 4 we know z; €
Start(P) and x; is a suitable first element for a linear extension generated
by the starty algorithm.

Suppose the starty algorithm did choose z; ...x;, the first i elements as
in Ag. Let @ =P\ {zy,...,2;}.

If £;,1 is <-minimal in @), then the starty algorithm may choose x;;.
Otherwise x;;; must be an element of N = Suc(x;) N Min(Q) and the al-
gorithm Lin_Ext_3 (in a certain repetition of the while loop) found the de-
composition ... z; + Oy + L£(Q) and selected z;,1 as a starting element.
Hence, again, x;,; may be choosen by the starty algorithm. a

As announced before, we now look for an expression of s(A3) containing
a and 3. We begin with the introduction of new variables. Let v count the
number of times the while loop is repeated in a run of Lin_Ext_3, i.e. 7 is
the number of boxes the algorithm finds on its way through the list £. Let
7o count the number of times the condition N N Start(Q) # () appears false,
i.e. 7o is the number of boxes kept empty.

We now turn to the remaining v — o boxes, i.e. to the boxes filled up with
some starting element n. In each of these cases the end of L, i.e. £' = £(Q)
is replaced by £(Q,). A close look at the auxiliary algorithm enables us to
characterize the transition £(Q) — £(Q,). Since n € Min(Q), but n is not
<-minimal in @), we know that in £’ the element n is preceded by an element
x that is incomparable to n. If Suc(z) # Suc(n), i.e. Suc(x) D Suc(n), then
in £' we find a box between z and n and possible patterns for the transition
are:

Oy, | nOpn,, |y — xy (1)
vOy, | nOny, |y — 20NN | Y (2)
Oy | ny — xy (3)

2Oy [nly — 20x |y (4)

Remark. These transitions correspond to:
(1) Suc(n) D Suc(y),y & Suc(n),y € Suc(x).
(2) Suc(n) D Suc(y),y & Suc(n),y & Suc(x).

10

(3) Suc(n) D Suc(y),y € Suc(n).

(4) Suc(n) = Suc(y).

Note that by the definition of min, we have Pred(n) O Pred(z),
so n & Suc(x) implies y € Suc(z) in cases (2) and (4).

Now let oy, #; be the jumpcounters for A;(L + £(Q)) and as, 2 be those
for Aj(L +n+ L(Q,)). Depending on the pattern of the transition £(Q) —
L(Qy) we find

a2:a1;52:51—2 incasel,

s =y ; o= —1 1in case 2 and 3,

s =a; —1; [y = in case 4.

If Suc(n) = Suc(z) then the jump z|n between z and n is counted by «a.

When n is pulled foreward, then with respect to the rest of the list, x takes
the role of n. Thus the new jumpcounters are as = a3 — 1 and By = ;.

Now partition the v —~q starting elements n, which have been pulled fore-
ward by the algorithm, according to the type of transition £(Q) — L(Q,).
Let ~; count the transitions of type 1, 75 count the transitions of type 2
and 3 and let y3 count the remaining transitions. With these definitions the
validity of the following equations is obvious

Y=+ 71+ Y2+ s,
B=y+2n+7%=2%+3n+2%+7%s
At this point we can express s(A3) in terms of «, 5 and the ;.

Lemma 9 The jumpnumber of A3 is
$(A3) = (@ —73) + (B2 — 1) = (@ =) +7.

Proof. In A; we distinguish between the jumps counted by a and those
counted by . If we transform A; step by step to As, i.e. for each of the v
repetitions of the while loop in Lin_Ext_3 we considere A;(L) and observe,
which jumps disappear. We see that only jumps on the right side of the
current box are disappearing. Since number and type of dissappearing jumps
depend on the transition £(Q) — £(Q,) only, they are counted by the ;.
Altogether we note the disappearence of 3 jumps counted by a and 2, + 7,
jumps counted by 3. This proves the Lemma. O

Theorem 1 If Ay = Ay (L(P)), then s(As) < 3s(P).

11

Proof. We saw that s(As) < a+ (3/2 (Lemma 7) as well as s(P) = s(A3) =
a — 3 + v (Lemma 8 and Lemma 9). Using v = 79 + 71 + 72 + 73 we may
rewrite this as s(P) = a+7+ 7 + 2. To prove the assertion it thus suffices
to show

B

3
a+2 < —(CY+’)/0+’71+’72),

2
or equivalently

B < a+3v+3n+ 3
Note that 3 < a (c.f. the proof of Lemma 9) and trivialy 0 < 7g,v2. This

transforms the equality

B= %+3n+272+7m
into the desired inequality
ﬁ < 3’)/0 + 3’71 + 3’)/2 + o.

12

REFERENCES
M. Chein and P. Martin [1972]: Sur le nombre de saunts d’une forét , C. R.
Acad. Sc. Paris, t. 275, série A 159-161.

D. Duffus, I. Rival and P. Winkler [1982]: Minimizing setups for cycle-free
ordered sets, Proc. Amer. Math. Soc. 85, 509-513.

U. Faigle and R. Schrader [1985]: A setup heuristic for interval orders, Oper.
Res. Letters 4, 185-188.

U. Faigle, G. Gierz and R. Schrader [1985]: Algorithmic approaches to setup
minimization, SIAM J. Comput. Vol.14, No.4, 954-965.

T. Ghazal, A. Sharary and N. Zaguia [1988]: On Minimizing the Jump Num-
ber for Interval Orders, Order 4, 341-350.

W. Pulleyblank [1982]: On minimizing setups in precedence constrained schedul-
tng, unpublished manuscript.

I. Rival [1983]: Optimal linear extensions by interchanging chains, Proc.
Amer. Math. Soc. 89, 387-394.

G. Steiner [1985]: On finding the jump number of a partial order by substitu-
tion decomposition, Order 2, 9-23.

G. Steiner and L. Stewart [1987|: A linear time algorithm to find the jump
number of 2—dimensional bipartite orders, Order ss, 359-367.

M. M. Systo [1984]: Minimizing the jump number for partially ordered sets:
a graph-theoretic approach, Order 1, 7-19.

13

