
3-INTERVAL IRREDUCIBLE PARTIALLY ORDERED SETSSTEFAN FELSNERAbstract. In this paper we discuss the characterization problem for posets ofinterval dimension at most 2. That is, we attempt to compile the minimal listof forbidden posets for interval dimension 2. Members of this list are called 3-interval irreducible posets. The problem is related to a series of characterizationproblems which have been solved earlier. These are: The characterizationof planar lattices, due to Kelly and Rival [KeRi75], the characterization ofposets of dimension at most 2 (3-irreducible posets) which has been obtainedindependently by Trotter and Moore [TrMo76] and by Kelly [Ke77] and thecharacterization of bipartite 3-interval irreducible posets due to Trotter [Tr81].We show that every 3-interval irreducible poset is a reduced partial stack ofsome bipartite 3-interval irreducible poset. Moreover, we succeed in classify-ing the 3-interval irreducible partial stacks of most of the bipartite 3-intervalirreducible posets. Our arguments depend on a transformation P ! B(P ),such that Idim P = dim B(P ). This transformation has been introduced in[FHM91]. 1. Introduction and BasicsAn extension of a poset P = (X;<P ) is a partial order Q = (X;<Q) on the same set,that contains all the relations of P , i.e., x <P y implies x <Q y. A family fQ1; : : : ; Qkgof extensions of P is said to realize P if for all x; y 2 X we have x <P y exactly ifx <Qi y for all 1 � i � k. If we restrict the Qi to belong to a special class of ordersand seek for a minimum size realizer we come up with a concept of dimension.A linear extension of P = (X;<) is an extension L = (X;<L) of P which is a chain,i.e., x <L y or y <L x for all x; y 2 X with x 6= y. Dushnik and Miller [DuMi41]de�ned the (order) dimension of a poset P , denoted dim(P ), as the smallest integer kfor which there exist k linear extensions realizing P .A partial order P is an interval order if it can be represented by assigning an intervalIx = (ax; bx) on a chain C to each element x 2 P , such that x < y in P i� bx < ayin C. Fishburn [Fi85] characterized interval orders as the posets with no 4{point1991 Mathematics Subject Classi�cation. 06A07,05C35.Key words and phrases. Partially ordered sets, interval orders, dimension.supported by the DFG under grant FE 340/2-11



2 STEFAN FELSNERsubset forming two disjoint 2{chains, i.e., no 2+2. The interval dimension of P ,denoted Idim(P ), is the smallest k for which there exist k interval extensions of Pwhich realize P . Since linear orders are interval orders we obtain the trivial inequalityIdim(P ) � dim(P ).If P 0 = (X 0; <) is a suborder of P = (X;<), then dim(P 0) � dim(P ) and Idim(P 0) �Idim(P ). Therefore, for every integer k there is a minimal list of posets of dimension(interval dimension) k + 1, such that every poset which does not contain a subposetfrom this list has dimension (interval dimension) at most k. Members of this list thenare called (k + 1)-irreducible ((k + 1)-interval irreducible) posets. Note that a (k + 1)-irreducible ((k+1)-interval irreducible) poset P has dim(P ) = k+1 (Idim(P ) = k+1)but the removal of any element lowers its dimension (interval dimension).The list of 2-irreducible posets only contains the 2 element antichain and the list of2-interval irreducible posets only contains the 2+2. The list of 3-irreducible posets isof a much higher complexity. Counting only one of P and P d, the dual of P , the listconsists of 10 isolated examples together with 7 in�nite families (see Figure 1). This listhas been obtained independently by Trotter and Moore [TrMo76] and by Kelly [Ke77].Since this paper depends on the ideas of Kelly's argument we now give a brief (and insome details not even correct) outline of his proof.Let L(P ) denote the completion by cuts of a poset P , i.e., L(P ) is the smallestlattice containing P as a suborder. Kelly's characterization of the 3-irreducible posetsis mainly based on two results:(1) dim P = dim L(P ). (A theorem of Baker).(2) The complete list L of lattices of dimension 3 with the property that everyproper sublattice is of lower dimension. (Let us remark that a lattice is planarexactly if it contains no sublattice from L). The list L had been obtained byKelly and Rival [KeRi75].Suppose that P is a 3-irreducible poset. It follows that dimL(P ) � 3, therefore, L(P )contains one or more of the lattices in L as sublattices. The key idea for the proof is toconsider the lattices in L in a speci�c ordering, Kelly order. At an intermediate stepin the argument we assume that L(P ) contains a lattice Q from this list, but does notcontain any lattice preceding it in the Kelly order. The details of each individual casecenter around chosing a copy of a 3-irreducible subposet R of Q and then one by oneshowing how those points of R which do not belong to P can be replaced by points ofP .A poset P = (X;<) is called bipartite if there are two sets X1; X2 � X , such thatx < y implies x 2 X1 and y 2 X2. Trotter found a transformation, which associateswith a bipartite poset P a poset Stack(P ), such that, Idim(P ) = dim Stack(P ). Thisfact, together with the existing list of 3-irreducible posets lead to the characterizationof bipartite 3-interval irreducible posets in [Tr81].



3-INTERVAL IRREDUCIBLE PARTIALLY ORDERED SETS 3Figure 1. The 3 irreducible orders (part 1) C
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4 STEFAN FELSNERFigure 1. The 3 irreducible orders (part 2)
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3-INTERVAL IRREDUCIBLE PARTIALLY ORDERED SETS 5Figure 1. The 3 irreducible orders (part 3)
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6 STEFAN FELSNERTrotter's proof uses Kelly's approach for the characterization of the 3-irreducibleposets as a road map. Since the stack of a bipartite 3-interval irreducible poset Pcontains one (or more) of the 3-irreducible posets we can argue about the implicationsfor the original poset. Again, a speci�c ordering of the 3-irreducible posets and cor-responding assumptions about the 3-irreducible posets contained in Stack(P ) organizethe proof.In [FHM91] we have introduced a transformation P ! B(P ), such that Idim P =dim B(P ) for arbitrary posets P . In this paper we use this operator P ! B(P ), toapproach the characterization of 3-interval irreducible posets. The argument is againbased on a Kelly ordering of the 3-irreducible posets.Let P = (X;<) be a poset, for x 2 X we denote the predecessor set f y 2 X : y < x gof x with Pred(x), the successor set f y 2 X : y > x g is denote by Succ(x). The closedpredecessor set is Pred[x] = f y 2 X : y � x g, i.e., Pred[x] = Pred(x)[ f x g, similarlySucc[x] = Succ(x) [ f x g. We now review the de�nition and some properties of thetransformation P ! B(P ).De�nition 1. For each element x of a poset P = (X;<) letL(x) = Pred(x),U(x) =\z2Succ(x)Pred(z), if Succ(x) = ; then let U(x) = X.With P we associate a poset B(P ) = (Y;<). The elements of Y are the distinct setsoccurring as L(x) or U(x) for some x 2 X. The ordering of B(P ) is given by set-inclusion.The next de�nition is taken from [Mi92].De�nition 2. For posets P = (X;<P) and Q = (Y;<Q) we say that P has an intervalrepresentation on Q if there are mappings L : X ! Y and U : X ! Y , such that(1) L(x) <Q U(x), i.e, [L(x); U(x)] is a nondegenerate interval of Q for each x 2 X.(2) U(x1) �Q L(x2) exactly if x1 <P x2.An important fact about interval representations is given with the next lemma.Lemma 1. If an order P has an interval representation on some poset Q, thenIdim P � dim Q.The next theorem collects properties of the transformation P ! B(P ).Theorem 1. Let P = (X;<) and B(P ) = (Y;<).(1) The mappings L : X ! Y and U : X ! Y de�ne an interval representation ofP on B(P ).(2) The dimension of B(P ) equals the interval dimension of P .



3-INTERVAL IRREDUCIBLE PARTIALLY ORDERED SETS 7We now come to the stack of a bipartite poset. As mentioned, the stack played acentral role in the characterization of bipartite 3-interval irreducible posets.De�nition 3. Let P = (X;<P) be a (connected) bipartite poset and let O be an arbi-trary linear order on X. Let A denote the set of minimal elements and B the set ofmaximal elements of P (we assume that a; ai 2 A and b; bi 2 B). The Stack(P ) is aextension of P , the relations of Stack(P ) are given bya < b if a < b in P ,b1 < b2 if PredP (b1) � PredP (b2),a1 < a2 if SuccP (a1) � SuccP (a2),b < a if ajjb and a0 < b0 in P for all a0 2 PredP (b) and b0 2 SuccP (a),b1 < b2 if PredP (b1) = PredP (b2) and b1 <O b2,a1 < a2 if SuccP (a1) = SuccP (a2) and a1 <O a2.We now show, that for a bipartite order P the posets B(P ) and Stack(P ) are intimatelyrelated. Let the 0,1-closure of P , i.e., the adjoin of a least element 0 and a greatestelement 1, be denoted by P ! bP .Theorem 2. If P = (X;<) is a bipartite order, then B(P ) = \Stack(P ) j�, here � isan equivalence relation on X with the properties:� each class of � is an autonomous subset of Stack(P ),� Stack(P ) induces a chain on each class of �.Proof. An element x 2 X is mapped to two elements of B(P ). Since P is bipartite weeither have L(x) = ; or U(x) = X . In the �rst case letM(x) = U(x), in the second caselet M(x) = L(x). Also, let O be the linear order used in the construction of Stack(P ).De�ne a poset Q on X by(1) x <Q y if M(x) �M(y),(2) ifM(x) = M(y) then x <Q y if either x 2 Min(P ) and y 2 Max(P ) or x precedesy in O.Note that B(P ) is the 0,1-closure of the poset (fM(x) j x 2 X g;�). ThereforeB(P ) = dQ j� when x � y i� M(x) = M(y).We claim that Q = Stack(P ). The proof is an easy case analysis using the de�nitionsof L(x), U(x) and the de�nition of the Stack. Let A = Min(P ) and B = Max(P ).a < b in P : In Stack(P ) we have a < b by de�nition. Note that M(a) = U(a) =\b02Succ(a)Pred(b0) and M(b) = Pred(b). Since a < b we �nd Pred(b) in theintersection de�ning M(a). Hence, M(a) �M(b) and a <Q b.b1; b2 2 B: We have b1 < b2 in both Stack(P ) and Q if either Pred(b1) � Pred(b2) orPred(b1) = Pred(b2) and b1 precedes b2 in O.a1; a2 2 A: Recall from Lemma 2 of [FHM91] that U(x) � U(y) i� Succ(x) �Succ(y). With this remark, the present case is dual to the preceding case.



8 STEFAN FELSNERajjb in P : Note that a 62M(b) = Pred(b) but a 2M(a) = U(a), therefore, if a and bare comparable in Q then b <Q a. The comparability b <Q a is in Q exactly ifall a0 2 Pred(b) are elements of Pred(b0) for all b0 2 Succ(a). This, however, isthe de�ning condition for b < a in Stack(P ). �The idea for our treatment of 3-interval irreducible posets will be the following. Sup-pose that P = (X;<P) is 3-interval irreducible, then, by Theorem 1 dim B(P ) = 3.Hence, B(P ) = (Y;<) contains some poset Q from the list of 3-irreducible orders.Assuming that B(P ) contains a speci�ed 3-irreducible poset Q, we then derive infor-mations about the functions L : X ! Y and U : X ! Y . Since these two functionsde�ne an interval representation of P on B(P ), information about L and U translatesback to information about P .This vague outline may motivate the study of properties that have to be required fortwo functions L : X ! Y and U : X ! Y from a set X to a closed order Q = (Y;<Q),such that, there is a poset P on X with B(P ) = Q and L and U as given. First recallthat(1)L(x) <Q U(x) for all x 2 X ,(2) Y = Im(L)[ Im(U).With the next lemma we give a less trivial property.Lemma 2. Let y1; y2 are incomparable elements of Q = B(P )(1) if Pred(y1) � Pred(y2) then y1 2 U(X),(2) if Succ(y1) � Succ(y2), then y1 2 L(X).Proof. This is an immediate consequence of the next Theorem. �Theorem 3. Let P = (X;<P ) and B(P ) = (Y;<Q). The following statements areequivalent:(1) y1 6� y2 in B(P )(2) there is an element x 2 X with U(x) � y1 but U(x) 6� y2(3) there is an element x 2 X with L(x) � y2 but L(x) 6� y1Proof. The equivalence of (1) and (2) is an easy consequence of the followingy = f x 2 X : U(x) � y g, for all elements y of B(P ).First, suppose that y = L(x0) for some x0 2 X . If x 2 y, i.e., x 2 L(x0) =Pred(x0), then x < x0. From x0 2 Succ(x) it follows, that U(x) =\x02Succ(x)Pred(x0) �Pred(x0) = y. Conversely, let U(x) � y. From x 2 U(x) we obtain x 2 y.Now suppose that y = U(x0) for some x0 2 X . If x 2 y, i.e., x 2 U(x0) =\x02Succ(x0)Pred(x0), then x < x0 for all x0 > x0. Therefore, Succ(x) � Succ(x0) andhence U(x) � U(x0) = y. Conversely, let U(x) � y. From x 2 U(x) we again obtainx 2 y.



3-INTERVAL IRREDUCIBLE PARTIALLY ORDERED SETS 9The equivalence of (1) and (3) is obtained by duality. The argument is based on thefollowing observation: There is an isomorphism between B(P d) and B(P )d, such that,the interval representation of P d on B(P )d is obtained from the interval representationof P on B(P ) by interchanging L and U . �Remark. Let an interval representation L; U : P ! Q of P on Q be called a properinterval representation if for all y1; y2 2 Im(L)[ Im(U) the 3 statements of Theorem 3are equivalent. If L; U : P ! Q is a proper interval representation, then the ordering ofQ restricted to Im(L) [ Im(U) is isomorphic to B(P ) and the interval representationsof P on the restriction of Q and on B(P ) are equal with respect to this isomorphism.Hence, B(P ) can be characterized as the unique minimal poset which admits a properinterval representation of P .1.1. Bipartite 3-Interval-Irreducible Orders. We are ready to show, how the listof bipartite 3-interval-irreducible orders given by [Tr81], see also [TrMo76], can bepredicted. Although this list is known for more than 15 years, we think, that themethod used here is new and interesting.We start introducing some notation.De�nition 4. Let P = (X;<P ) be a poset and B(P ) = (Y;<). An element y 2 Y iscalled low-made if y = L(x) for some x 2 X, it is called up-made if y = U(x) for somex 2 X.Let Q = (Y;<) be a poset. Label an element y 2 Y with ` if there is a y0 2 Y suchthat yjjy0, i.e., y and y0 are incomparable, and Succ(y) � Succ(y0) An element y 2 Y islabeled with u if there is a y0 2 Y such that yjjy0 and Pred(y) � Pred(y0). This givesthe (`; u)-labeling of Q = (Y;<). Note that y 2 Y is labeled `/u in this labeling, if y isforced, by Lemma 2, to be low-made/up-made, whenever Q = B(P ) for some PNow suppose, that Q = (Y;<) is 3-irreducible. Recall that a critical pair is a pair(y1; y2) with Pred(y1) � Pred(y2) and Succ(y1) � Succ(y2). It is easy to see (cf.[KeTr82, Tr91]), that the 3-irreducibility of Q implies that every y 2 Y is containedin some critical pair. Hence, every element y 2 Y will receive at least one label in the(`; u)-labeling of Q. (See Figure 1 for the (`; u)-labelings of the 3-irreducible posets).If every element of a poset Q = (Y;<) has received a label in the (`; u)-labeling, thena minimal bipartite order P with B(P ) = bQ is easily obtained: For every u-labeledelement y 2 Y take a minimal element yu and for every `-labeled element y 2 Y take amaximal element y`. The relations are given by yu < z` if and only if y � z in Q (foran example see Figure 2).If Q is 3-irreducible then, in view of the preceeding remarks, the order P obtainedby this process may be considerd as a candidate for the list of bipartite 3-interval-irreducible posets. To check the irreducibility we construct B(Px) for every point
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JJJJJ u; `b3ua ub2ub1 u; `c3`c2u; `c1 c1̀ c2̀ c3̀ b3̀bu3bu2cu3aucu1bu1Figure 2. The 3 irreducible order C and the bipartite order O2 corresponding to the(`; u){labeling of C.deleted suborder Px of P and compute dim B(Px). If dim B(Px) = 2 for all x, then Pis indeed a 3-interval-irreducible poset. The results are given in the list below.Our notation and labelling for the collection of all 3 irreducible orders (see Figure1) was introduced by Kelly [Ke77], it is also used in [Tr81] and [Tr91]. For bipartite 3-interval irreducible posets we use the notation introduced in [TrMo76] (see also [Tr81]).Q = An : Here we obtain the family An.Q = B : Here we obtain O1.Q = C : Here we obtain O2.Q = D : Here we obtain I0.Q = EX2: Here we obtain O3.Q = CX1: The order P obtained here is not irreducible.Removing bu1 from P we have B(Pbu1 ) is the dual bCd of bC, i.e., Idim(Pbu1 ) = 3.Q = CX2: The order P obtained here is not irreducible.Removing bu1 and bu3 from P we have B(Pbu1 ;bu3 ) = bCd.Q = CX3: The order P obtained here is not irreducible.Removing bu1 and a1̀ from P we have B(Pbu1 ;a1̀) = bD.Q = EX1: The order P obtained here is not irreducible.Removing bu2 from P we have B(Pbu2 ) = cE0.Q = FX1 : The order P obtained here is not irreducible.Removing a1̀ from P we have B(Pa1̀) = cF0.Q = FX2 : The order P obtained here is not irreducible.Removing a1̀ and bu3 from P we have B(Pa1̀;bu3 ) = cF0.Q = En : Here we obtain the family En.Q = Fn : Here we obtain the family Fn.Q = In : Here we obtain the family In+1.Q = Gn : Here we obtain the family Gn.Q = Hn : Here we obtain the family Hn.Q = Jn : The order P obtained here is not irreducible.Removing c` and du from P we have B(Pc`;du) =dGn.



3-INTERVAL IRREDUCIBLE PARTIALLY ORDERED SETS 11Let Q = (Y;<) be a 3-irreducible poset and let P be the bipartite order correspondingto the (`; u)-labeling of Q. A label � 2 f `; u g at an element y 2 Y is called essentialif dim B(Py�) = 2. Note that, P is 3-interval irreducible exactly if every label of Q isessential.Above we have compiled a list of bipartite 3-interval-irreducible posets. To prove thatthis list is indeed complete, i.e., consists of all bipartite 3-interval-irreducible posets,however, a large amount of work remains. This work has been accomplished by Trotter[Tr81]. In the next section we give a modi�ed version of his argument to prove ourTheorem 4.Remark. The split of a poset P = (X;<) is the bipartite poset with maximal elementsf x` : x 2 X g and minimal elements f xu : x 2 X g with xu < y` in Split(P ) i� x � yin P . Note that, as a consequence of Trotter's result we can state that every bipartite3-interval irreducible poset is a subposet of the split of some 3-irreducible poset.2. General 3-Interval-Irreducible PosetsThe program for dealing with the general (non-bipartite) case is the following: Inthe �rst part, we use the techniques developed in [Tr81] for the characterization thebipartite 3-interval irreducible orders to show that every 3-interval irreducible ordercontains a partial stack or a reduced partial stack of a bipartite 3-interval irreducibleorder. In the second part, we then attempt to characterize the 3-interval irreducibleorders among the candidate posets obtained in the �rst part.2.1. Partial Stacks and Reduced Partial Stacks.De�nition 5. Let P = (X;<P ) be a (connected) bipartite poset with minimal elementsX1 and maximal elements X2. A partial stack of P is an order Q = (X;<Q) such thatfor all x1 2 X1 and x2 2 X2 we have x1 <P x2 exactly if x1 <Q x2.A partial stack Q of P may contain parallel elements. The reduced partial stackcorresponding to Q is obtained by contracting each set of pairwise parallel elements toa single point.Remark. Let P = (X;<P ) be a (connected) bipartite poset with minimal elementsX1 and maximal elements X2. Let IEP be the set of all extensions Q of P satisfyingx1 <Q x2 i� x1 <P x2, i.e., IEP is the set of all partial stacks of P . De�ne a poset onIEP by Q1 � Q2 if Q2 is an extension of Q1. If Q is any maximal element of this poset,then Q is isomorphic to Stack(P ).The main theorem of the present section is.Theorem 4. If P is a 3-interval irreducible poset then P contains a reduced partialstack of some bipartite 3-interval irreducible poset.



12 STEFAN FELSNERTo prove the theorem we go along Trotter's, `Stacks and Splits' [Tr81] and rewritethe important lemmas and theorems. We omit the assumption that P is a height oneposet, we replace Stack(P ) by B(P ) and instead of dealing with elements in Stack(P )corresponding to maximal or minimal elements in P we deal with low-made and up-made elements of B(P ). As a �rst example note that Lemma 3 implies an analogue ofTrotter's Lemma 4.Theorem 5 (Trotter's Theorem 6). If P is a poset and B(P ) contains a crown Anfor some n � 0, then there exists an integer m with 0 � m � n so that P contains Am.Proof. Choose the smallest integer k � 0 for which B(P ) contains Ak. We will thenshow that P contains Ak.Of all copies of Ak contained in B(P ), choose one for which the integer t = jf bi :1 � i � k + 3; bi is low-made gj + jf ai : 1 � i � k + 3; ai is up-made gj is as largeas possible. If t = 2k + 6, then for 0 � i � k + 3 there are elements a0i; b0i in P withL(b0i) = bi and U(a0i) = ai. These elements form a copy of Ak in P .Assume that t < 2k + 6 and without loss of generality let bk+2 be a non low-madeelement. Since a1jjbk+2 in B(P ), it follows from Theorem 3, that there is an elementx 2 X so that L(x) � bk+2 and L(x)jja1. If L(x)jjai for each i = 2; 3; : : : ; k + 1, thenx can replace bk+2 in this copy of Ak. So we must have L(x) � ai for some i with2 � i � k+ 1. Let i0 be the smallest such integer. Then it follows that the subposet ofB(P ) generated by f a1; a2; : : : ; ai0; ak+3 g[f b1; b2; : : : ; bi0�1; L(x); bk+3 g is Ai0�2. Buti0 � 2 < k, this is a contradiction. �Theorem 6 (Trotter's Theorem 7). Let P be a poset and suppose that P does notcontain a crown An for any n � 0. If y is an up-made (low-made) element of B(P ) andF is a connected subposet of Inc(y), then there exists a low-made (up-made) element xin B(P ) so that x � y (y � x) and F � Inc(x).Proof. We prove the theorem when y is up-made. If y is also low-made, then x = yand we are done.Suppose that y is not low-made. Let y0 > y be low-made and note that the existenceof a low-made element y00 > y with y00jjy0 is guaranteed by Theorem 3. Therefore, thereare at least two incomparable low-made elements in SuccB(P )(y)If there is a z 2 F with x � z for all low-made elements x > y, then y � z byTheorem 3. A contradiction.We therefore may assume, that there are elements x; x0 2 SuccB(P )(y) and z; z0 2 Fsuch that z < x and z0 < x0 but xjjz0 and x0jjz. Now let a1; : : : ; an be a fence in F fromz0 to z. It follows that f x; y; x0; a1; : : : ; an g contains a crown. A contradiction. �



3-INTERVAL IRREDUCIBLE PARTIALLY ORDERED SETS 13Let P = (X;<P ) be a 3-interval irreducible poset. Since the dimension of B(P ) is3, B(P ) contains a 3-irreducible poset. Suppose �rst, that B(P ) contains a crown Anfor some n � 0. Then, it follows from Theorem 5, that P also contains a crown Am forsome 0 � m � n. Since P is irreducible, we conclude, that P = An. We may, therefore,assume in the remainder of the argument, that B(P ) does not contain a crown An.The remainder of the argument is divided into a sequence of cases.When discussing the case of a 3-irreducible order Q = (Y;<Q) contained in B(P ),we assume, that a copy of Q in B(P ) has been chosen. We refer to the elements of thiscopy of Q via the labeling of [Ke77] and [Tr81], see Figure 1. If y is an element of Q,then we say there is an element y` in P if we are sure about the existence of a low-madeelement y0 � y with PredB(P )[y0]\ Y = PredQ[y]. The element y` then is any preimageof y0 under L, i.e., L(y`) = y0. Dually, we say there is an element yu in P if we are sureabout the existence of an up-made element y00 � y with SuccB(P )[y00] \ Y = SuccQ[y].The element y` then is any element with U(yu) = y00.We will make extensive use of the following easy consequence of Theorem 6.Lemma 3. Let P = (X;<P ) be a crown-free poset and suppose that a 3-irreducibleposet Q = (Y;<Q) is contained in B(P ). If y is an element of Q such that IncQ(y) isconnected and for all y0 in Q with y0 62 PredQ[y] (y0 62 SuccQ[y]) there is a y00 2 IncQ(y)with y0 � y00 (y0 � y00), then there is an element y` (yu) in P .In each case we choose a particular 3-irreducible poset Q = (Y;<Q) contained inB(P ) and suppose that B(P ) does not contain the 3-irreducible posets treated in theprevious cases. These assumptions together with Theorem 3, Theorem 6 and Lemma3 will allow us to show that there is an element y` (yu) for every essential `-labeled(u-labeled) element y of Q. Let Xu � X be the set of these up-made elements andX` � X be the set of these low-made elements. The bipartite order (Xu�X`)\ <P isisomorphic to a bipartite 3-interval irreducible poset R. Therefore, P contains a partialstack of R.Case 1. B(P ) contains D.We apply Lemma 3 to obtain elements b1̀; b2̀; b3̀; c1̀; c2̀ and au; bu1; bu2 ; bu3 in P . Thebipartite order (Xu �X`)\ <P forms a copy of I0 in P . Hence, P contains a partialstack of I0.Case 2. B(P ) contains C.From Lemma 3 we may assume, that there are elements c1̀; c3̀; b3̀ and au; bu3; cu1 ; cu3.Suppose, that there is no element c2̀, then by Theorem 6, there are elements c0 > c2and c00 > c2 in B(P ) with c1 2 Inc(c00) but c00 > c3 and c3 2 Inc(c0) but c0 > c1. Thisimplies, that f a; c1; c00; b3; c0; c3 g form a copy of D in B(P ). The contradiction allowsus to assume an element c2̀.



14 STEFAN FELSNERAssume, that b1 is low-made, then choose an up-made element b01 < b1 with b2; c3 �Inc(b01). If b01 < b3, then f c2; b2; a; c1; b01; b3 g form a copy of Dd in B(P ). We conclude,that b3 2 Inc(b01), hence, any U -preimage of b01 is bu1 . Symmetrically, we may assumean element bu2 . The bipartite order with maximal elements c1̀; c2̀; c3̀; b3̀ and minimalelements au; bu1 ; bu2; bu3 ; cu1; cu3 forms a copy of O2 in P . Hence, P contains a partial stackof O2.Case 3. B(P ) contains CX3.From Lemma 3 we may assume that there are elements a3̀; b1̀; b3̀; c` and au1 ; au3 ; bu3.Choose a low-made element b02 > b2 with b3; c 2 Inc(b02). If b02 > b1, thenf a2; b1; b02; a3; c; b3 g form a copy of D in B(P ). Therefore, we may assume an elementb2̀ in P .If there is no element au2 , then there are up-made elements a02 < a2 and a002 < a2with a1jja02 but a02 < a3 and a3jja002 but a002 < a1. However, it follows, thatf b2; a1; a002 ; b3; a02; a3 g form a copy of Dd. The contradiction shows that we may as-sume an element au2 .The bipartite order corresponding to these elements y` and yu as maximals andminimals forms a copy of I0 in P .Case 4. B(P ) contains CX2.From Lemma 3 we obtain elements a1̀; a3̀; c` and au1 ; au3 ; cu.The same argument used in Case 3, allows us to assume an up-made element au2 .Next, choose a low-made element b03 � b3 with f b1; b2; a1 g 2 Inc(b03). If b03 > c, thenB(P ) contains CX3. Therefore, we assume an element b3̀. By symmetry, we may alsoassume an element bu1 . Finally, choose a low-made element b02 > b2 with c 2 Inc(b02).Obviously, b1 6< b02 and c2 6< b02. Let x be a preimage of b02 under L. The bipartite orderwith maximal elements a1̀; a3̀; b1̀; x; b3̀; c` and minimal elements au1 ; au2 ; au3 ; cu forms acopy of Od2 in P .Case 5. B(P ) contains CX1.If b1 is not low-made, then choose a low-made element b01 > b1 with f a3; b2; c g � Inc(b01).If b01 > b3, then f a2; b3; b01; a1; c; b2 g form a copy of D. Therefore, we may assume thatthere is an element b1̀ in P .If there is no element au2 , then there are up-made elements a02 < a2 and a002 < a2 witha1jja02 but a02 < a3 and a3jja002 but a002 < a1. It follows, that f c; a1; a002 ; b3; a02; a3 g form acopy of Dd. The contradiction shows, that we may assume an element au2 in P .If b2 is not low-made, then choose a low-made element b02 > b2 with a1; b1 � Inc(b02).If b02 > b3, then f a1; a2; a3; b1; c; b3; b02 g form a copy of CX3. We, therefore, assume anelement b2̀ in P .From Lemma 3 we obtain elements a1̀; a3̀; b3̀ and au1 ; au3 ; bu3. We also may choosea low-made element c0 > c with b3 2 Inc(c0). Let x be a preimage of c0 under L.



3-INTERVAL IRREDUCIBLE PARTIALLY ORDERED SETS 15The bipartite order with maximal elements a1̀; a3̀; b1̀; b2̀; b3̀; x and minimal elementsau1 ; au2 ; au3 ; bu3 forms a copy of Od2 in P .Case 6. B(P ) contains EX2.Suppose, that b2 is not low-made and there is no low-made element b02 > b2 withc; b3 2 Inc(b02). Then it follows, that there exist points b4; b5 > b2 with b3 2 Inc(b4) andc; b1 2 Inc(b5). This implies, that b5 > b3. If b4 > c, then f a2; b1; c; a3; b5; b3 g generatea copy of D. So we must have b4jjc, and thus b4 > b1. However, this implies thatf c; b1; b4; b2; b3; a2; a3 g generate a copy of CX1 in B(P ). The contradiction allows us toassume an element b2̀ in P . Since EX2 = EXd2 we obtain au2 from the dual argument.If c is not low-made, then choose an element c0 > c with a3; b2 2 Inc(c0). If c0 > b3,then f c0; b3; a2; b2; a1; b1 g form a copy of Dd. We, therefore, may assume an elementc`. Dually, we may assume au1 .From Lemma 3 we obtain elements a3̀; b1̀; b3̀ and au3 ; bu1 ; bu3. The bipartite order withmaximal elements a3̀; b1̀; b2̀; b3̀; c` and minimal elements au1 ; au2 ; au3; bu1 forms a copy of O3in P .Case 7. B(P ) contains FX1.If b2 is not low-made, then choose a low-made element b02 > b2 with b02jjb3. If b02 > b1,then B(P ) contains D. We, hence, assume an element b2̀ in P .If there is no element au1 , then there are up-made elements a01 < a1 and a001 < a1with a2; b3 2 Inc(a01) but a01 < a3 and a3 2 Inc(a001) but a001 < b3. It follows, thatf c; b3; a001; b1; a01; a3 g form a copy of Dd. The contradiction shows, that we may assumean element au1 in P .If there is no element au2 , then there are up-made elements a02 < a2 and a002 < a2 witha1jja02 but a02 < a3 and a3jja002 but a002 < a1. It follows, that f b2; a1; a002; b3; a02; a3 g form acopy of Dd. The contradiction shows, that we may assume an element au2 .From Lemma 3 we obtain low-made elements a3̀; b1̀; b3̀; c` and up-made elementsau3 ; bu1; bu3 . The bipartite order with maximal elements a3̀; b1̀; b2̀; b3̀; c` and minimal ele-ments au1 ; au2 ; au3 ; bu1; bu3 forms a copy of F0 in P .Case 8. B(P ) contains EX1.Choose a low-made element b02 > b2 with a3; b3 2 Inc(b02). If b02 > b1 and b02 > b4, thenf b02; b1; a1; b3; a2; b4 g generate Dd. If b02 > b1 and b02jjb4, then replacing b2 by b02 weobtain EX2. If b02 > b4 and b02jjb1, then the same elements also generate EX2. Hence,we may assume an element b2̀ in P .Choose a low-made element b03 > b3, such that b2 2 Inc(b03). If b03 > b1,then f a1; a2; a3; b1; b2; b3; b03 g forms a copy of FX1 in B(P ). If b03 > b4, thenf a1; a2; a3; b2; b3; b03; b4 g generates FX1. We may, therefore, assume that there is anelement b3̀ in P .If there is no element au1 , then choose an up-made element a01 < a1 with a2; b4 2



16 STEFAN FELSNERInc(a01). If a01 < a3, then B(P ) contains a copy of FXd1. Thus, we may assume a3jja01,i.e., we may assume an element au1 in P . By symmetry, we may also assume an elementau2 in P .From Lemma 3 we obtain elements a3̀; b1̀; b4̀ and au3 ; bu1; bu4 . The bipartite order (Xu�X`)\ <P is a copy of E0 in P .Case 9. B(P ) contains FX2.If there is no low-made element c0 > c with b1; b3 2 Inc(c0), then choose c1 > c andc2 > c with b3jjc1 but b1 < c1 and b1`jjc2 but b3 < c2. It follows, that B(P ) containsa copy of D. We, therefore, may assume an element c`. Dually, we also assume anelement au2 in P .Now, choose a low-made element b03 � b3 with c; b2 2 Inc(b03). If b03 > b1, then B(P )contains D. We, therefore, assume an element b3̀ in P . Dually, we also assume anelement au1 .From Lemma 3 we may assume elements a3̀; b1̀; b2̀ and au3 ; bu1 ; bu2 in P . The bipartiteorder generated by these elements is a copy of F0 in P .In cases 10 to 13 the next lemma will �nd repeated applications.Lemma 4. Let P be a poset such that B(P ) contains no D, CX3, nor their duals ora crown An. Let a1; b1; a2; b2; a3 : : : ; an; bn be a fence in B(P ) and x > bi for somei 2 f 1; : : : ; n g.(1) If j1 is the minimal, j2 the maximal integer with x > aj1 and x > aj2, thenx > aj when j1 � j � j2.(2) If j1 is the minimal, j2 the maximal integer with x > bj1 and x > bj2, thenx > bj when j1 � j � j2.Proof. If xjjaj for some j1 � j � j2, then B(P ) contains a crown.If xjjbj but x > bj�1 and x > bj+1, then B(P ) contains Dd. Finally, suppose thatx > bj� and x > bj� and j�+2 < j� but xjjbj for all j� < j < j�. Then from the �rst partwe know that x > aj�+1; aj�+2 and the elements of f aj� ; aj�+1; aj�+2; bj�; bj�+1; bj�+2; x ggenerate a copy of CX3 in B(P ). �Note that the dual of this lemma is also true, i.e, if x is below some element ai, thenthe elements of the fence comparable with x are intervals of a's and b's.Case 10. B(P ) contains Fn.We also assume that B(P ) does not contain Fm, Em or Edm when 0 � m < n.Now suppose, that 2 � i � n + 2. Choose a low-made element x with x � bi andxjjd.Suppose, that x < e, it follows that xjjb1. Let j1 be the minimal, j2 the maximalinteger with x > aj1 and x > aj2 . If j2 = j1 + 1, then there is an element bì in



3-INTERVAL IRREDUCIBLE PARTIALLY ORDERED SETS 17P . Otherwise, f a1; : : : ; aj1 ; aj2; : : : ; an+2 g [ f b1; : : : ; bj1; x; bj2+1; : : : ; bn+2 g [ f c; d; e ggenerates Fm for some m < n.Now suppose, that xjje. If xjjan+2 then f aj2; : : : ; an+2 g [ f x; bj2+1; : : : ; bn+2 g [f c; d; e g generates Fm for some m < n. We, henceforth, may assume that x > an+2. Ifx > b1, then f c; d; e; an+2; x; b1 g form a copy of D. Now assume, that xjjb1 and j1 > 1,then f a1; : : : ; aj1 g [ f b1; : : : ; bj1; x g [ f d; e g generate Em for some m < n. Finally, ifb1; e 2 Inc(x) and x > a1, x > an+2, then f a1; an+2; b1; c; d; e; x g form a copy of FXd1.We may, therefore, assume an element bì in P .By symmetry and duality we may also assume elements aui , when 1 � i � n + 1.From Lemma 3 we obtain aǹ+2; b1̀; e`; d` and aun+2; bu1 ; cu; du in P . The bipartite ordercorresponding to these elements form a copy of Fn in P .Case 11. B(P ) contains En.We also assume that B(P ) does not contain Fm, Em or Edm when 0 � m < n.Now suppose, that 1 � i � n + 1. Choose an up-made element a0 with a0 � aiand a0jjbi+2. Assume, that a0 < c and let j0 be the minimal index j with a0 < aj.If j0 > 1 then f aj0�1; aj0 ; : : : ; ai+1 g [ f bj0; bj0+1; : : : ; bi+1 g [ f a0; c g forms a copy ofEdm where m < n. If j0 = 1 then f a1; a2; : : : ; ai+1 g [ f b1; b2; : : : ; bi+1 g [ f a0; c; d gforms a copy of Fdm where m < n. The contradiction allows us to conclude a0jjc.Let j1 (j2) be the minimal (maximal) index j with a0 < bj. If j2 6= j1 + 1, thenf a1; : : : ; aj1�1; a0; aj2+1 : : : ; an+2 g[f b1; : : : ; bj1; bj2; : : : ; bn+3 g[f c; d g forms a copy ofEdm where m < n. We may, therefore, assume elements au1 ; : : : ; aun+1 and by symmetryalso aun+2.Next choose an integer i with 2 � i � n + 2 and a low-made element x � bi withxjjc. Suppose, that xjjd. If x > a1 and x > an+2, then if b1; bn+3 2 Inc(x), a copy ofEX1 is generated by f b1; x; bn+3; d; a1; an+2; e g. The same point set generates EX2 ifonly one of b1 and bn+3 is incomparable with x. It contains Dd if b1; bn+3 < x. Wenow assume, without loss of generality, that xjjan+2. Let j0 be the maximal index jwith x > aj0 , it follows that f aj0; : : : ; an+2 g [ f x; bj0+1; : : : ; bn+3 g [ f c; d g generatesEdm where m < n. Now suppose, that x < d. Thus b1; bn+3 2 Inc(x). Note, that ifx > aj for some j 6= i � 1; i, then B(P ) contains Edm for some m < n. Therefore, wemay assume the existence of elements b2̀; b3̀; : : : ; bǹ+2 in P .Finally, from Lemma 3 we obtain elements b1̀; bǹ+3; c`; d` and bu1 ; bun+3; cu. The bipar-tite order corresponding these elements forms a copy of Fn in P .Case 12. B(P ) contains B.Suppose, that a is not up-made. If there is an up-made element a0 < a withjSucc(a0) \ f b1; b2; b3 gj = 1 then B(P ) contains Ed0. Otherwise, there are up-madeelements a1; a2; a3 � a with aijjbi and aijjaj for i = 1; 2; 3 and j 6= i. However,f a1; a2; a3; b1; b2; b3 g generate a crown A3 in this case. We, therefore, may assume an



18 STEFAN FELSNERelement au.Next, choose a low-made element c01 � c1 with b2; c2 2 Inc(c01). If c01 > c3, then B(P )contains Cd. So we assume c01jjc3. If c01 > b3, then B(P ) contains CX1, so we mayassume that c01jjb3. This gives an element c1̀ in P . By symmetry, we may also assumeelements c2̀ and c3̀.From Lemma 3 we obtain elements b1̀; b2̀; b3̀ and bu1 ; bu2; bu3 . The bipartite order cor-responding to these elements forms a copy of Od1 in P .Case 13. B(P ) contains In.We also assume that B(P ) does not contain a copy of Im when m < n.Choose an integer i with 2 � i � n + 2 and a low-made element x � bi with xjjc.Let j1 (j2) be the minimal (maximal) integer with x > aj1 (aj2) and suppose thatj2 6= j1 + 1.Assume, that x < d1 and x < d2. It follows that b1; bn+3 2 Inc(x) and B(P ) containsa copy of Im for m < n.If xjjd2 and j2 < n + 2, then f aj2; : : : ; an+2 g [ f x; bj2+1; : : : ; bn+3 g [ f c; d2 g is acopy of Em for some m < n. We, therefore, assume that j2 = n + 1. If x < d1,then f an+2; bn+3; d2; c; d1; x g generate a copy of D in B(P ). Otherwise, if xjjd1, then,by symmetry, we may also assume x > a1. If x 6> b1, then f an+2; a1; b1; c; d1; d2; x ggenerate a copy of FX2 in B(P ). Again, by symmetry, we now assume x > b1 andx > bn+3, but then f b1; d1; c; d2; bn+3; x g generates a crown A3 in B(P ). Hence, wemay assume elements bui for 2 � i � n+ 2 in P .Now, let i be an integer with 1 � i � n + 2. Choose an up-made element a0i � aiwith c 2 Inc(a0i). If b1 > a0i and bn+3 > a0i, then f a0i; bn+3; d2; c; d1; b1 g generate a copyof D in B(P ). So we may assume, without loss of generality, that a0ijjbn+3. It followseasily, that B(P ) contains Im where 0 � m < n, whenever there exists an integer jwith bj > a0i and j 6= i; i+ 1.From Lemma 3 we obtain elements b1̀; bǹ+3; c` and bu1 ; bun+3; cu; du1 ; du2 in P . Thebipartite order corresponding to these elements forms a copy of In+1 in P .Case 14. B(P ) contains Gn.We also assume, that B(P ) does not contain a copy of Gm, Jm or Hm when m < n.We �rst show, that we may assume an element aì when 2 � i � n + 2. Choose alow-made element x � ai with bi�1; bi 2 Inc(x). Note, that from xjjbi�1 it follows thatx 6> aj and x 6> bj for all i < j � n + 3.Assume, that x > c and note that this implies xjjaj when i < j � n + 3 and xjjbjwhen i � 1 � j < n + 3. Let i 6= n + 2. If x < bn+3, then f ai; ai+1; : : : ; an+3 g [f bi; bi+1; : : : ; bn+3 g [ f x g forms a copy of Gm for some m < n. Otherwise, if xjjbn+3,then the same set together with c generates Jm for some m < n.Now, let i = n+2. If x < bn+3, then f bn+3; bn+2; bn+1; x; an+2; an+3 g forms a copy of



3-INTERVAL IRREDUCIBLE PARTIALLY ORDERED SETS 19Dd. Otherwise, if xjjbn+3, then the same set together with c generates CXd3. Therefore,we may assume, that xjjc and we have found an element aì in P .We now show, that we may assume an element bì when 2 � i � n + 2. Choose alow-made element x � bi with ai; ai+1 2 Inc(x).Suppose, that x > c. If i > 2, then f a1; : : : ; ai g [ f b1; : : : ; bi�1; x g [ f c g forms acopy of Gm for some m < n. Otherwise, if i = 2, then f a1; a2; a3; b1; x; c g generate D.Therefore, xjjc and we have found an element bì in P .We have shown, that we may assume elements aì and bì for all 2 � i � n + 2. Byduality, we may as well assume elements aui and bui in P for all 2 � i � n + 2. Finally,from Lemma 3 we obtain elements aǹ+3; b1̀; bǹ+3; c` and au1 ; aun+3; bu1; cu. The bipartiteorder corresponding to these elements forms a copy of Gn in P .Case 15. B(P ) contains Jn.We also assume, that B(P ) does not contain a copy of Gm, Jm or Hm when m < n.In complete analogy with Case 14, we may assume elements aì in P when 2 � i �n + 2.We now show, that we may assume an element bì when 2 � i � n + 2. Choose alow-made element x � bi with ai; ai+1 2 Inc(x).Suppose, that x > c. If i > 2 and x > d, then f a1; : : : ; ai g [ f b1; : : : ; bi�1; x g[ f c gforms a copy ofGm for somem < n. If xjjd, then the same set together with d generatesJm for some m < n.If i = 2 and x > d, then f a1; a2; a3; b1; x; d g generate D. If xjjd, thenf a1; a2; a3; b1; x; c; d g generate CX3. The contradiction shows that xjjc.We have shown, that we may assume elements aì and bì for all 2 � i � n + 2. Byduality, we may as well assume elements aui and bui for all 2 � i � n + 2 in P . Finally,from Lemma 3 we obtain elements aǹ+3; b1̀; bǹ+3; c` and au1 ; aun+3; bu1; cu. The bipartiteorder corresponding to these elements forms a copy of Gn in P .Case 16. B(P ) contains Hn.We also assume that B(P ) does not contain a copy of Hm when m < n, nor Gm or Jmwhen m � n.We �rst show, that we may assume an element aì when 1 � i � n + 2. Choose alow-made element x � ai with bi; bi+1 2 Inc(x).Assume, that x > c. If i � 3, then f a1; : : :ai�1; x g[f b1; : : : ; bi g[f c g forms a copyof Gm for some m < n. Otherwise, if i = 1; 2, then f b1; b2; b3; a1; x; c g forms a copy ofD.Assume, that x > d. Let i 6= n. If x < bn+3, then f ai; : : : ; an+2 g[f bi+1; : : : ; bn+3 g[f x g forms a copy of Gm for some m < n. Otherwise, if xjjbn+3, then the same settogether with c generates Jm for some m < n.If i = n+ 1 and x < bn+3, then f bn+3; bn+2; bn+1; x; an+1; an+2 g forms a copy of Dd.Otherwise, if xjjbn+3, then the same set together with d generates CXd3.



20 STEFAN FELSNERIf i = n+ 2, then f bn+1; bn+2; bn+3; d; x; an+2 g forms a copy of D.Therefore, we may assume c; d 2 Inc(x) and have thus found an element aì .We now show, that we may assume an element bì when 2 � i � n + 2. Choose alow-made element x � bi with ai�1; ai 2 Inc(x).Suppose, that x > c and x > d, then f b1; a0; bn+3; d; x; c g forms a copy of D wherea0 is one of ai�1 or ai.Suppose x > c and xjjd, it follows, that xjjaj and xjjbj when j > i. If i < n+ 2 thenf ai; : : : ; an+2 g [ f bi : : : :bn+3 g [ f x; d g generates Hm for some m < n. If i = n + 2,then f an+1; an+2; bn+1; bn+2; bn+3; d; x g generates CXd3.Finally, let x > d and xjjc. If i > 2, then f a1; : : : ; ai�1 g [ f b1 : : : :bi�1; x g [ f c; d ggenerates Hm for some m < n. If i = 2, then depending on x < bn+3 or xjjbn+3, a copyof either CX1 or CX2 is formed by f a1; an+2; b1; bn+3; c; d; x g.We, therefore, may assume c; d 2 Inc(x) and have found elements bì for 2 � i � n+2.If bn+3 is not low-made, then choose a low-made element b0n+3 > bn+3 with an+2jjb0n+3.If b0n+3 > c, then f a1; an+2; b1; bn+3; c; d; x g generate a copy of FX1. Therefore, we mayassume an element bǹ+3 in P .We have shown, that we may assume elements aì for 1 � i � n + 2 and bì for2 � i � n + 3. Dually, we may assume elements aui for 1 � i � n + 2 and bui in Pfor 1 � i � n + 2. Finally, from Lemma 3 we obtain elements c`; d` and cu; du. Thebipartite order corresponding to these elements forms a copy of Hn in P .2.2. 3-interval irreducible partial stacks. We begin this part with an analysis ofthe relation between the interval dimension of a bipartite order P and the intervaldimension of partial stacks of P .Lemma 5. Let P = (X;<) be a bipartite poset and P 0 = (X;<0) be a partial stack ofP , then Idim P 0 � Idim P .Proof. Let I 01; : : : ; I 0k be a interval-realizer of P 0. Now transform each of the intervalorders I 0i . Extend the intervals of elements inMin(P ) to the left to the leftmost endpointof an interval in I 0i, symmetrically, extend the intervals of elements in Max(P ) to theright to the rightmost endpoint of an interval in I 0i. From this transformation weobtain a new family I1; : : : ; Ik of interval orders. This family is an interval-realizer ofP . Hence, Idim P 0 � Idim P as claimed. �As a consequence we can now sharpen the result of Theorem 4.Theorem 7. If P = (X;<P ) is a 3-interval irreducible poset then P is a reduced partialstack of some bipartite 3-interval irreducible poset.Proof. From Theorem 4 we know that P contains a reduced partial stack of somebipartite 3-interval irreducible poset R = (Y;<R). Therefore, there are sets X1; X2 �



3-INTERVAL IRREDUCIBLE PARTIALLY ORDERED SETS 21X , such that (X1 � X2)\ <P �= <R. Let R� be the poset induced by P on X1 [ X2.This poset is a reduced partial stack of R.From Lemma 5 we obtain IdimR� � IdimR = 3. On the other hand, R� is a suborderof P , hence, 3 = Idim P � Idim R�. The irreducibility of P implies that X = X1 [X2and, therefore, P = R�. �Lemma 6. Let P = (X;<) be a bipartite order, then Idim P = Idim Stack(P ).Proof. From Lemma 5 we obtain Idim Stack(P ) � Idim P . As noted in the Intro-duction and proved in Theorems 1 and 2 Idim P = dim Stack(P ). Together this givesIdimStack(P ) � dimStack(P ), the converse of this inequality is trivially valid for everyorder. �Theorem 7 shows, that a classi�cation of 3-interval irreducible posets amounts inwork with partial stacks of bipartite orders. We, therefore, require a suitable notationfor these objects.Remark. An intuitive approach to partial stacks of a (connected) bipartite posetP = (X;<P) would be the following: Let A = Min(P ) and B = Max(P ). Considerthe interval representation of P on B(P ) = (Y;<Q). The intervals of elements a 2 Ahave L(a) = 0 and for b 2 B have U(b) = 1. These are called free-ends. This nameis motivated by the observation: Suppose two functions L0; U 0 : X ! Y are given,such that, 0 � L0(a) < U(a) and U 0(a) = U(a) for all a 2 A and L0(b) = L(b) and1 � U 0(b) > L(b) for all b 2 B. The intervals (L0(x); U 0(x)) then de�ne an orderingP 0 = (X;<0P ), such that, (A�B)\ <P = (A�B)\ <0P , i.e., a partial stack of P . Foran example see Figure 3. 6�
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Figure 3. A placement of the free-ends in bC and the corresponding partial stack ofO2.



22 STEFAN FELSNERUnfortunately the above construction will not lead to all partial stacks. As anexample note that there are partial stacks of O2 with cu3 > bu2 but cu3 jjau. These partialstacks are not representable on B(O2). Therefore we require a more formal descriptionof partial stacks.Let SuccSP (x) (PredSP (x))denote the successor sets (predecessor sets) of x inStack(P ). To describe a partial stack Q = (X;<Q) of a bipartite poset P = (X;<P )we will, henceforth, use setsSucc(x) with Succ(x) � SuccSP (x) for each x 2 Max(P ),Pred(x) with Pred(x) � PredSP (x) for each x 2 Min(P ).If such a family of sets is given, then the partial stack Q of P denoted by the family isthe transitive closure of the union of all relations occurring in these sets together withthe relations of P .Lemma 5 and Lemma 6 might suggest that Idim P = Idim Q for every partial stackQ of P . This, however, is far from truth as the next lemma shows.Lemma 7. For every integer n there is a bipartite interval order I, such that, everybipartite poset R on n elements is a suborder of some partial stack IR of I.Proof. As I we take the interval order with 2n minimal elements f a1; : : : ; a2n g andwith 2n maximal elements f b1; : : : ; b2n g. The relations of I are: ai < bj exactly ifi � j. Now �x a bipartite n-element poset R with minimal elements f x1; : : : ; xk g andmaximal elements f y1; : : : ; yn�k g. A partial stack IR containing R is given by:Pred(ai) = ; for 1 � i � kPred(ai) = f a1; : : : ; ak g [ f bj : xj �R yi g for k < i � 2nSucc(bi) = f bk+1; : : : ; b2n g [ f ak+j : xi �R yj g for 1 � i � kSucc(bi) = ; for k < i � 2nNote, that B(I) is a chain of length 2n + 2, while B(IR) consists of a chain of length2n+3, where the element k+1 has been substituted by a copy of B(R) without 0 and1. �As a consequence we obtain, that the gap between the interval dimension of a bipar-tite poset P and and the interval dimension of partial stacks of P can be arbitrarilyhigh.We now turn to the partial stacks of Gm and Hm. There will be some indications, thatthe complete classi�cation of 3-interval irreducible posets among the reduced partialstacks of these two orders might be intractable.Theorem 8. Every bipartite poset R is a suborder of a partial stack QR of Gm (Hm).Moreover, every bipartite 2-dimensional poset R is a suborder of an 3-interval irre-ducible partial stack of Gm (Hm).



3-INTERVAL IRREDUCIBLE PARTIALLY ORDERED SETS 23Proof. We prove the theorem for partial stacks of Hm. The idea behind the proof isthe same as in the proof of Lemma 7.Let R be a bipartite n-element poset with minimal elements f x1; : : : ; xk g andmaximal elements f y1; : : : ; yn�k g. Also, let a copy of Hn�2 be given on the setf a1̀; : : : ; aǹ g[f b2̀; : : : ; bǹ+1 g[f c`; d` g[f au1 ; : : : ; aun g[f bu1 ; : : : ; bun g[f cu; du g. Therelations of Hn�2 are: x` > yu exactly if x � y in Hn�2. A partial stack QR of Hn�2containing R is given by:Pred(aui ) = ; for 1 � i � kPred(aui ) = f auj : 1 � j � k g [ f buj : 1 � j � k g [ f aj̀ : xj �R yi gfor k < i � nSucc(aì) = f aj̀ : k < j � n g [ f bj̀ : k < j � n+ 1 g [ f auj : xi �R yj gfor 1 < i � kSucc(aì) = ; for k < i � nAll other elements z` have Succ(z`) = ; and all other elements zu have Pred(zu) = ;.This gives a partial stack QR of Hm and the poset generated by the elements f aì : 1 <i � k g [ f aui : k < i � n g is isomorphic to R.Let H+n�2 be isomorphic to Hn�2 together with a new element e such that Pred(e) =f a1; : : : ; ak; b1; : : : ; bk g and Succ(e) = f ak+1; : : : ; an; bk+2; : : : ; bn+1 g. The orderB(QR) is obtained by substituting e in H+n�2 by a copy of B(R) without 0 and 1.If R is 2-dimensional, then we claim that QR is 3-interval irreducible. To verifythis it su�ces to consider the e�ect of point deletion in QR only on the essentially3-dimensional part of B(QR), i.e., on H+n�2 �Remark. Let Hm = (X;<) and let the completion by cuts of Hm be denoted byL(Hm) = (X [ Y;<). A large class of 3-interval irreducible reduced partial stacks ofHm can be characterized by the following two properties:(1)B(Q) is an order isomorphic to L(Hm) with elements of Y substituted by (pos-sibly empty) 2-dimensional posets.(2) If x is `-labeled (u-labeled) in Hm, then there is a unique element y 2 Q withL(y) = x (U(y) = x).Similar properties describe a large class of 3-interval irreducible reduced partial stacksof Gm.However, there are more complex examples among the 3-irreducible partial stacks ofGm (Hm). Here is an example.Example.Let G0 consist of the elements f a2̀; a3̀; b1̀; b2̀; b3̀; c` g[f au1 ; au2 ; au3 ; bu1; bu2; cu g and relations



24 STEFAN FELSNERx` > yu exactly if x � y in G0. Let Q be the partial stack of G0 de�ned by:Succ(a2̀) = f au3 ; a3̀; b3̀ gSucc(b1̀) = f a3̀; bu2; b2̀; b3̀ gPred(au3) = f a2̀; au2 ; au1 ; bu1 gPred(bu2) = f au1 ; bu1; b1̀ gAll other elements x` have Succ(x`) = ; and all other elements xu have Pred(xu) = ;.This gives a partial stack Q of G0 which does not fall into the class of the previousremark.With these partial results we leave the classi�cation of 3-interval irreducible reducedpartial stacks of Gm and Hm as an open problem.Problem 1. Characterize the 3-interval irreducible reduced partial stacks of Gm andHm.We now turn to the partial stacks of the other bipartite 3-interval irreducible posets.With the next theorem we classify the 3-interval irreducible orders among them.Theorem 9. Every partial stack of An, O1, O2, O3, En, In, F0 for every integer n � 0and every partial stack of Fn (n > 0) which has neither (aǹ+2 < bǹ+2 and aǹ+2jje`) nor(bu1 > au1 and bu1 jjcu) is a 3-interval irreducible poset.Proof. The argument is again divided into a series of cases. As criterion for theirreducibility of a candidate partial stack Q we use a technical lemma.Lemma 8. Let P = (X;<P) be a poset of interval dimension 3. Let Q = (Y;<Q) be3-irreducible and let P have an interval representation on bQ. P is 3-interval irreducibleif the following three conditions are satis�ed:(1) For every element y of Q one of three cases applies(a) y has two essential labels.(b) y has an essential label ` and a unique element y0 in bQ is covered by y.(c) y has an essential label u and a unique element y00 in bQ is covering y.(2) Every element of Q has an essential label and every essential label of Q is satis�edby exactly one element of P .(3) Every element of P satis�es at least one essential label of Q.Proof. We have to show that for every x 2 X the interval dimension of Px is at most 2.To do this we exhibit a poset Q(x) of dimension 2 admitting an interval representationof Px.Let x 2 X and let yx be an element of Q such that x satis�es an essential label atyx. By duality we may suppose, that x satis�es the label ` at yx. We distinguish twocases.



3-INTERVAL IRREDUCIBLE PARTIALLY ORDERED SETS 25Suppose, that yx has two essential labels. Let R = (Z;<R) be the bipartite 3-interval irreducible poset corresponding to the essential labels of Q. By de�nition, Ryx̀has interval dimension 2 and, hence, dimB(Ryx̀) = 2. We claim that Px has an intervalrepresentation on B(Ryx̀). Let x0 be any element of Px, and denote the two endpointsof the interval of x0 on bQ by L(x0) = y1 and U(x0) = y2. If y1 = 0 or y2 = 1, thenthe mappings L�; U� : Px ! B(Ryx̀), also map the corresponding interval end to 0 or1. Let the essential labels at y1; y2 be �1; �2. In R we �nd elements y�11 and y�22 withy�11 6= yx̀ and y�22 6= yx̀. Now, let L�(x0) = L(y�11 ) if �1 = ` and L�(x0) = U(y�11 ) if�1 = u. Similarly, U�(x0) = L(y�11 ) if �1 = ` and U�(x0) = U(y�11 ) if �1 = u. It is easy toverify that the mappings L�; U� : Px ! B(Ryx̀) indeed de�ne an interval representationof Px.Next, suppose that there is no essential label at yx. Our assumptions imply, thatthere is a unique element y0x covered by yx. We claim that Px has an interval represen-tation on dQyx . Since Q is 3-irreducible we conclude that dim dQyx = 2 and, hence, thatthe interval dimension of Px is 2. As mappings L�; U� : Px ! dQyx choose the mappingsinduced by L; U : P ! bQ, except for elements x0 with U(x0) = yx. For such an elementlet U�(x0) = y0x. Again, it is easy to verify that the mappings L�; U� : Px ! dQyx de�nean interval representation of Px. �Case 1. P is a partial stack of An.Since Stack(An) = An we obtain Q = An and P is 3-interval irreducible.Case 2. P is a partial stack of O1.The partial stacks of O1 di�er only in Succ(bì) for i = 1; 2; 3 which is either empty orf cì g. An interval representation on bB is obtained if we let U(bì) = ci when Succ(bì) =f cì g and else U(bì) = 1. These representations satisfy the conditions of Lemma 8 and,hence, P is 3-interval irreducible.Case 3. P is a partial stack of O2.If Pred(cu1) is one of f au; bu1 g or f au g or ; and Pred(cu3) is one of f au; bu2 g or f au g or;, then B(P ) = bC. Moreover, the pair (P;C) satis�es the conditions of Lemma 8 and,therefore, P is 3-interval irreducible.If Pred(cu1) is one of f au; bu1 g or f au g or ; but Pred(cu3) = f bu2 g, then B(P ) = dCX1d.Again, Lemma 8 yields the 3-interval irreducibility of P .By symmetry, we may now assume that Pred(cu1) = f bu1 g and Pred(cu3)) = f bu2 g.Here, B(P ) = dCX2d and again, P is 3-interval irreducible by Lemma 8.Case 4. P is a partial stack of O3.All partial stacks of O3, together with interval representations on dEX2 can be obtainedby all possible choices of L(bu1) 2 f a1; 0 g, L(bu3) 2 f a2; 0 g, U(b1̀) 2 f c; 1 g and U(a3̀) 2f b2; 1 g. With Lemma 8 we then obtain the 3-interval irreducibility of P .



26 STEFAN FELSNERCase 5. P is a partial stack of En.All partial stacks of En, together with interval representations on cEn can be ob-tained by all possible choices of L(bu1) 2 f a1; 0 g, L(bun+3) 2 f an+2; 0 g and forx 2 f b2̀; : : : ; bǹ+2; c` g either U(x) = d or U(x) = 1. These representations satisfythe conditions of Lemma 8 and, hence, P is 3-interval irreducible.Case 6. P is a partial stack of In.First, suppose that n = 0 and let D+ be obtained from D by adding a new elementd with d > b2 and d < c1; c2. We claim that every partial stack of I0 has an intervalrepresentation on dD+. It should be clear that for i = 1; 3 we �nd an appropriate pointfor U(bì) and L(bui ) in dD+. It remains to consider U(b2̀). In Stack(I0) the successorset of b2̀ is f c1̀; c2̀ g and, hence, SuccP (b2̀) � f c1̀; c2̀ g. If SuccP (b2̀) = f c1̀; c2̀ g, then letU(b2̀) = d. If SuccP (b2̀) = f cì g with i = 1 or i = 2, then let U(b2̀) = ci. Finally, ifSuccP (b2̀) = ;, then let U(b2̀) = 1. With a slight generalization of Lemma 8 we obtainthe 3-interval irreducibility of P .Now, let n > 0 and let I+n be obtained from In by adding a new element e withe < d1, e < d2, e > c and e > bi for i = 2; : : : ; n+2. An analysis as in the previous caseshows that every partial stack of In has an interval representation on cI+n . (Note thatcI+n = L(In)). Again, the 3-interval irreducibility of P follows from the generalization ofLemma 8.Case 7. P is a partial stack of F0.If Pred(bu1) is one of f au1 ; cu g or f cu g or ; and Succ(a2̀) is one of f b2̀; e` g or f e` g or ;,then B(P ) = cF0. Moreover, the pair (P;F0) satis�es the conditions of Lemma 8 and,therefore, P is 3-interval irreducible.If Pred(bu1) is one of f au1 ; cu g or f cu g or ; but Succ(a2̀) = f b2̀ g, then B(P ) = dFX1d.Again, Lemma 8 yields the 3-interval irreducibility of P .By symmetry we may now assume that Pred(bu1) = f au1 g and Succ(a2̀) = f b2̀ g.Here, B(P ) = dFX2d and P is 3-interval irreducible by Lemma 8.Case 8. P is a partial stack of Fn with n > 0.Suppose that SuccP (aǹ+2) = f bǹ+2 g. The bipartite subposet of P with minimal el-ements f au1 ; : : : ; aun+2; bu1; du g and f b1̀; : : : ; bǹ+2; d`; e` g as maximal elements forms acopy of En�1. If we remove cu and aun+2 from P to obtain P�, then P� is a partialstack of En�1. Therefore, P is not irreducible.We may now assume that SuccP (aǹ+2) is either f bǹ+2; e` g or f e` g or ;. Dually, wemay assume that PredP (bu1) is f au1 ; cu g or f cu g or ;. It follows that B(P ) = cFn andwith Lemma 8 that P is 3-interval irreducible.
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