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Abstract

A k-set of a finite set S of points in the plane is a subset of car-
dinality k that can be separated from the rest by a straight line. The
question of how many k-sets a set of n points can contain is a long-
standing open problem where a lower bound of Q(n log k) and an upper
bound of O(nk'/?) are known today.

Under certain restrictions on the set S, for example, if all points lie
on a convex curve, a linear upper bound can be shown. Here, we will
generalize this observation by showing that if the points of S lie on a
constant number of convex curves, the number of k-sets remains linear
in n.
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1 Introduction and definitions

Let S be a set of n points in the plane. A k-set (1 <k <mn—1) is a subset of
S of cardinality k£ that can be separated from the rest by a straight line. The
simple and natural question of how many k-sets a set of n points can contain
has been considered for more than 25 years and has inspired considerable
research. Nevertheless, it is still not solved completely and remains one of
the most prominent open problems in combinatorial geometry.

The first upper bound is due to Lovész [4] who showed that the number of
k-sets can be at most O(n+v/k) which is O(n%/?). Erdés et al [3] constructed a
family of sets having Q(nlog k) k-sets which is Q(nlogn) for suitable values
of k. For a long time the gap between lower and upper bound could not be
narrowed until Pach, Steiger and Szemerédi [5] showed an upper bound of
O(nVk/log* k). More significant progress was made only recently by Dey [2]
who proved an upper bound of O(n+V/k) which is O(n*/3).

Various generalizations of the k-set problem or its dual formulation,
namely determining the number of cells at the k-level of the arrangement
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of a set of n straight lines, have been considered. Among them are k-sets
in higher dimensions or k-levels of curves in two dimensions and surfaces in
three dimensions [1, 6].

Under certain restrictions on the set S it is possible to prove better
upper bounds on the number of k-sets. For example, if all points of S lie on
a straight line, there are only 2 k-sets. If all points of S lie on a convex curve,
S contains at most n k-sets. Here, we will generalize the latter observation
by showing that if the points of S lie on a constant number of convex curves,
the number of k-sets remains linear in n.

In the following let S be a fixed set of n points in the plane and let
k < n —2. An oriented straight line [ is called a k-line of S exactly if the
open halfplane right of [ contains k£ points of S. As easily can be seen, to
any k-set M of S there exists either a corresponding k-line incident to two
points p,q € S\ M or a (k — 1)-line incident to points p € M and g € S\ M
having M \ {p} as its corresponding (k —1)-set. Let us call any line segment
pq with the former property a k-segment of S (a segment with the latter
property, then, is a (k — 1)-segment). The idea is to obtain an upper bound
on the number of k-segments and (k— 1)-segments and, thus, on the number
of k-lines. We will make use of a powerful lemma, due to Lovasz, that was
shown in the classical articles [3, 4].

Lovasz’ Lemma: Let S be a set of n points and | a straight line containing
no points of S and dividing S into two subsets of m and n — m points,
respectively. Then for any k < n — 2 the number of k-segments intersecting
[ is at most 2min{m,n —m, k + 1}.

A simple consequence of Lovdsz Lemma is that the number of k-segments
intersecting a straight line [ is O(n) (in fact, it is at most n). The lemma is
proven by giving a procedure that enumerates all k- and (k — 1)-segments.
For convenience we briefly review Lovdsz procedure:

Let [ be an oriented line and let S; be the set of points of S on the
(open) right side of . Assume without loss of generality that no two points
in S have the same y-coordinate. Then there is a unique horizontal line Iy
containing a point pg of S such that Sj, is of cardinality exactly &, i.e., there
are k points of S below ly. Let [ = [y and repeat the following step: rotate
I counterclockwise around p; until it hits a point p;11, let l;;1 be the line
through p; and p; 1 and increment 7. This is done until the line returns into
the initial horizontal position, i.e., I; = ly. Let I1,lo,...,l, be the different
lines generated by this process. Each line /; contains a segment p;_1p;, we
call these segments the L-segments of the process. Lovész observed the
following fact.

Fact 1. The L-segments are the union of the (k — 1)- and the k-segments.

So , by the observation above, any upper bound on the number of L-segments
will be one on the number of k-sets.
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Figure 1: Curve v and sets A, C and [

2 The main result

In the following we will consider point sets lying on a fixed collection of
curves in the plane. Each curve can be closed or not, bounded or unbounded.
We call a curve convez exactly if it lies completely on the boundary of its
convex hull. Our main result is stated in the following theorem.

Theorem Consider a fized, finite collection of p pairwise disjoint convex
curves in the plane. Then there is a constant ¢, > 0 such that any set S of
n points, each lying on one of the curves has at most cpyn k-sets.

We first observe that without loss of generality we may assume that the
points in S are in general position in the sense that no three of them lie on
a straight line. In fact, let K C S be a k-set. Then there exists a line [ not
containing any point of S which separates K and S\ K. Consequently, under
slight perturbations of the points in S any k-set K still remains a k-set. So
the points of S can be brought into general position without decreasing the
number of k-sets.

The main step towards the proof of the theorem is the following propo-
sition which considers one fixed convex curve and gives an upper bound on
the number of k-segments with at least one endpoint on the curve.

Let v be a convex curve, i.e., the boundary curve of some convex set I'
in the plane. Partition the n points of S into the subset C' of points on -,
the subset I of points in the open interior of I' and the subset A of points
outside v, i.e., A= S\ (CUI). Figure 1 illustrates the situation.

Proposition 1 Let r be the number of k-segments of S with at least one
endpoint in C and let r4 be the number of k-segments with one endpoint in
A and one in C. Then

r < 4|C| + 8ra.



Proof. Let us apply Lovasz’ procedure to the set S and let pg,...,p, be
the sequence of points and [y,...,[, the sequence of lines traversed. We
will enumerate all L-segments containing a point of C'. For any straight
line [ intersecting v we call the first intersection point of [ with v when
following its orientation its entry-point. We will prove an upper bound on
the number p of L-segments where the entry-point is one of the endpoints
of the segment, i.e., on the number of oriented L-segments p;p;+1 with p; in
C'. For reasons of symmetry this same bound holds for the L-segments with
the dually defined exit-point in C.

Let Li,Ly...L, be the subsequence of /1,...,[l, of those lines L; with
entry-point g; € C. Let v be oriented such that the convex region I' is to
the left of 4. The orientation of 7 induces a cyclic ordering of the points in
C. If during Lovész’ procedure every line L between L; and L;;; intersects
v we call the pair L;, L; 1 a standard step.

Claim 1. If L;, L;; is a standard step then either g; 1 is the point imme-
diately preceding g; in the cyclic order on C' or ¢;; is the point immediately
following ¢; or gj+1 = g;.

Proof. During Lovasz’ procedure the entry-point describes a continuous
movement on curve . YA

We classify types of standard steps: A standard step L;, L; 11 is a trivial
step if it corresponds to a rotation around the entry-point ¢; = ¢;4+1. Note
that every second step is a trivial step. A non-trivial standard step is called
a forward step if g; 1 is the point following ¢; in the cyclic order on C else,
i.e., if ¢;4+1 = ¢q; or if g;11 is the immediate predecessor of ¢; in the cyclic
order on C, the step is called a backward step. A step which is not standard
is called a special step. If s is the number of special steps, a the number
of forward steps and b the number of backward steps, then we have for the
total number p of steps

p/l2=a+b+s. (1)

Let L;, L1 be a backward step and observe the entry-point when leaving
gi;- When the point moves backward on v the rotation of line [ is a rotation
around some point p € A. In this case we “charge” the step L;, L;11 to the
L-segment pgq;. When the entry-point moves forward on v after leaving from
q; then it must be g;+1 = ¢; and the entry point must move backward and
return eventually. Again this backward motion is due to rotation around
some point p in A and we charge the step to the L-segment pq;;1. This
shows

b<ry. (2)

We now turn to a closer discussion of special steps. To simplify the
exposition we assume that - has nonvanishing curvature everywhere (this
can be done w.l.o.g. since we assume that S is in general position). Suppose
some line L between L; and L;;; has no entry-point on . Then there is
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Figure 2: Rotating from [ to I’ the nigh-point moves forward on =

a moment when the rotating line [ leaves v, i.e., | is tangent to 7. For a
line with less than two points of intersection with v we define the nigh-point
of | as the (unique!) closest point to [ on 7. There are two important
observations about the nigh-point:

Fact 2. For every line [ the entry-point or the nigh-point are defined. If they
are both defined then they coincide with the tangent point. Hence, observing
whichever is defined during Lovasz’ procedure we obtain a continuously
moving en-point for [ on ~.

Fact 3. While [ rotates outside of y the nigh-point always moves forward
in the orientation of . This is easily seen to be true in both possible cases:
7 left of [ and + right of I (see Figure 2).

As a consequence of Fact 3 we obtain that the en-point can move back-
wards only when it is the entry-point. Therefore, if L;, L; 1 is a special step
then either g; 1 is the point immediately preceding ¢; in the cyclic order on
C or gj+1 = g; or the nigh-point sweeps over a piece of curve v containing
all points of C' that are between ¢; and ¢; 41 in the cyclic order.

We now refine the classification and add the attribute backward to special
steps with either ¢; 1 preceding g; in the cyclic order on C or ¢;+1 = ¢g;. The
attribute forward is given to all other special steps. Let s, be the number of
forward special steps and s; be the number of backward special steps, then

S =84+ 8p (3)

As in the argument preceding Inequality (2) we find an L-segment in-
volving a point p of A and a point of C for every backward special step.
This improves Inequality 2 to

b+ sp <ry. (4)



The next lemma will show that the winding number of the en-point is +1.

Figure 3: The potential locations for the en-point of a line at angle 6 cover
the part of y parametrized by [6 — 7, 6].

Lemma 1 During Lovdsz’ procedure the effect of the movement of the en-
point is one full rotation around I.

Proof. For a fixed angle 6 consider the en-points of all -oriented lines. These
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Figure 4: Possible
motion of the
en-point.

points cover one half of v if we parametrize the
curve by tangential-angle (see Figure 3).

Consider the lifting-space v* of curve v, a dou-
bly infinite spiral where each point y(¢) on 7 has a
copy v* (t+ k2m) for every integer k. We identify v*
with the reals by ¢t <> v*(¢). During Lovész’ pro-
cedure the rotating line sweeps through all angles
0 from 0 to 2m. For every 6 the tangential-angle
of the en-point of /() is in the interval [# — ., 6].
Lines /(0) and /(27) and hence their en-points equal
each other. Therefore in the lifting-space v* the en-
points of /(0) and [(27) differ by multiples of 2.
Together this shows that as a function from the
angle into the lifting-space the en-point starts at
some value z € [—m,0], stays in the white area in
Figure 4 and ends in one of the copies of z. A pos-
sible value for z is indicated by the black triangle
in Figure 4; the copies of  on the right side are
the white triangles. Since the function stays in the
white strip containing z we know at which of the
white triangles the function ends. It follows that

in the lifting-space of -« the en-point of | moves up exactly one level during
Lovasz’ procedure, this is another way of saying that the en-point makes
one full rotation around T'. A



This lemma will be used next to bound the difference between forward
and backward steps during the procedure.

Claim 2. If |C| =t then
(a+sq) — (b+sp) <. (5)

Proof. To see this recall three already proven facts: (1) Every forward
step moves forward at least one element in the cyclic order on C. (2) Every
backward step moves backward at most one element in the cyclic order on C.
(3) As a consequence of Lemma 1 the overall surplus of forward steps cannot

exceed |C. JAN
We are ready now to come to an end with the proof of Proposition 1.
p/2 = (a+sa)+(b+s) by (1) and (3)
< t+2(b+ sp) by (5)
< t42ra by (4)

For the number p’ of L-segments with exit-point in C the dual argument
shows that p' < 2t + 4r4. With r = p + p’ we obtain the bound claimed in
the proposition. n

Next we extend the result to sets of nested curves.

Figure 5: Nested convex curves.

Lemma 2 Let~y ..., be closed convex curves where vy; is contained inside
Yi—1, @ = 2,...,p. The points of S may lie on the curves (subset C') or
outside of vy, (subset A) see Figure 5. There is a constant ¢, such that
re < cp(|C|l+1ra) when rc denotes the number of k-segments incident to at
least one point in C and r4 the number of k-segments with one endpoint in
A and one in C.

Proof. Let r; be the number of k-segments from +; to some v;,5 > 4,1 =
1,...,p— 1 and let rqg = r4 be the number of k-segments from A to some
Y jzlaap
Then by Proposition 1

ri <c(n+s;)



for some constant ¢, where s; is the number of segments with one endpoint
in AU~ U...U~;_1 (the outside of 7;) and one on +;.
So s; <rg+ ...+ r;—1 and we have the recursive inequality

i-1
ri < c(n—i—er) i=1,...,p with

J=0
o = TA.

Certainly r; < t;,7 =0,1,..., where the sequence (¢;) is defined by the same
recursive system, except that the <-inequalities are replaced by equalities.
We have t; —t;1 = ¢ tj_1, i.e., t; = (¢+ 1) t;—1 and therefore t; =
(c+ 1) = (c+1)"l¢(n +r4) is an upper bound on 7.
We want an upper bound on the number of segments with at least one
endpoint on y; U... U7, i. e. on

P P
er < ratce(n+ra) Zc-l—l
=0 =1
= ra+[(c+ 1P —=1](n+ra)
which proves Lemma 2. 0

Next assume that the points of the set .S lie on a finite number of closed
convex curves which form p nested “clusters” each of the form described in
Lemma 2 (see Figure 6). We claim

(=3

Figure 6: Four clusters of nested convex curves.

Lemma 3 If the points of S lie on constantly many fized nested clusters of
closed convex curves, then there are O(n) k-sets.

Proof. Consider one cluster C' of the p clusters and let r¢ be the number
of segments with at least one endpoint on C'. C can be separated from any



other cluster by a straight line, so by Lovédsz’ Lemma there can be only
O(n) segments between the two clusters, so the number 74 of segments with
one endpoint in C' and one outside of C is O(n). With Lemma 2 we obtain
rc = O(n + r4) which is O(n). The lemma follows since there are only
constantly many clusters. 0

Proof [Theorem]. Let us consider p disjoint convex curves, which may
contain the points of the set S. Since S is finite we can assume that all curves
are bounded. To the curves we add all vertical lines through their endpoints
and all vertical tangents (see Figure 7) The vertical lines decompose the
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Figure 7: Vertical lines added to a set of convex curves.

plane into constantly many slabs where each slab contains constantly many
upward or downward convex segments of curves (see Figure 8). We now add
line segments to the curve segments in a slab as shown in Figure 8: If a
downward convex segment lies directly above an upward convex segment we
connect the endpoints of each of them with a line segment. If the topmost
(bottommost) segment is upward (downward) convex we also add the line
segment between its endpoints.

Furthermore, from each downward convex segment we construct a closed
convex curve by connecting its endpoints by a vertical line segment to the
nearest endpoint below (above) of a line segment constructed in the previous
phase. Thus, the curve segments in each slab are transformed into a set
of clusters of constant size and each cluster consists of constantly many
nested convex curves. So by Lemma 3 there are only O(n) k-segments
whose endpoints both lie within the same slab.

On the other hand k-segments whose endpoints lie in different slabs
have to cross at least one of constantly many vertical lines. By Lovéasz’
Lemma there are only O(n) k-segments of this kind as well, which proves



Figure 8: Curve segments and added line segments within a slab.

the theorem. O
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