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Graphs admitting d-realizers:
spanning-tree-decompositions and box-representations
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Abstract

A d-realizer is a collection R = {π1, . . . , πd} of d per-
mutations of a set V representing an antichain in Rd.
We use R to define a graph GR on the suspended set
V + = V ∪ {s1, . . . , sd}. It turns out that GR has dn+

(
d
2

)
edges (n = |V |), among them the edges of the outer clique
on {s1, . . . , sd}. The inner edges of GR can be partitioned
into d trees such that Ti spans V + si. In the case d = 3
the graph GR is a planar triangulation and T1, T2, T3 is
a Schnyder wood on GR. The following two results show
that d-realizers resemble Schnyder woods in several as-
pects:

• Complete point-face contact systems of homothetic
simplices in Rd−1 induce a d-realizer.

• Any spanning subgraph of a graph G with a d-realizer
has a d-dimensional proper touching box representa-
tion.

We expect that d-realizers will prove to be valuable gen-
eralization of Schnyder woods to higher dimensions.

1 Introduction

We consider Rd equipped with the dominance order, i.e.,
for x, y ∈ Rd we have x ≤dom y if and only if xi ≤ yi
for i = 1, . . . , d. A set P ⊂ Rd is in general position if
no two points of P share a coordinate. If no two points
of a set P are in the dominance relation ≤dom, then we
call P an antichain. If P is in general position, then the
projection to the ith coordinate yields a permutation πi

of P . In compliance with the previous definition, we call a
family of permutations π1, . . . , πd of V an antichain if for
all x, y ∈ V there are indices i and j such that x precedes
y in πi and y precedes x in πj . We use the notation x ≺i y
to denote that x precedes y in πi.

An antichain V in Rd is suspended if V contains
a suspension vertex for each i, i.e., a vertex si =
(0, . . . , 0,Mi, 0, . . . , 0) and 0 ≤ vi < Mi for all v ∈ V \ si.

1Dept. of Computer Science, Univ. of British Columbia,
Vancouver, B.C. V6T 1Z4 Canada

2Institut für Mathematik, Technische Universität Berlin,
D-10623 Berlin, Germany

3Dept. of Computer Science, University of Arizona,
Tucson, AZ, USA

4Dept. of Mathematics, Karlsruhe Institute of Technology,
D-76128 Karlsruhe, Germany

aResearch supported in part by NSERC of Canada
bPartially supported by DFG grant FE-340/7-2 and ESF
EuroGIGA project GraDR.

cResearch funded in part by NSF grants CCF-0545743 and
CCF-1115971

Similarly si is an i-suspension for π1, . . . , πd if si is the
last element of πi and among the first d − 1 elements in
πj for j 6= i. The family π1, . . . , πd is suspended if it has
an i-suspension for each i ∈ [d].

Definition 1 A d-realizer is a suspended antichain
π1, . . . , πd of permutations of V + where V + = V ∪ S and
S = {s1, . . . , sd} is the set of suspensions.

Definition 2 The graph of a d-realizer (π1, . . . , πd) is the
graph GR = (V +, E+) with E+ = ER ∪ ES where ES is
the set of edges of a clique on S and pairs x, y are edges
in ER if they satisfy two properties:

(x, y) is a candidate pair: for all z 6= x, y there is an i
with x ≺i z and y ≺i z.

(x, y) has the 1-of-d -property: there is a unique i ∈
[d] with x ≺i y, i.e., y ≺j x for all j 6= i.

The definition of Schnyder woods was originally motivated
by the study of the order dimension of incidence posets of
graphs. In this line of research the following definition was
proposed in [8]:

The dimension of G = (V,E) is at most k if there are
permutations π1, . . . , πk of V such that each edge (x, y) ∈
E is a candidate pair.

If G is two-connected, then it follows that π1, . . . , πk is
a antichain. The following are known:

• dim(G) ≤ 3 iff G is planar (Schnyder [12]).

• dim(G) ≤ 4 =⇒ G has at most 3/8n2 edges.

• Exact values of dim(Kn) are known for n < 1040.

The 1-of-d -property naturally leads to a coloring and an
orientation of the edges of GR: The orientation is x→ y if
x precedes y only in a single πi. The color of x→ y is the
index i with x ≺i y. Let Ti be the set of edges of color i.

Note that in the case d = 3 the 1-of-3-property is ful-
filled by all candidate edges; this is where Schnyder’s col-
oring and orientation of edges comes from. Schnyder [12]
found that for all i the following two properties hold:

(a) Ti is an in-arborescence with root si.

(b) Ti−1 + Ti+1 + T−1
i is acyclic.
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Fig. 1: An example of a 3-realizer and its graph.



30th European Workshop on Computational Geometry, 2014

In the next section we show that this also holds in the
case of a d-realizer. In Section 3 we continue to show how
d-realizer can be used to construct proper touching box
representations; the d = 3 case of this result was obtained
in [1]. In Section 4 we connect d-realizers to orthogonal
surfaces and show how they arise from touching simplices.
We conclude with examples and some open problems.

2 Spanning-tree-decompositions

Proposition 1 Let a graph be defined by a d-realizer
(π1, . . . , πd). If Ti is the set of edges of color i, then Ti is
an in-arborescence with root si.

Proof. We first show that each v ∈ V has a unique out-
edge in Ti.

Let Hi(x) be the set of all y with x ≺i y and y ≺j x for
all j 6= i, i.e., the set of all y such that the pair (x, y) has
the 1-of-d -property. Since the pair (x, si) has the 1-of-d -
property Hi(x) 6= ∅ for all v ∈ V . Let pi(x) be the first
element of Hi(x) with respect to πi, i.e., pi(x) is the least
element of πi such that (x, pi(x)) has the 1-of-d -property.

Claim 1. (x, pi(x)) is a candidate.

Consider z 6= x, pi(x). Since a d-realizer is an antichain
there is some j with x ≺j z. If j 6= i, then pi(x) ≺j x
and by transitivity pi(x) ≺j z. If the only choice for j is
i, then z ∈ Hi(x) and pi(x) ≺j z follows from the choice
of pi(x). 4

From Claim 1 it follows that (x, pi(x)) ∈ Ti.

Claim 2. If (x, y) is a candidate with y ∈ Hi(x), then
y = pi(x).

Indeed if y 6= pi(x) then there is no πj where x and y
precede pi(x). In πi we have x ≺i pi(x) ≺i y and if j 6= i,
then pi(x) ≺j x. 4

Hence (x, pi(x)) is the only out-edge of x in Ti. There-
fore the number of edges of Ti is |V |. Since Ti is spanning
V + si it only remains to show that Ti is connected. For
x ∈ V define x0 = x and for k ≥ 0 let xk+1 = pi(xk).
This defines a path that moves to the right on πi; hence
it must reach si.

Corollary 1 A graph GR defined by a d-realizer on a
vertex set V + with |V +| = n+ d has dn+

(
d
2

)
edges.

Proposition 2 If GR is defined by a d-realizer , then
T−1
i +

∑
j 6=i Tj is acyclic.

Proof. From the 1-of-d -property it follows that directed
edges from Tj with j 6= i point to the left in the order
of vertices given by πi. The same is true if we revert
the direction of the edges of Ti, i.e, for the directed edges
of T−1

i .

3 Box-representations

We consider axis aligned boxes in d-space. Such a box is
a set B(a, b) = {x ∈ Rd : a ≤dom x ≤dom b} or equivalently
B(a, b) =

∏d
i=1[ai, bi]. The interior of B(a, b) is {x ∈ Rd :

a <dom x <dom b} =
∏d

i=1(ai, bi). Two boxes B and B′

are properly touching iff they have a unique separating
hyperplane H = {x ∈ Rd : nT

H · x = bH}, i.e., nT
H · x ≤ bH

for all x ∈ B and nT
H · x ≥ bH for all x ∈ B′. In other

words, B and B′ are properly touching if their interiors
are disjoint and their intersection is (d− 1)-dimensional.

Definition 3 A proper touching box representation of a
graph G = (V,E) in d dimensions consists of a map v →
Bv from the vertices to d-dimensional boxes with pairwise
disjoint interiors, such that boxes Bu and Bv are properly
touching iff (u, v) ∈ E.

Box representations of graphs have been studied in 2D
with different names, e.g as rectangle contact graphs. Sur-
veys of the state of the art can be found in [3] and [5].

For 3D, Thomassen [13] shows that any planar graph
has a proper touching box representation. Felsner and
Francis [6] prove that any planar graph has a touching
cube representation, if the graph is a subgraph of a 4-
connected triangulation the representation is proper. New
proofs of Thomassen’s result and additional results on
cube representations can be found in [1].

Theorem 1 Any spanning subgraph H of a graph G with
a d-realizer has a d-dimensional proper touching box rep-
resentation.

Proof. Let (π1, . . . , πd) be the d-realizer for G. We assume
that the order of the first d − 1 elements in πi (these are
suspensions) is (s1, . . . , si−1, si+1, . . . , sd). This has the
advantage that for i < j the pair (sj , si) has the 1-of-d -
property. The pair is a candidate so we can treat it as a
regular edge in Ti.

With ranki(x) we denote the position of x in πi, i.e.,
if we think of πi as a bijective map πi : [n + d] → V +,
then ranki(x) = π−1

i (x). For each x and i we define pi(x)
as in Prop 1. For a suspension si and all j with i ≤ j
we assume the value n + d + 1 for the strictly speaking
undefined expression rankj(pj(si)).

We now show how to represent G. The box for vertex x
in G is B(x) =

∏d
i=1[ranki(x), ranki(pi(x))].
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Fig. 2: The proper touching box representation of the
graph from Fig. 1 obtained with our method. The view is
from below, i.e., the labeled corners are the minima of the
boxes.
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We need to show proper contact between the box B(x)
and the box B(pi(x)) for all i. Let y = pi(x). Since
the projection to B(x) and B(y) to dimension i share
the point ranki(y), it suffices to show that rankj(x) ∈
(rankj(y), rankj(pj(y))) for all j 6= i. By the 1-of-d -
property, rankj(y) < rankj(x) for all j 6= i. So it suffices
to check that rankj(x) < rankj(pj(y)) for all j 6= i.

Let z = pj(y) and suppose z ≺j x. By the 1-of-d -
property, z ≺k y for all k 6= j. Since y ≺k x for all
k 6= i transitivity implies that z ≺k x for all k 6= i, j and
by supposition also for k = j. Since a d-realizer is an
antichain we can conclude that x ≺i z.

It now happens that (x, z) and (x, y) both have the 1-
of-d -property and x ≺i z ≺i y. This however contradicts
the choice of y = pi(x) as the least element of πi such that
(x, y) has the 1-of-d -property. Therefore x ≺j z as needed
for the box contact.

To represent a subgraph of G, remove unneeded boxes
and edges from the box representation. To get rid of an
edge (x, pi(x)) change the extent of B(x) in dimension i
to [ranki(x), ranki(pi(x))− ε].

4 Orthogonal surfaces and simplices

In this section we take a more geometric look at the graphs
of d-realizers.

With a point p ∈ Rd we associate its cone C(p) = {q ∈
Rd : p ≤dom q}. The filter 〈V 〉 generated by V is the union
of all cones C(v) for v ∈ V . The orthogonal surface SV

generated by V is the boundary of 〈V 〉. A point p ∈ Rd

belongs to SV if and only if p shares a coordinate with all
v ≤dom p, v ∈ V . The generating set V is an antichain if
and only if all elements of V appear as minima on SV .

Fig. 3: Two orthogonal surfaces in R3: the left one is
generated by a suspended antichain in general position;
the antichain generating the right one is neither suspended
nor in general position. As usual for orthogonal surfaces
we take a view from above, the generating points are the
minima of the surface.

Miller [10] observed the connection between Schnyder
woods and orthogonal surfaces in R3. He and subse-
quently others [4, 9] used orthogonal surfaces to give new
proofs for the Brightwell-Trotter theorem about the order
dimension of face lattices of 3-polytopes [2]. In fact the
dominance order of critical points (maxima, minima, and
saddle points) of a 3-dimensional orthogonal surface that
is generated by a suspended antichain is the truncated face
lattice of a 3-polytope with one facet removed. The con-
verse also holds: every 3-polytope with a facet, selected
for removal, has a corresponding orthogonal surface.

The Brightwell-Trotter theorem is an important gener-
alization of Schnyder’s dimension theorem. Since orthog-

onal surfaces can be considered in arbitrary dimensions
they provide a direction for generalizing Schnyder struc-
tures to higher dimensions. This approach has been taken
in [7]. The strongest result in the area is a theorem of
Scarf [11] that can be restated as follows: the dominance
order of critical points of a d-dimensional orthogonal sur-
face that is generated by a suspended antichain in gen-
eral position is the truncated face lattice of a simplicial
d-polytope with one facet removed. However, the general
situation is not nearly as nice as in 3 dimensions. There
are simplicial d-polytopes that do not have a correspond-
ing orthogonal surface and if we allow non-general position
the dominance order of critical points need not even be a
truncated lattice [7].

The orthogonal surface view for graphs given by a d-
realizer R is as follows: Embed vertex v at the point pv
whose coordinates are the ranks of v in the realizer. The
out-neighbor of v in color i is the vertex w whose cone
C(pw) is first hit by the ray leaving pv in the ith coordinate
direction.

In the 3-dimensional case we can embed every triangu-
lation (graph with a 3-realizer) on an orthogonal surface
SV with a coplanar V , i.e., all p ∈ V lie in a plane h with
normal 1 = (1, 1, 1). Identifying h with R2 we can find
the three edges of a vertex v by growing homothetic equi-
lateral triangles with a corner in v until they hit another
vertex; Fig. 4 shows an example.

Fig. 4: The graph from Fig. 1 on a coplanar orthogonal
surface and a sketch illustrating how to recover the out-
edges of a vertex from the generating set of points in the
plane.

In the same way we may use a set of points in d-space
and the homothets of a d-simplex to build a graph from
the class defined by (d + 1)-realizers. The details are as
follows: Let ∆ be a fixed d-simplex in Rd and let P be a
set of points such that no hyperplane parallel to a facet of
∆ contains more than one point (this is the appropriate
general position assumption). Let S be the set of corners
of a homothet of the dual of ∆ that contains P , this is the
set of suspensions. Now, for each point p ∈ P and each
corner x of ∆ find the unique point q such that there is a
homothety that maps ∆ to ∆′ such that (1) the corner x
of ∆′ is at p (2) ∆′ has no point of P in the interior and (3)
q is on the boundary of ∆′. This condition characterizes
the edges p→ q of color x in the graph G∆(P ).

Problem 1 Let G be the graph of a d-realizer. Is it al-
ways possible to find a point set P in Rd−1 such that
G = G∆(P )?

There is one class of graphs where we know that the an-
swer to the problem is yes. These are the skeleton graphs
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of d-dimensional stacked polytopes, also known as sim-
ple d-trees. A d-tree is a graph admitting a stacking se-
quence, i.e., a listing v1, v2, . . . , vn of the vertices such that
v1, . . . , vd+1 is a clique and for each j > d+1 the neighbors
of vj with indices < j induce a clique Cj of size d. A d tree
is simple if Ci 6= Cj whenever i 6= j, i.e., each d-clique can
be used at most once for stacking. If G is a simple d-tree
a corresponding point set P can be constructed along the
stacking sequence.

In fact, besides this class we know only a few examples
of graphs that have a d-realizer with d > 3. We know
that unlike in the d = 3 case we also have non-simple d-
trees in the class: Consider a simple d-tree with realizer
(π1, . . . , πd) and let x be a vertex with deg(x) = d, for
example the last vertex of the construction sequence has
this property. Add a new vertex x′ by placing it imme-
diately before x in π1 and π2 and immediately after x in
all the other πj . It is easily seen that x and x′ have the
same neighbors in the same colors, in particular they are
stacked over the same clique.

Problem 2 Characterize the d-trees that have a d-
realizer.

Problem 3 Find meaningful examples and families of
graphs that have a d-realizer.

Regarding the recognition of graphs that have a d-
realizer, we have the criterion that to qualify, a graph G
must contain a d-clique of suspensions such that there is
an orientation of the edges of G with out-deg(x) = d for
all non-suspensions x.

Problem 4 Identify additional obstructions against hav-
ing a d-realizer.

Another situation where induced subgraphs of graphs
with a (d+ 1)-realizer appear is given by families of inte-
riorly disjoint pairwise homothetic d-simplices in d-space
with vertex-facet incidences. To produce a d-realizer for
a supergraph add a small d-simplex over each vertex that
does not take part in a vertex-facet contact and then use
the directions of inward pointing normals of the facets to
list the simplices. Figure 5 shows an example in 2 dimen-
sions.

a c

b cas1

b

c
ab b

c
a

s3

s2

Fig. 5: A 3-realizer from homothetic triangles.

Problem 5 Is it possible to realize every simple d-tree as
vertex-facet contact graph of homothetic simplices in Rd?
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