
A 3/2-Approximation Algorithm for theJump Number of Interval Orders�Stefan FelsnerTU BerlinThe jump number of a partial order P is the minimum numberof incomparable adjacent pairs in some linear extension of P .The jump number problem is known to be NP{hard in general.However some particular classes of posets admit easy calculationof the jump number.The complexity status for interval orders still remains unknown.Here we present a heuristic that, given an interval order P , gen-erates a linear extension �, whose jump number is less than 3/2times the jump number of P .1 IntroductionA partial order will be denoted by P = (X;<P), where X is a �nite baseset and <P is the order relation. In the special case of a linear order we willwrite L = x1x2 : : : xn, where the left to right ordering de�nes the relation <L,i.e. xi <L xj i� i < j. A linear extension of a partial order P = (X;<P) is alinear order L = x1x2 : : : xn respecting the order relations of P , i.e. xi <P xjimplies i < j for all xi; xj 2 X. A more dynamic de�nition would be thatL is a linear extension of P i� xi 2 Min(Qi) for 1 � i � n, where Min(Qi)denotes the set of minimal elements of Qi = P n fx1; : : : ; xi�1g.Let L be a linear extension of P . Two consecutive elements xixi+1 of Lare separated by a jump i� xi is incomparable to xi+1 in P ; sometimes we�This work was supported by the Deutsche Forschungsgemeinschaft (DFG).1

call this the `jump after xi'. If xi < xi+1 the pair xixi+1 is called a bump. Thetotal number of jumps of L is denoted by sP (L) or s(L). The jump numbers(P) of P is the minimum number of jumps in some linear extension, i.e.s(P) = minfsP (L) : L is a linear extension of PgA linear extension L of P with sP (L) = s(P) will be called optimal.The jump number has been introduced by Chein and Martin [1972]. Theminimization problem, `determine s(P) and �nd an optimal linear extension',has been shown to be NP -hard even for bipartite orders (Pulleyblank [1982]).Nevertheless e�cient methods for jump-minimization have been found forlarge classes of partially ordered sets such as N -free orders (Rival [1983]),cycle-free orders (Du�us, Rival, Winkler [1982]) or orders with bounded de-composition width (Steiner [1985]). For some further wellknown classes, i.e.the 2{dimensional and the interval orders the complexity of the problem re-mains open. In both cases, however, computation of the jump number iseasy on the subclass of bipartite orders (Steiner, Stewart [1987]).Probably the most interesting result on jump numbers is the one con-cerning the N -free orders. For these any linear extension generated by thegreedy algorithm is optimal.GREEDY algorithmN = ;; L = ;;while P 6= ; doif N 6= ; dochoose(x 2 N) : bumpelse choose(x 2 Min(P)), : jumpL := L + x,P := P n fxg,N := Suc(x) \Min(P):A great amount of work has been invested to extend this result (Sys lo [1984];Faigle, Gierz, Schrader [1985]).An interval order is an ordered set P = (X;<P), whose elements are in a2

one to one correspondence with intervals on the real axis (x$ Ix) such thatx <P y i� sup Ix � inf Iy.For x 2 P let Suc(x) = fy 2 P : x <P yg be the successorset of x. IfP is an interval order, then it is clear from the interval representation thatfor any two elements x; y 2 P we have Suc(x) � Suc(y) or Suc(x) � Suc(y).This and putting x< y i� Suc(y) � Suc(x) de�nes a new order P/ = (X;<)on the same base set. The order P/ extends the given order P , i.e. x <P yimplies x < y, and P/ is already quite close to a linear order, in fact, it is aweak order. Another trivial but important property of interval orders is thatthe induced order on the subset of an interval order is an interval order too.T. Ghazal et al. [1988] characterized greedy interval orders (interval orderswith the property that any optimal linear extension is greedy, i.e. can begenerated by the greedy algorithm).Faigle and Schrader [1985] gave the following greedy-heuristic for jump-minimization in interval orders: Construct a greedy linear extension L of P/that ommits P -jumps whenever possible. They asserted sP (L) � 2s(P). Thefactor of two, however, is not really correct. Consider this interval order:a c fb e hd g iA linear extension of P , that is a linear extension of P/ too, has at least 7jumps (e.g. ajbjcjdjejf jgijh). The optimal linear extension of P only has 3jumps, it is adjbejcfhjgi. However, it is easy to rewrite our Theorem 1, toshow that the real factor to their method is less then 3.The heuristic presented here generates (given an interval order P) a linearextension �, whose jump number is less than 3/2 times the jump number ofP , i.e. sP (�) � 32s(P).2 Starting elementsLet Start(P) denote the set of starting elements, i.e. those elements a 2Min(P) that appear as minimal (�rst) element in some optimal linear exten-sion of P .First we state the following two lemmas, which are valid for the startingelements of arbitrary partial orders. If P = (X;<), we will use the abbrevi-ation Pa to denote the induced order on the set X n fag.3

Lemma 1 If a 2 Min(P) and s(P) = s(Pa) + 1, then a 2 Start(P):Proof. Take any optimal extension L0 of Pa. Since a is a minimal element ofP the concatenation L = a + L0 is a linear extension of P . Counting jumpsproves the optimality of L. 2Lemma 2 If a 2 Start(P) and s(P) = s(Pa), then Suc(a) \ Start(Pa) 6= ;.Proof. Let L = a+ b+L0 be any optimal linear extension of P starting witha. If b 62 Suc(a), or equivalently if (a; b) is jump, then s(Pa) � sPa(b + L0) =sP (L) � 1 = s(P) � 1 would contradict s(P) = s(Pa), so b 2 Suc(a). Theequalities s(Pa) = s(P) = s(L) = s(b+L0) then show the optimality of b+L0for Pa, so b 2 Start(Pa) too. 2We now state an algorithm, which is very similar to the greedy algorithm.In contradistinction to the latter, the starty algorithm never fails to generateoptimal linerar extensions.STARTY algorithmN = ;; L = ;;while P 6= ; doif N 6= ; dochoose(x 2 N) : bumpelse choose(x 2 Start(P)), : jumpL := L + x,P := P n fxg,N := Suc(x) \ Start(P):Lemma 3 If the linear extension L of P is generated by the starty algorithm,then sP (L) = s(P), i.e. L is optimal.Proof. For the proof we use induction on jP j. First note that if L = a+L0is generated by the starty algorithm with input P , then with input Pa thereis a run of the starty algorithm producing L0. Comparing the jump numberof L and L0 we �nd two possibilities: 4

� If s(L) = s(L0), then the trivial inequality s(P) � s(Pa) and the opti-mality of L0 for Pa implies the optimality of L.� Otherwise, i.e. if s(L) = s(L0) + 1, then there is a jump after a, henceSuc(a) \ Start(Pa) = ; and, by Lemma 2, s(P) = s(Pa) + 1. Again theoptimality of L is deduced from the optimality of L0. 2Corollary. The NP -hardness of the jump number problem implies that, ingeneral, the identi�cation of starting elements is hard, too.In the case of interval orders we have slightly more information on startingelements than given in the previous lemmas.Lemma 4 [Faigle,Schrader 85] Let P be an interval order, a 2 Min(P), thena 2 Start(P) i� a is a < -minimal element of P or s(P) = s(Pa) + 1.Proof. In an interval order there can be at most one starting element withs(P) = s(Pa), since only to the (in this case unique) < -minimal elementthere may exist b 2 Suc(a)\Min(Pa) as needed by Lemma 2 (Start � Min).Any other a 2 Start(P) thus ful�lls the equation s(P) = s(Pa) + 1.So it only remains to prove that a < -minimal element a is a startingelement. First note that if L = x1x2 : : : xn is optimal and a = xi, then theset fx1; : : : ; xig is an antichain in P , since Suc(xj�1) � Suc(a). Let xk bethe �rst element of L with xk >P x1, then k > i and g : L 7! g(L) =x2 : : : xk�1x1xk : : : xn is an operation, which does not increase the number ofjumps. The linear extension gi�1(L) is optimal and starts with a. 23 Some algorithmsIn this section we will be concerned with interval orders only. The �rstalgorithm transforms a given interval order into an auxiliary list L(P), whichwill than be the input to three further algorithms. This procedure allowsus to compare the jump number of the linear extensions generated by thethree algorithms and enables us to prove the 3/2 performance bound of ourheuristic.Let min/M be the (whith respect to P) < -minimal element of M thathas the maximal set of predecessors. As in the greedy algorithm the setof admissible successors of an element xi will be denoted by N . In the listL(P) the elements of P appear in < -order, however, if after xi, none of the5

admissible successors of xi is < -minimal, a `box' is generated and they arestored as candidates for further insertion. The further algorithms then usedi�erent insertion-strategies.Auxiliary AlgorithmN := ;; L := ;,while P 6= ; dox := min/ P ,if N 6= ; doif x 6<min/N dox := min/N ,L := L + x : bumpelse L := L +2N + x, : jumpelse L := L + x, : jumpP := P n fxg,N := Suc(x) \Min(P).The algorithm gives the following list:L(P) = L1 +2N1 + L2 +2N2 + : : : + L� +2N� + L�+1Remark. 1) Note that in each loop x 2 Min(P). So if we ommit the boxes,we may see L(P) as a linear extension of P . This justi�es the commentsgiven in the algorithm. However, to get things right, we will transforme Lto the linear extension �1 using a trivial algorithm, c.f. Lin Ext 1.2) An element y may at most once appear in a set N = Suc(x) \Min(P),hence the Ni are pairwise disjoint.3) If y 2 Ni, for some i, then y is a minimal element of the remaining poset,hence in L there must be a jump just before y.Lin Ext 1�1 := L1 + L2 + : : : L�+1. 6

Note that in the auxiliary algorithm the new element x is always choosenas a <{minimal element, hence �1 is even a linear extension of P/.There are two types of jumps in the linear extension �1. Jumps of the�rst type correspond to the boxes in L(P), let their number be �. The otherjumps arise if N = ;, let their number be � = P s(Li). Thus s(�1) = �+ �.Example. a b c d e f g hGiven this interval order P we get L(P) = a2djb2ef jc2gjdjehjf jg and �1(P) =ajbjcjdjehjf jg. As indicated, there are 6 jumps, 3 of them are counted by �.For the second algorithm we will need a further notion. Let an elementb 2 P be called jumpreducing in L (L is a linear extension of P) if and onlyif sPb(Lb) < sP (L). Here Lb is derived from L just as we get Pa from P , i.e.Lb := x1 : : : xi�1xi+1 : : : xn if L = x1 : : : xi�1b xi+1 : : : xn. Let Red(L) denotethe set of all jumpreducing elements of LLin Ext 2L := L(P)while there is a last 2 in L doL = L0 +2N + L : decompose Lif N \ Red(L) 6= ; dochoose(n 2 N \ Red(L));L := L0 + n + Lnelse L := L0 + L�2 := L.Example. If the input of Lin Ext 2 is L(P) = a2djb2ef jc2gjdjehjf jg,the list constructed in the preceding example, then there are two possibleoutcomes, namely �2 = ajbejcgjdhjf with 4 jumps, or �2 = adjbf jcgjehwith 3 jumps. Which of the two alternatives occures, depends on whetherwe choose e or f as the jumpreducing element to be pulled into the secondbox. As the width of P equals 4 the linear extension with 3 jumps must be7

optimal, in fact it is the unique optimal linear extension of P .Lemma 5 If the linear extension L of P is generated by Lin Ext 2, i.e.L = �2(P), then x 2 Red(L) implies s(L) = s(Lx) + 1.Proof. By de�nition of jumpreducing, s(L) > s(Lx), and trivially s(Lx) �s(L)� 2. We thus only have to exclude the case s(Lx) = s(L)� 2.Now assume s(Lx) = s(L) � 2, we �nd that L = : : : ajxjb : : :, with b 2Suc(a), b 62 Suc(x). Hence a < x < b and in L(P) the elements a; x; b didappear in the same order, moreover L(P) = : : : a2Nax2Nxb : : :, with b 2 Na.If Lin Ext 2 does �nd a jumpreducing element in Nx, then in �2(P) thereis a bump after x, if not, then b 2 Na is jumpreducing and in �2(P) there isa bump after a. Together this contradicts the assumption L = �2(P). 2Lemma 6 Let � count the number of times that the if condition is true in arun of algorithm Lin Ext 2. Then s(�2) = s(�1)� � = � + � � �.Proof. The algorithm searches for the last box in L and decomposes L =L0 +2N + L. Since L then is a linear extension for some subset Q = fLg ofP , in fact L = �2(Q), we can ask whether n 2 N is jumpreducing in L withrespect to Q. If in L we �nd a jumpreducing n 2 N , then we pull n forewardand thus reduce the number of jumps by one. The number � just counts thejumps reduced in this way.A bit more formally { the following formula has to be veri�ed:s(�1(L0 + n + Ln)) = s(�1(L0 +2N + L))� 1.The jumps in L0agree. Since n is a successor of the last element x of L0, wemay charge the jump after x in �1(L0 + 2N + L) with the jump after n in�1(L0 + n + Ln). Finaly n is jumpreducing in L = �2(Q), so we may applyLemma 5 to get s(Ln) = s(L)� 1. 2Lemma 7 Let the linear extension �1 and �2 of the interval order P begenerated by Lin Ext 1 and Lin Ext 2. If � and � are the `jumpcounters' of�1 introduced above. Then s(�2) � � + �2 .Proof. From Lemma 6 we know that s(�2) = �+ � � �, so we only have toprove � � �=2. Let L = L0 +2N +L be any decomposition occurring in therun of Lin Ext 2. Take n 2 N and suppose that n is not jumpreducing. Nowlet Q = fLg, then n 2 Min(Q), hence there must be a jump between the8

immediate predecessor x of n in L and n. Let y be the immediate successorof n in L. If (n; y) is a jump, or if n is the last element in L, then n is seen tobe jumpreducing. Hence (n; y) must be a bump, i.e. y 2 Suc(n). For n notto be jumpreducing we need in addition that y 62 Suc(x). Altogether thisimplies Suc(x) � Suc(n) or equivalently n < x. Since, as we saw before, �1is a linear extension of P/, the element x comes after n in �1 and as well inL(P). We conclude that the element x has been pulled foreward into a boxin some earlier step.Let I be the set of indices of boxes that had to remain empty and let Jbe the set of indices of �lled boxes, i.e. I [J = f1 : : : �g. To a box 2N thatcould not be �lled and each n 2 N we did �nd the immediate predecessor xof n in a box �lled with x. Hence we have a injective function� : Si2I Ni �! J .Since j Ni j� 1 for all i we get j I j�j J j= � (c.f. the de�nition of � inLemma 6). This last inequality, together with jI j + jJ j= � gives � � �=2.2 The last algorithm of this section converts L(P) into an optimal linearextension of P . This algorithm is based upon the recognition of startingelements, so it is impracticable, however, it enables us to relate s(P) to �and � and will thus help us to show s(�2) � (3=2)s(P).Lin Ext 3L := L(P)while there is a �rst 2 in L doL = L +2N + L0 : decompose LQ := fL0g,if N \ Start(Q) 6= ; dochoose(n 2 N \ Start(Q));L := L + n + L(Q n fng)else L := L + L0�3 := L.Lemma 8 The linear extension �3 = �3(L(P)) generated by the preceeding9

algorithm is an optimal linear extension of P .Proof. With reference to Lemma 3 it su�ces to show that there is a runof the starty algorithm with input P that generates �3(L(P)). Let �3 =x1x2 : : : xn, the element x1 is < -minimal, so by Lemma 4 we know x1 2Start(P) and x1 is a suitable �rst element for a linear extension generatedby the starty algorithm.Suppose the starty algorithm did choose x1 : : : xi, the �rst i elements asin �3. Let Q = P n fx1; : : : ; xig.If xi+1 is < -minimal in Q, then the starty algorithm may choose xi+1.Otherwise xi+1 must be an element of N = Suc(xi) \ Min(Q) and the al-gorithm Lin Ext 3 (in a certain repetition of the while loop) found the de-composition x1 : : : xi + 2N + L(Q) and selected xi+1 as a starting element.Hence, again, xi+1 may be choosen by the starty algorithm. 2As announced before, we now look for an expression of s(�3) containing� and �. We begin with the introduction of new variables. Let
 count thenumber of times the while loop is repeated in a run of Lin Ext 3, i.e.
 isthe number of boxes the algorithm �nds on its way through the list L. Let
0 count the number of times the condition N \ Start(Q) 6= ; appears false,i.e.
0 is the number of boxes kept empty.We now turn to the remaining
�
0 boxes, i.e. to the boxes �lled up withsome starting element n. In each of these cases the end of L, i.e. L0 = L(Q)is replaced by L(Qn). A close look at the auxiliary algorithm enables us tocharacterize the transition L(Q) ! L(Qn). Since n 2 Min(Q), but n is not< -minimal in Q, we know that in L0 the element n is preceded by an elementx that is incomparable to n. If Suc(x) 6= Suc(n), i.e. Suc(x) � Suc(n), thenin L0 we �nd a box between x and n and possible patterns for the transitionare: x2Ni j n2Ni+1 j y ! xy (1)x2Ni j n2Ni+1 j y ! x2Ni[Ni+1 j y (2)x2N j ny ! xy (3)x2N j n j y ! x2N j y (4)Remark. These transitions correspond to:(1) Suc(n) � Suc(y); y 62 Suc(n); y 2 Suc(x):(2) Suc(n) � Suc(y); y 62 Suc(n); y 62 Suc(x):10

(3) Suc(n) � Suc(y); y 2 Suc(n):(4) Suc(n) = Suc(y).Note that by the de�nition of min/ we have Pred(n) � Pred(x),so n 62 Suc(x) implies y 62 Suc(x) in cases (2) and (4).Now let �1; �1 be the jumpcounters for �1(L+L(Q)) and �2; �2 be thosefor �1(L + n + L(Qn)). Depending on the pattern of the transition L(Q) !L(Qn) we �nd�2 = �1 ; �2 = �1 � 2 in case 1,�2 = �1 ; �2 = �1 � 1 in case 2 and 3,�2 = �1 � 1 ; �2 = �1 in case 4.If Suc(n) = Suc(x) then the jump xjn between x and n is counted by �.When n is pulled foreward, then with respect to the rest of the list, x takesthe role of n. Thus the new jumpcounters are �2 = �1 � 1 and �2 = �1.Now partition the
�
0 starting elements n, which have been pulled fore-ward by the algorithm, according to the type of transition L(Q) ! L(Qn).Let
1 count the transitions of type 1,
2 count the transitions of type 2and 3 and let
3 count the remaining transitions. With these de�nitions thevalidity of the following equations is obvious
 =
0 +
1 +
2 +
3,� =
 + 2
1 +
2 =
0 + 3
1 + 2
2 +
3.At this point we can express s(�3) in terms of �; � and the
i.Lemma 9 The jumpnumber of �3 iss(�3) = (��
3) + (� � 2
1 �
2) = (��
3) +
.Proof. In �1 we distinguish between the jumps counted by � and thosecounted by �. If we transform �1 step by step to �3, i.e. for each of the
repetitions of the while loop in Lin Ext 3 we considere �1(L) and observe,which jumps disappear. We see that only jumps on the right side of thecurrent box are disappearing. Since number and type of dissappearing jumpsdepend on the transition L(Q) ! L(Qn) only, they are counted by the
i.Altogether we note the disappearence of
3 jumps counted by � and 2
1 +
2jumps counted by �. This proves the Lemma. 2Theorem 1 If �2 = �2(L(P)), then s(�2) � 32s(P).11

Proof. We saw that s(�2) � � + �=2 (Lemma 7) as well as s(P) = s(�3) =� �
3 +
 (Lemma 8 and Lemma 9). Using
 =
0 +
1 +
2 +
3 we mayrewrite this as s(P) = �+
0 +
1 +
2. To prove the assertion it thus su�cesto show � + �2 � 32(� +
0 +
1 +
2),or equivalently � � � + 3
0 + 3
1 + 3
2.Note that
3 � � (c.f. the proof of Lemma 9) and trivialy 0 �
0;
2. Thistransforms the equality � =
0 + 3
1 + 2
2 +
3,into the desired inequality� � 3
0 + 3
1 + 3
2 + �. 2

12

REFERENCESM. Chein and P. Martin [1972]: Sur le nombre de saunts d'une forêt , C. R.Acad. Sc. Paris, t. 275, s�erie A 159-161.D. Du�us, I. Rival and P. Winkler [1982]: Minimizing setups for cycle-freeordered sets, Proc. Amer. Math. Soc. 85, 509-513.U. Faigle and R. Schrader [1985]: A setup heuristic for interval orders, Oper.Res. Letters 4, 185-188.U. Faigle, G. Gierz and R. Schrader [1985]: Algorithmic approaches to setupminimization, SIAM J. Comput. Vol.14, No.4, 954-965.T. Ghazal, A. Sharary and N. Zaguia [1988]: On Minimizing the Jump Num-ber for Interval Orders, Order 4, 341-350.W. Pulleyblank [1982]: On minimizing setups in precedence constrained schedul-ing, unpublished manuscript.I. Rival [1983]: Optimal linear extensions by interchanging chains, Proc.Amer. Math. Soc. 89, 387-394.G. Steiner [1985]: On �nding the jump number of a partial order by substitu-tion decomposition, Order 2, 9-23.G. Steiner and L. Stewart [1987]: A linear time algorithm to �nd the jumpnumber of 2{dimensional bipartite orders, Order ss, 359-367.M. M. Sys lo [1984]: Minimizing the jump number for partially ordered sets:a graph-theoretic approach, Order 1, 7-19.

13

