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Abstract

This paper investigates a transformation P — () between partial orders P, () that
transforms the interval dimension of P to the dimension of @, i.e., idim(P) =
dim(Q). Such a construction has been shown before in the context of Ferrer’s
dimension by Cogis [2]. Our construction can be shown to be equivalent to
his, but it has the advantage of (1) being purely order-theoretic, (2) providing
a geometric interpretation of interval dimension similar to that of Ore [15] for
dimension, and (3) revealing several somewhat surprising connections to other
order-theoretic results.

For instance, the transformation P — () can be seen as almost an inverse
of the well-known split operation, it provides a theoretical background for the
influence of edge subdivision on dimension (e.g., the results of Spinrad [17]) and
interval dimension, and it turns out to be invariant with respect to changes of P
that do not alter its comparability graph, thus providing also a simple new proof

for the comparability invariance of interval dimension.
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1 Introduction

An extension () of a partial order P is an order on the same elements that
contains all the ordered pairs of P, 1.e., z < y in P implies * < y in (). A family
{Q1,...,Qr} of extensions of P is said to realize P or to be a realizer of P iff
P=Q1N...NQk, 1e.,z<yin Piff x <yin Q; for each 1, 1 <1 < k. If we
restrict the (); to belong to a special class of orders and seek for a minimum size
realizer we come up with a concept of dimension with respect to the special class.

A linear extension of P is an extension which is a chain. Dushnik and Miller
[5] defined the dimension of a partial order P, denoted dim(P), as the smallest
integer k£ for which there exist k linear extensions realizing P. Let the real-
izer {Ly,..., Ly} of an order P with |P| = n be made by the linear extensions
Li = (2 < 249 < ... < 2,). With every @ € P we then associate the vector
(z1,...,2%) € RF, where 2 gives the position (coordinate) of z in L;. This map-
ping of the points of P to points of R* embeds P into the componentwise ordering
of R*. Ore [15] defined dim(P) as the minimum k such that P embeds into R*
in this way. The projections of such an embedding on each coordinate yield a
realizer of P. The extensions of this realizer need not be linear extensions of P,
but it is straightforward to transform them into linear extensions. Therefore, Ore
dimension and Dushnik-Miller dimension are equivalent concepts.

A partial order P is an interval order if it can be represented by assigning to
each element & € P an open interval I, = (a;, b;) of the real line, such that « <y
in Piff b, < a,. Such a collection of intervals is called an interval representation of
P. Fishburn [7] characterized interval orders as those orders that do not contain a
4-point subset forming two disjoint 2—chains, i.e., that contain no 242. Interval
dimension, denoted idim(P), is defined by using interval extensions instead of
linear extensions. Since linear orders are interval orders we obtain the trivial

inequality
idim(P) < dim(P) (1)

It is well known that interval orders of large dimension exist (see [16, 1, 9]).
Hence, the gap between idim(P) and dim(P) may be arbitrarily large.

Let Z = {l,..., I} be an interval realizer of P and fix an open interval



representation of each interval order I;. Let (aZ, ') be the interval corresponding

to x € P in the representation of I;. We now define a boxr embedding of P
to R*. With * € P we associate the box I1; (ai,b)) C R*. TFach of these

x)w
boxes is uniquely determined by its upper extreme corner u, = (bl,... b) and
its lower extreme corner l, = (al,...,a¥). Obviously z < y in P iff u, < I,

componentwise. The projections of a box embedding onto each coordinate yield
an interval realizer, so the concepts of box embeddings and interval realizers are
equivalent. For interval dimension the box embeddings thus play the role of the
above-mentioned point embeddings into R* introduced by Ore for dimension.

A box embedding depends not only on the realizer Z of P, but also on the
representations of the [;. Now we define the partial order B(Z) of extreme corners
associated with a box embedding or, equivalently, with an interval realizer Z of P.
The vertices of B(Z) are the at most 2n different lower resp. upper extreme corners
of elements of P. The order relation of B(Z) is given by the componentwise order
in R*.

By definition we have an embedding of B(Z) in R*, so dimB(Z) < k =
idim(P). The starting point of our investigations was the following question
concerning the interplay between dimension and interval dimension:

Is dimB(Z) = idim(P)?

In Section 2 we define a transformation P — B(P) such that idim(P) =
dim B(P). We provide two interpetations of this transformation, a combinatorial
one and a geometrical one. In the combinatorial interpretation the elements of
B(P) are subsets of P. In the geometrical interpretation B(P) is the poset B(Z*)
of extreme corners of 7*. Here 7* is a box embedding obtained from an arbitrary
box embedding Z by a normalizing procedure. From the proofs we obtain an
affirmative answer to the question above.

Section 3 investigates several consequences to and relations with other order-
theoretic results. First, we study the transformation P — B(P) on special partial
orders of height 1. In particular we show that the standard example S, of a n-
dimensional order is an (almost) fixed point of the transformation P — B(P).
Therefore, dim(S,) = idim(S,).

Second, we investigate the relationship with the split operation. This has a

surprising consequence for the iterated transformation P — B(P) — B*(P) —



... B*(P) — .... For every n there are partial orders P such that 0 < dim(P) —
dim B¥(P) < 2 for all k < n but dim(P) — dim B"*'(P) > m, where m is
arbitrary.

Third, we relate the interval dimension of subdivisions of P to the dimension
of P, thus providing a theoretical framework for the examples of Spinrad [17].

Finally, we show the comparability invariance of the transformation P —
B(P), which, as a consequence, gives another proof that the interval dimension is
a comparability invariant. Some remarks concerning the recognition-complexity

of special classes of orders and graphs close the paper.

2 The main result

In the last section we defined the partial order B(Z) of extreme corners associated
with a box embedding of P in R*. With the next lemmas we show that B(Z)
inherits some structure which is independent of the realizer 7 leading to the box

embedding.

Lemma 1 Let B(I) be the partial order of extreme corners of a box representa-
tion of P.

a) If the lower extreme corners of x and y are comparable in B(I), e.g., [, <

ly, then the predecessor sets of x and y in P are ordered by inclusion, t.e.,

Predp(x) C Predp(y).

b) If the upper extreme corners of x and y are comparable in B(I), e.g., u, < uy,
then the successor sets of v and y in P are ordered by (reversed) inclusion, i.e.,

Succp(x) 2 Sucep(y).

c) If the lower extreme corner of x and the upper extreme corner of y are related
by l, < wy, then Predp(z) 2O Predp(x) for all = € Succp(x) or, equivalently,
Predp(x) C ﬂ Predp(z).

z€Succp(y)

d) If uy, <1, then ﬂ Predp(z) C Predp(y).

z€8ucc p(z)

Proof. a) From [, <, we obtain a/ < ai for all 5. Therefore, in each [;, x has

less predecessors than y, i.e., Pred;(x) C Pred;(y). The claim now follows from
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Predp(x ﬂ Pred;(x) since the [; realize P.

b) The proof of this part is symmetric to part a.

¢) From [, < u, we have a’, < bi. If z € Succ(y), then necessarily a’ > bé > al.
Hence, Pred;(z) 2 Pred;(x) for all j. The claim follows.

d) From u, < [, we immediately obtain < y, i.e., y € Succ(x), therefore,

Pred(y) 2 ﬂ Pred(z). O

zeSucc( )
All statments except the conclusion part of b use only the sets Predp(x) and
ﬂ Predp(z). This irregularity is resolved with the next lemma.

2€8ucc p(z)

Lemma2 () Pred(z) 2 () Pred(z) if and only if Succ(x) C Succ(y).

zeSucc(z) zeSucc( )
Proof. The ‘if’ direction is trivial. We now prove the ‘only if” direction. Let

z € Succ(z) and note that y € ﬂzeS uee(y)
we obtain y € Pred(z), hence z € Succ(y) O

Pred(z). From the assumed inclusion

Definition 1 With each vertex x of a partml order P we associate the lower

set L(x) = Predp(x) and the upper set U(z) = () Predp(z). The case v €
zeSuccp( )

Max(P) is settled by the convention U(x) = P.
Define B(P) = {L(x),U(x):x € P} ordered by setinclusion.

Note that this construction is in fact equivalent with Cogis’ construction in the
context of Ferrers dimension [2]. Cogis also uses L(x), but replaces U(x) by the
equivalent set {z € P : Succ(x) C Succ(z)}. He also proves Theorem 2, but in
a different way and without the geometrical interpretation that our approach is

based on.

The preceding lemmas prove that [, — L(x) and u, — U(x) together form
an order preserving mapping from B(Z) to B(P), hence

idim(P) > dimB(T) > dim B(P). (2)

To get more structure into interval realizers we now introduce a procedure
that transforms a interval extension I = {(a,,b;) : @ € P} of P into its P-
normalization I* = { (a%,b%) : x € P}.

x?Yx



e In the first step of the P-normalization we update left endpoints:

* = max{b, : z € Pred(x)} if # is not minimal,

a’ = min{a, : z € Min(P)} if @ is minimal.

e In the second step we update right endpoints:
bt = min{a® : z € Succ(x)} if  is not maximal,

br = max{b, : z € Max(P)} if « is maximal.

Note that the interval order I* need not be isomorphic to I. In general I* is a
suborder of I and a minimal interval extension of P if all the a,, b, were different.
If P is realized by Z = {1l1,..., [} then I* = {I},..., [} realize P as well.
We call the box embedding corresponding to Z* the normalized box embedding

of Z. For an example see Figure 1.

oYY [5‘ A
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Figure 1: P, an interval realizer of P and its normalization
After normalizing we have a realizer 7* = {I},..., I} of P, interval repre-
sentations (a’*,b’*) and an associated partial order of extreme corners B(Z*) =
{lZ,u> : € P}. The next theorem shows that the geometrically defined B(Z*)

and the combinatorially defined B(P) are isomorphic.
Theorem 1 [fZ* is a normalized realizer of P then B(Z*) = B(P).

Proof. First observe that both partial orders have a least element generated by
x € Min(P) as [Z and L(x), respectively, and a greatest element generated by
x € Max(P) as uf and U(x), respectively.



Moreover, [ — L(x) and u> — U(x) defines an order preserving mapping by

the remarks preceeding (2). To show the converse we distinguish four cases:

U(x) € L(y). We know that « € U(x), so x € Pred(y). Since I7 is an interval
extension of P, we obtain 0" < al* for all j. Hence uj < [7.

L(z) € L(y). Remember that a/* = max{b : z € Pred(x)} and ai* =
max{b] : z € Pred(y)}. By assumption Pred(x) C Pred(y), so a}* < a]* and
;<13

U(x) € U(y). By Lemma 2, this is equivalent to Succ(x) 2 Succ(y). Now

uy < uy follows symmetrically with the second case.

L(z) C U(y). Since I7 is normalized, there are zo € Pred(x) and z; € Succ(y)
with a/* = bio and bg* = aif. The hypothesis provides z5 < 21, hence a/* = bio <
O

bg < aif = bi*. The validity of this inequality for all j again gives 7 < u}.

We are ready now, to prove our main theorem about interval dimension and

dimension.
Theorem 2 dim B(P) = idim(P).

Proof. As Inequality (2) we allready have obtained dim B(P) < idim(P). For
the converse we need two arguments. We first show that a linear extension L of
B(P) induces an interval extension I, of P. Secondly, we prove that if Ly, ..., Ly
is a realizer of B(P), then the induced interval extensions Ir,,..., [y, form an
interval realizer of P.

Let L = My, My, ..., M, be a linear extension of B(P). For each « € P there
arei,j € {l,...,r}such that M; = L(xz)and M; = U(z). From L(z) C U(x) and
x ¢ L(x), € U(x) we obtain that ¢ < j. So we can associate with z a unique
interval (a,,b,) which is defined to be (¢, 7). We now show that the interval order
I1, induced by the interval representation { (a,,b;) : € P} is an extension of
P. If  <yin P, then U(x) C L(y), and thus, with M; = U(xz) and M; = L(y),
b, =1 <7 = ay, which implies v+ <y in [}.

Let {Ly,..., L} be a realizer for B(P) and let I; = Iy, for 1 < j < k.
The family {/i,..., I} of interval extensions of P is an interval realizer iff all
incomparabilities x|y of P are realized. If z||ly in P, then U(x) € L(y) since
x € U(x) but @ € L(y). Therefore, L(y) precedes U(x) in some L;, which gives
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ai < b/. The symmetric argument yields an 7 with ¢} < b;. Both inequalities
: : ’ -

together give z||y in ﬂj[]
This theorem together with Inequality (2) shows that dim B(Z) is independent

of the interval realizer 7.

3 Consequences

In the previous section we introduced the operation P — B(P) mapping partial
orders to partial orders. We will now investigate several connections to other
order-theoretical topics and results. Note that B(P) always has a greatest and
a least element. We adopt the convention of calling orders with this property
bounded and denote by () — @ the bounding of a partial order @), i.e., @ is the
order resulting from () by adjoining a new greatest and a new least element.

We first look at the effect of the operator B applied to special classes of orders.

3.1 Transformation rules for special posets

Let S, denote the standard poset of dimension n, i.e.; the set of all 1-element

and (n—1)-subsets of an n element set ordered by setinclusion. Then
B(S,) =S, (3)

Let C), denote the r-cycle. The r-cycle is the 3—dimensional poset on 2r
elements {x1,y1, 22, Y2, ..., 2, Yy} with comparabilities.

T1 <Y, Y1 > T2, T2 < Y2, T < Yr,Yr > T4
B(C) =0, (4)

Let the Hasse diagram of T' be a tree. The truncation of T, denoted by tr(T'),

is the induced tree on the non-leaf vertices of T'. Then

JE—

B(T) = tr(T) (5)

In particular (3) shows that the standard example S, of a n-dimensional order
is (up to closures) a fixed point of the operation P — B(P), thus showing again
that, for every n > 3, there is are orders P with dim(P) = idim(P) = n.
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3.2 B as an inverse of the split operation

We now turn to the natural question, whether, for every bounded partial order
() there is some P with @) = B(P). The next theorem answers this question
affirmatively. Moreover, it turns out that the operation P — B(P) is an almost
left inverse of the split operation S which has applications in different branches of
poset theory (see, e.g., [21, 8, 6]). The split S[P] of a partial order P is the order
of height one with minimal elements {2’ : # € P} maximal elements {z" : « € P}

and ordered pairs @’ < y” iff + <y in P.
Theorem 3 B(S[P]) = P.

Proof. For & € P let Pred[z] = Pred(x)U{x}. Obviously, P is isomorphic to the
setsystem { Pred[z] : @ € P} ordered by inclusion. We will show that the elements
of B(S[P]) are just the ‘primed’ sets Pred[z], i.e., (Pred[z]) = {2’ : @ € Pred|z]},
together with the greatest element {z/,2” : € P} and the least element ). We

have
L(z') =0, and
U(z') = () Pred(z") = () (Pred[z]). Since z € Succlz], U(z’) C (Pred[z])".

2"eSucc(a’) zeSucc(z]
On the other hand Pred[xz] C Pred[z] for z € Succ(x). Together, this gives

U(z') = (Pred[z])". Similarly, we obtain
L(z") = Pred(z") = (Pred[z])'. Finally,
U(z") ={2',2" : € P} by definition since Succ(z") = (. 0

It is easy to verify that
B(P) = B(P). (6)
So we may generalize the theorem to

A} 7. boundings

B"(S"[P]) = P (7)

Investigations on the effect of iterated splitting to the dimension [19] lead to the

inequality
dimP < dimS"[P] < 24dimP foralln (8)

9



As a consequence of (7) and (8) we obtain that, for every n there is are partial

orders P such that
dim P — dimBk(P) < 2 forall k <n.

(Just take P = S"[Q)] for some order Q). If we choose @, however, to be an
m dimensional interval order we obtain a large difference in dimension with the

next iteration, i.e.,
dim P — dim B"*Y(P) > m —1. (9)

3.3 The interval dimension of subdivisions

With the next theorem we relate the interval dimension of subdivisions of P to
the dimension of P. Spinrad [17] showed that the dimension of a subdivision
of a partial order can be an arbitrary multiple of its dimension, thus answering
Trotter’s Problem 4 in [22]. With our result we establish a theoretical framework
for his examples.

In this context, partial orders and their diagrams are regarded as directed
graphs whose edges (x,y) correspond to ordered pairs and cover pairs = < y
of P, respectively. An edge (x,y) is subdivided by placing a new vertex z in
the ‘middle’ of the edge, i.e., (x,y) is replaced by (z,z) and (z,y). In the case
of partial orders we then have to ensure transitivity, i.e., all edges («a,z) with
a € Pred[z] and (z,b) with b € Succ[y] are also added.

The complete diagram subdivision DS(P) is the subdivision of all edges of the
diagram of P. The complete subdivision CS(P) is the transitive closure of the
subdivision of all the edges of P. Let E be any set of edges of P, we denote
the order obtained by subdividing the edges of F with Sub(P, F) . Since P is
an induced suborder of each subdivision Sub(P, F), and since Sub(P, E) is an
induced suborder of CS(P), we obtain

dim(P) < dim Sub(P, E) < dim CS(P). (10)
With the next theorem we give an upper bound for idim Sub(P, F).
Theorem 4 idimSub(P, E) < idim DS(P) = idim CS(P) = dim(P).

10



Proof. Take any embedding of P into R* with k& = dim(P) and grow the points
to obtain an embedding by ‘miniboxes’. An interval embedding of a subdivision
Sub(P, F) is then obtained by adding the box with lower extreme corner u, and

upper extreme corner [, for the point z subdividing the edge (x,y) € £ — see
Figure 2. This gives idim Sub(P, E) < dim(P), independent of the choice of E.

&

> >
- -

Figure 2: P, a minibox embedding of P and the box embedding of DS(P)

To prove that idim DS(P) = idim CS(P) = dim(P) we will show that P can
be embedded in B(DS(P)). This will give dim(P) < dim B(DS(P)). From The-
orem 2 we know idim DS(P) = dim B(DS(P)). Together, we obtain dim(P) <
idim DS(P).

To show that P can be embedded in B(DS(P)) we apply the normalizing
procedure to the box embedding Z of DS(P) constructed in the first paragraph
of the proof. Because of the construction of the box embedding of DS(P), the only
changes that occur in normalization are shifts of the left endpoints of intervals
corresponding to elements in Min(P) and the right endpoints of elements in
Max(P). We then embed P into the lower extreme corners of the miniboxes of the
normalized representation Z*. This gives dim(P) = k = idim(Z*) = idim(DS(P))
O

Note that we obtained, in fact, a slightly stronger result: If a set F of edges of
P contains the edges of the diagram, then B(Sub(P, E)) = VS(P), where VS(P)
denotes the vertical split of P, i.e., the order obtained from P by substituting
each vertex by a 2—chain. In [20] a distinct proof for dim(P) = idim VS(P) has

been given.
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3.4 Comparability invariance

For the definition and basic facts on comparability invariance see [10]. Let
Comp(P) be the comparability graph of P. We will show that Comp(B(P))
is a comparability invariant of P in the sense that if Comp(P) = Comp(Q) then
Comp(B(P)) = Comp(B(Q)). Together with Theorem 2 and the known fact that
dimension is a comparability invariant, this gives an alternative proof of the com-
parability invariance of interval dimension in the finite case. The comparability
invariance of interval dimension was first shown in [11].

A subset of elements A of P is called autonomous if the relation of elements
in A to an element outside A is independent of the element of A. More formally,
if for any « € A, whenever @ < a, © > a or z||a holds for some a« € A, then
it holds for all « € A. If A is an autonomous subset of P, then Pred(A) shall

denote the predecessors outside A of any and hence every element of A.
Theorem 5 Comp(B(P)) is a comparability invariant of P.

Proof. Let A be an autonomous subset of P. It is enough to show (see, e.g.,[11]),
that Comp(B(P)) = Comp(B(P4.)), where P{, denotes the order resulting from
substituting A by its dual A? in P.

Note first that B(A) = {L(a),U(a) : a € A} is a closed suborder of B(P).

Let B(A) be B(A) without its greatest element 1p(4) and its least element 0p(4).
Our claim is that BA(A) is autonomous in B(P). To see this, observe first that,
for each a« € A, we can decompose Pred(a) into Pred(a) = Pred(A) U Pred(a),
hence, the same is valid for all elements of Bﬂ(jél) On the other hand, the elements
of B(P)\ B(A) either contain all of A or their intersection with A is empty. Now
if M € B(P)\ B(A) contains all of A then it also contains Pred(A) and M is

above all sets in B(A). If M C Pred(A) then M is below all sets in B(A). In all
the other cases M is unrelated to all of BA(A) This gives the claim.

To settle the theorem we need that B(A?) and B(A)? are isomorphic orders.
To see this, consider a normalized box embedding of A in R*. Its extreme corners
are an embedding of B(A) into R*. Flip the embedding, i.e., reverse the relations,

this gives an embedding of A? and the extreme corners form an embedding of

B(A). m
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As we have seen, autonomous sets in P induce autonomous sets in B(P).
The converse, however, is far from being true. Take as P a prime interval order,

then B(P) is a chain. Hence P has none but B(P) has ('B(Zp)l) — 1 nontrivial

autonomous sets.

3.5 Remarks on related results and computational com-
pexity

The transformation P — B(P) obviously can be carried out in polynomial time.
The degree of the polynomial of this reduction is not important if we want to
decide if P has interval dimension > 3, since the poset dimension and interval
dimension problems have been shown to be NP-complete for & > 3 by Yannakakis
[23]. It is, however, a crucial point if we want to decide if idim(P) < 2.

Dagan Golumbic and Pinter [4] addressed questions about the comparability
invariance of interval dimension and (fast) recognition of interval dimension at
most 2. As remarked before, the first problem has been settled affirmatively
first in [11]. The recognition problem has been solved independently by several
authors. Habib and Moéhring [12] use the subposet of B(P) defined by B'(P) =
{L(z) : @ € P} together with an algorithm for transitive orientation with side
constraints to derive an O(n -n*) algorithm, where O(n®) is the best known time
for matrix multiplication. Currently @ is about 2.37.

Cheah [3] proposed an algorithm in complexity O(rn?). The same complexity
is claimed by Langley [13]. Langley calles the poset B(P) of the present paper
the ‘predecessor-successor order’ of P and shows without the aid of the geometric
construction that finding an interval realizer of P is equivalent to finding a linear
realizer of B(P).

Spinrad [18] has shown that recognition of 2-dimensional orders only requires
O(n?) operations. Therefore, the bottleneck with the P — B(P) approach for
the recognition of interval dimension 2 is the computation of the order B(P).
With a careful implementation, B(P) can be computed in O(n*), where again
O(n®) is the best known time for matrix multiplication.

Ma and Spinrad [14] have found an approach which allows to avoid matrix

multiplication and leads to a complexity bound of O(r?). Since this is the best
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known result we outline the ideas behind their algorithm.

First, they construct the open split S(P) of the partial order P, for which
they want to decide if idim(P) < 2. The elements of the open split S(P) are
the same as of the split S[P] defined above, the ordered pairs of S(P) are ,
however, given by the irreflexive relation defining P, i.e., 2’ < y” in S(P) iff
x < yin P. They prove that the co-chain covering number of S(P) equals the
interval dimension of P. A theorem of Yannakakis [23] shows that the co-chain
covering number of S(P) and the interval dimension of S(P) coincide. Hence,
idim(P) = idim(S(P)) and we can reduce attention to the recognition of interval
dimension 2 for bipartite orders, i.e., to orders of height one.

The transformation of the interval dimension 2 problem for bipartite orders
to the dimension 2 problem is done in two steps. In the first step it is check-
ued whether the bipartite order () has a chordal bipartite comparability graph.
A chordal bipartite graph is a bipartite graph without any induced cycle C,,,
n > 6. If Comp(Q) is not chordal bipartite, then @) has to contain a crown and,
therefore, idim(Q)) > 3. Otherwise, the second step is started. In this step @ is
transformed into an order Py which can be obtained by contracting autonomous
chains in Stack(Q)) and, hence, has the same dimension as Stack(()). The stack
operation has been introduced by Trotter [21]. He proves that for bipartite posets
dim Stack(Q)) = idim(Q). As the construction of B(Q), the construction of Py
and Stack(Q)) requires information about the containment relation of neighbor-
hoods in ). For chordal bipartite graphs this information can be computed in
O(n?) using a technique called doubly lexical ordering. Since after passing the
first step we know that () is chordal bipartite, we can construct Py and apply

Spinrad’s dimension 2 algorithm, all in O(n?).
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