3-INTERVAL IRREDUCIBLE PARTIALLY ORDERED SETS

STEFAN FELSNER

ABSTRACT. In this paper we discuss the characterization problem for posets of
interval dimension at most 2. That 1s, we attempt to compile the minimal list
of forbidden posets for interval dimension 2. Members of this list are called 3-
interval irreducible posets. The problem is related to a series of characterization
problems which have been solved earlier. These are: The characterization
of planar lattices, due to Kelly and Rival [KeRi75], the characterization of
posets of dimension at most 2 (3-irreducible posets) which has been obtained
independently by Trotter and Moore [TrMo76] and by Kelly [Ke77] and the
characterization of bipartite 3-interval irreducible posets due to Trotter [Tr81].

We show that every 3-interval irreducible poset is a reduced partial stack of
some bipartite 3-interval irreducible poset. Moreover, we succeed in classify-
ing the 3-interval irreducible partial stacks of most of the bipartite 3-interval
irreducible posets. Our arguments depend on a transformation P — B(P),
such that Idim P = dim B(P). This transformation has been introduced in
[FHMO1].

1. INTRODUCTION AND BAsSICS

An extension of a poset P = (X, <p) is a partial order @ = (X, <g) on the same set,
that contains all the relations of P, i.e.,  <p y implies z <g y. A family {Q1,...,Qx}
of extensions of P is said to realize P if for all z,y € X we have z <p y exactly if
v <g, yforall 1 <7 < k. If we restrict the ); to belong to a special class of orders
and seek for a minimum size realizer we come up with a concept of dimension.

A linear extension of P = (X, <) is an extension L = (X, <) of P which is a chain,
ie, x <p yory <y aforal z,y € X with z # y. Dushnik and Miller [DuMi41]
defined the (order) dimension of a poset P, denoted dim(P), as the smallest integer &
for which there exist k linear extensions realizing P.

A partial order P is an interval order if it can be represented by assigning an interval
I, = (a;,b;) on a chain C to each element z € P, such that 2z < y in P iff b, < a,
in C. Fishburn [Fi85] characterized interval orders as the posets with no 4-point
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subset forming two disjoint 2—chains, i.e., no 242. The interval dimension of P,
denoted Idim(P), is the smallest & for which there exist & interval extensions of P
which realize P. Since linear orders are interval orders we obtain the trivial inequality
Idim(P) < dim(P).

If P = (X', <) is a suborder of P = (X, <), then dim(P") < dim(P) and Idim(P") <
Idim(P). Therefore, for every integer k there is a minimal list of posets of dimension
(interval dimension) k + 1, such that every poset which does not contain a subposet
from this list has dimension (interval dimension) at most k. Members of this list then
are called (k + 1)-irreducible ((k 4 1)-interval irreducible) posets. Note that a (k+ 1)-
irreducible ((k+ 1)-interval irreducible) poset P has dim(P) = k+1 (Idim(P) =k+1)
but the removal of any element lowers its dimension (interval dimension).

The list of 2-irreducible posets only contains the 2 element antichain and the list of
2-interval irreducible posets only contains the 242. The list of 3-irreducible posets is
of a much higher complexity. Counting only one of P and P¢, the dual of P, the list
consists of 10 isolated examples together with 7 infinite families (see Figure 1). This list
has been obtained independently by Trotter and Moore [TrMo76] and by Kelly [Ke77].
Since this paper depends on the ideas of Kelly’s argument we now give a brief (and in
some details not even correct) outline of his proof.

Let L(P) denote the completion by cuts of a poset P, i.e., L(P) is the smallest
lattice containing P as a suborder. Kelly’s characterization of the 3-irreducible posets
is mainly based on two results:

(1) dim P = dim L(P). (A theorem of Baker).

(2) The complete list £ of lattices of dimension 3 with the property that every
proper sublattice is of lower dimension. (Let us remark that a lattice is planar
exactly if it contains no sublattice from £). The list £ had been obtained by
Kelly and Rival [KeRi75].

Suppose that P is a 3-irreducible poset. It follows that dimL(P) > 3, therefore, L(P)
contains one or more of the lattices in £ as sublattices. The key idea for the proof is to
consider the lattices in £ in a specific ordering, Kelly order. At an intermediate step
in the argument we assume that L(P) contains a lattice () from this list, but does not
contain any lattice preceding it in the Kelly order. The details of each individual case
center around chosing a copy of a 3-irreducible subposet R of ) and then one by one
showing how those points of R which do not belong to P can be replaced by points of
P.

A poset P = (X, <) is called bipartite if there are two sets X;, Xs C X, such that
x < y implies z € X; and y € X,. Trotter found a transformation, which associates
with a bipartite poset P a poset Stack(FP), such that, Idim(P) = dim Stack(P). This
fact, together with the existing list of 3-irreducible posets lead to the characterization
of bipartite 3-interval irreducible posets in [Tr81].
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FiGUuRrEe 1. The 3 irreducible orders (part 1)
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FiGUuRre 1. The 3 irreducible orders (part 2)
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FiGUuRE 1. The 3 irreducible orders (part 3)

bn+3

bn+2

an+3

by

an+2

by

an+2 ay
Gpy1 as
Gy
ay

Gy

as

43}

43]




6 STEFAN FELSNER

Trotter’s proof uses Kelly’s approach for the characterization of the 3-irreducible
posets as a road map. Since the stack of a bipartite 3-interval irreducible poset P
contains one (or more) of the 3-irreducible posets we can argue about the implications
for the original poset. Again, a specific ordering of the 3-irreducible posets and cor-
responding assumptions about the 3-irreducible posets contained in Stack(P) organize
the proof.

In [FHM91] we have introduced a transformation P — B(P), such that Idim P =
dim B(P) for arbitrary posets P. In this paper we use this operator P — B(P), to
approach the characterization of 3-interval irreducible posets. The argument is again
based on a Kelly ordering of the 3-irreducible posets.

Let P = (X, <) be a poset, for # € X we denote the predecessorset {y € X 1y <z}
of z with Pred(z), the successor set {y € X :y > z } is denote by Suce(z). The closed
predecessor set is Pred[z] ={y € X : y <2}, i.e., Pred[z] = Pred(z)U { z }, similarly
Suce[z] = Succ(z) U{z}. We now review the definition and some properties of the
transformation P — B(P).

Definition 1. For each element x of a poset P = (X, <) let

L(z) = Pred(z),

Ulz) = ﬂzesucc(x)Pred(z), if Succ(x) =0 then let U(z) = X.
With P we associate a poset B(P) = (Y, <). The elements of Y are the distinct sets
occurring as L(z) or U(z) for some x € X. The ordering of B(P) is given by set-
inclusion.

The next definition is taken from [Mi92].

Definition 2. For posets P = (X, <p) and Q) = (Y, <g) we say that P has an interval
representation on @) if there are mappings L : X =Y and U : X =Y, such that
(1) L(z) <q U(x), i.e, [L(z),U(x)] is a nondegenerate interval of Q for each z € X.
(2) U(z1) <g L(z2) exactly if 1 <p x,.

An important fact about interval representations is given with the next lemma.

Lemma 1. If an order P has an interval representation on some poset (), then
Idim P < dim Q.

The next theorem collects properties of the transformation P — B(P).

Theorem 1. Let P = (X, <) and B(P) = (Y, <).
(1) The mappings L : X =Y and U : X — 'Y define an interval representation of
P on B(P).
(2) The dimension of B(P) equals the interval dimension of P.
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We now come to the stack of a bipartite poset. As mentioned, the stack played a
central role in the characterization of bipartite 3-interval irreducible posets.

Definition 3. Let P = (X, <p) be a (connected) bipartite poset and let O be an arbi-
trary linear order on X. Let A denote the set of minimal elements and B the set of
mazimal elements of P (we assume that a,a; € A and b,b; € B). The Stack(P) is a
extension of P, the relations of Stack(P) are given by

a<b ifa<binP,
by < by if Predp(by) C Predp(bs),
a; < as if Succp(ay) D Succp(as),
b<a if allb and ' <V in P for all a’ € Predp(b) and b' € Succp(a),
by < by if Predp(by) = Predp(by) and by <o by,
a; < aq if Succp(ay) = Succp(az) and ay <o as.

We now show, that for a bipartite order P the posets B(P) and Stack(P) are intimately
related. Let the 0,1-closure of P, i.e., the adjoin of a least element 0 and a greatest
element 1, be denoted by P — P.

—

Theorem 2. If P = (X, <) is a bipartite order, then B(P) = Stack(P) |., here ~ is
an equivalence relation on X with the properties:

e cach class of ~ is an autonomous subset of Stack(P),

e Stack(P) induces a chain on each class of ~.

Proof. An element z € X is mapped to two elements of B(P). Since P is bipartite we
either have L(z) = Q or U(z) = X. In the first case let M (2) = U(z), in the second case
let M(z) = L(z). Also, let O be the linear order used in the construction of Stack(P).
Define a poset () on X by

(1)@ <qyif M(x) C M(y),

(2)if M(z) = M(y) then 2 <g yif either 2 € Min(P) and y € Max(P) or « precedes

y in O.
Note that B(P) is the 0,1-closure of the poset ({ M(z) | « € X },C). Therefore
B(P) = Q/\|N when z ~ y iff M(z) = M (y).
We claim that Q = Stack(P). The proof is an easy case analysis using the definitions

of L(z), U(z) and the definition of the Stack. Let A = Min(P) and B = Max(P).

a < bin P: In Stack(P) we have a < b by definition. Note that M(a) = U(a) =
ﬂbleSuCC(G)Pred(b’) and M (b) = Pred(b). Since a < b we find Pred(b) in the
intersection defining M (a). Hence, M (a) C M (b) and a <¢ b.

by, by € B: We have by < b, in both Stack(P) and @) if either Pred(b;) C Pred(bs) or
Pred(b,) = Pred(b,) and b, precedes b, in O.

ai,as € A: Recall from Lemma 2 of [FHM91] that U(z) C U(y) iff Suce(z) 2
Suce(y). With this remark, the present case is dual to the preceding case.
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al|lbin P: Note that ¢ ¢ M (b) = Pred(b) but a« € M(a) = U(a), therefore, if @ and b
are comparable in () then b <g a. The comparability b <g a is in ) exactly if
all @’ € Pred(b) are elements of Pred(b’) for all b’ € Succ(a). This, however, is
the defining condition for b < a in Stack(P). O

The idea for our treatment of 3-interval irreducible posets will be the following. Sup-
pose that P = (X, <p) is 3-interval irreducible, then, by Theorem 1 dim B(P) = 3.
Hence, B(P) = (Y, <) contains some poset ) from the list of 3-irreducible orders.
Assuming that B(P) contains a specified 3-irreducible poset ), we then derive infor-
mations about the functions L : X — Y and U : X — Y. Since these two functions
define an interval representation of P on B(P), information about L and U translates
back to information about P.

This vague outline may motivate the study of properties that have to be required for
two functions L : X — Y and U : X — Y from a set X to a closed order @ = (Y, <g),
such that, there is a poset P on X with B(P) =@ and L and U as given. First recall
that

(1) L(z) <q U(z) for all z € X,
(2)Y =Im(L)U Im(U).

With the next lemma we give a less trivial property.

Lemma 2. Let y,,ys are incomparable elements of () = B(P)
(1) if Pred(y,) C Pred(ys) then y, € U(X),
(2) if Suce(yr) C Succ(ys), then y, € L(X).

Proof. This is an immediate consequence of the next Theorem. O

Theorem 3. Let P = (X,<p) and B(P) = (Y,<g). The following statements are
equivalent:

(1) y1 £ yo» in B(P)

(2) there is an element v € X with U(z) <y, but U(z) £ y»

(3) there is an element v € X with L(x) > ys but L(z) 7

Proof. The equivalence of (1) and (2) is an easy consequence of the following
y={2z€X:U(z) Cy}, for all elements y of B(P).

First, suppose that y = L(zy) for some 2y € X. If z € y, ie, ¢ € L(z) =
Pred(zg), then 2 < 4. From 2y € Succ(z) it follows, that U(z) = ﬂxlesucc(x)Pred(x’) C
Pred(zy) = y. Conversely, let U(z) C y. From « € U(z) we obtain z € y.

Now suppose that y = U(x,) for some 2o € X. If o € y, ie, z € U(xy) =
(Llesucc(xu)Pmd(av’)7 then = < 2’ for all 2’ > z,. Therefore, Succ(z) O Succ(z,) and
hence U(z) C U(zg) = y. Conversely, let U(z) C y. From 2 € U(z) we again obtain
T € y.
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The equivalence of (1) and (3) is obtained by duality. The argument is based on the
following observation: There is an isomorphism between B(P?) and B(P)?, such that,

the interval representation of P* on B(P)? is obtained from the interval representation
of P on B(P) by interchanging L and U. O

Remark. Let an interval representation L, U : P — ) of P on () be called a proper
interval representation if for all y,,y» € Im(L) U Im(U) the 3 statements of Theorem 3
are equivalent. If L, U : P — (J is a proper interval representation, then the ordering of
(@ restricted to Im(L) U Im(U) is isomorphic to B(P) and the interval representations
of P on the restriction of @) and on B(P) are equal with respect to this isomorphism.
Hence, B(P) can be characterized as the unique minimal poset which admits a proper
interval representation of P.

1.1. Bipartite 3-Interval-Irreducible Orders. We are ready to show, how the list
of bipartite 3-interval-irreducible orders given by [Tr81], see also [TrMo76], can be
predicted. Although this list is known for more than 15 years, we think, that the
method used here is new and interesting.

We start introducing some notation.

Definition 4. Let P = (X, <p) be a poset and B(P) = (Y, <). An element y € Y is
called low-made if y = L(z) for some x € X, it is called up-made if y = U(x) for some
rzeX.

Let @ = (Y, <) be a poset. Label an element y € Y with ¢ if there is a ¥’ € Y such
that y||y/, i.e., y and y’ are incomparable, and Succ(y) C Succ(y’) An element y € Y is
labeled with w if there is a y’ € Y such that y||y’ and Pred(y) C Pred(y’). This gives
the (¢, u)-labeling of () = (Y, <). Note that y € Y is labeled ¢/u in this labeling, if y is
forced, by Lemma 2, to be low-made/up-made, whenever () = B(P) for some P

Now suppose, that @ = (Y, <) is 3-irreducible. Recall that a critical pair is a pair
(y1,y2) with Pred(y;) 2 Pred(y,) and Succ(y;) C Succ(y.). It is easy to see (cf.
[KeTr82, Tr91]), that the 3-irreducibility of @) implies that every y € Y is contained
in some critical pair. Hence, every element y € Y will receive at least one label in the
(¢, u)-labeling of (). (See Figure 1 for the (¢, u)-labelings of the 3-irreducible posets).

If every element of a poset Q = (Y, <) has received a label in the (¢, u)-labeling, then
a minimal bipartite order P with B(P) = @ is easily obtained: For every u-labeled
element y € Y take a minimal element y* and for every f-labeled element y € Y take a
maximal element y*. The relations are given by y* < 2* if and only if y < z in @ (for
an example see Figure 2).

If @ is 3-irreducible then, in view of the preceeding remarks, the order P obtained
by this process may be considerd as a candidate for the list of bipartite 3-interval-
irreducible posets. To check the irreducibility we construct B(P,) for every point
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Ficure 2. The 3 irreducible order C and the bipartite order Oy corresponding to the
(¢, u)-labeling of C.

deleted suborder P, of P and compute dim B(F,). If dim B(F,) = 2 for all z, then P
is indeed a 3-interval-irreducible poset. The results are given in the list below.

Our notation and labelling for the collection of all 3 irreducible orders (see Figure
1) was introduced by Kelly [Ke77], it is also used in [Tr81] and [Tr91]. For bipartite 3-
interval irreducible posets we use the notation introduced in [TrMo76] (see also [Tr81]).

() = A, : Here we obtain the family A,,.

: Here we obtain O;.

: Here we obtain O,.
: Here we obtain Z,.

5+ Here we obtain Os;.

QéUOUﬂ

SODHOH O
I

1+ The order P obtained here is not irreducible.
Removing b} from P we have B(F,.) is the dual C’ of C, iec., Idim(Pyu) = 3.

(Q = CX,: The order P obtained here is not irreducible.
Removing b} and b3 from P we have B(Pyu ) = c”.

(Q = CX3: The order P obtained here is not irreducible.
Removing b} and af from P we have B(Pyy ) = D.

@ = EX;: The order P obtained here is not irreducible.
Removing by from P we have B(FP,x) = E,.

@ = FX,: The order P obtained here is not irreducible.
Removing af from P we have B(FP,:) = Fo.

@ = FX,: The order P obtained here is not irreducible.
Removing af and by from P we have B(FPy: u) = Fo.

Il
t

» ¢ Here we obtain the family &,.

Il
Fr

» : Here we obtain the family F,.

[l
-

n ¢ Here we obtain the family Z,, .

I
== R

» : Here we obtain the family G,.

. ¢ Here we obtain the family #,,.

OO O

Il
-

» ¢ The order P obtained here is not irreducible.
Removing ¢’ and d* from P we have B(P. 4u) = G,,.
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Let Q = (Y, <) be a 3-irreducible poset and let P be the bipartite order corresponding
to the (¢, u)-labeling of . A label p € {{,u} at an element y € Y is called essential
if dim B(P,,) = 2. Note that, P is 3-interval irreducible exactly if every label of @ is
essential.

Above we have compiled a list of bipartite 3-interval-irreducible posets. To prove that
this list is indeed complete, i.e., consists of all bipartite 3-interval-irreducible posets,
however, a large amount of work remains. This work has been accomplished by Trotter

[Tr81]. In the next section we give a modified version of his argument to prove our
Theorem 4.

Remark. The split of a poset P = (X, <) is the bipartite poset with maximal elements
{2*: 2 € X } and minimal elements { 2% : 2 € X } with 2* < y* in Split(P) iff 2 <y
in P. Note that, as a consequence of Trotter’s result we can state that every bipartite
3-interval irreducible poset is a subposet of the split of some 3-irreducible poset.

2. GENERAL 3-INTERVAL-IRREDUCIBLE POSETS

The program for dealing with the general (non-bipartite) case is the following: In
the first part, we use the techniques developed in [Tr81] for the characterization the
bipartite 3-interval irreducible orders to show that every 3-interval irreducible order
contains a partial stack or a reduced partial stack of a bipartite 3-interval irreducible
order. In the second part, we then attempt to characterize the 3-interval irreducible
orders among the candidate posets obtained in the first part.

2.1. Partial Stacks and Reduced Partial Stacks.

Definition 5. Let P = (X, <p) be a (connected) bipartite poset with minimal elements
X and mazimal elements X,. A partial stack of P is an order ) = (X, <g) such that
for all x, € Xy and x5 € Xy we have x, <p x4 exactly if v, <g z».

A partial stack Q@ of P may contain parallel elements. The reduced partial stack
corresponding to () is obtained by contracting each set of pairwise parallel elements to
a single point.

Remark. Let P = (X, <p) be a (connected) bipartite poset with minimal elements
X, and maximal elements X5. Let IEp be the set of all extensions () of P satisfying
ry <g w2 iff 1 <p x4, i.e., IEp is the set of all partial stacks of P. Define a poset on
Ep by Q1 < if ()5 is an extension of Q1. If (J is any maximal element of this poset,
then @ is isomorphic to Stack(P).

The main theorem of the present section is.

Theorem 4. If P is a 3-interval irreducible poset then P contains a reduced partial
stack of some bipartite 3-interval irreducible poset.
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To prove the theorem we go along Trotter’s, ‘Stacks and Splits’ [Tr81] and rewrite
the important lemmas and theorems. We omit the assumption that P is a height one
poset, we replace Stack(P) by B(P) and instead of dealing with elements in Stack(P)
corresponding to maximal or minimal elements in PP we deal with low-made and up-
made elements of B(P). As a first example note that Lemma 3 implies an analogue of
Trotter’s Lemma 4.

Theorem 5 (Trotter’s Theorem 6). If P is a poset and B(P) contains a crown A,
for some n > 0, then there exists an integer m with 0 < m < n so that P contains A,,.

Proof. Choose the smallest integer k£ > 0 for which B(P) contains A,. We will then
show that P contains A,.

Of all copies of Ay contained in B(P), choose one for which the integer ¢t = [{; :
1 <i<k+3, b islow-made }| 4+ |{a; : 1 <7< k+3, a; is up-made }| is as large
as possible. If ¢ = 2k + 6, then for 0 < ¢ < k 4 3 there are elements af, b} in P with
L(b;) = b; and U(a}) = a;. These elements form a copy of Ay in P.

Assume that ¢ < 2k 4+ 6 and without loss of generality let by, be a non low-made
element. Since a,||bgs2 in B(P), it follows from Theorem 3, that there is an element
x € X so that L(z) > byyo and L(z)||a;. If L(z)||a; for each 7 = 2,3,... ,k+ 1, then
x can replace by in this copy of Ax. So we must have L(z) > a; for some ¢ with
2 <t < k+1. Let ig be the smallest such integer. Then it follows that the subposet of
B(P) generated by { ay,as,...,a;,,apr3 JU{b1,bo, ... bi_1, L(2),brys}is A;_o. But
10 — 2 < k, this is a contradiction. O

Theorem 6 (Trotter’s Theorem 7). Let P be a poset and suppose that P does not
contain a crown A, for anyn > 0. Ify is an up-made (low-made) element of B(P) and
F is a connected subposet of Inc(y), then there exists a low-made (up-made) element
in B(P) so that x > y (y > ) and F C Inc(z).

Proof. We prove the theorem when y is up-made. If y is also low-made, then & = y
and we are done.

Suppose that y is not low-made. Let y’ > y be low-made and note that the existence
of a low-made element y” > y with y”||y’ is guaranteed by Theorem 3. Therefore, there
are at least two incomparable low-made elements in Succgp)(y)

If there is a z € F with z > z for all low-made elements = > y, then y > z by
Theorem 3. A contradiction.

We therefore may assume, that there are elements x, 2" € Succppy(y) and z,2" € F
such that z < z and 2z’ < 2’ but ||z’ and 2’||z. Now let a4, ..., a, be a fence in F from
z' to z. It follows that { z,y,2',ay,...,a, } contains a crown. A contradiction. O
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Let P = (X, <p) be a 3-interval irreducible poset. Since the dimension of B(P) is
3, B(P) contains a 3-irreducible poset. Suppose first, that B(P) contains a crown A,
for some n > 0. Then, it follows from Theorem 5, that P also contains a crown A,, for
some 0 < m < n. Since P is irreducible, we conclude, that P = A,,. We may, therefore,
assume in the remainder of the argument, that B(P) does not contain a crown A,,.
The remainder of the argument is divided into a sequence of cases.

When discussing the case of a 3-irreducible order ) = (Y, <g) contained in B(P),
we assume, that a copy of @ in B(P) has been chosen. We refer to the elements of this
copy of @ via the labeling of [Ke77] and [Tr81], see Figure 1. If y is an element of @,
then we say there is an element y° in P if we are sure about the existence of a low-made
element y' > y with Predppy[y']NY = Predg[y]. The element y* then is any preimage
of y" under L, i.e., L(y*) = y/. Dually, we say there is an element y* in P if we are sure
about the existence of an up-made element y” <y with Succgp)[y”] NY = Succgy[y].
The element y* then is any element with U(y*) = y”.

We will make extensive use of the following easy consequence of Theorem 6.

Lemma 3. Let P = (X,<p) be a crown-free poset and suppose that a 3-irreducible
poset Q = (Y, <q) is contained in B(P). If y is an element of Q) such that Incg(y) is
connected and for all y' in Q with y' ¢ Predgly] (y' € Succgly]) there is a y” € Incg(y)
with y' > y" (y' < y"), then there is an element y* (y*) in P.

In each case we choose a particular 3-irreducible poset @ = (Y, <g) contained in
B(P) and suppose that B(P) does not contain the 3-irreducible posets treated in the
previous cases. These assumptions together with Theorem 3, Theorem 6 and Lemma
3 will allow us to show that there is an element y* (y*) for every essential (-labeled
(u-labeled) element y of . Let X C X be the set of these up-made elements and
X*C X be the set of these low-made elements. The bipartite order (X* x X“)N <p is
isomorphic to a bipartite 3-interval irreducible poset R. Therefore, PP contains a partial

stack of R.

Case 1. B(P) contains D.

We apply Lemma 3 to obtain elements b%, 05, b5, ¢f, cf and a*,b%, b, 0% in P. The
bipartite order (X* x X*)N <p forms a copy of Z, in P. Hence, P contains a partial
stack of Z,.

Case 2. B(P) contains C.

From Lemma 3 we may assume, that there are elements ¢f, ¢4, b5 and a“,b%, ¥, c4.
Suppose, that there is no element ¢, then by Theorem 6, there are elements ¢ > ¢,

and ¢’ > ¢y in B(P) with ¢; € Inc(¢”) but ¢’ > ¢3 and ¢3 € Ine(c¢’) but ¢ > ¢;. This

implies, that { a,cy, ¢’ bs, ¢, c3} form a copy of D in B(P). The contradiction allows

us to assume an element cf.
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Assume, that by is low-made, then choose an up-made element b} < by with by, ¢c3 C
Inc(b}). If b, < bs, then { ¢, by, a, ¢, 0, b5} form a copy of DY in B(P). We conclude,
that by € Inc(b}), hence, any U-preimage of b is b}. Symmetrically, we may assume
an element b%. The bipartite order with maximal elements ¢!, ¢4, ¢§, b5 and minimal
elements a®, b}, by, by, ¢}, ¢y forms a copy of Os in P. Hence, P contains a partial stack

of 02.

Case 3. B(P) contains CXs.

From Lemma 3 we may assume that there are elements af,b%, b5, ¢* and a¥,ay, by.
Choose a low-made element b, > by with b3, ¢ € Inc(by). If by, > by, then
{ as,by,b5,as,¢,b3} form a copy of D in B(P). Therefore, we may assume an element
b, in P.

If there is no element af, then there are up-made elements a), < a, and aj < a
with aq||a, but @) < az and az|lay but af < a;. However, it follows, that
{ by, ay,ay, bs, a}, a3z} form a copy of D?. The contradiction shows that we may as-
sume an element af.

The bipartite order corresponding to these elements y® and y* as maximals and
minimals forms a copy of Z; in P.

Case 4. B(P) contains CX,.
From Lemma 3 we obtain elements af, a4, ¢ and a¥, a4, c*.

The same argument used in Case 3, allows us to assume an up-made element aj.
Next, choose a low-made element b5 > by with { by, bs,a, } € Inc(by). If b5 > ¢, then
B(P) contains CX3. Therefore, we assume an element b5. By symmetry, we may also
assume an element b%. Finally, choose a low-made element b, > by, with ¢ € Inc(b}).
Obviously, by £ b, and ¢, £ b,. Let 2 be a preimage of b, under L. The bipartite order
with maximal elements af, a§,b%, z, bS, ¢® and minimal elements a¥,a%, a%,c* forms a
copy of 04 in P.

Case 5. B(P) contains CX;.

If b, is not low-made, then choose a low-made element b] > by with { a3, by, ¢ } C Inc(b}).
If b} > b3, then { as, b3, b, a1,¢,b,} form a copy of D. Therefore, we may assume that
there is an element b% in P.

If there is no element a}, then there are up-made elements a, < a, and af < as with
ai||al but a, < as and as||ay but af < ay. It follows, that { ¢, ay, ay, b3, a}, as } form a
copy of D?. The contradiction shows, that we may assume an element ay in P.

If b, is not low-made, then choose a low-made element b, > by with ay, b, C Inc(b)).
If b, > b3, then { ay, as,as, by, c, b3 b} form a copy of CX3. We, therefore, assume an
element b% in P.

From Lemma 3 we obtain elements af,af, b5 and o}, a%,b%. We also may choose
a low-made element ¢ > ¢ with b3 € Inc(¢/). Let z be a preimage of ¢ under L.
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The bipartite order with maximal elements af,a§,b%, 05,05, and minimal elements

ay,ay, ay, by forms a copy of 0% in P.

Case 6. B(P) contains EX,.
Suppose, that b, is not low-made and there is no low-made element b, > b, with
¢, by € Inc(bs). Then it follows, that there exist points ba, bs > by with by € Inc(bs) and
¢, by € Inc(bs). This implies, that bs > bs. If by > ¢, then {as, by, ¢, as, bs, b3 } generate
a copy of D. So we must have by||c, and thus b, > b;. However, this implies that
{¢,b1,b4,bs,b3, a2, a3 } generate a copy of CX; in B(P). The contradiction allows us to
assume an element b% in P. Since EX, = EX{ we obtain a¥ from the dual argument.
If ¢ is not low-made, then choose an element ¢ > ¢ with as, by € Inc(c¢’). If ¢ > bs,
then { ¢, bs, as, by, ay,b; } form a copy of D“. We, therefore, may assume an element
‘. Dually, we may assume a.
From Lemma 3 we obtain elements a§, b4, b5 and a¥,b%,b%. The bipartite order with

: FANE NN N NN L U U LU RBU
maximal elements ag, b7, b5, b5, ¢* and minimal elements af, a¥, ay, b$ forms a copy of O;
in P.

Case 7. B(P) contains FXj.
If b, is not low-made, then choose a low-made element b, > b, with b,||bs. If b, > b,
then B(P) contains D. We, hence, assume an element b5 in P.

If there is no element ay, then there are up-made elements @} < a; and daf < a4
with as,b3 € Inc(a)) but @) < as and az € Inc(af) but af < bs. It follows, that
{¢,bs,al,by,d),as} form a copy of D?. The contradiction shows, that we may assume
an element af in P.

If there is no element a¥, then there are up-made elements a, < a; and af < as with
ai||al, but @l < az and as||ay but ¢y < a;. It follows, that { by, a1, a’, bs, a4, a3 } form a
copy of D?. The contradiction shows, that we may assume an element ay.

From Lemma 3 we obtain low-made elements a$,b{,05, ¢* and up-made elements
a¥,b¥, b4, The bipartite order with maximal elements a$, b%, b5, b5, ¢* and minimal ele-
ments af, ay, ay, b}, by forms a copy of Fy in P.

Case 8. B(P) contains EX;.

Choose a low-made element b, > by with as, by € Inc(b}). If b > by and b} > by, then
{ b, by, ay,bs, as, by } generate DU If &, > by and b,||bs, then replacing b, by b, we
obtain EX,. If b}, > by and b,||b;, then the same elements also generate EX,. Hence,
we may assume an element b4 in P.

Choose a low-made element b5 > b3, such that by € Inc(by). If by > by,
then {ai,as,as, by, by, b3,05} forms a copy of FX; in B(P). If b5 > b4, then
{ai,as,a3,by,b3,b5,b,} generates FX,;. We may, therefore, assume that there is an
element b5 in P.

If there is no element aj, then choose an up-made element ) < a; with a,,by €
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Inc(a}). If @} < as, then B(P) contains a copy of FX?. Thus, we may assume as]|a},
i.e., we may assume an element af in P. By symmetry, we may also assume an element
ay in P.

From Lemma 3 we obtain elements a$, b{, b and a}, by, b4. The bipartite order (X*x
XN <p is a copy of & in P.

Case 9. B(P) contains FX,.
If there is no low-made element ¢ > ¢ with by, b3 € Inc(c’), then choose ¢; > ¢ and
¢y > ¢ with bslle; but by < ¢y and b;||cz but by < ¢y. It follows, that B(P) contains

¢, Dually, we also assume an

a copy of D. We, therefore, may assume an element ¢
element af in P.

Now, choose a low-made element by > b3 with ¢, by € Inc(by). If b5 > by, then B(P)
contains D. We, therefore, assume an element 05 in P. Dually, we also assume an
element af.

From Lemma 3 we may assume elements a§, b%, b5 and a¥,b%, 0% in P. The bipartite

order generated by these elements is a copy of Fy in P.

In cases 10 to 13 the next lemma will find repeated applications.

Lemma 4. Let P be a poset such that B(P) contains no D, CX3, nor their duals or
a crown A,. Let a;,bi,as,bs,a3...,a,,b, be a fence in B(P) and x > b; for some
ie{l,...,n}.
(1) If ji is the minimal, jo the mazimal integer with x > a;, and © > a;,, then
&> a; when j, < j < ju.
(2) If j1 is the minimal, j, the mazimal integer with x > by, and z > b;,, then
x> b; when j; <7 < ja.

Proof. If z||a; for some j; < j < j,, then B(P) contains a crown.

If 2||b; but @ > b;_; and 2 > b;;,, then B(P) contains D?. Finally, suppose that
x> b;, and 2 > b;» and j.+2 < j* but z||b; for all j, < j < j*. Then from the first part
we know that > a;, 41, a;, 4o and the elements of { a;,,a;,11,¢;,12,05,,0;, 11,05, 42,2 }
generate a copy of CX3 in B(P). O

Note that the dual of this lemma is also true, i.e, if z is below some element a;, then
the elements of the fence comparable with z are intervals of a’s and b’s.

Case 10. B(P) contains F,,.
We also assume that B(P) does not contain F,,, E,, or Eg1 when 0 < m < n.

Now suppose, that 2 < ¢ < n + 2. Choose a low-made element # with z > b; and
z||d.

Suppose, that @ < e, it follows that z||b;. Let j; be the minimal, j, the maximal
integer with > a;, and @ > aj,. If j» = j; + 1, then there is an element b} in
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P. Otherwise, { a1,...,a;,,a5,,... @y YU{ b1, .. 05, 2,051, ... b0 UL, d, e}
generates F,, for some m < n.

Now suppose, that z|le. If z||a,4o then {aj,,... ¢ppa} U {2, bjp1,. . bpyo} U
{¢,d, e} generates F,, for some m < n. We, henceforth, may assume that @ > a, . If
x > by, then {¢,d,e,a,,9, 2,0, } form a copy of D. Now assume, that z||b; and j; > 1,
then {ay,...,a;, }U{by,... ,b;,2}U{d, e} generate E,, for some m < n. Finally, if
by,e € Inc(z) and & > ay, @ > apqo, then {ay, a,q0,b1,¢,d,e,2} form a copy of FXY.
We may, therefore, assume an element bf in P.

By symmetry and duality we may also assume elements af, when 1 < ¢ < n+ 1.
From Lemma 3 we obtain afl+27 bt e, d" and 4o, Y,y d" in P. The bipartite order
corresponding to these elements form a copy of F, in P.

Case 11. B(P) contains E,,.
We also assume that B(P) does not contain F,,, E,, or Eg1 when 0 < m < n.

Now suppose, that 1 < ¢ < n 4 1. Choose an up-made element ¢’ with o' < a;
and a'||b;42. Assume, that ¢’ < ¢ and let j, be the minimal index j with ¢ < «;.
If jo > 1 then {aj,—1,a0,..., @11 }U{bj,bj041,...,bip1 U {d,c} forms a copy of
E! where m < n. If jo = 1 then {ay, as,... a1 } U {by,bo,... bip Y U{d c,d}
forms a copy of F? where m < n. The contradiction allows us to conclude a/||e.
Let j; (j2) be the minimal (maximal) index j with &’ < b;. If j» # j; + 1, then

{ar,...,a5,-1,d 05,41 ... app2 YU{L by, ... 05,05, ... b5} U{ e, d} forms a copy of
EZ1 where m < n. We may, therefore, assume elements ay,...,a; , and by symmetry
also aj; .

Next choose an integer ¢ with 2 < ¢ < n 4+ 2 and a low-made element x > b; with
z|lc. Suppose, that z||d. If z > @y and z > @, 19, then if by, b, 45 € Inc(z), a copy of
EX, is generated by {by,2,b,,3,d,a1,a,.5,¢}. The same point set generates EX, if
only one of b; and b, 5 is incomparable with x. It contains DY if bi,bpys < x. We
now assume, without loss of generality, that z||a,,». Let j, be the maximal index j
with @ > a;,, it follows that {a;,,... ,an42 } U {2, bj011,...,bny3} U {c, d} generates
E! where m < n. Now suppose, that © < d. Thus by,b,45 € Inc(z). Note, that if
x > a; for some j # ¢ — 1,14, then B(P) contains Eg1 for some m < n. Therefore, we

may assume the existence of elements b5, b%,... b, in P.

Finally, from Lemma 3 we obtain elements b¢, bfl+3, ', d" and by, by 3, . The bipar-
tite order corresponding these elements forms a copy of F,, in P.

Case 12. B(P) contains B.

Suppose, that @ is not up-made. If there is an up-made element ¢’ < a with
|Suce(a’) M {by,by,bs}| = 1 then B(P) contains E¢. Otherwise, there are up-made
elements a;,as,a3 < a with ¢;||b; and q;||a; for i = 1,2,3 and j # ¢. However,
{ai,as,a3,by,by, b3} generate a crown Az in this case. We, therefore, may assume an
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element a*.

Next, choose a low-made element ¢} > ¢; with by, ¢s € Inc(c)). If ¢] > 3, then B(P)
contains C%. So we assume ¢,||cs. If ¢, > bs, then B(P) contains CX,, so we may
assume that ¢||bs. This gives an element ¢ in P. By symmetry, we may also assume
elements ¢} and .

From Lemma 3 we obtain elements b%, b5, b5 and b%,b%, b4. The bipartite order cor-
responding to these elements forms a copy of O¢ in P.

Case 13. B(P) contains I,,.
We also assume that B(P) does not contain a copy of I, when m < n.

Choose an integer i with 2 < ¢ < n+ 2 and a low-made element z > b; with z||c.
Let j; (j2) be the minimal (maximal) integer with # > a;, (a;,) and suppose that
J2#F 5+ L

Assume, that z < d; and @ < d,. It follows that by, b, 15 € Inc(z) and B(P) contains
a copy of I, for m < n.

If z||dy and j» < n 42, then {a;,... a2} U {2, bjp11,...,bny3} U{c,ds} is a
copy of E,, for some m < n. We, therefore, assume that j, = n+ 1. If 2 < dy,
then { a,y9,0,13,ds, ¢,dy, @ } generate a copy of D in B(P). Otherwise, if z||d;, then,
by symmetry, we may also assume x > a;. If @ # by, then {a,y0,0a1,b1,¢,dy,doy 2}
generate a copy of FX, in B(P). Again, by symmetry, we now assume z > b; and
& > b,ys, but then {by,dy,c,ds, b,y3,2 } generates a crown Aj in B(P). Hence, we
may assume elements b} for 2 < ¢ < n+2in P.

Now, let « be an integer with 1 <7 < n + 2. Choose an up-made element a} < q;
with ¢ € Inc(a}). If by > a and b,,3 > a}, then {al, b,y3,ds, c,dy, by } generate a copy
of D in B(P). So we may assume, without loss of generality, that a}||b, 5. It follows
easily, that B(P) contains I,, where 0 < m < n, whenever there exists an integer j
with b; > af and j #4,71+ 1.

From Lemma 3 we obtain elements b, b5 5, ¢ and bY,b% 5, ¢, dY,dy in P. The
bipartite order corresponding to these elements forms a copy of Z,, 1 in P.

Case 1. B(P) contains G,,.
We also assume, that B(P) does not contain a copy of G,,, J,,, or H,, when m < n.

We first show, that we may assume an element af when 2 < ¢ < n + 2. Choose a
low-made element & > a; with b;_y,b; € Inc(z). Note, that from ||b;_, it follows that
v #a;and x ¥ b;foralli < j<n+3.

Assume, that 2 > ¢ and note that this implies z||a; when ¢ < j < n+ 3 and z||b;
when ¢ — 1 < j < n+3. Leti#n+2 Ifa<b,s then {a;,a;41,... 0,43} U
{bi,bix1,...,bpy3} U{z} forms a copy of G,, for some m < n. Otherwise, if z||b, 13,
then the same set together with ¢ generates J,, for some m < n.

Now, let i = n+42. If © < b,43, then {b,13,b,15,b,41,2, 40, 0,,3} forms a copy of
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D’. Otherwise, if #||b, 13, then the same set together with ¢ generates CX§. Therefore,
we may assume, that z||c and we have found an element af in P.

We now show, that we may assume an element 0% when 2 < 7 < n + 2. Choose a
low-made element & > b; with a;, a;41 € Inc(z).

Suppose, that © > ¢. If ¢ > 2, then {ay,...,a; }U{by,... b1,z }U{c} forms a
copy of G,, for some m < n. Otherwise, if i = 2, then { a1, as, a3, by, x, ¢ } generate D.
Therefore, z||c and we have found an element bf in P.

We have shown, that we may assume elements af and b¢ for all 2 <7 < n +2. By
duality, we may as well assume elements a} and b} in P for all 2 < ¢ < n + 2. Finally,
from Lemma 3 we obtain elements a5, b{, 0%, 5, " and a¥,a? 5, b}, c*. The bipartite
order corresponding to these elements forms a copy of G, in P.

Case 15. B(P) contains J,,.
We also assume, that B(P) does not contain a copy of G, J,, or H,, when m < n.

In complete analogy with Case 14, we may assume elements af in P when 2 < ¢ <
n + 2.

We now show, that we may assume an element 0% when 2 < 7 < n + 2. Choose a
low-made element & > b; with a;, a;41 € Inc(z).

Suppose, that @ > ¢. If i > 2 and @ > d, then {a,...,a; }U{by,... b, }U{c}
forms a copy of G,, for some m < n. If z||d, then the same set together with d generates
J,, for some m < n.

If i = 2 and 2 > d, then {ay,as,a3b,2,d} generate D. If z||d, then
{ai,as,a3,by,2,c,d} generate CX3. The contradiction shows that z||c.

We have shown, that we may assume elements af and b¢ for all 2 <7 < n +2. By
duality, we may as well assume elements a} and b} for all 2 <: < n+2in P. Finally,
from Lemma 3 we obtain elements a5, b{, 0%, 5, " and a¥,a? 5, b}, c*. The bipartite
order corresponding to these elements forms a copy of G, in P.

Case 16. B(P) contains H,,.
We also assume that B(P) does not contain a copy of H,, when m < n, nor G,, or J,,
when m < n.

We first show, that we may assume an element af when 1 < i < n + 2. Choose a
low-made element & > a; with b;, 6,41 € Inc(z).

Assume, that @ > ¢. If i > 3, then {ay,...a;_1,2 }U{by, ..., b; }U{c} forms a copy
of G,, for some m < n. Otherwise, if ¢ = 1,2, then { by, bs, b3, ay, z, ¢ } forms a copy of
D.

Assume, that @ > d. Let ¢ £ n. If @ < b,y3, then {a;, ..., apq2 JU{biy1,. .., buys JU
{z } forms a copy of G,, for some m < n. Otherwise, if z||b,y3, then the same set
together with ¢ generates J,, for some m < n.

If i=n+1and @ < b, 3, then {b,13,b,49,0,11,2, 4,41, a,4 } forms a copy of D¢.
Otherwise, if z||b, 43, then the same set together with d generates CX3.
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If i =n+2, then {b,11,b,40,0,13,d,2,a,,-} forms a copy of D.

Therefore, we may assume ¢, d € Inc(z) and have thus found an element af.

We now show, that we may assume an element 0% when 2 <7 < n + 2. Choose a
low-made element = > b; with a;_,a; € Inc(z).

Suppose, that > ¢ and & > d, then {by,d’,b,,3,d,z,c} forms a copy of D where
a’' 1s one of a;_, or a;.

Suppose z > ¢ and z||d, it follows, that z||a; and z||b; when j > ¢. If ¢ < n 42 then
{ai,... 0pi2 }U{b;j... b3} U{x,d} generates H,, for some m < n. If i = n + 2,
then { @41, @nio, bpy1, buyo, boys, d, @ } generates ngf.

Finally, let # > d and z||c. If i > 2, then {@ay,...,a;_; JU{by... b,z }U{c,d}
generates H,, for some m < n. If i = 2, then depending on @ < b, 3 or z||b, 13, a copy
of either CX; or CX, is formed by { a1, a,1,b1,b,13,¢,d, 2 }.

We, therefore, may assume ¢, d € Inc(x) and have found elements b} for 2 < ¢ < n+2.

If b, 15 is not low-made, then choose a low-made element &), | 5 > b, 43 With a, 5||b], .
If b, 5 > c, then { a1, @nq0,b1,bnys, ¢, d, @ } generate a copy of FX;. Therefore, we may
assume an element b’ 5 in P.

We have shown, that we may assume elements af for 1 < i < n+ 2 and b} for
2 <7 < n+ 3. Dually, we may assume elements af for 1 < ¢ < n+2 and b} in P
for 1 < ¢ < n+ 2. Finally, from Lemma 3 we obtain elements ¢, d* and ¢*,d*. The

bipartite order corresponding to these elements forms a copy of H,, in P.

2.2. 3-interval irreducible partial stacks. We begin this part with an analysis of
the relation between the interval dimension of a bipartite order P and the interval
dimension of partial stacks of P.

Lemma 5. Let P = (X, <) be a bipartite poset and P' = (X, <’) be a partial stack of
P, then Idim P’ > Idim P.

Proof. Let I],..., I be a interval-realizer of P’. Now transform each of the interval
orders I/. Extend the intervals of elements in Min(P) to the left to the leftmost endpoint
of an interval in [/, symmetrically, extend the intervals of elements in Max(P) to the
right to the rightmost endpoint of an interval in I/. From this transformation we

obtain a new family I,..., [, of interval orders. This family is an interval-realizer of
P. Hence, Idim P’ > Idim P as claimed. O

As a consequence we can now sharpen the result of Theorem 4.

Theorem 7. If P = (X, <p) is a 3-interval irreducible poset then P is a reduced partial
stack of some bipartite 3-interval irreducible poset.

Proof. From Theorem 4 we know that P contains a reduced partial stack of some
bipartite 3-interval irreducible poset R = (Y, <g). Therefore, there are sets X, X, C
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X, such that (X; X X5)N <p = <g. Let R* be the poset induced by P on X; U X,.
This poset is a reduced partial stack of R.

From Lemma 5 we obtain Idim R* > Idim R = 3. On the other hand, R* is a suborder
of P, hence, 3 = Idim P > Idim R”. The irreducibility of P implies that X = X; U X,
and, therefore, P = R*. O

Lemma 6. Let P = (X, <) be a bipartite order, then Idim P = Idim Stack(P).

Proof. From Lemma 5 we obtain Idim Stack(P) > Idim P. As noted in the Intro-
duction and proved in Theorems 1 and 2 Idim P = dim Stack(P). Together this gives
Idim Stack(P) > dim Stack(P), the converse of this inequality is trivially valid for every
order. a

Theorem 7 shows, that a classification of 3-interval irreducible posets amounts in

work with partial stacks of bipartite orders. We, therefore, require a suitable notation
for these objects.
Remark. An intuitive approach to partial stacks of a (connected) bipartite poset
P = (X, <p) would be the following: Let A = Min(P) and B = Max(P). Consider
the interval representation of P on B(P) = (Y, <g). The intervals of elements a € A
have L(a) = 0 and for b € B have U(b) = 1. These are called free-ends. This name
is motivated by the observation: Suppose two functions L', U’ : X — Y are given,
such that, 0 < L'(a) < U(a) and U'(a) = U(a) for all « € A and L'(b) = L(b) and
1 > U’'(b) > L(b) for all b € B. The intervals (L'(z),U’(z)) then define an ordering
P = (X, <), such that, (A x B)N <p = (A x B)N <%, i.e., a partial stack of P. For
an example see Figure 3.
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Ficure 3. A placement of the free-ends in C and the corresponding partial stack of
0.
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Unfortunately the above construction will not lead to all partial stacks. As an
example note that there are partial stacks of O, with ¢§ > by but ¢§||a®. These partial
stacks are not representable on B(Q,). Therefore we require a more formal description
of partial stacks.

Let Succgp(z) (Predsp(z))denote the successor sets (predecessor sets) of z in
Stack(P). To describe a partial stack () = (X, <g) of a bipartite poset P = (X, <p)
we will, henceforth, use sets

Succ(z) with Suce(z) C Succgp(z) for each 2 € Max(P),

Pred(z) with Pred(z) C Predsp(z) for each @ € Min(P).
If such a family of sets is given, then the partial stack ¢ of PP denoted by the family is
the transitive closure of the union of all relations occurring in these sets together with
the relations of P.

Lemma 5 and Lemma 6 might suggest that Idim P = Idim @} for every partial stack
@ of P. This, however, is far from truth as the next lemma shows.

Lemma 7. For every integer n there is a bipartite interval order I, such that, every
bipartite poset R on n elements is a suborder of some partial stack Iy of I.

Proof. As I we take the interval order with 2n minimal elements { a4,...,as, } and
with 2n maximal elements {by,...,bs, }. The relations of I are: a; < b; exactly if
i < j. Now fix a bipartite n-element poset R with minimal elements { zy,...,2; } and
maximal elements { y1,...,y,_x }. A partial stack Ir containing R is given by:

Pred(a;) = 0 forl1<i<k

Pred(a;) = {ay,...,aq,}U{bj:2;<gpy,} fork<i<2n

Succ(b;)) = {bgy1,. b JU{apy;t2; <gpy;} for1<i<k

Succ(b;) = 0 fork<i<2n

Note, that B([) is a chain of length 2n 4 2, while B(Ig) consists of a chain of length
2n+ 3, where the element &+ 1 has been substituted by a copy of B(R) without 0 and
1. O

As a consequence we obtain, that the gap between the interval dimension of a bipar-
tite poset P and and the interval dimension of partial stacks of P can be arbitrarily
high.

We now turn to the partial stacks of G,,, and H,,,. There will be some indications, that
the complete classification of 3-interval irreducible posets among the reduced partial
stacks of these two orders might be intractable.

Theorem 8. FEvery bipartite poset R is a suborder of a partial stack Qr of G (M)
Moreover, every bipartite 2-dimensional poset R is a suborder of an 3-interval irre-
ducible partial stack of G, (H).



3-INTERVAL IRREDUCIBLE PARTIALLY ORDERED SETS 23

Proof. We prove the theorem for partial stacks of H,,. The idea behind the proof is
the same as in the proof of Lemma 7.

Let R be a bipartite n-element poset with minimal elements {z,...,z;} and
maximal elements {y,...,y,_x}. Also, let a copy of H,_, be given on the set
{af, ... ab Yu{bs, ... 0h  Yu{ct,d yufat, ... at Ju{oy, ... b u{c*,d"}. The
relations of H,_, are: 2* > y* exactly if z > y in H,_,. A partial stack Qg of H,_»
containing R is given by:

Pred(a?) = 0 for1<i<k

Pred(af) = {a}:1<j<k}u{d}:1<j<k}u{al:z; <puy}
fork<i<n

Succ(aj) = {af:k<j<n}u{bi:k<j<n+1}U{a}:2;<py;}
forl <1<k

Succ(af) = @ fork<i<n

All other elements z* have Succ(z) = 0 and all other elements 2* have Pred(z*) = 0.
This gives a partial stack Qg of H,, and the poset generated by the elements { af: 1 <
i <k}U{a!:k<i<n}isisomorphic to R.

Let H_, be isomorphic to H,_, together with a new element e such that Pred(e) =
{ay,...,a5,by,..., by} and Succ(e) = {api1,.-.. @n,b512,...,0,01}. The order
B(Qpr) is obtained by substituting e in H}_, by a copy of B(R) without 0 and 1.

If R is 2-dimensional, then we claim that Qg is 3-interval irreducible. To verify
this it suffices to consider the effect of point deletion in () only on the essentially
3-dimensional part of B(Qg), i.e., on H} _, O

Remark. Let H,, = (X, <) and let the completion by cuts of H,, be denoted by
L(H,) = (X UY,<). A large class of 3-interval irreducible reduced partial stacks of
‘H,. can be characterized by the following two properties:
(1) B(Q) is an order isomorphic to L(H,,) with elements of ¥ substituted by (pos-
sibly empty) 2-dimensional posets.
(2) If z is (-labeled (u-labeled) in H,,, then there is a unique element y € @ with
L(y) =« (U(y) = @).
Similar properties describe a large class of 3-interval irreducible reduced partial stacks

of G,,.

However, there are more complex examples among the 3-irreducible partial stacks of
Gm (M,,). Here is an example.

Example.

Let G, consist of the elements { a$, a4, b}, b5, 05, ¢ YU{ @Y, a¥, ay, by, by, c* } and relations
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xt > y¥ exactly if z > y in Gy. Let Q be the partial stack of G, defined by:

Succ(ay) = {ag,az, b3}
Succ(by) = {as,by, by, b5}
Pred(ag) = {ay a3, a3,b}}

Pred(by) = {a b} b}

All other elements 2* have Succ(z) = 0 and all other elements 2* have Pred(z*) = (.
This gives a partial stack @ of Gy which does not fall into the class of the previous
remark.

With these partial results we leave the classification of 3-interval irreducible reduced
partial stacks of G,, and H,, as an open problem.

Problem 1. Characterize the 3-interval irreducible reduced partial stacks of G,, and

Hon .

We now turn to the partial stacks of the other bipartite 3-interval irreducible posets.
With the next theorem we classify the 3-interval irreducible orders among them.

Theorem 9. Fvery partial stack of A,, O, Os, Oz, &,, T, Fy for every integer n > 0
and every partial stack of F, (n > 0) which has neither (af, ., < b, and af,,||e") nor
(0% > a and bY||c*) is a 3-interval irreducible poset.

Proof. The argument is again divided into a series of cases. As criterion for the
irreducibility of a candidate partial stack (2 we use a technical lemma.

Lemma 8. Let P = (X, <p) be a poset of interval dimension 3. Let Q = (Y, <g) be
3-irreducible and let P have an interval representation on @ P is 3-interval irreducible
if the following three conditions are satisfied:
(1) For every element y of Q one of three cases applies

(a) y has two essential labels.

(b) y has an essential label { and a unique element y' in @ is covered by y.

(¢) y has an essential label v and a unique element y" in @ is covering y.
(2) Fvery element of Q has an essential label and every essential label of () is satisfied
by exactly one element of P.
(3) Fvery element of P satisfies at least one essential label of Q).

Proof. We have to show that for every € X the interval dimension of P, is at most 2.
To do this we exhibit a poset Q(z) of dimension 2 admitting an interval representation
of P,.

Let z € X and let y, be an element of ) such that z satisfies an essential label at
Y.. By duality we may suppose, that z satisfies the label £ at y,. We distinguish two

cases.
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Suppose, that y, has two essential labels. Let R = (Z,<g) be the bipartite 3-
interval irreducible poset corresponding to the essential labels of ). By definition, R,
has interval dimension 2 and, hence, dim B(R,:) = 2. We claim that P, has an interval
representation on B(R,:). Let 2’ be any element of P,, and denote the two endpoints
of the interval of 2’ on Q by L(z')y =y, and U(z') = yo. If yy = 0 or yo = 1, then
the mappings L*,U* : P, — B(R,:), also map the corresponding interval end to 0 or
1. Let the essential labels at y;,y, be pi, ps. In R we find elements y" and y5*> with
vt # yp and yi* # yp. Now, let L*(a') = L(y{") if py = € and L*(2") = U(y") if
p1 = w. Similarly, U*(2’) = L(y{") if py = Cand U*(2’) = U(y1") if py = u. It is easy to
verify that the mappings L*, U* : P, — B(R,:) indeed define an interval representation
of P,.

Next, suppose that there is no essential label at y,. Our assumptions imply, that
there is a unique element y., covered by y,. We claim that P, has an interval represen-
tation on @; Since ) is 3-irreducible we conclude that dim @; = 2 and, hence, that
the interval dimension of F, is 2. As mappings L*, U*: P, — @ choose the mappings
induced by L, U : P — @, except for elements 2’ with U(a2’) = y,.. For such an element
let U*(2’) = y,. Again, it is easy to verify that the mappings L*, U*: P, — @; define
an interval representation of P,. O

Case 1. P is a partial stack of A,.
Since Stack(A,) = A, we obtain ) = A, and P is 3-interval irreducible.

Case 2. P is a partial stack of O;.

The partial stacks of O, differ only in Succ(bf) for i = 1,2,3 which is either empty or
{¢!}. An interval representation on B is obtained if we let U(b!) = ¢; when Suce(b?) =
{ ¢t} and else U(bf) = 1. These representations satisfy the conditions of Lemma 8 and,
hence, P is 3-interval irreducible.

Case 3. P is a partial stack of Os.
If Pred(ct) is one of {a®, b} } or {a*} or @ and Pred(c}) is one of { a*, by} or {a" } or
(0, then B(P) = C. Moreover, the pair (P, C) satisfies the conditions of Lemma 8 and,
therefore, P is 3-interval irreducible.

If Pred(c}) is one of { a*, b} } or { a* } or () but Pred(cy) = { b4 }, then B(P) = GX\ld.
Again, Lemma 8 yields the 3-interval irreducibility of P.

By symmetry, we may now assume that Pred(c¥) = {b% } and Pred(c})) = {b%}.

Here, B(P) = GX\zd and again, P is 3-interval irreducible by Lemma 8.

Case 4. P is a partial stack of Os.

All partial stacks of O3, together with interval representations on Ex\z can be obtained
by all possible choices of L(b%) € {a;,0}, L(0%) € {as,0}, U(b)) € {¢,1} and U(af) €
{b2,1}. With Lemma 8 we then obtain the 3-interval irreducibility of P.
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Case 5. P is a partial stack of &,.

All partial stacks of &,, together with interval representations on ]ET” can be ob-
tained by all possible choices of L(bY) € {a;,0}, L(bi,5) € {ap42,0} and for
x € {bh,... b, c"} either U(z) = d or U(z) = 1. These representations satisfy
the conditions of Lemma 8 and, hence, P is 3-interval irreducible.

Case 6. P is a partial stack of Z,.

First, suppose that n = 0 and let DT be obtained from D by adding a new element
d with d > by and d < ¢;, ;. We claim that every partial stack of Z; has an interval
representation on DT, It should be clear that for ¢ = 1,3 we find an appropriate point
for U(b%) and L(b¥) in D*. It remains to consider U(b5). In Stack(Z,) the successor
set of 0% is { ¢t ¢§ } and, hence, Succp(b5) C {cf,c5}. If Succp (b)) = { ct, ¢}, then let
U(b5) = d. Tf Succp(by) = {ci} with ¢ = 1 or ¢ = 2, then let U(b5) = ¢;. Finally, if
Sucep (b5) = 0, then let U(b5) = 1. With a slight generalization of Lemma 8 we obtain
the 3-interval irreducibility of P.

Now, let n > 0 and let I’ be obtained from I, by adding a new element e with
e <dy,e<dye>cande>b fori=2,...,n+2. An analysis as in the previous case
shows that every partial stack of Z, has an interval representation on I'. (Note that
I/\: = L(I,)). Again, the 3-interval irreducibility of P follows from the generalization of
Lemma 8.

Case 7. P is a partial stack of Fj.
If Pred(by) is one of { a%, ¢* } or { ¢* } or () and Succ(ab) is one of { b5, e} or { e} or 0,
then B(P) = F,. Moreover, the pair (P, F,) satisfies the conditions of Lemma 8 and,
therefore, P is 3-interval irreducible.

If Pred(b%) is one of { a¥,c" } or { ¢* } or ) but Succ(al) = { b5}, then B(P) = F/‘}Eld.
Again, Lemma 8 yields the 3-interval irreducibility of P.

By symmetry we may now assume that Pred(b%) = {a¥} and Succ(a$) = {b%}.

Here, B(P) = F/‘)Ezd and P is 3-interval irreducible by Lemma 8.

Case 8. P is a partial stack of F,, with n > 0.
Suppose that Succp(al,,) = {bl,,}. The bipartite subposet of P with minimal el-
ements {af,...,at,,,b},d"} and {bf,... b}, d" e} as maximal elements forms a
copy of &,_;. If we remove ¢ and aj;,, from P to obtain P~, then P~ is a partial
stack of £,_;. Therefore, P is not irreducible.

We may now assume that Succp(al,,) is either {b ., e’} or {e"} or 0. Dually, we
may assume that Predp(by) is {aY,c*} or {¢*} or (. Tt follows that B(P) = F, and
with Lemma 8 that P is 3-interval irreducible.
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