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1 IntroductionAn extension Q of a partial order P is an order on the same elements thatcontains all the ordered pairs of P , i.e., x < y in P implies x < y in Q. A familyfQ1; : : : ; Qkg of extensions of P is said to realize P or to be a realizer of P i�P = Q1 \ : : : \ Qk, i.e., x < y in P i� x < y in Qi for each i, 1 � i � k. If werestrict the Qi to belong to a special class of orders and seek for a minimum sizerealizer we come up with a concept of dimension with respect to the special class.A linear extension of P is an extension which is a chain. Dushnik and Miller[5] de�ned the dimension of a partial order P , denoted dim(P ), as the smallestinteger k for which there exist k linear extensions realizing P . Let the real-izer fL1; : : : ; Lkg of an order P with jP j = n be made by the linear extensionsLi = (xi1 < xi2 < : : : < xin). With every x 2 P we then associate the vector(x1; : : : ; xk) 2 Rk, where xi gives the position (coordinate) of x in Li. This map-ping of the points of P to points of Rk embeds P into the componentwise orderingof Rk. Ore [15] de�ned dim(P ) as the minimum k such that P embeds into Rkin this way. The projections of such an embedding on each coordinate yield arealizer of P . The extensions of this realizer need not be linear extensions of P ,but it is straightforward to transform them into linear extensions. Therefore, Oredimension and Dushnik-Miller dimension are equivalent concepts.A partial order P is an interval order if it can be represented by assigning toeach element x 2 P an open interval Ix = (ax; bx) of the real line, such that x < yin P i� bx � ay. Such a collection of intervals is called an interval representation ofP . Fishburn [7] characterized interval orders as those orders that do not contain a4{point subset forming two disjoint 2{chains, i.e., that contain no 2+2. Intervaldimension, denoted idim(P ), is de�ned by using interval extensions instead oflinear extensions. Since linear orders are interval orders we obtain the trivialinequality idim(P ) � dim(P ) (1)It is well known that interval orders of large dimension exist (see [16, 1, 9]).Hence, the gap between idim(P ) and dim(P ) may be arbitrarily large.Let I = fI1; : : : ; Ikg be an interval realizer of P and �x an open interval2



representation of each interval order Ij. Let (ajx; bjx) be the interval correspondingto x 2 P in the representation of Ij. We now de�ne a box embedding of Pto Rk. With x 2 P we associate the box Qj (ajx; bjx) � Rk. Each of theseboxes is uniquely determined by its upper extreme corner ux = (b1x; : : : ; bkx) andits lower extreme corner lx = (a1x; : : : ; akx). Obviously x < y in P i� ux � lycomponentwise. The projections of a box embedding onto each coordinate yieldan interval realizer, so the concepts of box embeddings and interval realizers areequivalent. For interval dimension the box embeddings thus play the role of theabove-mentioned point embeddings into Rk introduced by Ore for dimension.A box embedding depends not only on the realizer I of P , but also on therepresentations of the Ij. Now we de�ne the partial order B(I) of extreme cornersassociated with a box embedding or, equivalently, with an interval realizer I of P .The vertices of B(I) are the at most 2n di�erent lower resp. upper extreme cornersof elements of P . The order relation of B(I) is given by the componentwise orderin Rk.By de�nition we have an embedding of B(I) in Rk, so dimB(I) � k =idim(P ). The starting point of our investigations was the following questionconcerning the interplay between dimension and interval dimension:Is dimB(I) = idim(P )?In Section 2 we de�ne a transformation P ! B(P ) such that idim(P ) =dimB(P ). We provide two interpetations of this transformation, a combinatorialone and a geometrical one. In the combinatorial interpretation the elements ofB(P ) are subsets of P . In the geometrical interpretation B(P ) is the poset B(I�)of extreme corners of I�. Here I� is a box embedding obtained from an arbitrarybox embedding I by a normalizing procedure. From the proofs we obtain ana�rmative answer to the question above.Section 3 investigates several consequences to and relations with other order-theoretic results. First, we study the transformation P ! B(P ) on special partialorders of height 1. In particular we show that the standard example Sn of a n-dimensional order is an (almost) �xed point of the transformation P ! B(P ).Therefore, dim(Sn) = idim(Sn).Second, we investigate the relationship with the split operation. This has asurprising consequence for the iterated transformation P ! B(P ) ! B2(P ) !3



: : :Bk(P )! : : :. For every n there are partial orders P such that 0 � dim(P )�dimBk(P ) � 2 for all k � n but dim(P ) � dimBn+1(P ) � m, where m isarbitrary.Third, we relate the interval dimension of subdivisions of P to the dimensionof P , thus providing a theoretical framework for the examples of Spinrad [17].Finally, we show the comparability invariance of the transformation P !B(P ), which, as a consequence, gives another proof that the interval dimension isa comparability invariant. Some remarks concerning the recognition-complexityof special classes of orders and graphs close the paper.2 The main resultIn the last section we de�ned the partial order B(I) of extreme corners associatedwith a box embedding of P in Rk. With the next lemmas we show that B(I)inherits some structure which is independent of the realizer I leading to the boxembedding.Lemma 1 Let B(I) be the partial order of extreme corners of a box representa-tion of P .a) If the lower extreme corners of x and y are comparable in B(I), e.g., lx �ly, then the predecessor sets of x and y in P are ordered by inclusion, i.e.,PredP (x) � PredP (y).b) If the upper extreme corners of x and y are comparable in B(I), e.g., ux � uy,then the successor sets of x and y in P are ordered by (reversed) inclusion, i.e.,SuccP (x) � SuccP (y).c) If the lower extreme corner of x and the upper extreme corner of y are relatedby lx � uy then PredP (z) � PredP (x) for all z 2 SuccP (x) or, equivalently,PredP (x) � \z2SuccP (y)PredP (z).d) If ux � ly then \z2SuccP (x)PredP (z) � PredP (y).Proof. a) From lx � ly we obtain ajx � ajy for all j. Therefore, in each Ij, x hasless predecessors than y, i.e., Predj(x) � Predj(y). The claim now follows from4



PredP (x) =\jPredj(x) since the Ij realize P .b) The proof of this part is symmetric to part a.c) From lx � uy we have ajx � bjy. If z 2 Succ(y), then necessarily ajz � bjy � ajx.Hence, Predj(z) � Predj(x) for all j. The claim follows.d) From ux � ly we immediately obtain x � y, i.e., y 2 Succ(x), therefore,Pred(y) � \z2Succ(x)Pred(z). 2All statments except the conclusion part of b use only the sets PredP (x) and\z2SuccP (x)PredP (z). This irregularity is resolved with the next lemma.Lemma 2 \z2Succ(x)Pred(z) � \z2Succ(y)Pred(z) if and only if Succ(x) � Succ(y).Proof. The `if' direction is trivial. We now prove the `only if' direction. Letz 2 Succ(x) and note that y 2 \z2Succ(y)Pred(z). From the assumed inclusionwe obtain y 2 Pred(z), hence z 2 Succ(y) 2De�nition 1 With each vertex x of a partial order P we associate the lowerset L(x) = PredP (x) and the upper set U(x) = \z2SuccP (x)PredP (z). The case x 2Max(P ) is settled by the convention U(x) = P .De�ne B(P ) = fL(x); U(x) : x 2 Pg ordered by setinclusion.Note that this construction is in fact equivalent with Cogis' construction in thecontext of Ferrers dimension [2]. Cogis also uses L(x), but replaces U(x) by theequivalent set fz 2 P : Succ(x) � Succ(z)g. He also proves Theorem 2, but ina di�erent way and without the geometrical interpretation that our approach isbased on.The preceding lemmas prove that lx ! L(x) and ux ! U(x) together forman order preserving mapping from B(I) to B(P ), henceidim(P ) � dimB(I) � dimB(P ): (2)To get more structure into interval realizers we now introduce a procedurethat transforms a interval extension I = f (ax; bx) : x 2 Pg of P into its P -normalization I� = f (a�x; b�x) : x 2 Pg. 5



� In the �rst step of the P -normalization we update left endpoints:a�x = maxfbz : z 2 Pred(x)g if x is not minimal,a�x = minfaz : z 2 Min(P )g if x is minimal.� In the second step we update right endpoints:b�x = minfa�z : z 2 Succ(x)g if x is not maximal,b�x = maxfbz : z 2 Max(P )g if x is maximal.Note that the interval order I� need not be isomorphic to I. In general I� is asuborder of I and a minimal interval extension of P if all the ax; bx were di�erent.If P is realized by I = fI1; : : : ; Ikg then I� = fI�1 ; : : : ; I�kg realize P as well.We call the box embedding corresponding to I� the normalized box embeddingof I. For an example see Figure 1.P scsa sdsb 6 -6 - rrrrI�2 I�1r r rrrrrrI2 I1 dca bc dbaFigure 1: P , an interval realizer of P and its normalizationAfter normalizing we have a realizer I� = fI�1 ; : : : ; I�kg of P , interval repre-sentations (aj�x ; bj�x ) and an associated partial order of extreme corners B(I�) =fl�x; u�x : x 2 Pg. The next theorem shows that the geometrically de�ned B(I�)and the combinatorially de�ned B(P ) are isomorphic.Theorem 1 If I� is a normalized realizer of P then B(I�) = B(P ).Proof. First observe that both partial orders have a least element generated byx 2 Min(P ) as l�x and L(x), respectively, and a greatest element generated byx 2 Max(P ) as u�x and U(x), respectively. 6



Moreover, l�x ! L(x) and u�x ! U(x) de�nes an order preserving mapping bythe remarks preceeding (2). To show the converse we distinguish four cases:U(x) � L(y). We know that x 2 U(x), so x 2 Pred(y). Since I�j is an intervalextension of P , we obtain bj�x � aj�y for all j. Hence u�x � l�y.L(x) � L(y). Remember that aj�x = maxfbjz : z 2 Pred(x)g and aj�y =maxfbjz : z 2 Pred(y)g. By assumption Pred(x) � Pred(y), so aj�x � aj�y andl�x � l�y.U(x) � U(y). By Lemma 2, this is equivalent to Succ(x) � Succ(y). Nowu�x � u�y follows symmetrically with the second case.L(x) � U(y). Since I�j is normalized, there are z0 2 Pred(x) and z1 2 Succ(y)with aj�x = bjz0 and bj�y = aj�z1. The hypothesis provides z0 � z1, hence aj�x = bjz0 �bj�z0 � aj�z1 = bj�y . The validity of this inequality for all j again gives l�x � u�y. 2We are ready now, to prove our main theorem about interval dimension anddimension.Theorem 2 dimB(P ) = idim(P ).Proof. As Inequality (2) we allready have obtained dimB(P ) � idim(P ). Forthe converse we need two arguments. We �rst show that a linear extension L ofB(P ) induces an interval extension IL of P . Secondly, we prove that if L1; : : : ; Lkis a realizer of B(P ), then the induced interval extensions IL1; : : : ; ILk form aninterval realizer of P .Let L = M1;M2; : : : ;Mr be a linear extension of B(P ). For each x 2 P thereare i; j 2 f1; : : : ; rg such thatMi = L(x) andMj = U(x). From L(x) � U(x) andx 62 L(x); x 2 U(x) we obtain that i < j. So we can associate with x a uniqueinterval (ax; bx) which is de�ned to be (i; j). We now show that the interval orderIL induced by the interval representation f (ax; bx) : x 2 Pg is an extension ofP . If x < y in P , then U(x) � L(y), and thus, with Mi = U(x) and Mj = L(y),bx = i � j = ay, which implies x < y in IL.Let fL1; : : : ; Lkg be a realizer for B(P ) and let Ij = ILj , for 1 � j � k.The family fI1; : : : ; Ikg of interval extensions of P is an interval realizer i� allincomparabilities xjjy of P are realized. If xjjy in P , then U(x) 6� L(y) sincex 2 U(x) but x 62 L(y). Therefore, L(y) precedes U(x) in some Lj , which gives7



ajy < bjx. The symmetric argument yields an i with aix < biy. Both inequalitiestogether give xjjy in \jIj. 2This theorem together with Inequality (2) shows that dimB(I) is independentof the interval realizer I.3 ConsequencesIn the previous section we introduced the operation P ! B(P ) mapping partialorders to partial orders. We will now investigate several connections to otherorder-theoretical topics and results. Note that B(P ) always has a greatest anda least element. We adopt the convention of calling orders with this propertybounded and denote by Q! bQ the bounding of a partial order Q, i.e., bQ is theorder resulting from Q by adjoining a new greatest and a new least element.We �rst look at the e�ect of the operator B applied to special classes of orders.3.1 Transformation rules for special posetsLet Sn denote the standard poset of dimension n, i.e., the set of all 1-elementand (n{1)-subsets of an n element set ordered by setinclusion. ThenB(Sn) = cSn (3)Let Cr denote the r-cycle. The r-cycle is the 3{dimensional poset on 2relements fx1; y1; x2; y2; : : : ; xr; yrg with comparabilities.x1 < y1; y1 > x2; x2 < y2; : : : xr < yr; yr > x1B(Cr) = cCr (4)Let the Hasse diagram of T be a tree. The truncation of T , denoted by tr(T ),is the induced tree on the non-leaf vertices of T . ThenB(T ) = dtr(T ) (5)In particular (3) shows that the standard example Sn of a n-dimensional orderis (up to closures) a �xed point of the operation P ! B(P ), thus showing againthat, for every n � 3, there is are orders P with dim(P ) = idim(P ) = n.8



3.2 B as an inverse of the split operationWe now turn to the natural question, whether, for every bounded partial orderQ there is some P with Q = B(P ). The next theorem answers this questiona�rmatively. Moreover, it turns out that the operation P ! B(P ) is an almostleft inverse of the split operation S which has applications in di�erent branches ofposet theory (see, e.g., [21, 8, 6]). The split S[P ] of a partial order P is the orderof height one with minimal elements fx0 : x 2 Pg maximal elements fx00 : x 2 Pgand ordered pairs x0 < y00 i� x � y in P .Theorem 3 B(S[P ]) = bP .Proof. For x 2 P let Pred[x] = Pred(x)[fxg. Obviously, P is isomorphic to thesetsystem fPred[x] : x 2 Pg ordered by inclusion. We will show that the elementsof B(S[P ]) are just the `primed' sets Pred[x], i.e., (Pred[x])0 = fx0 : x 2 Pred[x]g,together with the greatest element fx0; x00 : x 2 Pg and the least element ;. WehaveL(x0) = ;, andU(x0) = \z002Succ(x0)Pred(z00) = \z2Succ [x](Pred[z])0. Since x 2 Succ[x], U(x0) � (Pred[x])0.On the other hand Pred[x] � Pred[z] for z 2 Succ(x). Together, this givesU(x0) = (Pred[x])0. Similarly, we obtainL(x00) = Pred(x00) = (Pred[x])0. Finally,U(x00) = fx0; x00 : x 2 Pg by de�nition since Succ(x00) = ;. 2It is easy to verify that B( bP ) = dB(P ): (6)So we may generalize the theorem toBn(Sn[P ]) = b__bPg n boundings (7)Investigations on the e�ect of iterated splitting to the dimension [19] lead to theinequality dimP � dimSn[P ] � 2 + dimP for all n (8)9



As a consequence of (7) and (8) we obtain that, for every n there is are partialorders P such that dimP � dimBk(P ) � 2 for all k � n:(Just take P = Sn[Q] for some order Q). If we choose Q, however, to be anm dimensional interval order we obtain a large di�erence in dimension with thenext iteration, i.e., dimP � dimBn+1(P ) � m� 1: (9)3.3 The interval dimension of subdivisionsWith the next theorem we relate the interval dimension of subdivisions of P tothe dimension of P . Spinrad [17] showed that the dimension of a subdivisionof a partial order can be an arbitrary multiple of its dimension, thus answeringTrotter's Problem 4 in [22]. With our result we establish a theoretical frameworkfor his examples.In this context, partial orders and their diagrams are regarded as directedgraphs whose edges (x; y) correspond to ordered pairs and cover pairs x � yof P , respectively. An edge (x; y) is subdivided by placing a new vertex z inthe `middle' of the edge, i.e., (x; y) is replaced by (x; z) and (z; y). In the caseof partial orders we then have to ensure transitivity, i.e., all edges (a; z) witha 2 Pred[x] and (z; b) with b 2 Succ[y] are also added.The complete diagram subdivision DS(P ) is the subdivision of all edges of thediagram of P . The complete subdivision CS(P ) is the transitive closure of thesubdivision of all the edges of P . Let E be any set of edges of P , we denotethe order obtained by subdividing the edges of E with Sub(P;E) . Since P isan induced suborder of each subdivision Sub(P;E), and since Sub(P;E) is aninduced suborder of CS(P ), we obtaindim(P ) � dimSub(P;E) � dimCS(P ): (10)With the next theorem we give an upper bound for idimSub(P;E).Theorem 4 idimSub(P;E) � idimDS(P ) = idimCS(P ) = dim(P ).10



Proof. Take any embedding of P into Rk with k = dim(P ) and grow the pointsto obtain an embedding by `miniboxes'. An interval embedding of a subdivisionSub(P;E) is then obtained by adding the box with lower extreme corner ux andupper extreme corner ly for the point z subdividing the edge (x; y) 2 E { seeFigure 2. This gives idimSub(P;E) � dim(P ), independent of the choice of E.P : rr rr




r 6 - 6 -rrrr rrrrrr rrrr rrrrrrFigure 2: P , a minibox embedding of P and the box embedding of DS(P )To prove that idimDS(P ) = idimCS(P ) = dim(P ) we will show that P canbe embedded in B(DS(P )). This will give dim(P ) � dimB(DS(P )). From The-orem 2 we know idimDS(P ) = dimB(DS(P )). Together, we obtain dim(P ) �idimDS(P ).To show that P can be embedded in B(DS(P )) we apply the normalizingprocedure to the box embedding I of DS(P ) constructed in the �rst paragraphof the proof. Because of the construction of the box embedding of DS(P ), the onlychanges that occur in normalization are shifts of the left endpoints of intervalscorresponding to elements in Min(P ) and the right endpoints of elements inMax(P ). We then embed P into the lower extreme corners of the miniboxes of thenormalized representation I�. This gives dim(P ) = k = idim(I�) = idim(DS(P ))2 Note that we obtained, in fact, a slightly stronger result: If a set E of edges ofP contains the edges of the diagram, then B(Sub(P;E)) = VS(P ), where VS(P )denotes the vertical split of P , i.e., the order obtained from P by substitutingeach vertex by a 2{chain. In [20] a distinct proof for dim(P ) = idimVS(P ) hasbeen given. 11



3.4 Comparability invarianceFor the de�nition and basic facts on comparability invariance see [10]. LetComp(P ) be the comparability graph of P . We will show that Comp(B(P ))is a comparability invariant of P in the sense that if Comp(P ) = Comp(Q) thenComp(B(P )) = Comp(B(Q)). Together with Theorem 2 and the known fact thatdimension is a comparability invariant, this gives an alternative proof of the com-parability invariance of interval dimension in the �nite case. The comparabilityinvariance of interval dimension was �rst shown in [11].A subset of elements A of P is called autonomous if the relation of elementsin A to an element outside A is independent of the element of A. More formally,if for any x 62 A, whenever x < a, x > a or xjja holds for some a 2 A, thenit holds for all a 2 A. If A is an autonomous subset of P , then Pred(A) shalldenote the predecessors outside A of any and hence every element of A.Theorem 5 Comp(B(P )) is a comparability invariant of P .Proof. Let A be an autonomous subset of P . It is enough to show (see, e.g.,[11]),that Comp(B(P )) = Comp(B(PAAd)), where PAAd denotes the order resulting fromsubstituting A by its dual Ad in P .Note �rst that B(A) = fL(a); U(a) : a 2 Ag is a closed suborder of B(P ).Let gB(A) be B(A) without its greatest element 1B(A) and its least element 0B(A).Our claim is that gB(A) is autonomous in B(P ). To see this, observe �rst that,for each a 2 A, we can decompose Pred(a) into Pred(a) = Pred(A) [ PredA(a),hence, the same is valid for all elements of gB(A). On the other hand, the elementsof B(P )nB(A) either contain all of A or their intersection with A is empty. Nowif M 2 B(P ) n B(A) contains all of A then it also contains Pred(A) and M isabove all sets in gB(A). If M � Pred(A) then M is below all sets in gB(A). In allthe other cases M is unrelated to all of gB(A). This gives the claim.To settle the theorem we need that B(Ad) and B(A)d are isomorphic orders.To see this, consider a normalized box embedding of A inRk. Its extreme cornersare an embedding of B(A) intoRk. Flip the embedding, i.e., reverse the relations,this gives an embedding of Ad and the extreme corners form an embedding ofB(A)d. 212



As we have seen, autonomous sets in P induce autonomous sets in B(P ).The converse, however, is far from being true. Take as P a prime interval order,then B(P ) is a chain. Hence P has none but B(P ) has �jB(P )j2 � � 1 nontrivialautonomous sets.3.5 Remarks on related results and computational com-pexityThe transformation P ! B(P ) obviously can be carried out in polynomial time.The degree of the polynomial of this reduction is not important if we want todecide if P has interval dimension � 3, since the poset dimension and intervaldimension problems have been shown to be NP -complete for k � 3 by Yannakakis[23]. It is, however, a crucial point if we want to decide if idim(P ) � 2.Dagan Golumbic and Pinter [4] addressed questions about the comparabilityinvariance of interval dimension and (fast) recognition of interval dimension atmost 2. As remarked before, the �rst problem has been settled a�rmatively�rst in [11]. The recognition problem has been solved independently by severalauthors. Habib and M�ohring [12] use the subposet of B(P ) de�ned by B 0(P ) =fL(x) : x 2 Pg together with an algorithm for transitive orientation with sideconstraints to derive an O(n �na) algorithm, where O(na) is the best known timefor matrix multiplication. Currently a is about 2.37.Cheah [3] proposed an algorithm in complexity O(n3). The same complexityis claimed by Langley [13]. Langley calles the poset B(P ) of the present paperthe `predecessor-successor order' of P and shows without the aid of the geometricconstruction that �nding an interval realizer of P is equivalent to �nding a linearrealizer of B(P ).Spinrad [18] has shown that recognition of 2-dimensional orders only requiresO(n2) operations. Therefore, the bottleneck with the P ! B(P ) approach forthe recognition of interval dimension 2 is the computation of the order B(P ).With a careful implementation, B(P ) can be computed in O(na), where againO(na) is the best known time for matrix multiplication.Ma and Spinrad [14] have found an approach which allows to avoid matrixmultiplication and leads to a complexity bound of O(n2). Since this is the best13



known result we outline the ideas behind their algorithm.First, they construct the open split S(P ) of the partial order P , for whichthey want to decide if idim(P ) � 2. The elements of the open split S(P ) arethe same as of the split S[P ] de�ned above, the ordered pairs of S(P ) are ,however, given by the irre
exive relation de�ning P , i.e., x0 < y00 in S(P ) i�x < y in P . They prove that the co-chain covering number of S(P ) equals theinterval dimension of P . A theorem of Yannakakis [23] shows that the co-chaincovering number of S(P ) and the interval dimension of S(P ) coincide. Hence,idim(P ) = idim(S(P )) and we can reduce attention to the recognition of intervaldimension 2 for bipartite orders, i.e., to orders of height one.The transformation of the interval dimension 2 problem for bipartite ordersto the dimension 2 problem is done in two steps. In the �rst step it is check-ued whether the bipartite order Q has a chordal bipartite comparability graph.A chordal bipartite graph is a bipartite graph without any induced cycle Cn,n � 6. If Comp(Q) is not chordal bipartite, then Q has to contain a crown and,therefore, idim(Q) � 3. Otherwise, the second step is started. In this step Q istransformed into an order PQ which can be obtained by contracting autonomouschains in Stack(Q) and, hence, has the same dimension as Stack(Q). The stackoperation has been introduced by Trotter [21]. He proves that for bipartite posetsdimStack(Q) = idim(Q). As the construction of B(Q), the construction of PQand Stack(Q) requires information about the containment relation of neighbor-hoods in Q. For chordal bipartite graphs this information can be computed inO(n2) using a technique called doubly lexical ordering. Since after passing the�rst step we know that Q is chordal bipartite, we can construct PQ and applySpinrad's dimension 2 algorithm, all in O(n2).AcknowledgementWe are greatful to an anonymous referee for his fruitful suggestions, which im-proved the presentation of the paper.References[1] K.B. Bogart, I. Rabinovich and W.T. Trotter, A Bound on the Dimen-14
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