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Preface

“I count a lot of things that there’s no need to count,”

Cameron said. “Just because that’s the way I am.

But I count all the things that need to be counted.”

Richard Brautigan

These lecture notes give a very brief introduction to Extremal and
Probabilistic Combinatorics. Extremal Combinatorics, as one might
guess, is about extreme behaviours. For instance, what is the largest
number of edges in a graph with no triangles? How ‘small’ must a
set of integers be if it does not contain any arithmetic progressions
of length 3? Probabilistic Combinatorics deals with the behaviour of
random discrete structures, and how they can be harnessed to under-
stand deterministic problems. It might seem odd that Probability,
which usually deals with typical phenomena, is somehow related to
extremal behaviour, which would seem exceptional, but we will see
that the field is filled with tantalizing examples of this.

Combinatorics is unique among current research areas in Mathe-
matics in that its prerequisites are minimal. Many important prob-
lems in the field can be understood by newcomers, and a few have
actually been solved by them! This peculiarity has allowed us to
present both classical results and recent ideas, while keeping most of
the text accessible to students with very little mathematical back-
ground. Chapter 5 is the main exception to this rule, but one may
still be able to get a sense of what is going on there without delving
too deeply into abstract Mathematics.

Of course, saying that Combinatorics is (mostly) elementary does
not imply that it is easy. Many people get hooked to Combinatorics

3
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4 CONTENTS

precisely because its problems can be so challenging. Our readers
should be prepared to take up the challenge and attempt to solve
all of the exercises in the text, as well as to fill in missing steps and
proofs that are ‘left to the reader’. No-one should be discouraged
if a few of those problems turn out to be unwieldy. Unsuccessful
attempts may give one a better idea about what is not obvious about
a given problem and will make the study of other people’s ideas more
profitable. Bollobas’ book [2] may be especially useful as a source of
complete proofs and pointers to the literature.

Although we shall only be able to scratch the surface of the mod-
ern study of Combinatorics, we hope that the reader will come away
with a flavour of the subject, and will be inspired to explore some of
the ‘further reading’ recommended at the end of each chapter. The
area is overflowing with beautiful and accessible problems, and, in
Bollobás’ words: “just as a bear-cub can acquire life-skills through
play, so the reader can learn skills for a mathematical life simply by
solving, or trying to solve such problems.” If you keep your “brain
open” then, with a little luck, you will be able to say (as Gauss did),
“Like a sudden flash of lightning, the riddle happened to be solved!”

Roberto Imbuzeiro and Rob Morris

Rio de Janeiro, May 2011
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Chapter 1

Preliminaries

In Geometry (which is the only science that it hath

pleased God hitherto to bestow on mankind), men

begin at settling the significations of their words;

which . . . they call Definitions.

Thomas Hobbes, Leviathan

1.1 Numbers and sets

In these notes, N � t1, 2, . . . u denotes the set of positive integers, and
rns � t1, . . . , nu denotes the set of all positive integers from 1 to n.

Given a set S, |S| is the number of elements of S (which may be
infinite). For k P N,

�
S
k

�
is the set whose elements are all k-element

subsets of S. Thus for any finite S with |S| � n, and any 0 ¤ k ¤ n,
the number of elements in

�
S
k

�
is the binomial coefficient:

����
�
S

k


���� �
�
n

k



� n!

k!pn� kq! .

The classical lower bound k! ¥ pk{eqk, valid for all k P N, implies the
following useful upper bound for the binomial coefficients, which is

5
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6 CHAPTER 1. PRELIMINARIES

not far from the (easy) lower bound:�
n

k


k
¤

�
n

k



¤

�
en

k


k
.

The set
�rns

2

�
will be special for us due to its connection with the

edge set of a graph (see below). We will think of
�
S
2

�
as the set of

unordered pairs of elements in S and will often write su or us for an
element tu, su P S.

1.2 Asymptotics

Given sequences tanu, tbnu of positive numbers, we write an � Opbnq
if there exists a constant C ¡ 0 such that |an| ¤ C bn for all large
enough n. We write an � opbnq or an ! bn if an{bn Ñ 0 as nÑ8.

1.3 Graphs

A graph G is pair pV,Eq where V is a set of elements, called vertices,
and E � �

V
2

�
is a set of edges. We shall write |G| (instead of |V |) for

the number of vertices in G and epGq (instead of |E|) for the number
of edges in G. Given v, w P V , we say that v and w are adjacent in
G, and write v � w, if vw P E. G is said to be complete if v � w
for all distinct v, w P V , or equivalently, if E � �

V
2

�
. The complete

graph with vertex set rns will be denoted by Kn.
A path in G is a sequence of distinct vertices pv0, v1, . . . , vkq with

vi�1 � vi for each i P rks. If vk � v0 as well, we have a cycle. G is
connected if for any two distinct vertices v, w P V there exists a path
pv0, v1, . . . , vkq with v0 � v and vk � w. A connected graph with
no cycles is called a tree. A graph is bipartite if it contains no cycles
of odd length, which means that there exists some A � V such that
there are no edges tv, wu � A, and no edges tv, wu � V zA.

A subgraph G1 of G is a graph G1 � pV 1, E1q with V 1 � V and
E1 � E X �

V 1

2

�
. If E1 � E X �

V 1

2

�
, G1 is said to be induced by V 1 and

we write G1 � GrV 1s. For disjoint A,B � V pGq, we write GrA,Bs for
the induced bipartite graph whose vertex set is AYB which contains
all edges ab P E with a P A, b P B.
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1.4. PROBABILITY 7

A subset S � V pGq of size k such that GrSs is a complete graph is
called a k-clique. A set S � V such that GrSs has no edges is called
an independent set.

1.4 Probability

In these notes we only consider finite probability spaces. A finite
probability space is defined by a non-empty finite set Ω called the
state space and a function P : Ω Ñ r0, 1s that assigns a probability
Ppωq to each ω P Ω. The probabilities are assumed to satisfy:¸

ωPΩ

Ppωq � 1.

Subsets E � Ω are called events, and we write PpEq � °
ωPE Ppωq

(by definition, this sum is 0 if E is empty). The most basic case of
the Inclusion-Exclusion principle shows that, for all E1, E2 � Ω:

PpE1 Y E2q � PpE1q � PpE2q � PpE1 X E2q ¤ PpE1q � PpE2q.

A mapping X : Ω Ñ R is called a random variable. The expectation
of X is given by:

EpXq �
¸
ωPΩ

XpωqPpωq.

The variance of X is VarpXq :� E
�pX �EpXqq2�, which is also equal

to EpX2q � EpXq2. This implies in particular that EpXq2 ¤ EpX2q
for any random variable.

We shall often write expressions such as tX ¡ tu and tX � xu
to denote the events tω P Ω : Xpωq ¡ tu and tω P Ω : Xpωq �
xu (respectively). In the text we will usually not bother to define
the specific probability space we are using; rather, we shall focus on
events and random variables.

Two final definitions: A sequence of events E1, . . . , Em � Ω is
said to be independent if, for every H � A � rms,

P
�£
iPA

Ei



�

¹
iPA

PpEiq.



i
i

“”Extremal and Probabilistic Combinatorics”” — 2011/5/12 — 17:23 — page 8 — #8 i
i

i
i

i
i

8 CHAPTER 1. PRELIMINARIES

Notice that the events remain independent if some of them are re-
placed by their complements in Ω. Finally, a sequence X1, . . . , Xm of
random variables is independent if, for all x1, . . . , xm P R, the events
tX1 � x1u, . . . , tXm � xmu are independent. In this case,

Var
� m̧

i�1

Xi



�

m̧

i�1

VarpXiq,

i.e., the variance of a sum of independent random variables equals
the sum of the variances.
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Chapter 2

Ramsey Theory

My brain is open

Paul Erdős

Ramsey Theory is the study of finding order in chaos. We shall
begin with some motivation from Number Theory.

2.1 Number Theory

The problem of solving equations in the integers is one of the oldest
in mathematics. For example, Pell’s equation

x2 � ny2 � �1

was studied by Brahmagupta in the 7th century, and Fermat’s Last
Theorem, that

xn � yn � zn

has no solutions if n ¥ 3, was open for more than 300 years, before
being proven by Andrew Wiles in 1995. Hilbert’s 10th problem was
to determine whether or not all such ‘Diophantine’ equations are
solvable; the answer (no) was given by Matiyasevich in 1970.

We shall be interested in a different, but related problem: that of
solving equations (or, more generally, systems of equations) in subsets
of the integers. For example, consider the following question:

9
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10 CHAPTER 2. RAMSEY THEORY

Question 2.1.1. What is the maximum ‘density’ of a set A � N
which contains no solution to the equation x� y � z?

The odds have density 1{2, and are sum-free. To see that we can’t
do any better, consider the sets An � AX rns and n�An :� tn� a :
a P Anu, where rns � t1, . . . , nu. If n P A then these sets are disjoint
subsets of rns, and both have size |An|. Thus, |An| ¤ n{2, as required.

Not all such questions are so easy, however. We shall solve the
following problem, known as Roth’s Theorem, later in the course.

Question 2.1.2. What is the maximum ‘density’ of a set A � N
which contains no solution to the equation x� y � 2z?

2.2 Ramsey’s Theorem

In 1916, whilst studying Fermat’s Last Theorem in the group Zp,
Issai Schur came across (and solved) the following, slightly different
question:

Question 2.2.1. Suppose we colour the positive integers with r colours.
Must there exist a monochromatic solution of the equation x�y � z?

Here and in what follows, a “colouring” of a non-empty set S with
r P N colours is just a colourful way of denoting a map c : S Ñ rrs.
The number of t1, . . . , ru are usually the colours, and s P S is painted
with colour i P rrs if cpsq � i. A monochromatic set is a subset A � S
whose elements are all painted with the same colour. Note that it
should be much easier to find a monochromatic solution than to find
a solution in a given set (i.e., colour class); however, if r is large then
each colour class may be quite sparse.

In order to answer Schur’s question, we shall skip forward in time
to 1930, and jump from Germany to England. There we find Frank
Ramsey, a precocious young logician, who is best remembered for the
following beautiful theorem. He considered it only a minor lemma;
as is often the case in Combinatorics, however, the lemma turned out
to be more important than the theorem it was used to prove.

Ramsey’s Theorem. Let r ¥ 1. Every colouring c :
�N

2

� Ñ rrs of
the pairs in N contains an infinite monochromatic subset.
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2.3. SCHUR’S THEOREM 11

In order to prove Theorem 2.2, we shall only need the (infinite)
pigeonhole principle:

“If an infinite number of letters lie in a finite number of pigeonholes,
then some pigeonhole must contain an infinite number of letters.”

Given a colouring c :
�N

2

� Ñ rrs, a colour i and a vertex v P N, let
Nipvq � tw : cpvwq � iu denote the colour i neighbourhood of v.

Proof of Theorem 2.2. We first construct a sequence px1, x2, . . .q of
vertices such that the colour of the edge xixj is determined by minti, ju.
Indeed, let x1 � 1 and X1 � N, and observe that (by the pigeonhole
principle) Ncp1qpx1q is infinite for some cp1q P rrs. Let X2 be that
infinite set (if more than one is infinite then choose one arbitrarily).

Now, given px1, . . . , xn�1q and an infinite set Xn, choose xn P Xn

arbitrarily, note that Ncpnqpxnq X Xn is infinite for some cpnq P rrs,
and let Xn�1 be that infinite set. Since the sets Xn are nested, it
follows that cpxixjq � cpiq for every j ¡ i.

Finally, consider the sequence pcp1q, cp2q, . . .q, and observe that it
contains an infinite monochromatic subsequence. Let pap1q, ap2q, . . .q
be the indices of this subsequence. Then txap1q, xap2q, . . .u is an infi-
nite monochromatic subset of N.

We remark that Ramsey actually proved the following, more gen-
eral theorem.

Ramsey’s Theorem for k-sets. Every r-colouring of the k-subsets
of N contains an infinite monochromatic set.

(Here, a set A is monochromatic if the colouring c is constant on
subsets of A.)

2.3 Schur’s Theorem

We can now answer Schur’s question. Let us call px, y, zq a Schur
triple if x� y � z.

Theorem 2.3.1 (Schur, 1916). Every colouring c : N Ñ rrs contains
a monochromatic Schur triple.
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12 CHAPTER 2. RAMSEY THEORY

Proof. Let c : N Ñ rrs be given, and consider the colouring c1 :
�N

2

�Ñ
rrs defined by

c1
�ta, bu� :� c

�|a� b|�.
By Ramsey’s Theorem, there exists a monochromatic triangle, tx, y, zu,
with x   y   z, say. But then cpy � xq � cpz � xq � cpz � yq, and so
these form a monochromatic Schur triple, as required.

We can also deduce the following theorem, which was Schur’s
motivation for proving the result above.

Corollary 2.3.2 (Schur, 1916). For every n P N, the equation

xn � yn � zn pmod pq
has a non-trivial solution for every sufficiently large prime p.

Proof. Let n P N, consider the subgroup Hn �
 
xn : x P Z�pu ¤ Z�p ,

and partition Z�p into cosets,

Z�p � a1Hn Y . . .Y arHn.

We claim that r ¤ n. Indeed, since x ÞÑ xn is a homomorphism, and
|Hn| is the size of the image, it follows that r � |tx : xn � 1u|, and
xn � 1 has at most n roots.

Thus we have an r-colouring of t1, . . . , p�1u, so, by Theorem 2.3.1,
if p is sufficiently large then there exists a monochromatic Schur triple.
That is, there exist integers x, y and z, none of which is divisible by
p, such that

aix
n � aiy

n � aiz
n pmod pq

for some i P rrs. But ai is invertible, so xn � yn � zn pmod pq, as
required.

2.4 Finite Ramsey’s Theorem

Question 2.4.1. Suppose there are six people at a party. Is it true
that there are either three people all of whom know each other, or
three people none of whom know each other?

Answer: Yes!
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2.4. FINITE RAMSEY’S THEOREM 13

Proof. Suppose without loss of generality (by symmetry) that Alex
knows at least three people, Beta, Carla and Dudu. If any two of these
know each other then they form a ‘good’ triple with Alex, otherwise
they form a good triple themselves.

More generally, define Rpkq, the kth Ramsey number, to be the
smallest value of n such that, given any red-blue colouring of the edges
of the complete graph on n vertices, there exists a monochromatic
complete subgraph on k vertices. It follows from Theorem 2.2 that
Rpkq exists for every k P N. The example above shows that Rp3q � 6.

Theorem 2.4.2 (Erdős and Szekeres, 1935; Erdős, 1947).

p
?

2qk ! Rpkq ! 4k.

For the upper bound, we shall generalize the theorem (in an ap-
propriate way), and use induction. Indeed, for every k, ` P N, let
Rpk, `q denote the smallest n such that any two-colouring of rns con-
tains either a red Kk or a blue K`. Clearly Rpkq � Rpk, kq.
Proof of the upper bound. We claim that

Rpk, `q ¤ Rpk � 1, `q � Rpk, `� 1q
for every k, ` P N. Indeed, let n ¥ Rpk � 1, `q � Rpk, ` � 1q, and
choose a vertex v P rns. By the (finite) pigeonhole principle, it has
either at least Rpk� 1, `q red neighbours, or at least Rpk, `� 1q blue
neighbours. By symmetry assume the former. By the definition of
Rpk� 1, `q, the induced colouring on the red neighbours of v contain
either a red Kk�1 or a blue K`. Adding v (if necessary), we are done.

It follows from the claim (by induction) that

Rpk, `q ¤
�
k � `

k




for every k, ` P N. This is because the binomial coefficients satisfy:�
k � `

k



�

�
k � `� 1
k � 1



�
�
k � `� 1

k




for every k, ` P N and
�
k�`
k

� � Rpk, `q for k � 1 or ` � 1 (exercise!).
So the upper bound follows.
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14 CHAPTER 2. RAMSEY THEORY

It turns out to be surprisingly difficult to construct colourings
with no large complete monochromatic subgraphs. However, in 1947
Erdős gave the following shockingly simple proof of an exponential
lower bound on Rpkq. Despite its simplicity, this has been one of the
most influential proofs in the development of Combinatorics.

Proof of the lower bound. Let c :
�rns

2

� Ñ t0, 1u be a random 2-
colouring of Kn. To be precise, let the probability that cpijq is red
be 1{2 for every edge ij P EpKnq, and choose the colours of edges
independently.

Let X be the number of monochromatic cliques in Kn under c.
The expected value of X is the total number of k-cliques in Kn, which
is

�
n
k

�
, times the probability that a given clique is monochromatic.

This gives:

�
n

k


�
1
2


pk
2q�1

¤ 2

�
en

k

�
1?
2


k�1
�k

! 1

if n   1
e
?

2
k2k{2.Since the expected value of random variable X (de-

fined on colourings) is less than 1, then there must exist a colouring in
which X � 0. Hence there exists a colouring with no monochromatic
k-clique, and we are done.

It is surprisingly difficult to construct large colourings with no
large monochromatic clique. The first constructive super-polynomial
bound on the Ramsey numbers was given by Frankl in 1977. The
best known construction is due to Frankl and Wilson, and uses

exp
��

1
4
� ε


 plog kq2
log log k




vertices. We shall see their proof in Chapter 5.

2.5 Van der Waerden’s Theorem

Let us next turn our attention to the second equation mentioned
earlier, x � y � 2z, and notice that the solutions of this equation
are arithmetic progressions of length three. Since it is difficult to
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2.5. VAN DER WAERDEN’S THEOREM 15

determine the maximum density of a set with no such triple (see
Chapter 6), we shall first answer the ‘Ramsey’ version.

Question 2.5.1. If we colour the integers N with two colours, must
there exist a monochromatic arithmetic progression of length three?

Answer: Yes! In fact there must exist one in t1, . . . , 9u.
The following theorem generalizes this simple fact to arithmetic

progressions of length k.

Theorem 2.5.2 (Van der Waerden, 1927). Every two-colouring of
N contains arbitrarily long monochromatic arithmetic progressions.

We would like to prove Van der Waerden’s Theorem by induction,
but in its present form this seems to be difficult.

Key idea: Strengthen the induction hypothesis! Prove that the
same result holds for an arbitrary number of colours.

When using induction, it is often easier to prove a stronger result
than a weaker one!

Proof of Van der Waerden’s Theorem. For each pair k, r P N, define
W pr, kq to be the smallest integer n such that, if we r-colour the set
rns then there must exist a monochromatic arithmetic progression of
length k. We claim that W pr, kq exists for every k, r P N, and will
prove it by double induction. Note that the result is trivial if k ¤ 2
(for all r), so assume that W pr, k�1q exists, for every r P N. We shall
denote the arithmetic progression ta, a� d, a� 2d, . . . , a� pk � 1qdu
by AP pa, d, kq: it has common difference d and length k.

We make the following important definition: Let A1, . . . , At be
arithmetic progressions of length `, with Aj � AP paj , dj , `q. We say
that A1, . . . , At are focused at z if

ai � `di � aj � `dj � z

for every i, j P rts, and we say they are colour-focused if moreover
they are all monochromatic and of different colours.

Let k, r P N be arbitrary. We make the following claim:

Claim: For all s ¤ r, there exists n such that whenever rns is r-
coloured, there exists either a monochromatic arithmetic progression
of length k, or s colour-focused arithmetic progressions of length k�1.
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16 CHAPTER 2. RAMSEY THEORY

Proof of Claim. We shall prove the claim by induction on s. When
s � 1 the claim follows by the main induction hypothesis: we may
take n � W pr, k � 1q. So let s ¡ 1, and suppose n is suitable for
s� 1; we will show that N � 2n �W pr2n, k � 1q is suitable for s.

Indeed, partition rN s into blocks of length r2ns, and observe
that each contains either a monochromatic arithmetic progression
of length k (in which case we are done), or s�1 colour-focused arith-
metic progressions of length k � 1, together with their focus, which
moreover has a colour different from each of them.

Next, note that the r-colouring of rN s induces an r2n-colouring
of the blocks, and that therefore, by the definition of N , there exists
an arithmetic progression tBpxq, Bpx � yq, . . . , Bpx � pk � 2qyqu of
blocks, such that these blocks are coloured identically.

Finally, let Aj � AP paj , dj , k � 1q for 1 ¤ j ¤ s� 1 be the s� 1
colour-focused APs in Bpxq, let z be their focus, and observe that the
following s APs of length k� 1 are colour-focused at z � 2ynpk� 1q:

A1j :� AP paj , dj � 2yn, k � 1q,

for 1 ¤ j ¤ s�1, and AP pz, 2yn, k�1q. This completes the induction
step, and hence proves the claim.

The theorem follows from the claim by setting s � r.

Because of the double induction, the proof above gives very bad
bounds on W pr, kq. For example, even for 3-APs it gives only

W pr, 3q ¤ kk
..

.k

,

where the ‘tower’ has height k � 1.
More generally, let f1pxq � 2x, and

fn�1pxq � f pxqn p1q � fnpfnp. . . p1q . . .q

for all n ¥ 1. (This is the Ackermann or Grzegorczyk hierarchy.)
Thus f2pxq � 2x, f3pxq is a tower of 2s of height x, and so on.
(Exercise: write down as many values of f4pxq as possible.)
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2.6. AN UNPROVABLE THEOREM 17

Our proof of van der Waerden’s Theorem gives a bound onW p2, kq
which grows faster than fn for every integer n! Shelah vastly im-
proved this bound, proving that

W pr, kq ¤ f4pr � kq.

A further (and similarly huge) improvement was given by Gowers,
who showed that W pr, kq is at most a tower of 2s of height 7.

Van der Waerden’s Theorem and Schur’s Theorem played an im-
portant (historic) role in the development of several areas of math-
ematics, including Hypergraph Regularity, Additive Combinatorics,
and Ergodic Theory. The most important step was the following the-
orem of Szemerédi, proved in 1975, which resolved a conjecture of
Erdős and Turán from 1936. The upper density of a set A � N is

dpAq � lim sup
nÑ8

|AX rns|
n

.

Szemerédi’s Theorem. Any subset of N with positive upper density
contains arbitrarily long arithmetic progressions.

Furstenburg (in 1977) and Gowers (in 2001) gave important al-
ternative proofs of this result. The following theorem was proved
recently by Ben Green and Terence Tao.

Theorem 2.5.3 (Green and Tao, 2008). There exist arbitrarily long
arithmetic progressions in the primes.

In fact they proved the theorem for any subset of the primes of
positive (relative) density.

2.6 An unprovable theorem

The following theorem may be proved using the Axiom of Choice.

Theorem 2.6.1 (The Strengthened Ramsey Theorem). Given m, k, r P
N, there exists N P N such that the following holds. If we r-colour
the k-subsets of rns, then there exists a monochromatic set Y � S
with |Y | ¥ m, and with |Y | ¥ minty : y P Y u.
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18 CHAPTER 2. RAMSEY THEORY

Problem 2.6.2. Deduce Theorem 2.6.1 from the infinite version of
Ramsey’s Theorem. [Hint: use a compactness argument.]

But not without!

Theorem 2.6.3 (Paris and Harrington, 1977). The Strengthened
Ramsey Theorem cannot be proved in Peano Arithmetic.

2.7 Recommended Further Reading

R. Graham, B.L. Rothschild and J. Spencer, Ramsey Theory (2nd
edition), Wiley (1990).

Imre Leader, Part III Lecture Notes, available at
http://www.dpmms.cam.ac.uk/�par31/notes/ramsey.pdf
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2.8. EXERCISES 19

2.8 Exercises
We are usually convinced more easily by reasons we have

found ourselves than by those which occurred to others.

Blaise Pascal

1. Show that Rp3, 4q � 9 and Rp4q � 18. [Hint: consider the graph
on t1, . . . , 17u, where ij is an edge iff i� j is a square (mod 17).]

2. Prove that any sequence of integers has a monotone subsequence.

3. Colour N with two colours. Must there exist a monochromatic
infinite arithmetic progression?

4. Let Cpsq be the smallest n such that every connected graph on n

vertices has, as an induced subgraph, either a complete graph Ks,
a star Kp1, sq or a path Ps of length s. Show that Cpsq ¤ Rpsqs.

5. Prove Ramsey’s Theorem for k-sets. [Hint: Use induction on k.]

6. Prove that any sequence of integers has an infinite subsequence
which is either convex or concave.

7. Let A be a set of n points in R2, such that no three points of A
are co-linear. Prove that, if n is sufficiently large, then A contains
k points forming a convex k-gon.

8. Show that there is an infinite set S of positive integers such that
the sum of any two distinct elements of S has an even number
of distinct prime factors.

9. Does there exist a 2-colouring of the infinite subsets of N with no
infinite monochromatic subset?
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Chapter 3

Extremal Graph Theory

Theorems are fun, especially when you are

the prover; but then the pleasure fades. What

keeps us going are the unsolved problems.

Carl Pomerance

In the previous chapter we considered, for subsets of the integers,
and for colourings, questions of the following form:

“Suppose a certain sub-structure (e.g., monochromatic clique,
Schur triple) is forbidden. How large can our base set be?”

In this chapter, we extend this line of inquiry to graphs.

3.1 Turán’s Theorem

Consider a group of people, and suppose that there do not exist three
people in the group who are all friends with each other. How many
pairs of friends can there be in the group? In other words:

Question 3.1.1. What is the maximum number of edges in a triangle-
free graph on n vertices?

A complete bipartite graph (with part sizes as equal as possible) hasX
n
2

\ P
n
2

T � n2

4 edges and no triangle.

20
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3.1. TURÁN’S THEOREM 21

Theorem 3.1.2 (Mantel, 1907). If G is a triangle-free graph on n
vertices, then

epGq ¤
Yn

2

] Qn
2

U
.

Proof. By induction on n. Consider an edge uv P G; since G is
triangle-free, it follows that there at most n � 1 edges incident with
u or v. Since G�tu, vu is triangle-free, it follows (by induction) that

e
�
G� tu, vu� ¤

�Yn
2

]
� 1

	�Qn
2

U
� 1

	
�

Yn
2

] Qn
2

U
� n� 1,

and so the result follows.

In 1941, Turán generalized the result above in the following way.
Write Kr for the complete graph on r vertices, and write Tr,n for the
r-partite graph on n vertices with the maximum number of edges;
this graph is called the Turán graph. (Exercise: Show that, for r
fixed,

�
1� 1

r

� �
n
2

��Oprq ¤ epTr,nq ¤
�
1� 1

r

� �
n
2

�
.)

Turán’s Theorem. If G is a Kr�1-free graph on n vertices, then

epGq ¤ epTr,nq �
�

1� 1
r


�
n

2



�Oprq.

Moreover, equality holds if and only if G � Tr,n.

Problem 3.1.3. Extend the proof of Mantel’s Theorem, above, to
prove Turán’s Theorem. [Hint: Remove a copy of Kr, and observe
that epTr,nq � epTr,n�rq � npr � 1q � �

r
2

�
.]

The following extension of Turán’s Theorem is due to Erdős.

Theorem 3.1.4 (Erdős, 1970). Let G be a Kr�1-free graph on n
vertices. Then there exists an r-partite graph H on the same vertex
set, with dHpvq ¥ dGpvq for every v P V pGq.
Proof. Let G be a Kr�1-free graph, and let w P V pGq be a vertex
of maximum degree in G. ‘Zykov symmetrization’ is the following
operation: for every vertex v P V pGq zNpwq, we remove the edges
incident with v, and add an edge between v and each neighbour of
w. Observe that, for every vertex u P V pGq, the degree of u has not



i
i

“”Extremal and Probabilistic Combinatorics”” — 2011/5/12 — 17:23 — page 22 — #22 i
i

i
i

i
i

22 CHAPTER 3. EXTREMAL GRAPH THEORY

decreased (since the degree of w was maximal), and the graph is still
Kr�1-free.

We use induction on r, and the operation above. Indeed, let
w P V pGq be a vertex of maximal degree inG, and note that the graph
G1 � GrNpwqs is Kr-free. Thus by the induction hypothesis, there
exists an pr� 1q-partite graph H1 on Npwq with dH1pvq ¥ dG1pvq for
every v P Npwq. Let H be the graph obtained from G by performing
Zykov symmetrization at the vertex w, and replacing G1 by H1. Since
in each step the degrees did not decrease, H is the required r-partite
graph.

What can we say about the graph G if it is Kr�1-free and contains
almost as many edges as the Turán graph Tr,n?

Theorem 3.1.5 (Erdős-Simonovits Stability Theorem, 1966). For
every ε ¡ 0 there exists a δ ¡ 0 such that the following holds. If G is
a Kr�1-free graph on n vertices, and

epGq ¥ epTr,nq � δn2,

then G may be transformed into the Turán graph by adding or remov-
ing at most εn2 edges.

Problem 3.1.6. Prove the Erdős-Simonovits Stability Theorem for
triangles.

3.2 Bipartite graphs

In Turán’s Theorem, the extremal examples all contain large com-
plete bipartite graphs. What happens then if we forbid a given small
bipartite graph? Erdős first studied this question in order to answer
the following problem in combinatorial number theory. Sequences of
integers with pairwise different sums are known as Sidon sequences;
Erdős studied the following multiplicative version of Sidon’s problem.

Question 3.2.1. Let A � ta1, . . . , atu � rns be such that aiaj � aka`
unless ti, ju � tk, `u. What is the maximum possible size of A?

An obvious lower bound: πpnq, the number of primes in rns. Is this
close to the truth?
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3.2. BIPARTITE GRAPHS 23

First some notation. Given a graph H, we shall write

expn,Hq :� max
 
epGq : |G| � n and G is H-free

(
.

Thus Turán’s Theorem can be restated as follows:

expn,Kr�1q � epTr,nq �
�

1� 1
r


�
n

2



.

Erdős proved that for the 4-cycle the extremal number is much smaller.

Theorem 3.2.2 (Erdős, 1938).

ex
�
n,C4

� � O
�
n3{2�.

Proof. We count ‘cherries’. Indeed, consider triples px, ty, zuq of (dis-
tinct) vertices in G such that xy, xz P EpGq. The number of such
triples is ¸

vPV pGq

�
dpvq

2



¥ n

2

�
2epGq
n

� 1

2

,

by convexity, and since
°
dpvq � 2epGq (exercise). Now simply ob-

serve that if there exist two such triples on the same pair ty, zu, then
the graph contains a C4. Hence the number of such triples in a C4-free
graph is at most

�
n
2

�
. So

n

2

�
2epGq
n

� 1

2

¤
�
n

2



,

and hence epGq � Opn3{2q, as required.

Erdős used this result to answer Question 3.2.1.

Corollary 3.2.3 (Erdős, 1938). Let A � rns be a multiplicative Sidon
set. Then

|A| ¤ πpnq �Opn3{4q.
Erdős later said that, “Being struck by a curious blindness and

lack of imagination, I did not at that time extend the problem from
C4 to other graphs, and thus missed founding an interesting and
fruitful new branch of graph theory.”

The following natural extension of Theorem 3.2.2 is therefore in-
stead due to Kővári, Sós and Turán. For each s, t P N, let Kps, tq
denote the complete bipartite graph with part sizes s and t.
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24 CHAPTER 3. EXTREMAL GRAPH THEORY

Theorem 3.2.4 (Kővári, T. Sós and Turán, 1954). If s ¤ t, then

ex
�
Kps, tqq � Opn2�1{sq.

Problem 3.2.5. Generalise the proof of Theorem 3.2.2 above to
prove the Kővári-Sós-Turán Theorem. [Hint: count copies of Kp1, sq.]

How sharp are these bounds?

Theorem 3.2.6 (Klein, Brown, Kollár-Rónyai-Szabó). If s ¤ t are
integers, with either s P t2, 3u, or t ¡ ps� 1q!, then

ex
�
Kps, tq� � Θ

�
n2�1{s

	
.

Problem 3.2.7 (�). Show that
expn,Kp4, 4qq
expn,Kp3, 3qq Ñ 8.

It follows from Theorem 3.2.4 that expn,Hq � opn2q for every
bipartite graph H. Can we prove more precise results for specific
bipartite graphs, like trees or cycles?

Conjecture 3.2.8 (Erdős and Sós, 1963). If epGq ¡ 1
2 pk � 2q|G|,

then G contains every tree on k vertices.

Theorem 3.2.9 (Ajtai, Komlós, Simonovits and Szemerédi, 2011).
The Erdős-Sós conjecture is true for sufficiently large values of k .

Given a family of graphs L, write expn,Lq for the maximum num-
ber of edges in a graph on n vertices which is L-free for every graph
L P L.

Theorem 3.2.10 (Erdős, 1959). If L is a finite family of graphs
which does not contain a forest, then there exists k P N such that

expn,Lq ¥ expn, tC3, C4, . . . , Ckuq ¥ n1�c

for any c   1{k, and all sufficiently large n.

Sketch of proof. Take a random bipartite graph G with n1�c edges,
for some c   1{k; we claim that, with high probability, G has very
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3.3. THE ERDŐS-STONE THEOREM 25

few short cycles. Indeed, let p � epGq{�n2�; then the expected number
of cycles of length 2` is at most

p2`q!
�
n

2`



p2` � n2c` � opnq,

if 2` ¤ k, since c   1{k. Thus with high probability there are opnq
cycles of length at most k. Removing one edge from each of these
gives the result.

The following upper bound of Bondy and Simonovits is over 35
years old, and has only been improved by a constant factor.

Theorem 3.2.11 (Bondy and Simonovits, 1974).

expn,C2kq � Opn1�1{kq.
Despite this, the Bondy-Simonovits Theorem is only known to be
sharp for C4, C6 and C10. For all other values of k, the correct order
of magnitude is unknown.

3.3 The Erdős-Stone Theorem

The following result is sometimes called as the fundamental theorem
of graph theory. It determines asymptotically the extremal number
of an arbitrary graph H. In order to state the theorem, we need to
define the following fundamental parameter.

Definition. The chromatic number χpGq of a graph G is the mini-
mum number of colours in a proper colouring of G. That is,

χpGq � min
 
r : D c : V pGq Ñ rrs such that

cpuq � cpvq for every uv P EpGq(.
Note that a graph G is bipartite if and only if χpGq ¤ 2, and more

generally is r-partite if and only if χpGq ¤ r.

The Erdős-Stone Theorem (Erdős and Stone, 1946). Let H be an
arbitrary graph. Then

expn,Hq �
�

1 � 1
χpHq � 1

� op1q

�

n

2



.
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26 CHAPTER 3. EXTREMAL GRAPH THEORY

Godsil

Note that when H is bipartite this says only that expn,Hq �
opn2q, which we already knew from the Kővári-Sós-Turán Theorem
(in fact we know something a bit stronger, that expn,Hq ¤ n2�ε for
some ε � εpHq).

Proof. For simplicity, we shall consider only the case χpHq � 3; the
proof in the general case is essentially the same. Let ε ¡ 0, let
t � |H|, and let G be a graph on n vertices with

epGq ¥
�

1
2
� ε


�
n

2



.

We shall show that, if n is sufficiently large, then G contains a copy
of K3ptq, the complete 3-partite graph with t vertices in each part,
and hence that it contains a copy of H.

We begin by removing all vertices of small degree. To be precise,
we define a sequence of graphs G � Gn�1 � . . . � GN , where |Gk| �
k and Gk�1 is obtained from Gk by deleting a vertex with degree
at most p1{2� ε{2q k, if such a vertex exists. Observe (by counting
edges) that this process must stop at some GN with N ¥ εn, and
that every vertex in GN has degree at least p1{2� ε{2qN .

Now, by the Kővári-Sós-Turán Theorem, there exists a complete
bipartite graph F � Kpq, qq in GN , where q � 4t{ε. Suppose that
GN is K3ptq-free; we claim that, if N is sufficiently large, then there
are at most �

q � t
�
N

edges between V pF q and X � V pGN q zF . Indeed, let Y denote the
set of vertices in X with at least q � t neighbours in F . Then, since
each copy of Kpt, tq in F can be covered by at most t� 1 vertices of
X, we have

¸
vPY

�
q

t



¤

¸
vPY

max
a¥t

�
a

t


�
dpvq � a

t



¤ t

�
q

t


2

,

which implies that |Y | ¤ t
�
q
t

�
. Hence the number of edges between

V pF q and X is at most pq � t� 1qN � qt
�
q
t

�
, as required.
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Finally, recall that every vertex in F has degree at least
�

1
2 � ε

2

�
N .

Thus the number of edges between V pF q and X is at least

2q
�

1
2
� ε

2



N � p2qq2 ¥

�
q � t� ε

4

	
N,

which is a contradiction.

3.4 Counting H-free graphs

We end this section by briefly describing an important modern branch
of extremal graph theory: the problem of counting the number of
graphs on n vertices which avoid a given graph H. The following
conjecture of Erdős is the central open problem in the area.

Conjecture 3.4.1 (Erdős, 1970s). Given a graph H, let Ppn,Hq
denote the collection of graphs on n vertices which do not contain H.
Suppose H contains a cycle. Then

|Ppn,Hq| � 2p1�op1qqexpn,Hq.

In the case χpHq ¥ 3, this conjecture was proved by Erdős, Frankl
and Rödl in 1986. However, it is open for every single bipartite graph.
Even in a weaker form (with 1�op1q replaced by some large constant),
results have been proved in only a few special cases:

• Kleitman and Winston (1982): |Ppn,C4q| � 2Opn
3{2q,

• Kleitman and Wilson (1996):

|Ppn,C6q| � 2Opn
4{3q and |Ppn,C8q| � 2Opn

5{4q,

• Kohayakawa, Kreuter and Steger (1998):

|P�n, tC4, C6, . . . , C2ku
�| � 2Opn

1�1{kq.

• Balogh and Samotij (2010): |P�n,Kps, tq�| � 2Opn
2�1{sq.

3.5 Recommended Further Reading

The standard reference for the area is Bollobás [2].
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3.6 Exercises

1. Determine expn, P4q, where P4 denotes the path of length four.
How about for a path of length k?

2. Show that Conjecture 3.4.1 is false for H � Kp1, tq (this graph
is called a ‘star’). Is it true for paths?

3. Let G be a graph on n vertices with epTr�1,nq � 1 edges. By
Turán’s Theorem, G contains a copy of Kr. Show that G also
has a copy of Kr�1 � e, the complete graph minus an edge.

4. Prove the following weaker form of the Erdős-Sós Conjecture:
If epGq ¡ pk � 2q|G| then G contains every tree on k vertices.

5. Construct a C4-free graph on n vertices with Θ
�
n3{2� edges.

[Hint: try a projective plane.]

6. Let gpnq be the largest number of edges in a graph G on n

vertices with the following property: there is a 2-colouring
of the edges of G with no monochromatic triangle.

paq Show that gpnq{
�
n

2



converges.

pbq Find c such that gpnq{
�
n

2



Ñ c as nÑ8.
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Chapter 4

The Random Graph

Creativity is the ability to introduce

order into the randomness of nature

Eric Hoffer

Most real-world systems are too complex for us to study directly:
the weather, the stock market, and social interactions are subject
to too many unpredictable variables and influences. However, many
of these influences have the appearance of randomness; by modelling
them as random variables, we can sometimes still say something use-
ful about the whole system.

In this chapter we shall study a particularly simple and famous
such random model: the Erdős-Rényi random graph. In order to
motivate the model, we shall begin with an application.

4.1 High girth and chromatic number

Question 4.1.1. Does there exist a triangle-free graph with chro-
matic number at least k?

The answer is yes, but it is non-trivial to construct such graphs.
(The first examples were given by Zykov in 1949.) We begin this
section by giving a short proof of a much stronger result.

29
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30 CHAPTER 4. THE RANDOM GRAPH

The girth gpGq of G is the length of the shortest cycle in G.
The following theorem was one of the earliest (and most shocking)
applications of the probabilistic method.

Theorem 4.1.2 (Erdős, 1959). There exist graphs whose girth and
chromatic number are both arbitrarily large.

Proof. We take a ‘random’ graph, and perform a small amount of
‘surgery’, c.f. the proof of Theorem 3.2.10. Let k P N be arbitrary; we
shall show that there exists a graph G with χpGq ¥ k and gpGq ¥ k.

As it turns out, proving χpGq ¥ k directly is often hard, so we
will deal with the so-called independence number αpGq instead. Re-
call from Chapter 1 that an independent set is a subset of vertices
containing no edges. By definition, αpGq is the size of the largest
independent set in G.

To see the connection between αpGq and the chromatic number,
suppose G is painted with χpGq colours and no adjacent vertices have
the same colour. Given i P rχpGqs, the set of vertices Si with colour
i is independent. Since the sets S1, . . . , SχpGq partition G,

|G| �
χpGq¸
i�1

|Si| ¤ χpGqmax
i
|Si| ¤ χpGqαpGq.

In particular, if αpGq ¤ |G|{k, then χpGq ¥ k.
Now let ε ¡ 0 be sufficiently small, let p � n�p1�εq, and let

G be a random graph on n vertices, in which each edge is chosen
independently with probability p. That is to say, we assume that we
have a probability space Ω and independent random variables Ivw for
each vw P �rns2

�
, such that

P
�
Ivw � 1

� � 1� P
�
Ivw � 0

� � p,

and we let G be the graph with vertex set rns and edge set
 
vw P�rns

2

�
: Ivw � 1

(
.

We claim that, with high probability, G has at most n{2 cycles
of length at most k, and contains no independent set of size n{2k.
The result will follow, since we may remove a vertex of each cycle,
leaving a graph on n{2 vertices with girth at least k, and with no
independent set of size n{2k, and hence chromatic number at least k.
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4.1. HIGH GIRTH AND CHROMATIC NUMBER 31

To show that G has the desired properties, we simply count the
expected number of bad events, and use Markov’s inequality: that
for any random variable which takes non-negative values, and any
a ¡ 0,

PpX ¡ aq ¤ EpXq
a

.

Problem 4.1.3. Prove Markov’s inequality.

Indeed, the expected number of cycles of length ` ¤ k in G is at
most

n`p` ¤ nε` ! n,

and the expected number of independent sets of size n{2k is at most

2npn
2{8k2 ! 1.

Thus,

E
�|tC` � G : ` ¤ ku|�

n{2 � E
��� S : |S| ¥ n{2k, epXq � 0

(��� Ñ 0

as nÑ8. Hence, by Markov, G has the desired properties with high
probability, and so we are done.

The key point in the previous proof was the following: that we
could choose whichever probability distribution (on the set of all
graphs on n vertices) happened to be suitable for our needs. This
gives us a great deal of flexibility in constructing proofs. In this
section we shall study the simple, but surprisingly useful family of
distributions that appeared in the above proof. It was first intro-
duced by Gilbert, and independently by Erdős and Rényi, in 1959.
This distribution is usually called simply ‘the random graph’.

Definition. The (Erdős-Renyi) random graph, Gn,p, is the graph on
n vertices obtained by choosing each edge independently at random
with probability p. That is to say, we assume that we have a probabil-
ity space Ω and independent random variables Ivw for each vw P �rns2

�
,

such that
PpIvw � 1q � 1� PpIvw � 0 � pq,

and we let G be the graph with vertex set rns and edge set tvw P�rns
2

�
: Ivw � 1u.
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32 CHAPTER 4. THE RANDOM GRAPH

Note that Gn,p is not actually a graph; it is a probability distribution
on the graphs on n vertices. However, it will be convenient to treat
it as if it were a graph.

4.2 Subgraphs of the random graph

We shall ask questions of the following form: Let P be a property
of graphs (i.e., a collection of graphs closed under isomorphism, e.g.,
being connected, being planar, containing a triangle). For which
values of p does a typical member of Gn,p have the property P?
We say an event E (e.g., the event that Gn.p P P) holds with high
probability (whp) if PpEq Ñ 1 as nÑ8. We will usually let p depend
on n when computing such limits.

Question 4.2.1. For which p is Gn,p likely to contain a triangle?

Note that the property ‘containing a triangle’ is monotone, i.e.,
if it holds for a graph H, then it holds for all graphs containing H.
The following result says that moreover there is a threshold for this
property, and the threshold is 1{n.

Theorem 4.2.2.

P
�
Gn,p contains a triangle

� Ñ
"

0 if p ! 1{n
1 if p " 1{n

Proof. We shall prove the two parts of the theorem using the 1st and
2nd moment methods, respectively. We have already seen an example
of the 1st moment method; this simply refers to the use of Markov’s
inequality. Thus

P
�
Gn,p contains a triangle

� ¤ E
�
number of triangles in Gn,p

�
¤

�
n

3



p3 ! 1

if pn ! 1.
The 2nd moment method refers to the use of Chebychev’s in-

equality: Let X be a random variable with mean µ and variance σ2,
and let λ ¡ 0. Then

P
�|X � µ| ¥ λσ

� ¤ 1
λ2
.
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Problem 4.2.3. Prove Chebychev’s inequality. [Hint: use Markov.]

It follows easily from Chebychev that

P
�
X � 0

� ¤ VarpXq
EpXq2 .

Thus, in order to prove the second part of the theorem, we need to
bound the variance of the random variable

X � XpGq :� the number of triangles in G.

To do so, we recall that VarpXq � EpX2q �EpXq2, and observe that
we are summing over ordered pairs pu, vq of (potential) triangles, and
that pairs which are independent of one another appear in both terms,
and hence cancel out. To be precise,

EpX2q � EpXq2 � E

�
� ¸
pu,vq

1rus1rvs
�
�

�¸
u

Ppuq
�2

�
¸
pu,vq

�
Ppu^ vq � PpuqPpvq

	
,

where 1 denotes the indicator function, and u and v denote the events
that specific triangles occur in Gn,p. Hence

VarpXq ¤
¸

|uXv|�2

Ppu^ vq �
¸

|uXv|�3

Ppu^ vq ¤ n4p5 � n3p3,

and thus, by Chebychev,

P
�
Gn,p contains no triangles

� ¤ VarpXq
EpXq2 ¤ n4p5 � n3p3

n6p6
! 1

if pn " 1, as required.

This method can easily be extended to find the threshold for any
complete graph Kr.

Theorem 4.2.4.

P
�
Gn,p contains a copy of Kr

� Ñ
"

0 if p ! n�2{pr�1q

1 if p " n�2{pr�1q
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34 CHAPTER 4. THE RANDOM GRAPH

Problem 4.2.5. Prove Theorem 4.2.4. Deduce that, for every func-
tion p � ppnq and every n, there exists k � kpnq such that the size of
the largest clique in Gn,p is, with high probability, either k or k � 1.

One might be tempted to conjecture that, for any graph H, the
threshold for the property ‘containing a copy of H’ is given by

E
�
XHpGn,pq

� � 1,

where XHpGq denotes the number of copies of H in G. However, for
many graphs H the method above does not work, since the variance
can be too large; moreover, the conjecture is false!

Theorem 4.2.6. Let H denote the graph on five vertices consisting
of a copy of K4 plus an edge. Then

P
�
Gn,p contains a copy of H

� Ñ
"

0 if p ! n�2{3

1 if p " n�2{3

Note that, for the H defined in the theorem, E
�
XHpGn,pq

� �
n5p7, so our simple-minded prediction of the threshold was n�5{7.

Proof. We shall apply Theorem 4.2.4 and a simple, but extremely
useful technique, known as ‘sprinkling’. The key observation is that
the main ‘obstruction’ to the event H � Gn,p is the event that Gn,p
contains a copy of K4.

If p ! n�2{3 then the result follows immediately from Theo-
rem 4.2.4, since if K4 � G then H � G. So assume that p " n�2{3,
and consider the graph G formed by the union of two (independent)
copies of Gn,p{2. Note that G � Gn,p1 for p1 � p� pp{2q2   p, so

PpH � Gq ¤ PpH � Gn,pq.

We shall show that G contains a copy of H with high probability.
Indeed, let G1 and G2 be the two copies of Gn,p{2, and observe that
G1 contains a copy of K4 with high probability, by Theorem 4.2.4.
Moreover, the probability that G2 contains an edge with exactly one
endpoint in this copy of K4 is 1 � p1 � pq4pn�4q � 1 � e�pn Ñ 1
as n Ñ 8. Hence G � G1 Y G2 contains a copy of H with high
probability, as required.
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4.3. THE JANSON INEQUALITIES 35

The reader might be wondering why we needed to ‘sprinkle’ the
extra edges of G2 in order to create our copy of H; why not use the
edges of G1? The reason is that, by choosing a copy of K4, we have
changed the distribution on the remaining edges: by choosing that
particular copy, we have made every other edge slightly less likely to
be present. Using new edges allows us to preserve independence.

Problem 4.2.7. Come up with a conjecture regarding the threshold
for the appearance of an arbitrary graph H in Gn,p. Can you prove
your conjecture?

4.3 The Janson inequalities

In the previous section we were able to prove various results using
only the concepts of expected value and variance, together with the
inequalities of Markov and Chebychev. In this section we shall con-
sider two powerful theorems, which allow us to prove much stronger
results when answering questions of the following type:

Question 4.3.1. Let X1, . . . , Xk be a collection of ‘bad’ events which
have some weak / limited dependence on one another. What is the
probability that none of the bad events occurs?

In particular, we shall reconsider the question: What is the prob-
ability that Gn,p contains no triangles? We shall prove the following
theorem.

Theorem 4.3.2. Let 0   c P R be fixed and let p � c

n
. Then

lim sup
nÑ8

P
�
Gn,p contains a triangle

� � 1� e�c
3{6.

The upper bound will follow from the FKG inequality; the lower
bound from Janson’s inequality.

4.3.1 The FKG inequality

We begin with the upper bound. Given a collection A of graphs
on n vertices, we say that A is monotone increasing if G P A and
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EpGq � EpHq implies that H P A, and that it is monotone decreasing
if G P A and EpHq � EpGq implies that H P A. For example, the
event “G contains a triangle” is monotone increasing, and the event
“G is planar” is monotone decreasing.

The following theorem was first proved by Harris in 1960. Its gen-
eralization to a wider family of measures, proved by Fortuin, Kaste-
leyn and Ginibre in 1971, is a fundamental tool in Percolation Theory.
For this reason it is commonly referred to as the FKG inequality.

The FKG Inequality. Let A and B be monotone increasing, and
let C be monotone decreasing. Then

P
�pGn,p P Aq ^ pGn,p P Bq

� ¥ P
�
Gn,p P A

�
P
�
Gn,p P B

�
,

and

P
�pGn,p P Aq ^ pGn,p P Cq

� ¤ P
�
Gn,p P A

�
P
�
Gn,p P C

�
.

Problem 4.3.3. Prove the FKG inequality.

Note that, by symmetry (or by inclusion-exclusion), the first in-
equality also holds of A and B are both monotone decreasing.

We can now prove an upper bound on the probability that there
is a triangle in Gn,p.

Proof of the upper bound in Theorem 4.3.2. For each triple X � rns,
let BX denote the event that these vertices form a triangle in Gn,p,
i.e., if X � tx, y, zu, the event that txy, xz, yzu � EpGn,pq. The
events BX are all monotone decreasing, and have probability p1�pq3.
Hence, by the FKG inequality,

P
�
4 � Gn,p

� � P
� ©
XPprns3 q

BX



¥

¹
XPprns3 q

P
�
BX

�

� �
1� p3

�pn
3q Ñ e�c

3{6

as nÑ8, as required.
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4.3.2 Janson’s inequality

In this section we shall prove that, under certain circumstances, the
bound given by the FKG inequality is close to being sharp.

Let A1, . . . , Am be subsets of rN s, and let the elements of a set
Y � rN s be chosen independently at random, with Ppj P Y q � p for
each j. (In our application, we shall take N � �

n
2

�
.) Let

Bj :�  
Aj � Y

(
,

and observe that these events are monotone increasing, and that if
Ai and Aj are disjoint then Bi and Bj are independent.

Define µ � °
j PpBjq denote the expected number of bad events,

and let
∆ �

¸
i�j

P
�
Bi ^Bj

�
,

where the sum is over ordered pairs pi, jq such that Ai and Aj inter-
sect.

The Janson Inequalities (Janson, 1987). Let A1, . . . , Am � rns
and let B1, . . . , Bm be the events defined above. Then

P
� m©
j�1

Bj



¤ e�µ�∆{2.

Moreover, if ∆ ¥ µ, then

P
� m©
j�1

Bj



¤ e�µ

2{2∆.

The FKG inequality implies that

P
� m©
j�1

Bj

	
¥

¹
j

�
1� PpBjq

� � e�µ,

if PpBjq ! 1 for each j, so the Janson inequalities are close to being
sharp. Moreover, when they apply, they are much more powerful than
Chebychev’s inequality. Indeed, let X � °

j 1rBjs, and note that
VarpXq ¤ µ � ∆. Thus if 1 ! µ ! ∆ ! µ2 then, setting γ � µ2{∆,
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we obtain bounds on PpX � 0q of roughly 1{γ from Chebychev, and
e�γ from Janson.

The original proofs of Janson are based on estimates of the Laplace
transform of an appropriate random variable. The proof we give is
due to Boppana and Spencer.

Proof of the 1st Janson inequality. First note that

P
� m©
j�1

Bj



�

m¹
j�1

P
�
Bj

��� j�1©
i�1

Bi



.

Using this identity, and the inequality 1�x ¤ e�x, it suffices to show
that, for each j P rms,

m¹
j�1

P
�
Bj

��� j�1©
i�1

Bi



¥ PpBjq �

¸
i�j, i j

PpBi ^Bjq.

To prove this, we shall break up the event
�j�1
i�1 Bi into two parts,

E and F . Let E denote the event
�
iPI Bi, where

I �  
i P rj � 1s : i � j

(
(i.e., the set of indices i such that Ai X Aj is non-empty), and let F
denote the event

�
iPJ Bi, where J � rj � 1s z I. Note that the event

Bj is independent of the event E, and that the events E and F are
both monotone decreasing. Therefore, by the FKG inequality,

P
�
Bj

��E X F
� ¥ P

�
Bj ^ E

��F � � P
�
Bj |F

�
P
�
E
��Bj ^ F

�
¥ P

�
Bj

�
P
�
E |Bj

� ¥ PpBjq
�

1 �
¸
iPI

P
�
Bi |Bj

�


� PpBjq �
¸

i�j, i j
PpBi ^Bjq,

as required.

The proof of the second inequality uses a little bit of magic.
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Proof of the 2nd Janson inequality. We deduce the desired bound by
applying the 1st Janson inequality 2m times: we use it to bound the
probability of

�
jPS Bj for every subset S � rms. Indeed, we have

log

�
P
�©
jPS

Bj


�
¤ �

¸
jPS

PpBjq � 1
2

¸
i,jPS, i�j

PpBi ^Bjq

for any set S � rms.
Now the magic: we choose a set S randomly ! To be precise, choose

the elements of S independently, each with probability q. It follows
that

E

�
log

�
P
�©
jPS

Bj


��
¤ �qµ � q2 ∆

2
,

so, for every q P r0, 1s, there must exist a set Sq such that

log

�
P
�©
jPS

Bj

	�
¤ �qµ � q2 ∆

2
.

Finally, we choose q � µ

∆
to minimize the right-hand side, and obtain

P
� m©
j�1

Bj



¤ P

� ©
jPSq

Bj



¤ e�µ

2{2∆,

as required.

We can now complete the proof of Theorem 4.3.2

Proof of the lower bound in Theorem 4.3.2. Once again, for each triple
X � tx, y, zu � rns we write BX for the event that these vertices form
a triangle in Gn,p. Thus we have a set of

�
n
3

�
events BX of the form

AX � EpGn,pq � rN s, where N � �
n
2

�
.

Observe that µ � °
X PpBXq � p3

�
n
3

�
, and that ∆ � °

X�Y PpBX^
BY q � Opn4p5q ! 1. Hence by the 1st Janson inequality,

P
�
4 � Gn,p

� ¤ e�µ�∆{2 Ñ e�c
3{6

as nÑ8, as required.
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4.4 Connectedness

In the previous section we showed that some ‘local’ events – that Gn,p
contains a copy of a given small subgraph – have thresholds of the
following form: if PpH � Gn,pq ¥ ε as nÑ8, then PpH � Gn,Cpq ¥
1� ε, as nÑ 8, for some large constant C. In this section we shall
investigate whether a similar phenomenon occurs for the following
‘global’ property:

Question 4.4.1. For which p is Gn,p likely to be connected?

Note that the property ‘being connected’ is again monotone –
adding edges cannot disconnect a graph. The following theorem says
that this property undergoes a much more sudden transition than
those considered in the previous section.

Theorem 4.4.2. For every ε ¡ 0,

P
�
Gn,p is connected

� Ñ

$''&
''%

0 if p ¤ p1� εq log n
n

1 if p ¥ p1� εq log n
n

as nÑ8.

Proof. We shall use the 1st and 2nd moment methods to prove the
second and first parts, respectively. The key point is to choose the
right thing to count! It turns out that, for the random graph, the
obstruction to being connected is avoiding having isolated vertices.

Indeed, let X � XpGq denote the number of isolated vertices in
G, and let p � p1�εq logn

n . Then

E
�
XpGn,pq

� � np1� pqn�1 ¡ ne�pn�p
2n " nε{2

for sufficiently large n. Moreover, the variance of XpGn,pq is bounded
by

Var
�
XpGn,pq

� ¤
¸
pu,vq

�
Ppu^ vq � PpuqPpvq

	

¤ EpXq � n2
�
p1� pq2n�3 � p1� pq2n�2

	
� EpXq � p

1� p
EpXq2.
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Hence VarpXq ! EpXq2, and so, by Chebychev,

P
�
Gn,p is connected

� Ñ 0

as nÑ8.
To prove the second part, we consider the random variable YkpGq,

which counts the number of components of size k in G. We have

E
�
YkpGn,pq

� ¤
�
n

k



p1� pqkpn�kq ¤

�en
k
e�p1�εqpn

	k

if k ¤ εn, and similarly E
�
YkpGn,pq

� ¤ 2ne�εn
2{2 if k ¥ εn.

Let p � p1�3εq logn
n , and note that if G is not connected, there

must exist a component of size at most n{2. Hence, by Markov,

P
�
Gn,p is not connected

� ¤
n{2̧

k�1

E
�
YkpGn,pq

�

¤
εņ

k�1

�en
k
e�p1�εqpn

	k
�

n{2̧

k�εn
2ne�εn

2{2

¤
8̧

k�1

� e
k
n�ε

	k
� e�εn

2{3 Ñ 0

as nÑ8, as required.

In the proof above we used the inequality 1� x ¡ e�x�x
2
, which

holds for sufficiently small x ¡ 0. We also used the usual bound�
n
k

� ¤ �
en
k

�k on the binomial coefficient.

4.5 The giant component

The most famous property of the random graph was also one of the
first to be discovered, by Erdős and Renyi in 1960. Despite this, it
is still the object of extensive ongoing research. It deals with the
following question:

Question 4.5.1. How big is the largest connected component of Gn,p?
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Let C1pGq denote the largest component of a graph G, i.e., the
connected set with the largest number of vertices. Most of the follow-
ing theorem was proved by Erdős and Renyi in their original paper
on Gn,p; the final part was added much later by Bollobás, who also
determined the size of the ‘window’ where the phase transition occurs.

Theorem 4.5.2 (Erdős and Renyi 1960, Bollobás 1984). Let c ¡ 0
be a constant, and let p � c{n. Then

C1

�
Gn,p

� �

$'&
'%

O
�

log n
�

if c   1

Θ
�
n2{3� if c � 1

Θpnq if c ¡ 1

with high probability as n Ñ 8. Moreover, if c � 1 then the size of
the second largest component is Oplog nq with high probability.

We call the unique component of size Θpnq in the case c ¡ 1 the
giant component.

Problem 4.5.3. By counting the expected number of paths of length
k, show that if c   1 then C1

�
Gn,p

� � Oplog nq with high probability.

Problem 4.5.4. Prove that if c ¡ 1 and p � c{n, then C1

�
Gn,p

� �
Θpnq with high probability.

4.6 Recommended Further Reading

Bollobás’ seminal book helped popularize the field and is still a useful
reference.

B. Bollobás, Random Graphs (2nd edition), Cambridge University
Press (2001).

More recent results are covered in Alon and Spencer [1] and:

S. Janson, T.  Luczak and A. Rucinski, Random Graphs, Wiley In-
terscience (2000).
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4.7 Exercises

The clique number ωpGq of a graph G is the size of the largest clique
in G. We shall write whp to mean with high probability as nÑ8.

1. Show that ωpGn,1{2q P tk, k � 1u whp, for some k � kpnq.

2. In a tournament, each pair out of n teams plays each other once,
and there are no draws. For n ¥ n0pkq large, must there exist a
set A of k teams such that no team beat everyone in A?

3. paq Show that ωpGn,1{2q �
�
2� op1q� log n whp.

pbq Deduce that χpGn,1{2q Á
n

2 log n
whp.

pcq Show that, whp, every subset of V pGn,1{2q of size n{plog nq2
contains an independent set of size k � 4. [Hint: use Janson.]

pdq Deduce that χpGn,1{2q �
n

2 log n
whp.

4. Find the threshold function for the property “G is bipartite”.
Is it sharp?

5. Prove the following ‘asymptotic’ version of Mantel’s Theorem on
Gn,p (with p constant):

Mantel’s Theorem on Gn,p. With high probability, every subgraph
H � EpGn,pq with

epHq ¥
�

1
2
� ε



epGn,pq

contains a triangle.

Can you prove it when p � ppnq Ñ 0? Show it is false when p ! 1{?n.
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Chapter 5

Topological and
Algebraic Methods

Everyone else would climb a peak by looking for a path

somewhere in the mountain. Nash would climb another

mountain altogether, and from that distant peak would

shine a searchlight back onto the first peak.

Donald Newman

In earlier chapters, we have seen how ideas from Probability can
sometimes be used to solve problems in Combinatorics. We shall now
discuss some surprising applications from two other areas of mathe-
matics: Topology and Linear Algebra. In particular, we shall see a
famous application of the Borsuk-Ulam Theorem, due to Lovász, and
the stunning disproof of Borsuk’s Conjecture, by Kahn and Kalai.

5.1 The Borsuk-Ulam Theorem

A Ham Sandwich is a family of three (disjoint) measureable subsets
of R3, which we shall call B (the bread), H (the ham) and X (the
cheese). The sandwich is ‘fairly divided in two’ if each of B, H and
X is partitioned into two equal-size pieces.

44
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5.1. THE BORSUK-ULAM THEOREM 45

Question 5.1.1. Given a Ham Sandwich, must there exist a plane
which fairly divides the sandwich in two?

This question was first posed by Steinhaus in 1938, and was solved
by Banach. The proof uses the following famous theorem, which was
conjectured by Ulam and proved by Borsuk in 1933. Let Sn � Rn�1

denote the n-dimensional sphere.

The Borsuk-Ulam Theorem. For any continuous function f :
Sn Ñ Rn, there exists a point x P Sn such that fpxq � fp�xq.

To get a feel for this theorem, let’s use it to prove the Ham Sand-
wich Theorem, i.e., that the answer to Question 5.1.1 is yes.

Proof of the Ham Sandwich Theorem. Given a Ham Sandwich, we
define a continuous function f : S2 Ñ R2 as follows. For each y P S2,
let P pyq denote the plane perpendicular to y which splits the bread
into two equal pieces. Now define

fpxq :� �
apyq, bpyq�,

where apyq is the amount of ham on the ‘positive’ side of P pyq, and
bpyq is defined analogously for the cheese.

Since f is continuous, by the Borsuk-Ulam Theorem there exists
y P S2 such that fpyq � fp�yq. But P pyq � P p�yq, so this means
that there is an equal amount of bread, ham and cheese on both sides
of P pyq, as required.

In the next section we shall give a more combinatorial application
of the Borsuk-Ulam Theorem. In order to do so, it will be useful to
restate the theorem as follows.

Theorem 5.1.2 (Lyusternik and Shnirelman, 1930). Let A0, . . . , An
be a cover of Sn, such that each Aj is either open or closed. Then
there is a set Aj which contains two antipodal points, x and �x.

Proof. Suppose first that the sets Aj are all closed, and define a
continuous function f : Sn Ñ Rn by

fpxq :� �
dpx,A1q, . . . , dpx,Anq

�
,
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46CHAPTER 5. TOPOLOGICAL AND ALGEBRAIC METHODS

where dpx,Ajq � infyPAj dpx, yq denotes the `2-distance (say) from
x to Aj . By the Borsuk-Ulam Theorem, we have fpxq � fp�xq for
some x P Sn. Thus, if dpx,Ajq � 0 for some j P rns, then x,�x P Aj ,
since the Aj are closed. But if not, then x,�x P A0, since the Aj
form a cover, so we are done.

Next suppose that the sets Aj are all open. By compactness, there
exist closed sets Bj � Aj which also cover Sn. (To see this, for each
x P Aj choose an open set Nx Q x such that Nx � Aj , and take a
finite sub-cover.) Thus the result follows by the first case.

Finally, suppose F1, . . . , Fk are closed and the rest are open, and
replace each closed set with its ε-neighbourhood. Applying the pre-
vious case for a sequence εpjq Ñ 0, and passing to a subsequence,
we find that (wlog) there exist xj ,�xj P pF1qεpjq for each j P N.
Taking a convergent subsequence, and recalling that F1 is closed, the
theorem follows.

In fact, it turns out that the Theorem 5.1.2 is equivalent to the
Borsuk-Ulam Theorem; we leave the proof of the reverse implication
to the reader.

5.2 The Kneser graph

At the start of Chapter 4, we remarked that it is non-trivial to con-
struct triangle-free graphs with high chromatic number. The follow-
ing family of graphs have this property, and were first studied by
Martin Kneser in 1955.

Definition. The Kneser graph, Knpn, kq, has vertex set
�rns
k

�
, the

k-subset of rns, and edge set E �  tS, T u : S and T are disjoint
(

.

Note that if k ¥ n{3, then Knpn, kq is triangle-free, and has in-
dependent sets of size

�
n
k�1

� ¥ |V |{3 (take every k-set containing
element 1, say). Nevertheless, Kneser conjectured that the chromatic
number of Knpn, kq is n� 2k� 2, and hence grows with n if k � n{3,
say. Lovász’s proof of this conjecture, in 1978, was the first applica-
tion of topological methods in Combinatorics.

Theorem 5.2.1 (Lovász, 1978). If n ¥ 2k � 1, then

χ
�
Knpn, kq� � n� 2k � 2.
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Proof. To colour Knpn, kq with n�2k�2 colours, simply give colour
2k�1 to every subset of r2k�1s, and colour every other k-set with its
maximal element. Then every two sets with the same colour intersect,
so this a proper colouring.

To prove that d � n�2k�1 colours do not suffice, let X � Sd be a
set of n points in general position; that is, every hyperplane through
the origin contains at most d points. Let Aj denote the collection of
vertices of Knpn, kq (i.e., k-subsets of X) of colour j, for each j P rds.

Now, define a cover of Sd as follows: for each j P rds and x P Sd,
let x P Uj if there is a k-set of colour j in the open hemisphere whose
pole is x. Let U0 � SdzpU1 Y . . . Y Udq, and observe that each Uj
pj ¥ 1) is open, and hence U0 is closed.

By the Borsuk-Ulam Theorem (applied as in Theorem 5.1.2),
there exist x P Sd and 0 ¤ j ¤ d such that x,�x P Uj . If j � 0
then x,�x R Uj for every j ¥ 1, and so the hemispheres with poles
x and �x each contain at most k � 1 elements of X. But then the
equator must contain at least n�2pk�1q � d�1 points of X, which
is a contradiction (since they are in general position).

So x,�x P Uj for some j ¥ 1, which means that there are two
k-sets of colour j lying in opposite hemispheres. But these k-sets are
disjoint, so this is again a contradiction, which proves the theorem.

The proof above is somewhat simpler that Lovász’s original proof,
and is due to Joshua Greene, who was an undergraduate student at
the time. For many other combinatorial applications of the Borsuk-
Ulam Theorem, see the book by Matoušek [4].

5.3 Linear Algebra

We next turn to applications from a different, but equally fundamen-
tal area of mathematics: Linear Algebra. The basic idea is straight-
forward: we translate a combinatorial problem into one about (for
example) vector spaces, or polynomials; then we apply a general re-
sult about such objects. We shall give only a taste of the plethora
of beautiful combinatorial results which can be proven in this way;
many of these have no known purely combinatorial proof.
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48CHAPTER 5. TOPOLOGICAL AND ALGEBRAIC METHODS

We begin with a simple question.

Question 5.3.1 (Oddtown). Suppose A � Ppnq is a collection of
clubs, each of which has an odd number of members, and any two of
which share an even number of members. How large can |A| be?

Answer: |A| ¤ n.

Proof. Let A � Ppnq be a set-system such that |A| is odd for every
A P A and |AXB| is even for every A,B P A with A � B. We shall
map the family A into the vector space

�
F2

�n in the simplest way
possible: A maps to its characteristic vector.

To be precise, for each A P Ppnq, let χA P �F2

�n denote the vector
such that

�
χA

�
j
� 1 if and only if j P A. Then the condition “|A| is

odd” translates to “}χA} � 0”, and the condition “|A X B| is even”
translates to “χA �χB � 0”. (Note that we are working over the field
with two elements!)

We claim that the vectors Ξ � tχA : A P Au are independent.
Indeed, suppose that ¸

APA
λAχA � 0

for some collection λA P R. Then, taking the scalar product with
some set B P A, we obtain λB � 0. But B was arbitrary, so the
collection Ξ is indeed linearly independent.

But the dimension of
�
F2

�n is n, which means that there do not
exist n� 1 linearly independent vectors, and so we are done.

Finally, note that this bound is best possible, since each resident
of Oddtown may set up a club consisting only of himself.

Problem 5.3.2 (�). Find a purely combinatorial proof that Oddtown
can have at most n clubs.

5.4 The Frankl-Wilson inequalities

Given L � rns, say a set-system A � Ppnq (that is, a collection of
subsets of rns) is L-intersecting if |A X B| P L for every A,B P A
with A � B. In this section we shall consider the following question.

Question 5.4.1. How large can an L-intersecting set-system be?
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In the following few pages we shall answer this question in a ‘mod-
ular’ setting (i.e., in the group Zp), and give a beautiful application,
due to Kahn and Kalai. Two more applications can be found in the
exercises.

The following theorem was proved by Deza, Frankl and Singhi in
1983, but for historical reasons (see Theorem 5.4.5 below) it is usually
referred to as the Modular Frankl-Wilson inequality.

The Modular Frankl-Wilson Inequality. Let p be prime, and let
L � t0, . . . , p � 1u with |L| � s. Let A be a family of subsets of rns
such that |A| R L pmod pq for every A P A, but |AXB| P L pmod pq
for any pair of distinct sets A,B P A. Then

|A| ¤
ş

j�0

�
n

j



.

Note that Theorem 5.4, applied in the case p � 2 and L � t0u, says
that Oddtown has at most n� 1 clubs.

The proof of Theorem 5.4 is similar to the Oddtown proof de-
scribed above, except that instead of considering the characteristic
vectors of the sets in A, we shall define a family of polynomials, one
for each set A P A, which are linearly independent in some vector
space. We shall use the following easy lemma to show that the poly-
nomials are linearly independent.

Lemma 5.4.2. Let F be a field and v1, . . . , vm P Fn. Suppose there
exist functions u1, . . . , um : Fn Ñ F such that ujpviq � 0 for all
1 ¤ i   j ¤ m and uipviq � 0 for all i P rms. Then v1, . . . , vm are
linearly independent.

Proof. Suppose
°
i λivi � 0, and apply uj . It follows that λj � 0 for

all j P rms.
We can now prove the Modular Frankl-Wilson inequality.

Proof of Theorem 5.4. For each A P A, we define a polynomial fA :
pFpqn ÞÑ Fp as follows:

fApxq :�
s¹
j�1

�
x � χA � `j

�
.
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Observe that, for each A,B P A with A � B,

fApχAq �
s¹
j�1

�|A| � `j
� � 0,

and that

fApχBq �
s¹
j�1

�|AXB| � `j
� � 0.

Hence, by Lemma 5.4.2, it follows that the polynomials tfA : A P Au
are linearly independent. (Exercise: write down a linear functional
corresponding to the vector χA.)

Let F denote the space of polynomials of degree t most s, and
note that fA P F for all A P A. Hence

|A| ¤ dimpF q ¤
ş

j�0

�
n� j � 1

j



,

since there are exactly
�
n�j�1

j

�
non-negative integer solutions to the

equation d1 � . . . dn � j, and the dimension of F is equal to the
number of monomials xd11 . . . xdn

n with d1 � � � � � dn ¤ s.
This bound is close to, but not quite as good as the one we want.

The following cute trick resolves the situation:
Replace each polynomial fA by the polynomial fA obtained by

reducing, for each monomial, the exponent of each variable to one.
(For example, if fpx, y, zq � x2y � y3z4 � xyz, then fpx, y, zq �
xy � yz � xyz.) The crucial (but trivial) observation is that f and
f take the same values on t0, 1un, and hence that these ‘reduced’
polynomials still satisfy the properties we want, i.e., fApχAq � 0 and
fApχBq � 0 for every A � B P A.

Hence the polynomials tfA : A P Au are linearly independent, by
Lemma 5.4.2, and so, writing F 1 for the space of multilinear polyno-
mials of degree at most s, we obtain

|A| ¤ dimpF 1q ¤
ş

j�0

�
n

j



,

as required.
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Sometimes non-modular results can be proved using the MFWI.

Theorem 5.4.3 (The Weak Fisher inequality). Let 0 ¤ ` ¤ n, and
suppose that A � Ppnq is such that |A X B| � ` for every A,B P A
with A � B. Then |A| ¤ n� 1.

Finally, we note two other related theorems, which can be proved
in the same way (see that exercises). Recall that A is k-uniform if
|A| � k for every A P A, and is L-intersecting if |AXB| P L for every
A,B P A with A � B.

Theorem 5.4.4 (Ray-Chaudhuri and Wilson, 1975). Let L � N with
|L| � s, and let A � Ppnq be k-uniform and L-intersecting. Then

|A| ¤
�
n

s



.

Theorem 5.4.5 (Frankl and Wilson, 1981). Let L � N with |L| � s,
and let A � Ppnq be L-intersecting. Then

|A| ¤
ş

j�0

�
n

j



.

5.5 Borsuk’s Conjecture

In 1933, the same year as his famous proof of the Borsuk-Ulam The-
orem, Borsuk asked the following question. Suppose X � Rn, into
how many pieces must we divide X such that each piece has smaller
diameter than X?

Definition. For each n P N, let Borpnq denote the smallest integer
such that every bounded set in Rn can be partitioned into Borpnq sets
of smaller diameter.

The regular n-dimensional simplex of diameter 1, shows that
Borpnq ¥ n� 1, since each vertex must be in a different set. Borsuk
conjectured that this bound is sharp.

Borsuk’s Conjecture. Borpnq � n� 1 for every n P N.
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The conjecture was open for 60 years, before the following spectacular
disproof was discovered by Kahn and Kalai.

Theorem 5.5.1 (Kahn and Kalai, 1993). Borpmq ¡ 1.1
?
m for all

sufficiently large m P N. In particular, Borsuk’s Conjecture is false
in all sufficiently high dimensions.

Proof. The plan is as follows: we shall construct an injection Φ from
a set system A to a sphere in m dimensions. We shall show that, if
B � A is such that ΦpBq has smaller diameter than ΦpAq, then there
is a restriction on the possible intersection sizes of sets in B. This
will allow us to bound |B| from above (using the MFWI), and hence
bound Borpmq from below.

With foresight, choose n P N so that m{2 ¤ �
n
2

� � n ¤ m, and
choose a prime p such that n{4 ¤ p � n{4 � opnq (this is possible
by known results on the distribution of primes). Set A � � rns

2p�1

�
; we

shall show that if B � A corresponds to set of sub-maximal diameter,
then |B| ¤ 2

�
n
p�1

�
.

We begin by choosing an orthonormal basis 
ei : i P rns( Y  

fij : 1 ¤ i   j ¤ n
(

of Rk, where k � �
n
2

�� n. Define a function Φ : Rn Ñ Rk by

Φpx1, . . . , xnq :�
¸
i j

xixjfij � α
¸
i

xiei,

where α ¡ 0 will be chosen later, and note that Φ is injective. A
simple calculation (exercise) shows that

Φpxq � Φpyq � 1
2
px � yq2 � α2 x � y � n

2
,

if x P t�1, 1un. Since x � x � n for such x, it follows that

}Φpxq}2 � n2

2
� α2 n � n

2

for every x P t�1, 1un.
Let us identify the familyA with the set

 
vA : A P A( � t�1, 1un,

where pvAqj � 1 if j P A, and pvAqj � �1 otherwise. By the
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observations above, ΦpAq is a subset of a sphere centred at the origin.
It follows that two points of ΦpAq are at distance diampΦpAqq if and
only if their scalar product is equal to min

 
Φpxq � Φpyq : x,y P A(.

The minimum of the quadratic px � yq2{2 � α2px � yq � n{2 is
obtained at x � y � �α2. We would like to choose α so that this
minimum is attained by ΦpAq, and so that the minimum corresponds
to a particular intersection size mod p. Note that

vA � vB � n� 2
�|A| � |B| � 2|AXB|�,

and set α � ?
4p� n. Then, for each A,B P A � � rns

2p�1

�
, we have

|AXB| � p� 1 ô vA � vB � n� 4p � �α2.

The diameter of ΦpAq is thus realised by all pairs tA,Bu � A such
that |A X B| � p � 1. Therefore, if B � A is such that ΦpBq has a
smaller diameter than ΦpAq, then |AXB| � p� 1 pmod pq for every
A,B P B with A � B.

Note also that, since A � � rns
2p�1

�
, we have |A| � p � 1 pmod pq

for every A P B. Hence, by the MFWI applied with L � r0, p � 2s,
we obtain

|B| ¤
p�1̧

j�0

�
n

j



¤ 2

�
n

p� 1



.

But then, using Stirling’s formula (exercise),

Borpmq ¥ Borpkq ¥ |A|
2
�
n
p�1

� �
�

n
2p�1

�
2
�
n
p�1

� ¥ �
1.1� op1q�?m,

as required.

Remark. The best known bounds on Borpnq are only

p1.225q
?
n   Borpnq   p1.3qn.

The lower bound follows from a slight modification of the argument
above; the upper bound was proved by Schramm in 1988. Borsuk’s
Conjecture is true in two or three dimensions, and in various other
special cases (e.g., for bodies with a smooth surface). The smallest n
for which the conjecture is known to fail is 298.
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5.6 Recommended further reading

For many more applications of Borsuk-Ulam, see Matoušek [4]. Much
of the material from this section is discussed in:

Y. Kohayakawa and C. Moreira, Tópicos em Combinatória Contem-
porânea, 23o. Colóquio Brasileiro de Matemática (2001)

and also

L. Babai and P. Frankl, Linear Algebra Methods in Combinatorics
With Applications to Geometry and Computer Science (1992).

The articles by Alon, Godsil (with an appendix by Lovász) and
Björner in the following book are also very useful:

R. Graham, M. Grötschel and L. Lovász, Handbook on Combina-
torics, MIT Press (1996).

Finally, we highly recommend the collection of problems:

B. Bollobás, The Art of Mathematics: Coffee Time in Memphis, Cam-
bridge University Press (2006),

which covers everything in this chapter, and much much more.
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5.7 Exercises

1. Use the Borsuk-Ulam Theorem to solve the Necklace Problem.

The Necklace Problem. Suppose a necklace has n kinds of beads,
and an even number of each kind. How many cuts are required in
order to divide the beads equally between two thieves?

2. Prove the Ray-Chaudhuri-Wilson Theorem (Theorem 5.4.4).

3. Prove the Frankl-Wilson Theorem (Theorem 5.4.5).

The chromatic number of Rn:

Let χpRnq denote the chromatic number of the (infinite) graph with
vertex set Rn, and edge set

 
xy : }x� y} � 1

(
.

4. paq Show that 4 ¤ χpR2q ¤ 7.

pbq Show that χpRnq ¤ Cn for some C ¡ 0.

pcq Use the MFWI to show that χpRnq ¥ p1� εqn for some ε ¡ 0.

5. Give a constructive super-polynomial lower bound on Rpkq.

Hints

2. Consider the polynomials fApxq �
¹
i

� ¸
jPA

xj � `i

	
.

3. Consider the polynomials fApxq �
¹

LQ` |A|

�
xχA,xy � `

	
.

4. pcq Choose a prime p with 4p   n   8p, let k � 2p� 1 and

Y �
!
χA : A P

�rns
k


)
, and let the forbidden distance be

a
2p.

5. Let N �
�

n

p2 � 1



, and apply the MFWI to the colouring

cpABq is red ô |AXB| � �1 pmod pq.



i
i

“”Extremal and Probabilistic Combinatorics”” — 2011/5/12 — 17:23 — page 56 — #56 i
i

i
i

i
i

Chapter 6

Szemerédi’s Regularity
Lemma

To ask the right question is harder than to answer it.

Georg Cantor

In Chapter 2 we saw that in any finite colouring of the positive
integers, some colour class must contain arbitrarily long arithmetic
progressions. In 1936, Erdős and Turán conjectured that the colour-
ing here is just a distraction; the same conclusion should hold for the
‘largest’ colour class.

6.1 The Erdős-Turán Conjecture

Recall that the upper density of a set A � N is

dpAq � lim sup
nÑ8

|AX rns|
n

.

Conjecture 6.1.1 (Erdős and Turán, 1936). If dpAq ¡ 0, then A
contains arbitrarily long arithmetic progressions.

Roth proved the case k � 3 of the conjecture in 1953, and Sze-
merédi proved the case k � 4 in 1969, before finally resolving the

56
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question in 1975. As mentioned in Section 6.3.4, Furstenburg (in
1977) and Gowers (in 2001) provided important alternative proofs
of Szemerédi’s Theorem. (According to Terry Tao, there are now at
least 16 different proofs known!)

Although the conjecture of Erdős and Turán may look like lit-
tle more than a curiosity, it is perhaps the greatest triumph of the
‘Hungarian school’ of mathematics, in which the aim is to pose (and
solve) beautiful and difficult problems, and allow deep theories and
connections between areas to present themselves. For more on the
modern (and very active) study of Additive Combinatorics, which
grew out of the proofs of Roth, Szemerédi, Furstenburg and Gowers,
see the excellent recent book by Tao and Vu [5].

In this section we shall prove Roth’s Theorem (the case k � 3 of
Szemerédi’s Theorem), using the Regularity Lemma introduced by
Szemerédi. We shall then see how one may use this powerful tool
to prove several other beautiful results. The lemma has proven so
useful, it is little exaggeration to say that whenever you see a graph,
the the first thing you should think to do is to take its Szemerédi
partition.

6.2 The Regularity Lemma

Szemerédi’s Regularity Lemma, perhaps the most powerful tool in
Graph Theory, may be thought of as an answer to the following,
fairly vague question.

Question 6.2.1. How well can an arbitrary graph be approximated
by a collection of random graphs?

Szemerédi’s answer to this question was as follows:

“Given any graph G, we can partition the vertex set V pGq into a
bounded number of pieces (at most k, say), such that for almost
every pair pA,Bq of parts, the induced bipartite graph GrA,Bs
is approximated well by a random graph.”

We shall quantify the statements ‘almost every’ and ‘is approximated
well by a random graph’ in terms of a parameter ε ¡ 0. The crucial
point is that the bound k depends on ε, but not on n � |V pGq|.
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To quantify ‘almost every’ is easy: it simply means all but εk2

pairs. To make precise the intuitive idea that a bipartite graph
‘looks random’ is more complicated, and we shall need the follow-
ing technical definition. Given subsets X,Y � V pGq, we shall write
epX,Y q for the number of edges from X to Y , i.e., the size of the set
txy P EpGq : x P X, y P Y u.
Definition. Let ε ¡ 0 and let A,B � V pGq be disjoint sets of vertices
in a graph G. The pair pA,Bq is said to be ε-regular if����epA,Bq|A||B| � epX,Y q

|X||Y |
���� ¤ ε

for every X � A and Y � B with |X| ¥ ε|A| and |Y | ¥ ε|B|.
In other words, for every pair pX,Y q of sufficiently large subsets of

A and B, the density of pX,Y q is about the same as that of pA,Bq. It
is easy to see (using Chernoff’s inequality, see [1]) that in the random
graph Gn,p, any (sufficiently large) pair of subsets pA,Bq is ε-regular
with high probability.

Before stating the Regularity Lemma, let us see why the defi-
nition above is useful by proving a couple of easy consequences of
ε-regularity. Indeed, if we believe that ε-regular pairs ‘look like’ ran-
dom graphs, then we would like ε-regular graphs and random graphs
to share some basic properties.

The simplest property of a random graph is that most vertices
have roughly the same number of neighbours. This property is shared
by ε-regular pairs.

Property 1. Let pA,Bq be an ε-regular pair of density d in a graph
G. Then all but at most 2ε|A| vertices of A have degree between
pd� εq|B| and pd� εq|B| in GrA,Bs.
Proof. Let X � A be the set of low degree vertices in A, i.e.,

X :�
!
v P A : |NGpvq XB|   pd� εq|B|

)
,

and let Y � B. Then the density of the pair pX,Y q is less than d�ε,
so |X|   ε|A|, by the definition of ε-regularity. By symmetry, the
same holds for the high degree vertices.
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Another nice property of Gn,p is that a (randomly chosen) induced
subgraph of Gn,p is also a random graph, with the same density.

Property 2. Let pA,Bq be an ε-regular pair of density d in a graph
G. If X � A and Y � B, with |X| ¥ δ|A| and |Y | ¥ δ|B|, then
pX,Y q is an 2ε{δ-regular pair, of density between d� ε and d� ε.

Proof. This follows easily from the definitions, so we leave its proof
as an exercise.

The properties above give us some idea of the motivation behind
the definition of ε-regularity. However, the main reason that the
definition is useful is the following ‘embedding lemma’. It says that,
for the purpose of finding small subgraphs in a graph G, we can treat
‘dense’ ε-regular pairs like complete bipartite graphs.

Given a graph H and an integer m, let Hpmq denote the graph
obtained by ‘blowing up’ each vertex of H to size m, i.e., each vertex
j P V pHq is replaced by a set Aj of size m. Thus Hpmq has vertex
set

�
j Aj , and edge set tuv : u P Ai, v P Aj for some ij P EpHqu.

Given a graph H, an integer m and δ ¡ ε ¡ 0, let GpH,m, ε, δq
denote the family of graphs G such that V pGq � V pHpmqq, G �
Hpmq, and GrAi, Ajs is ε-regular and has density at least δ whenever
ij P EpHq.
The Embedding Lemma (simple version). Let H be a graph,
and let δ ¡ 0. There exists ε ¡ 0 and M P N such that if m ¥ M
and G P GpH,m, ε, δq, then H � G.

For most of our applications the simple version of the embedding
lemma will be sufficient. The full version below is a bit harder to
remember, but is not much harder to prove.

The Embedding Lemma. Let ∆ P N, let δ ¡ 0, and let ε0 �
δ∆{p∆ � 2q. Let R be a graph, let m, t P N with t ¤ ε0m, and let
H � Rptq with maximum degree at most ∆.

If ε0 ¡ ε ¡ 0 and G P GpR,m, ε, δ � εq, then G contains at least
pε0mq|V pHq| copies of H.

Proof. We shall prove the simple embedding lemma for the triangle
H � K3, and leave the proof of the full statement to the reader. To
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find a triangle in G P GpK3,m, ε, δq, we simply pick vertices one by
one. Indeed, choose v1 P A1 arbitrarily amongst the vertices with at
least pδ � εqm neighbours in both A2 and A3.

Let X � Npvq X A2 and Y � Npvq X A3. Since |X| ¥ ε|A2| and
|Y | ¥ ε|A3|, it follows that there exists an edge between X and Y ,
so we are done. Alternatively (and more instructively for the general
case), note that, by Property 2 above, the pair pX,Y q is ε1-regular
and has density at least δ � ε (where ε1 � 2ε{pδ � εq). Hence, by
Property 1, all but 2ε1|X| vertices of X have degree at least δ� 2ε in
GrX,Y s, and so we have found the desired triangle.

Problem 6.2.2. Prove the full embedding lemma. [Hint: choose
vertices one by one, and keep track of their common neighbourhoods.]

Inspired by the Embedding Lemma, we shall (throughout this
section) refer to a graph on n vertices as sparse if it has opn2q edges,
and dense otherwise, i.e., if it has at least δn2 edges for some δ ¡ 0.
Note that (as stated) this definition is not precise; to understand it
we should think of a sequence of graphs pGnq, where |Gn| � n for
each n P N, and consider the limit n Ñ 8. However, our precise
statements will hold for (large) fixed graphs.

Having (we hope!) convinced the reader that our definition of
ε-regularity is a useful one, we are ready to state the Regularity
Lemma.

Theorem 6.2.3 (The Szemerédi Regularity Lemma, 1975). Let ε ¡
0, and let m P N. There exists a constant M � Mpm, εq such that
the following holds.

For any graph G, there exists a partition V pGq � A0 Y . . . Y Ak
of the vertex set into m ¤ k ¤M parts, such that

• |A1| � . . . � |Ak|,
• |A0| ¤ ε|V pGq|,
• all but εk2 of the the pairs pAi, Ajq are ε-regular.

The Regularity Lemma can be a little difficult to fully grasp at
first sight; the reader is encouraged not to worry, and to study the
applications below. We remark that the proof of the lemma (see
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Section 6.7) is not difficult; the genius of Szemerédi was to imagine
that such a statement could be true!

We note also that although the lemma holds for all graphs, it
is only useful for large and (fairly) dense graphs. Indeed, if n :�
|V pGq|  Mpm, εq then the statement is vacuous (since each part has
size at most one), and if epGq � opn2q then G is well-approximated
by the empty graph. Finally, we note that the best possible function
Mpm, εq is known to be (approximately) a tower of height fpεq, for
some function logp1{εq ¤ fpεq ¤ p1{εq5.

6.3 Applications of the Regularity Lemma

The easiest way to understand the Regularity Lemma is to use it. In
this section we shall give three simple (and canonical) applications:
the Erdős-Stone Theorem, which we proved in Chapter 3; the ‘trian-
gle removal lemma’, which we shall use to deduce Roth’s Theorem;
and bounds on Ramsey-Turán numbers.

6.3.1 The Erdős-Stone Theorem

Recall the statement of Theorem 3.3.

The Erdős-Stone Theorem. Let H be an arbitrary graph. Then

expn,Hq �
�

1 � 1
χpHq � 1

� op1q

�

n

2



.

We shall first give a sketch proof, and then fill in some of the
details. The reader is encouraged to spend some time turning this
sketch into a rigorous proof. Given a graph G, a typical application
of the Regularity Lemma (SzRL) goes as follows:

1. Apply the SzRL (for some sufficiently small ε ¡ 0). We obtain
a partition pA0, . . . , Akq of the vertex set as described above.

2. Remove edges inside parts, between irregular pairs, and be-
tween sparse pairs. There are at most Opεn2q such edges.
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3. Consider the ‘reduced graph’ R which has vertex set rks and
edge set 

ij : the pair pAi, Ajq is dense and ε-regular
(
.

4. Apply a standard result from Graph Theory (e.g., Hall’s The-
orem, Dirac’s Theorem, Turán’s Theorem) to R.

5. Use the Embedding Lemma to find a copy of the desired sub-
graph H in G.

Now let us see how to apply this approach in the case of Erdős-
Stone. The statement we are trying to prove is that, for every δ ¡ 0
there exists Npδq P N, such that if n ¥ Npδq, |G| � n and

epGq ¥
�

1 � 1
χpHq � 1

� δ


�
n

2



,

then H � G.

Proof of the Erdős-Stone Theorem. Let G be a graph on n vertices
as described above, let ε � εpH, δq ¡ 0 be sufficiently small, and let
m � 1{ε. Apply the SzRL to obtain a partition pA1, . . . , Akq, and
form the reduced graph R.

Claim: epRq ¡
�

1 � 1
χpHq � 1

� δ

2


�
k

2



.

Proof of Claim. Consider the edges inside parts, between irregular
pairs, and between pairs of density at most δ{4; we claim that there
are at most pδ{3q�n2� such edges. Indeed, there are at most kpn{kq2
edges inside parts (recall that k ¥ m � 1{ε); there are at most
εk2pn{kq2 edges between irregular pairs (since there are at most εk2

such pairs); and there are at most
�
k
2

�pδ{4qpn{kq2 edges between
‘sparse’ pairs.

Thus only considering edges between dense, regular pairs, we ob-
tain a graph G1 � G with

epG1q ¥
�

1 � 1
χpHq � 1

� 2δ
3


�
n

2



.
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Now, the edges of G1 are all between pairs of parts which correspond
to edges of R, so we have epG1q ¤ epRqpn{kq2, and the claim follows.

Applying Turán’s Theorem to the reduced graph, we deduce from
the claim that R contains a complete graph on r � χpHq vertices. Let
ip1q, . . . , iprq be the labels of the parts corresponding to the vertices
of this complete graph, and let A � �r

j�1Aipjq.
Then G1rAs P GpKr, n

1, ε, δ{2q for some n1 ¥ n{2k, by the defini-
tion of R. Also, since H is a fixed graph with χpHq � r, we have
H � Rptq for t � |H|. Hence, by the Embedding Lemma, H � G as
required.

6.3.2 The Triangle Removal Lemma

The next application is a famous and important one; until recently,
there was no known proof of it which avoided the Regularity Lemma.

The Triangle Removal Lemma (Ruzsa and Szemerédi, 1976). For
every ε ¡ 0 there exists a δ ¡ 0 such that the following holds:

If G is a graph with at most δn3 triangles, then all the triangles
in G can be destroyed by removing εn2 edges.

Proof. We shall use the same approach as in the proof above. Indeed,
let ε1 � ε1pε, δq ¡ 0 be sufficiently small, and apply the SzRL for ε1.
Remove all edges inside parts, between irregular pairs, and between
sparse pairs; there are at most εn2 such edges.

We claim that the remaining graph, G1, is triangle-free. Indeed,
the only edges remaining correspond to edges of the reduced graph,
R. Thus, if G1 contains a triangle, it follows that R contains a trian-
gle. But then, by the Embedding Lemma, G must contain at least
fpεqn3 ¡ δn3 triangles, which is a contradiction.

6.3.3 Roth’s Theorem

Finally, let’s deduce Roth’s Theorem from the triangle removal lemma.

Roth’s Theorem (Roth, 1954). If A � N has positive upper density,
then A contains an arithmetic progression of length three.
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Proof. Given A, we first form a graph G as follows. Choose 0  
ε   dpAq, and choose n sufficiently large, with |A X rns| ¡ εn. Let
V pGq � XYY YZ, where X, Y and Z are disjoint copies of rns, and
let

EpGq �  tx, yu : x P X, y P Y, and y � x� a where a P A(
Y  ty, zu : y P Y, z P Z, and z � y � a where a P A(
Y  tx, zu : x P X, z P Z, and z � x� 2a where a P A(

The key observation is that all but n2 of the triangles in G cor-
respond to 3-APs in A. Indeed, if tx, y, zu is a triangle in G, then a,
b and pa � bq{2 are in A, where a � y � x and b � z � y. So if A
contains no 3-AP, then the only triangles in G correspond to triples
pa, a, aq. There are n|AXrns| ¤ n2 such triangles (each is determined
by two of its vertices).

Apply the triangle removal lemma to G. Since n2   δpεqn3 (if n is
sufficiently large), it follows that we can destroy all triangles in G by
removing at most εn2 edges. But the triangles in G corresponding to
the triples pa, a, aq are edge-disjoint ! Hence n|AX rns| ¤ εn2, which
is a contradiction. Thus A must contain a 3-AP, as claimed.

Problem 6.3.1. Prove Roth’s Theorem in an arbitrary abelian group.

6.3.4 Ramsey-Turán numbers

In Turán’s Theorem, the extremal Kr-free graphs (i.e., the Turán
graphs) have very large independent sets. What happens to the ex-
tremal number if we require in addition that our Kr-free graphs have
small independence number?

Question 6.3.2. Let G be a triangle-free graph on n vertices, and
suppose that G has no independent set of size fpnq. If fpnq � opnq,
does it follow that epGq � opn2q?

Answer: Yes!

Proof. The maximum degree of a vertex in G is at most fpnq.
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Question 6.3.3. Let G be a Kr-free graph on n vertices, for some
r ¥ 5, and suppose that G has no independent set of size fpnq. If
fpnq � opnq, does it follow that epGq � opn2q?
Answer: No!

Proof. Recall from Theorem 4.1.2 that there exist arbitrarily large
graphs with girth at least four and no linear size independent set;
call such a graph an Erdős graph.

Now let H � Ttpr�1q{2upnq, the tpr� 1q{2u-partite Turán graph on
n vertices, and let G be the graph obtained from H by placing an
Erdős graph in each part. Then G contains no Kr, no independent
set of linear size, and at least n2{4 edges.

Given a ‘forbidden’ graph H, and a function f : N Ñ N, define
the Ramsey-Turán number of the pair pH, fq to be

RT
�
n,H, fpnq� :� max

 
epGq : |G| � n,H � G and αpGq ¤ fpnq(,

where αpGq denotes the independence number of G.
From Questions 6.3.2 and 6.3.3, we know that RT pn,Kr, opnqq is

opn2q if r ¤ 3, and is Θpn2q if r ¥ 5. But what about r � 4?

Theorem 6.3.4 (Szemerédi, 1972; Bollobás and Erdős, 1976).

RT pn,K4, opnqq � n2

8
� opn2q.

We shall prove the upper bound using the SzRL; the lower bound
follows from an ingenious construction of Bollobás and Erdős, which
we shall describe briefly below.

Proof of the upper bound in Theorem 6.3.4. We shall follow the usual
strategy, but this time we shall need a couple of extra (fairly simple)
ideas. Indeed, let G be a graph with n vertices, and apply the SzRL
to G, for some sufficiently small ε ¡ 0. Form the reduced graph R of
ε-regular pairs with density at least δ, in the usual way.

We make the following two claims.

Claim 1: R is triangle-free.
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Proof of Claim 1. Let tA,B,Cu be a triangle of parts in R, and
choose a P A with |Npaq XB|, |Npaq X C| ¥ pδ{2q|C|. Since the pair
pNpaq XB,Npaq X Cq is ε1-regular (by Property 6.2), we can choose
a vertex b P Npaq XB such that |Npbq XNpaq X C| ¥ pδ{2q2|C|.

But αpGq � opnq, so Npaq XNpbq XC is not an independent set.
But then G contains a copy of K4, so we are done.

By Claim 1 and Mantel’s Theorem, R has at most k2{4 edges.
The upper bound is thus an immediate consequence of the following
claim.

Claim 2: G contains no ε-regular pair with density bigger than 1{2�δ.
Proof of Claim 2. Let pA,Bq be an ε-regular pair with density 1{2�δ.
Since A has no linear size independent set, we can choose a pair x, y P
A such that xy P EpGq, and |NpxqXB|, |NpyqXB| ¥ p1{2� δ{2q|B|.

But then |Npxq XNpyq X B| ¥ δ|B|, and so either αpGq ¥ δ|B|,
or the set Npxq XNpyq XB contains an edge, in which case K4 � G.
In either case, we have a contradiction.

The result follows by counting edges. There are at most

k2

4

�
1
2
� δ


�
n

k


2

� n2

8
� opn2q

edges between dense regular pairs, and opn2q other edges, so G has
at most n2{8� opn2q edges, as required.

When Szemerédi proved the upper bound in Theorem 6.3.4 in
1972, most people expected the correct answer to be opn2q. It was
therefore very surprising when Bollobás and Erdős gave the following
construction, which shows that Szemerédi’s bounds is in fact sharp!

The Bollobás-Erdős graph. Let U � Sd be a sufficiently high-
dimensional sphere, and scatter n{2 red points and n{2 blue points
at random on U . Join two points of the same colour if they are
at distance less than

?
2 � ε, and join points of different colours if

they are at distance greater than 2 � ε, for some suitably chosen
ε � εpdq ¡ 0.

Problem 6.3.5. Show that the Bollobás-Erdős graph has n2{8�opn2q
edges, contains no copy of K4, and has independence number opnq.
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6.4 Graph Limits

Another way of viewing the Regularity Lemma is topological in na-
ture: it allows us to compactify the space of all large dense graphs.

Definition (Convergence of graph sequences). A sequence Gn �
prns, Enq of graphs is convergent if for any graph H, the density of
copies of H in Gn converges to a limit as nÑ8.

Theorem 6.4.1 (Lovász and Szegedy, 2004). Every sequence of
graphs has a convergent subsequence.

In fact, one can say something stronger.

Definition (Graphons). A graphon is a symmetric measurable func-
tion p : r0, 1s � r0, 1s Ñ r0, 1s.

For each graphon, define a generalised Erdős-Rényi graph Gpn, pq
on n vertices as follows: first give each vertex v a ‘colour’ xv P r0, 1s,
chosen uniformly at random; then add each edge vw with probability
ppxv, xwq, all independently.

Let Gp8, pq denote the (formal) limit of the random graphs Gpn, pq.
Theorem 6.4.2 (Lovász and Szegedy, 2004). Every sequence of
graphs has a subsequence converging to Gp8, pq for some graphon
p.

Various other metrics have been proposed for the space of graph
sequences; interestingly, although the definitions are quite different
from one another, almost all have turned out to be equivalent.

A closely related topic is that of graph testing : roughly speaking,
a property of graphs P is testable if we can (with high probability
as k Ñ 8) test whether or not a large graph G is in P by looking
at a random subgraph of G on k vertices. (More precisely, it accepts
any graph satisfying P with probability 1, and rejects any which is
ε � εpkq-far from P (in a given metric) with probability 1� ε.)

The strongest result along these lines is due to Austin and Tao,
who generalized results of Alon and Shapira (for graphs) and Rödl
and Schacht (for hypergraphs).

Theorem 6.4.3 (Rödl and Schacht, 2007). Every hereditary property
of hypergraphs is testable.
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This theorem has some surprising consequences: for example, it
implies Szemerédi’s Theorem.

Another related question asks for a fast algorithm which produces
a Szemerédi partition of a graph G. This problem has been studied
by various authors, and is (at least partly) so challenging because,
as noted earlier, the bound on the number of parts in a Szemerédi
partition is very large.

Motivated by this shortcoming, Frieze and Kannan introduced the
following notion of ‘weak regularity’: given a partition P, with given
edge densities dij , let

ePpS, T q �
¸
i,j

dij � |Vi X S| � |Vj X T |,

denote the expected number of edges of G between S and T , and say
that the partition P is weakly regular if |epS, T q � ePpS, T q| ¤ εn2

for every S, T � V pGq.
Theorem 6.4.4 (Frieze and Kannan, 1999). For every ε ¡ 0 and
every graph G, there exists a weakly regular partition of V pGq into at
most 22{ε2 classes.

Lovász and Szegedy showed that by iterating the Weak Regular-
ity Lemma, one can obtain the usual Regularity Lemma as a corol-
lary. They also proved a generalization in the setting of an arbitrary
Hilbert space, and described an algorithm which constructs the weak
Szemerédi partition as Voronoi cells in a metric space.

6.5 Recommended further reading

An excellent introduction to the area is provided by the survey:

J. Komlos and M. Simonovits, Szemerédi’s Regularity Lemma and
its applications in graph theory, DIMACS Technical Report (1996).

For a very different perspective, see

L. Lovász and B. Szegedy, Szemerédi’s Lemma for the analyst, J.
Geom. and Func. Anal., 17 (2007), 252–270.
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6.6 Exercises

1. Use Szemerédi’s Regularity Lemma to prove:

The p6, 3q-Theorem (Ruzsa and Szemerédi, 1976). Let A � Ppnq
be a set system such that |A| � 3 for every A P A, and such that for
each set B � rns with |B| � 6, we have�� A P A : A � B

(�� ¤ 2.

Then |A| � opn2q.

2. Let r3pnq be the size of the largest subset of rns with no 3-AP,
and let fpk, nq denote the maximum number of edges in a graph
on n vertices which is the union of k induced matchings.

paq Prove that r3pnq ¤ fpn, 5nq
n

.

[Hint: consider a graph with edge set px� ai, x� 2aiq.]
pbq Using Szemerédi’s Regularity Lemma, deduce Roth’s Theorem.

In the next exercise, we shall prove the following theorem of Thomassen.

Thomassen’s Theorem. If G is a triangle-free graph with mini-
mum degree

�
1
3�ε

�|G|, then χpGq ¤ C, for some constant C � Cpεq.
Given a Szemerédi partition A0 Y . . . Y Ak of V pGq, and d ¡ 0,

consider the auxiliary partition V pGq � �
I�rksXI , where

XI :�
!
v P V pGq : i P I ô |Npvq XAi| ¥ d|Vi|

)
.

3. paq Show that if |I| ¥ 2k{3, then XI is empty.
pbq Show that if |I| ¤ 2k{3, then XI is an independent set.
pcq Deduce Thomassen’s Theorem.

[You may assume the following strengthening of the Regularity Lemma:
that the reduced graph R has minimum degree

�
1{3� ε{2�|R|.]

4. Use the Kneser graph to show that Thomassen’s Theorem is sharp.
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6.7 Proof the of Regularity Lemma

The Regularity Lemma is not very hard to prove; the hard part was
imagining that it could be true. In this section we shall help the
reader to prove the lemma for himself.

The idea is as follows: starting with an arbitrary equipartition P ,
we shall repeatedly refine P , each time getting ‘closer’ to a Szemerédi
partition. The key point is to find he right notion of the ‘distance’ of
a partition from an ideal partition.

Given a partition P of V into parts V0, . . . , Vk, we define the index
of P to be

indpP q :� 1
k2

¸
i�j

�
dpVi, Vjq

	2

,

where dpX,Y q denotes the density of the pair pX,Y q, i.e., epX,Y q
|X||Y | .

Problem 6.7.1. Prove that if P is not a Szemerédi partition, i.e.,
more than εk2 of the pairs are irregular, then there exists a refinement
Q of P such that

indpQq ¥ indpP q � δ

for some δ � δpεq.
In order to solve Problem 6.7.1, you may need to use the following

‘defect’ form of the Cauchy-Schwarz inequality.

Improved Cauchy-Schwarz Inequality. Let a1, . . . , an ¡ 0, and
let m P rns and δ P R. Suppose that

m̧

k�1

ak � m

n

ņ

k�1

ak � δ.

Then
ņ

k�1

a2
k ¥ 1

n

�
ņ

k�1

ak

�2

� δ2n

mpn�mq .

We leave the remainder of the proof of Theorem 6.2.3 to the reader.

Problem 6.7.2. Deduce Szemerédi’s Regularity Lemma.
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Chapter 7

Dependent Random
Choice

Choose well. Your choice is brief, and yet endless.

Johann Wolfgang von Goethe

In this final chapter we shall discuss a simple, yet surprisingly
powerful technique, known as Dependent Random Choice, which was
introduced by Gowers in his re-proof of Szemerédi’s Theorem, and
has since proved to have many other beautiful applications.

The technique may be summarized by the following basic lemma.

The Dependent Random Choice Lemma. Let G be a graph with
n vertices and m edges. Suppose that

p2mqt
n2t�1

�
�
n

s


�
k

n


t
¥ a.

Then there exists a subset U � V pGq of at least a vertices, such that
every set of s vertices in U has at least k common neighbours.

Proof. Pick a (multi-)set T � V pGq at random, by choosing t times
a random vertex of V pGq, with repetition. Thus |T | ¤ t (as a set),

71
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and Ppv R T q � p1� 1{nqt. Let

A :� NpT q �
t£

j�1

Npxtq,

where T � tx1, . . . , xtu. Then A is the set we want!
Indeed, let X � |A| and let Y denote the number of s-sets in A

with at most k common neighbours. The probability that a vertex v
is in A, is just the probability that T is a subset of its neighbourhood.
Hence, by the convexity of xt,

EpXq �
¸

vPV pGq

� |Npvq|
n


t
¥ n

�
� 1
n

¸
vPV pGq

|Npvq|
n

�

t

� p2mqt
n2t�1

.

Now, suppose the pair tu, vu has at most k common neighbours;
then the probability that tu, vu � A is at most pk{nqt, since each
element of T must lie in the common neighbourhood of u and v, and
so EpY q ¤ �

n
s

�pk{nqt.
By linearity of expectation,

EpX � Y q ¥ p2mqt
n2t�1

�
�
n

s


�
k

n


t
¥ a,

and thus there must exist a choice of T such that X � Y ¥ a. Now
simply remove one element from each s-set in A with at most k
common neighbours, to obtain U as required.

We shall give three applications of the Dependent Random Choice
Lemma: a bound on extremal numbers of bipartite graphs, a bound
on Ramsey-Turán numbers, and the Balog-Szemerédi-Gowers Theo-
rem. We refer the reader to the survey [3] for a more detailed treat-
ment of these and many other applications.

7.1 Extremal numbers of bipartite graphs

Recall that in Chapter 3 we proved that

ex
�
n,Kps, tq� � O

�
n2�1{s�.

The following result is a significant generalization of that theorem.
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Theorem 7.1.1. Let H be a bipartite graph on AYB, and suppose
that each vertex of B has degree at most s. Then

ex
�
n,H

� � O
�
n2�1{s�,

where the implicit constant depends only on H.

In order to prove Theorem 7.1.1, we shall need the following
straightforward embedding lemma.

Lemma 7.1.2. Let H be a bipartite graph on A Y B, and suppose
that each vertex of B has degree at most s. If a graph G contains a
set U � V pGq with the following properties:

paq |U | � |A|,
pbq All subsets of U of size s have at least |H| common neighbours,

then H � G.

Proof. Choose an arbitrary bijection between U and A, and label
the vertices of B � tv1, . . . , vbu; we shall embed them one at a time.
Indeed, suppose v1, . . . , vj�1 have already been embedded in G, and
consider the neighbours of vj in A. Since vj has degree at most s, the
corresponding vertices of U have at least |H| common neighbours.
Thus, at least one of these has not been used yet (i.e., it is not in U
or tv1, . . . , vj�1u), and so we may embed vj in G as required. This
proves the lemma.

It is now straightforward to deduce Theorem 7.1.1.

Proof of Theorem 7.1.1. Suppose that G is a graph on n vertices,
with m ¥ cn2�1{s edges. We wish to find a subset U � V pGq with
a :� |A| vertices, such that each s-subset of U has at least |H| com-
mon neighbours. By the Dependent Random Choice Lemma (with
t � s and k � |H|), such a set U exists if

p2mqs
n2s�1

�
�
n

s


� |H|
n


s
¥ p2cqs � |H|s

s!
¥ cs ¥ a,

where the last two inequalities hold if c � cpHq is chosen to be suffi-
ciently large.

By Lemma 7.1.2, if such a set U � V pGq exists, then H � G.
Thus expn,Hq ¤ m, as required.
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We remark that Theorem 7.1.1 was first proved by Füredi in 1991;
the proof above is due to Alon, Krivelevich and Sudakov.

7.2 Ramsey-Turán revisited

Recall that in Section 6.3.4 we proved that RT pn,K4, opnqq � n2

8 �
opnq. It is natural to ask, how small does fpnq need to be to make
RT pn,K4, fpnqq � opn2q? Indeed, it was suggested by several authors
that this might only be true when fpnq ¤ nα for some α   1.

The following theorem shows that this is not the case, and follows
almost immediately from the Dependent Random Choice Lemma.

Theorem 7.2.1 (Sudakov, 2003). Let fpnq � 2�ω
?

lognn, where
ω � ωpnq is any function which tends to infinity as nÑ8. Then

RT pn,K4, fpnqq � opn2q.
Proof. Let G be a graph with n vertices and m ¥ 2�ω

2{2n2 � opn2q
edges, and suppose that K4 � G and αpGq ¤ fpnq. Let k � fpnq,
and apply Dependent Random Choice. We easily see that

p2mqt
n2t�1

�
�
n

2


�
k

n


t
¥ 2t�ω

2t{2n � 2�ωt
?

lognn2,

since m ¥ 2�ω
2{2n2, and k � fpnq � 2�ω

?
lognn. Thus, choosing

t � 2
ω

a
log n, we obtain

p2mqt
n2t�1

�
�
n

2


�
k

n


t
¥ 2t2�ω

?
lognn � 2�2 lognn2 ¥ fpnq.

So, by the DRC Lemma, there exists a set U � V pGq, with |U | ¥
fpnq, such that every pair of vertices in U has at least fpnq common
neighbours.

Since αpGq ¤ fpnq, there is an edge tu, vu in U , and u and v
have at least fpnq common neighbours. Let A � Npuq XNpvq; since
αpGq ¤ fpnq, there is an edge tx, yu in A. But now the set tu, v, x, yu
induces a K4, so we have a contradiction.

Problem 7.2.2. For which function fpnq can you prove that

RT pn,K5, fpnqq � opn2q?
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7.3 The Balog-Szemerédi-Gowers Theorem

Our final application of Dependent Random Choice is possibly its
most important consequence, and was also the reason it was first
introduced by Gowers in 1998. One of the central objects of study in
Additive Combinatorics is the sumset of two sets,

A�B :�  
a� b : a P A, b P B(.

For example, a fundamental result in the area, Freiman’s Theorem,
says that if |A � A| ¤ C|A|, then A is contained in a (bounded
dimension) generalized arithmetic progression of size at most C 1|A|.

If G is a bipartite graph, with parts A and B, then we define the
partial sumset by

A�G B �  
a� b : a P A, b P B, ab P EpGq(.

In many applications, instead of knowing |A�B|, we only know the
size of the partial sumset for some dense graph G. Moreover, it is easy
to construct a set A and a dense graph G such that |A�GA| � Opnq
but |A�A| � Θpn2q: simply take an arithmetic progression of length
n{2, plus n{2 random elements, and let G be the complete graph on
the arithmetic progression.

Despite this, the following theorem, first proved by Balog and
Szemerédi in 1994 using the Regularity Lemma, allows us to draw a
useful conclusion.

The Balog-Szemerédi-Gowers Theorem. Let |A| � |B| � n, let
G be a bipartite graph on AYB with at least cn2 edges, and suppose
that |A�G B| ¤ Cn. Then there exist sets A1 � A and B1 � B, with
|A1| ¥ c1|A| and |B1| ¥ c1|B|, such that

|A1 �B1| ¤ C 1n,

where c1 and C 1 depend on c and C but not on n.

The Regularity Lemma proof gives tower-type bounds on c1 and
C 1, whereas Gowers’ approach, using Dependent Random Choice,
gives polynomial-type bounds. This is a common theme: whenever it
can be used, Dependent Random Choice tends to give better bounds
and simpler proofs than other methods.
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The first key idea in the proof is to relate the partial sumset to
paths of length three in G. Let pa, b1, a1, bq be such a path, where
a, a1 P A and b, b1 P B, and observe that

y � a� b � pa� b1q � pa1 � b1q � pa1 � bq � x� x1 � x2,

where x, x1 and x2 are members of A�GB. Thus, we have a injective
map from pairs py, P q to triples px, x1, x2q P pA �G Bq3, where y P
A�B and P is a path of length three in G whose endpoints sum to
y. This observation motivates the following graph-theoretic lemma.

Lemma 7.3.1. For every c ¡ 0 there exists a c1 ¡ 0 such that, if
|A| � |B| � n, and G is a bipartite graph on AYB with at least cn2

edges, then the following holds.
There exist subsets A1 � A and B1 � B, with |A1|, |B1| ¥ c1n,

such that for every a P A1 and b P B1, there are at least c1n2 paths of
length three in G from a to b.

We shall prove Lemma 7.3.1 using the following variant of the
Dependent Random Choice Lemma. It allows us to find a much larger
subset U (in fact, linear size), at the cost of not every pair of vertices
(but still almost every pair) having a large common neighbourhood.

Lemma 7.3.2. Let G be a bipartite graph on A Y B, let c ¡ 0 and
ε ¡ 0, and suppose that epGq � 2c|A||B|. There exists a subset
U � A such that

paq |U | ¥ c|A|,
pbq At most ε|U |2 of the pairs in U have at most εc2|B| common

neighbours in B.

Proof. Pick a vertex v P B uniformly at random. We shall show that,
for some choice of v, the set Npvq of neighbours of v has the desired
properties.

Indeed, let X � |Npvq|, and let Y denote the number of pairs
in Npvq with at most εc2|B| common neighbours in B. Then, by
Cauchy-Schwarz, we have

ErX2s ¥ ErXs2 �
�
epGq
|B|


2

� p2cq2|A|2,
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and since tx, yu � Npvq if and only if v P Npxq XNpyq, we have

ErY s ¤ εc2|A|2 ¤ ε

4
� ErX2s.

Thus
E
�
X2 � Y {ε� � E

�
X2

�� 1
ε

E
�
Y
� ¥ 3c2|A|2.

Hence there must exist v P B such that X2 � Y {ε ¥ c2|A|2.
Set U � Npvq; we claim that U has the desired properties. Indeed,

paq follows from X2 ¥ c2|A|2, and pbq holds since Y ¤ εX2 � ε|U |2.

We can now prove Lemma 7.3.1. For simplicity, let’s assume that
c is sufficiently small.

Proof of Lemma 7.3.1. We choose subsets A1 � A and B1 � B as
follows. First let

A1 :�  
v P A : |Npvq XB| ¥ c2n

(
,

and apply Lemma 7.3.2 to the pair pA1, Bq, to obtain a set U � A1.
Now set

A1 :�  
v P U : v is in at most c2|U | bad pairs in U

(
,

where a pair is bad tu, vu if u and v have at most c6n common
neighbours in B, and set

B1 :�  
v P B : |Npvq X U | ¥ c3|U |(.

We claim that A1 and B1 are the required sets.
We show first that |A1| ¥ c4n. Easy edge-counting shows that

|A1| ¥ c2n, and so, by Lemma 7.3.2, it follows that |U | ¥ c3n, and
at most c3|U |2 pairs in U have fewer than c6n common neighbours
in B. Thus |A1| ¥ |U |{2 ¥ c4n, as claimed.

Next we show that |B1| ¥ c2n. Indeed, there are at least c2n|U |
edges from U to B, since U � A1, and at most c3n|U | of these miss
B1. The bound follows, since each vertex of B1 sends at most |U |
edges into U .
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Finally, given a P A1 and b P B1, we shall show there are at least
c11n2 paths of length three between a and b. Indeed, b has at least
c|U |{2 neighbours in U , and a is a bad pair with at most c2|U | of
these. Thus there are at least c8n|U | ¥ c11n2 paths of length two
from a to a neighbour of b in U , as required.

Finally, let’s deduce the Balog-Szemerédi-Gowers Theorem. We
have already sketched the proof above.

Proof of the Balog-Szemerédi-Gowers Theorem. LetA1 andB1 be the
sets given by Lemma 7.3.1, and recall that |A�G B| ¤ Cn. For each
a P A1, b P B1 and path P of length three from a to b in G, we obtain
a triple px, x1, x2q P pA�G Bq3, since

a� b � pa� b1q � pa1 � b1q � pa1 � bq,

as noted earlier. There are at most C3n3 such triples, and each
y P A1 � B1 corresponds to at least c11n2 of them, by the mapping
above. By the pigeonhole principle, this implies that

|A1 �B1| ¤ C3n3

c11n2
� C 1n,

as required.

Problem 7.3.3. What properties of the group in which A and B live
did we assume in the proof above?

7.4 Recommended further reading

The survey by Fox and Sudakov [3], on which this chapter is based,
is highly recommended. For more on Additive Combinatorics, see
the book by Tao and Vu [5], and also the course notes (and many
beautiful exercises) in:

A. Geroldinger and I.Z. Ruzsa, Combinatorial Number Theory and
Additive Group Theory, Advanced Courses in Mathematics, CRM
Barcelona, Birkhäuser (2009).
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7.5 Exercises

The Ramsey number RpGq of a graph G is the smallest n such that
any 2-colouring of the edges of Kn contains a monochromatic copy of
G. The k-cube Qk is the graph with vertex set t0, 1uk, and an edge
between vertices that differ in exactly one direction.

1. Show that RpQkq ¤ 23k.

A topological copy of a graph H is a graph H 1 obtained by replacing
edges of H by paths. If each path has length t� 1, then H 1 is called
a t-subdivision of H.

The following problem is due to Erdős.

2. Show that, if G has n vertices and cn2 edges, then it contains a
1-subdivision of a clique on c1

?
n vertices.

3. Let G be a graph with n vertices and m edges, in which every
pair of adjacent vertices has at most a common neighbours.
Using Dependent Random Choice, show that G has an induced

subgraph on X ¥ mt

n2t�1
vertices, with Y ¤ at

� n
m

	t�1

X edges.

4. paq What is the largest sum-free subset of rns?
pbq What is the largest sum-free subset of Zp, for p prime?
pcq What about for an arbitrary abelian group of even order?
pdq Show that every A � N has a sum-free subset of size |A|{3.

Define the lower density of a set A � N to be

dpAq � lim inf
nÑ8

|AX rns|
n

.

5. paq If dpAq � dpBq ¡ 1, show that then A�B contains all but
finitely many elements of N.

pbq If dpAq � dpBq � 1, show that A�B has an asymptotic
density, and determine its possible values.
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Definition (Ruzsa distance). Given sets A and B in a group G,
define

dRpA,Bq :� log

�
|A�B|a|A||B|

�
.

The following result justifies the name ‘Ruzsa distance’.

The Ruzsa Triangle Inequality. The Ruzsa distance is non-negative,
symmetric, and satisfies

dpA,Cq ¤ dpA,Bq � dpB,Cq

for every A, B and C.

6. Prove the Ruzsa triangle inequality.

7. Show (without using Szemerédi’s Theorem), that if dpAq ¡ 0,
then A�A contains arbitrarily long APs.
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