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Preface 

One technique for proving the existence of an object with certain properties 
is to show that a random object chosen from an appropriate probability dis
tribution has the desired properties with positive probability. This approach 
is known as the probabilistic method; using it to find graph colourings with 
special properties is the topic of this book. 

The probabilistic method was pioneered and championed by Paul Erdos 
who applied it mainly to problems in combinatorics and number theory from 
1947 onwards. The authors have been told that at every combinatorics con
ference attended by Erdos in the 1960s and 1970s, there was at least one talk 
which concluded with Erdos informing the speaker that almost every graph 
was a counter-example to his conjecture. Although this story is apocryphal, 
it does illustrate three facts about the probabilistic method which are worth 
bearing in mind. 

The first is that the probabilistic method allows us to consider graphs 
which are both large and unstructured. Even a modern computer looking for 
a counterexample via exhaustive search would not be able to run through 
all the graphs on twenty nodes in a reasonable amount of time. A researcher 
in the 60s certainly cannot be expected to have done so. In contrast, the 
counterexamples constructed using the probabilistic method routinely con
tain many, say 1010 , nodes. 

Furthermore, any attempt to build large counterexamples via an explicit 
construction necessarily introduces some structuredness to the class of graphs 
built, which thus restricts the graphs considered. To illustrate this, we remark 
that even though the clique and stability numbers of a typical graph on n 
vertices are both O(log n), we do not know how to efficiently construct a 
graph with clique and stability numbers which are this small and for many 
years we could do no better than o( y'n). Thus, the probabilistic method 
allows us to boldly go where no deterministic method has gone before, in 
our search for an object with the properties we desire. This accounts for its 
power. 

The second moral of our story is that the method is not just powerful, it is 
also easy to use. Erdos would routinely perform the necessary calculations to 
disprove a conjecture in his head during a fifteen minute talk. Indeed, in the 
introduction to his Ph.D. thesis (which was published in 1970), Vasek Chvatal 
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wrote in this thesis we study hypergraphs using the probabilistic method where 
by the probabilistic method we mean the taking of sums in two different ways. 
This First Moment approach was one of the main techniques used in the 
early days. For example, to bound the expected number of cliques of size k 
in a typical graph on n vertices, we consider each set S of k vertices and 
ask: in what proportion of the graphs is S a clique? Since this is roughly 

Tm ( as each of the m edges will be present with probability ~ ), there are 

on average (~)Tm cliques of size k in a graph on n vertices. This manner 
of calculating the sum is much easier than the alternative approach, which 
consists of determining the proportion of graphs with no cliques of size k, 
those with one clique of size k, etcetera. Furthermore, this one line calculation 
implies that the clique number (and in the same vein stability number) of a 
typical graph is O(logn), while, as mentioned above, we do not know how to 
prove such graphs exist without recourse to the probabilistic method. 

The third and final moral of our story about Erdos and his counterexam
ples is that in classical applications of the probabilistic method, the result 
obtained was not just that a positive proportion of the random objects 
had the desired property, but rather that the overwhelming proportion of 
these objects did. E.g. Erdos did not say some graph is a counterexample to 
your conjecture, but rather almost every graph is a counter-example to your 
conjecture. It would be fair to say that the classical technique was typically 
limited to situations in which the probability that a randomly chosen object 
had the desired property was fairly large. 

There were two motivating factors behind our decision to write this book. 
The first was to provide a gentle introduction to the probabilistic method, 
so that researchers who so desired could add this powerful and easy to use 
weapon to their arsenal. Thus, the book assumes little or no background in 
probability theory. Further, it contains an introductory chapter on probabil
ity, and each of the tools we use is introduced in a separate chapter containing 
examples and (at least in the early chapters) exercises illustrating how it is 
applied. 

Of course, new probabilistic tools have been introduced in the last half
century which are more sophisticated than switching the order of two sum
mation signs. Many of these focus on the typical difference between a random 
non-negative real-valued variable X and its average (or expected) value, de
noted E(X). Since, E(X) is often easy to compute using the first moment 
method, any observations we can make about IX - E(X)I translate into 
statements about the value of X. Results which bound IX -E(X)I are called 
concentration results because they imply that independently sampled values 
of X tend to be concentrated around E(X) (the reader may find the image 
of darts concentrated around the bulls-eye of a target helpful here). 

One classical approach to concentration is the Second Moment Method 
which bounds the expected value of IX - E(X)I using the First Moment 
Method applied to a related variable. It is this approach which allows us to 
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tie down precisely the behaviour of the clique size of a typical graph on n 
vertices. 

Certain random variables are better-behaved than others and for such 
random variables we can obtain much more information about IX- E(X)I 
than the relatively weak bounds on its expected value we obtain using the 
Second Moment Method. For example if Y is the number of heads obtained 
inn tosses of a fair coin then the probability that Y is k is simply (~)2-n. 
Using this fact, and manipulating the terms involved, Chernoff obtained very 
strong bounds on the probability that IY- E(Y)I exceeds t for a given real 
t. His bounds also apply to the number Y of heads obtained in n flips of a 
coin which comes up heads with some probability p. 

Note that changing the outcome of any one coin flip can affect this number 
Y of heads by at most one. Recently, researchers have come up with more 
general tools which bound the concentration of random variables X which 
are determined by a sequence of n events such that changing the outcome of 
one event can affect the (expected) value of X by at most one. We present 
one such tool developed by Azuma, and another developed by Talagrand. 
Although the proofs that these bounds hold are non-trivial, as the examples 
given in the book attest, applying them is straightforward. 

As mentioned above, using the classical probabilistic method researchers 
typically proved that a random object had certain desirable properties with 
probability near one. The Lovasz Local Lemma is a very important tool which 
allows us to prove the existence of objects with certain properties when the 
probability that a random object has the desired properties is exponentially 
small. The proof of this lemma is short and it is very easy to use, as our 
examples once again attest. However, in contrast with e.g. the First Moment 
Method, it is difficult to construct efficient algorithms to find the objects the 
lemma guarantees exist. This is not too surprising as the number of such 
objects is so small. (In contrast, if almost every object has the property then 
to find such an object we can just pick one at random.) The last two chapters 
of the book discuss how to construct such algorithms. 

Our second motivation for writing the book was to provide a unified 
treatment of a number of important results in graph colouring which have 
been proven using an iterative approach (the so-called semi-random method). 
These include results of Kim and Johansson on colouring triangle-free graphs 
with O(logn) colours, Kahn's results on (l+o(l))Ll edge list colouring linear 
hypergraphs, Kahn's proof that asymptotically the Goldberg-Seymour con
jecture holds, and the fact that there is an absolute constant C such that 
every graph of maximum degree Ll has a Ll + C total colouring. 

Our treatment of the results discussed above shows that each of them can 
be proven via an application of the semi-random method where we analyze an 
iteration using the Local Lemma and our concentration results. Although the 
proofs all have a similar flavour (indeed we reworked all the proofs to illustrate 
the unity of this body of work and hopefully to make them more accessible), 
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some of them are more complicated than others, requiring auxiliary notions 
(such as entropy and hardcore distributions) and quite involved arguments. 
To ease the reader's burden, we present the easier results first, building up 
to more and more sophisticated variants of the technique. Fittingly, we end 
with Kahn's result on the list chromatic index of multigraphs which really is 
a tour-de-force. 

Three researchers who have had a very important impact on the math
ematical careers of the authors are Vasek Chvatal, Alan Frieze, and Colin 
McDiarmid. We both met all three of these researchers as graduate students. 
Vasek was the second author's Ph.D. supervisor and Alan supervised the 
first author. The first paper written by the second author on probabilistic 
combinatorics was joint with Alan and Colin. We are immensely grateful for 
all that we have learnt from these three researchers and the many enjoyable 
hours we have spent in their company. 

We are very grateful to those researchers who read portions of the book, 
pointing out errors and suggesting reworkings. The following is a list of some 
of those researchers, we apologize to any we may have inadvertently left out. 

Dimitris Achlioptas, Noga Alon, Spyros Angelopoulos, Etienne Birmele, 
Adrian Bondy, Babak Farzad, Nick Fountoulakis, Alan Frieze, Paul Gries, Jeff 
Kahn, Mark Kayll, Jeong Han Kim, Michael Krivelevich, Andre Kiindgen, 
Mohammad Mahdian, Colin McDiarmid, Steve Myers, Ioannis Papoutsakis, 
Ljubomir Perkovic, Mohammad Salavatipour, Benny Sudakov, Frank Van 
Bussel, Van Vu. 

The authors are very grateful to Cynthia Pinheiros Santiago who prepared 
the figures and converted the manuscript into the Springer Latex format. 

The second author would also like to thank the University of Toronto, 
McGill University, and the University of Sao Paulo, which all provided gen
erous hospitality and support during the writing of the book. Both authors 
would like to thank the Federal University of Ceara in Fortaleza, Brazil where 
much of the polishing of this book took place. 

Despite the many careful readings and rereadings, errors will inevitably 
remain, however we feel that the manuscript is now ready for publication and 
Boy! are we glad to be finished. 

Montreal 
September 2001 

Michael Molloy 
Bruce Reed 



Contents 

Part I. Preliminaries 

1. Colouring Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.1 The Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.2 Some Classical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
1.3 Fundamental Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
1.4 A Point of View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
1.5 A Useful Technical Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
1.6 Constrained Colourings 

and the List Chromatic Number.......................... 11 
1. 7 Intelligent Greedy Colouring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

2. Probabilistic Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
2.1 Finite Probability Spaces................................ 15 
2.2 Random Variables and Their Expectations. . . . . . . . . . . . . . . . . 17 
2.3 One Last Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
2.4 The Method of Deferred Decisions . . . . . . . . . . . . . . . . . . . . . . . . 20 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

Part II. Basic Probabilistic Tools 

3. The First Moment Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
3.1 2-Colouring Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
3.2 Triangle-Free Graphs with High Chromatic Number . . . . . . . . 29 
3.3 Bounding the List Chromatic Number as a Functione 

of the Colouring Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
3.3.1 An Open Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

3.4 The Cochromatic Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 



X Contents 

4. The Lovasz Local Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
4.1 Constrained Colourings 

and the List Chromatic Number.......................... 41 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 

5. The Chernoff Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 
5.1 Haj6s's Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 

Part III. Vertex Partitions 

6. Hadwiger's Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
6.1 Step 1: Finding a Dense Subgraph . . . . . . . . . . . . . . . . . . . . . . . . 50 
6.2 Step 2: Finding a Split Minor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
6.3 Step 3: Finding the Minor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

7. A First Glimpse of Total Colouring....................... 55 

8. The Strong Chromatic Number ........................... 61 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

9. Total Colouring Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 
9.1 The Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 
9.2 Some Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 
9.3 The Main Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 

Part IV. A Naive Colouring Procedure 

10. Talagrand's Inequality 
and Colouring Sparse Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
10.1 Talagrand's Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
10.2 Colouring Triangle-Free Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 83 
10.3 Colouring Sparse Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 
10.4 Strong Edge Colourings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

11. Azuma's Inequality and a Strengthening 
of Brooks' Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 
11.1 Azuma's Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 
11.2 A Strengthening of Brooks' Theorem...................... 94 
11.3 The Probabilistic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 



Contents XI 

11.4 Constructing the Decomposition .......................... 100 
Exercises .................................................. 103 

Part V. An Iterative Approach 

12. Graphs with Girth at Least Five .......................... 107 
12.1 Introduction ........................................... 107 
12.2 A Wasteful Colouring Procedure ......................... 109 

12.2.1 The Heart of The Procedure ....................... 109 
12.2.2 The Finishing Blow ............................... 111 

12.3 The Main Steps of the Proof ............................. 112 
12.4 Most of the Details ..................................... 115 
12.5 The Concentration Details ............................... 120 
Exercises .................................................. 123 

13. Triangle-Free Graphs ..................................... 125 
13.1 An Outline ............................................ 126 

13.1.1 A Modified Procedure ............................. 126 
13.1.2 Fluctuating Probabilities .......................... 128 
13.1.3 A Technical Fiddle ............................... 130 
13.1.4 A Complication .................................. 131 

13.2 The Procedure ......................................... 131 
13.2.1 Dealing with Large Probabilities ................... 131 
13.2.2 The Main Procedure .............................. 132 
13.2.3 The Final Step ................................... 132 
13.2.4 The Parameters .................................. 133 

13.3 Expectation and Concentration .......................... 136 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 

14. The List Colouring Conjecture . ........................... 139 
14.1 A Proof Sketch ......................................... 140 

14.1.1 Preliminaries .................................... 140 
14.1.2 The Local Structure .............................. 140 
14.1.3 Rates of Change ................................. 141 
14.1.4 The Preprocessing Step ........................... 142 

14.2 Choosing Reservee ..................................... 144 
14.3 The Expected Value Details ............................. 145 
14.4 The Concentration Details ............................... 149 
14.5 The Wrapup ........................................... 151 
14.6 Linear Hypergraphs ..................................... 152 
Exercises .................................................. 153 



XII Contents 

Part VI. A Structural Decomposition 

15. The Structural Decomposition ............................ 157 
15.1 Preliminary Remarks ................................... 157 
15.2 The Decomposition ..................................... 157 
15.3 Partitioning the Dense Sets .............................. 160 
15.4 Graphs with X Near Ll .................................. 165 

15.4.1 Generalizing Brooks' Theorem ..................... 165 
15.4.2 Blowing Up a Vertex .............................. 166 

Exercises .................................................. 167 

16. w, L1 and x ............................................... 169 
16.1 The Modified Colouring Procedure ....................... 171 
16.2 An Extension of Talagrand's Inequality ................... 172 
16.3 Strongly Non-Adjacent Vertices .......................... 173 
16.4 Many Repeated Colours ................................. 175 
16.5 The Proof of Theorem 16.5 .............................. 179 
16.6 Proving the Harder Theorems ........................... 181 
16.7 Two Proofs ............................................ 182 
Exercises .................................................. 184 

17. Near Optimal Total Colouring I: Sparse Graphs .......... 185 
17.1 Introduction ........................................... 185 
17.2 The Procedure ......................................... 187 
17.3 The Analysis of the Procedure ........................... 188 
17.4 The Final Phase ........................................ 191 

18. Near Optimal Total Colouring II: General Graphs ........ 195 
18.1 Introduction ........................................... 195 
18.2 Phase I: An Initial Colouring ............................ 198 

18.2.1 Ornery Sets ..................................... 198 
18.2.2 The Output of Phase I ............................ 200 
18.2.3 A Proof Sketch ................................... 201 

18.3 Phase II: Colouring the Dense Sets ....................... 206 
18.3.1 Y; is Non-Empty ................................. 207 
18.3.2 Our Distribution is Nearly Uniform ................. 208 
18.3.3 Completing the Proof ............................. 209 

18.4 Phase III: The Temporary Colours ........................ 210 
18.4.1 Step 1: The Kernels of the Ornery Sets .............. 211 
18.4.2 Step 2: The Remaining Temporary Colours .......... 215 

18.5 Phase IV - Finishing the Sparse Vertices .................. 216 
18.6 The Ornery Set Lemmas ................................ 217 



Contents XIII 

Part VII. Sharpening our Tools 

19. Generalizations of the Local Lemma ...................... 221 
19.1 Non-Uniform Hypergraph Colouring ...................... 222 
19.2 More Frugal Colouring .................................. 224 

19.2.1 Acyclic Edge Colouring ........................... 225 
19.3 Proofs ................................................ 226 
19.4 The Lopsided Local Lemma .............................. 228 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 

20. A Closer Look at Talagrand's Inequality .................. 231 
20.1 The Original Inequality ................................. 231 
20.2 More Versions .......................................... 234 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 

Part VIII. Colour Assignment via Fractional Colouring 

21. Finding Fractional Colourings and Large Stable Sets . ..... 239 
21.1 Fractional Colouring .................................... 239 
21.2 Finding Large Stable Sets in Triangle-Free Graphs .......... 242 
21.3 Fractionally, X :S w+f+1 ................................ 244 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 

22. Hard-Core Distributions on Matchings ................... 247 
22.1 Hard-Core Distributions ................................. 247 
22.2 Hard-Core Distributions from Fractional Colourings ........ 249 
22.3 The Mating Map ....................................... 252 
22.4 An Independence Result ................................. 254 
22.5 More Independence Results .............................. 260 

23. The Asymptotics of Edge Colouring Multigraphs ......... 265 
23.1 Assigning the Colours ................................... 265 

23.1.1 Hard-Core Distributions 
and Approximate Independence .................... 266 

23.2 The Chromatic Index ................................... 267 
23.3 The List Chromatic Index ............................... 270 

23.3.1 Analyzing an Iteration ............................ 272 
23.3.2 Analyzing a Different Procedure .................... 27 4 
23.3.3 One More Tool ................................... 277 

23.4 Comparing the Procedures ............................... 279 
23.4.1 Proving Lemma 23.9 .............................. 282 



XIV Contents 

Part IX. Algorithmic Aspects 

24. The Method of Conditional Expectations ................. 287 
24.1 The Basic Ideas ........................................ 287 
24.2 An Algorithm .......................................... 288 
24.3 Generalized Tic-Tac-Toe ................................ 289 
24.4 Proof of Lemma 24.3 .................................... 291 

25. Algorithmic Aspects of the Local Lemma ................. 295 
25.1 The Algorithm ......................................... 296 

25.1.1 The Basics ...................................... 296 
25.1.2 Further Details ................................... 299 

25.2 A Different Approach ................................... 300 
25.3 Applicability of the Technique ........................... 301 

25.3.1 Further Extensions ............................... 303 
25.4 Extending the Approach ................................ 304 

25.4.1 3-Uniform Hypergraphs ........................... 305 
25.4.2 k-Uniform Hypergraphs with k 2: 4 ................. 308 
25.4.3 The General Technique ........................... 310 

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 

Index ......................................................... 323 



Part I 

Preliminaries 

It was the afternoon of my eighty-first birthday, and I was in bed 
with my catamite when Ali announced that the archbishop had come 
to see me. . . . you will be constrained to consider, if you know my 
work at all and take the trouble now to reread that first sentence, 
that I have lost none of my old cunning in the contrivance of what is 
known as an arresting opening. 

These lines which open Burgess' book Earthly Powers, illustrate a huge 
advantage that novelists have over mathematicians. They can start with the 
juicy bits. Mathematicians usually have to plow through a list of definitions 
and well-known simple facts before they can discuss the developments they 
are really interested in presenting. This book is no exception. The first two 
chapters present the basic notions of graph colouring and probability theory. 

In an attempt to liven up this a priori boring material, the results in 
the colouring chapter are presented in a way which emphasizes some of the 
central themes of the book. The only virtue we can claim for the probabilistic 
preliminaries chapter is brevity. These chapters may be skimmed quickly, or 
skipped altogether by the reader who is already familiar with these two areas. 



1. Colouring Preliminaries 

1.1 The Basic Definitions 

We will be discussing colouring the vertices and edges of graphs. A graph G is 
a set V = V(G) of vertices and a set E = E(G) of edges, each linking a pair 
of vertices, its endpoints (formally, an edge is an unordered pair of vertices 
and thus our graphs have no loops or multiple edges), which are adjacent. We 
assume the reader has a basic knowledge of graph theory. A k-colouring of the 
vertices of a graph G is an assignment of k colours (often the integers 1, ... , k) 
to the vertices of G so that no two adjacent vertices get the same colour. The 
chromatic number of G, denoted x( G) , is the minimum k for which there is 
a k-colouring of the vertices of G. The set Sj of vertices receiving colour j 
is a colour class and induces a graph with no edges, i.e. it is a stable set or 
independent set. So, a k-colouring of the vertices of G is simply a partition 
of V (G) into k stable sets and the chromatic number of G is the minimum 
number of stable sets into which the vertices of G can be partitioned. 

A k-colouring of the edges of a graph G is an assignment of k colours 
to the edges of G so that no two incident edges get the same colour. The 
chromatic index of G, denoted Xe(G) is the minimum k for which there is 
a k-colouring of the edges of G. The set Mj of vertices receiving colour j is 
a colour class, and it is a set of edges no two of which share an endpoint, i.e. 
a matching. So, a k-colouring of the edges of G is simply a partition of E( G) 
into k matchings, and the chromatic index of G is the minimum number of 
matchings into which the edges of G can be partitioned. 

We sometimes want to colour both the edges and vertices of a graph. 
A total k-colouring of a graph G is an assignment of k colours to the vertices 
and edges of G so that no two adjacent vertices get the same colour, no two 
incident edges get the same colour, and no edge gets the same colour as one 
of its endpoints. The total chromatic number of G, denoted xr(G) is the 
minimum k for which there is a total k-colouring of G. The set Tj of vertices 
and edges receiving colour j is a colour class , and it consists of a stable 
set Sj and a matching Mj none of whose edges have endpoints in Sj. Such an 
object is called a total stable set. So, a k-colouring of V(G) U E(G) is simply 
a partition of V(G) U E(G) into k total stable sets and the total chromatic 
number of G is the minimum number of total stable sets required to partition 
V(G) u E(G). 
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A partial k-colouring of a graph is an assignment of k colours (often the 
integers 1, ... , k) to a (possibly empty) subset of the vertices of G so that no 
two adjacent vertices get the same colour. We complete a partial k-colouring 
by assigning colours to the uncoloured vertices to produce a k-colouring. (Of 
course, not every partial k-colouring can be completed, not even every partial 
k-colouring of a k-colourable graph.) These definitions extend in the obvious 
way to partial edge colouring, partial total colouring, etc. 

For a graph G, the line graph of G, denoted L(G) is the graph whose 
vertex set corresponds to the edge set of G and in which two vertices are 
adjacent precisely if the corresponding edges of G are incident. We note that 
the chromatic index of G is simply the chromatic number of L(G). 

G T(G) 

L (G) 

Fig. 1.1. A graph and its line and total graph 

Similarly, for any graph G, we can construct a graph T (G), the total graph 
of G, whose chromatic number is the total chromatic number of G. To obtain 
T(G), we take a copy of G and a copy of L(G) and add an edge between 
a vertex x of G and a vertex y of L( G) precisely if x is an endpoint of the 
edge of G corresponding to y. 

Thus, all the problems we discuss are really vertex colouring problems. 
When we talk about the chromatic index of graphs, we are just restricting 
our attention to vertex colouring line graphs. When we talk about the total 
chromatic index of graphs, we are just restricting our attention to vertex 
colouring total graphs. 
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1.2 Some Classical Results 

Clearly a graph has chromatic number 0 precisely if it has no vertices and 
chromatic number 1 precisely if it has vertices but no edges. A well-known 
result states 

Fact 1.1 A graph has chromatic number at most 2, i.e. is bipartite, if and 
only if it contains no odd cycles. 

Proof It is easy to see that every odd cycle has chromatic number three. 
So, we need only show that any graph G without odd cycles is two colourable. 
Obviously, we can treat the components of G separately and hence can assume 
that G is connected. We choose some vertex v of G, assign it colour 1, and 
grow, vertex by vertex, a connected bipartite subgraph H of G containing v 
as follows. If His G, then we are done. Otherwise, as G is connected, there 
is a vertex x in G - H adjacent to a vertex in H. If x sees only vertices of 
colour 1, we colour it with colour 2 and add it to H. If x sees only vertices 
of colour 2, we colour it with colour 1 and add it to H. If x sees a vertex y 
of colour 1 in Hand a vertex z of colour 2 in H then we let P be some yz 

path in the connected graph H. Since His bipartite, P has an even number 
of vertices and so P + x is an odd cycle. D 

Remark This proof yields an ordering on V(G) with certain properties. We 
highlight this fact, as we will find similar orderings useful later. If we label 
the vertices of H in the order in which we add them to H, then VI = v and 
for all j > 1, Vj has a neighbour vi with j > i. Similarly for any vertex x 
in a connected graph, taking the reverse of such an order yields an ordering 
WI, ... , Wn = x such that for j < n, Wj has a neighbour Wi with i > j. 

The proof above yields an efficient (in fact, linear time) algorithm for de
termining if G is bipartite. On the other hand, it is NP-complete to determine 
if G has chromatic number three. In fact this was one of the first six problems 
which Karp, [93], proved NP-complete via a reduction, and it remains NP
complete for planar G (see [65]). Thus, determining the chromatic number of 
a graph G precisely seems difficult. There are however, a number of results 
which yield simple bounds on the chromatic number of G. Two of the most 
natural and important are: 

Definition Recall that a clique is a set of pairwise adjacent vertices. We use 
w(G) to denote the clique number of G, i.e. the number of vertices in the 
largest clique in G. 

Observation 1.2 The chromatic number of G is at least w( G). 

Definitions The degree of a vertex v in a graph G, is the number of edges 
of G to which v is incident, and is denoted d0 (v), or simply d(v). We use 
Ll(G) or simply Ll to note the maximum vertex degree in G. We use 8(G) 
or simply 8 to note the minimum vertex degree in G. The neighbourhood of 
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a vertex v in a graph G, is the set of vertices of G to which vis adjacent, and 
is denoted N0 (v), or simply N(v). The members of N(v) are referred to as 
neighbours of v. 

Lemma 1.3 For all G, x(G) ~ Ll(G) + 1. 

Proof Arbitrarily order the vertices of G as v1 , ... , Vn. For each Vi in turn, 
colour vi with the lowest positive integer not used on any of its neighbours 
appearing earlier in the ordering. Obviously, every vertex receives a colour 
between 1 and Ll + 1. D 

Now, both these bounds are tight for cliques, and the second is also tight 
for odd cycles. In 1941, Brooks [30] tightened Lemma 1.3 by showing that 
these two classes were essentially the only classes for which the second bound 
is tight. He proved (and we shall prove at the end of this chapter): 

Theorem 1.4 (Brooks' Theorem) x(G) ~ Ll unless some component 
of G is a clique with Ll + 1 vertices or Ll = 2 and some component of G 
is an odd cycle. 

Now, neither the bound of 1.2 nor the bound of 1.4 need be tight. In 
fact most graphs on n vertices satisfy w(G) ~ 2log(n), Ll(G) 2: ~' and 
x(G) :=::o 21~gn (see, for example, [10]). Thus, usually, neither bound is 
a good approximation of the chromatic number. Moreover, recent very deep 
results [108] show that unless P=NP, x cannot even be approximated to 
within a factor of n 1-< for a particular small constant E > 0. (For similar 
further results, see [63, 57].) 

The situation for line graphs is much different. Considering a maximum 
degree vertex of G, we see that Xe(G) 2: Ll(G). In fact Xe(G) = x(L(G)) ~ 
w(L(G)) ?: Ll(G), and the last inequality is tight here unless G is a graph 
of maximum degree two containing a triangle. Now, not all graphs have 
chromatic index Ll. Consider for example, a triangle. More generally, consider 
the odd clique K 2z+1 on 2Z + 1 nodes. It has Ll = 2Z, [E(G)[ = l(2l + 1), and 
no matching with more than l edges. Thus, it cannot have a Ll colouring 
(unless l = 0). On the other hand, we do have: 

Theorem 1.5 (Vizing's Theorem [154]) For all G, Xe(G) ~ Ll(G) + 1. 

Remark See [107], pp. 286-287 for a short sweet algorithmic proof of this 
theorem due to Ehrenfreucht, Faber, and Kierstead. 

Thus, Xe( G) is easy to approximate to within one, and determining Xe( G) 
boils down to deciding if Xe(G) = Ll(G) or Xe(G) = Ll(G) + 1. However, this 
problem also seems intractable (Holyer[82] has shown it is NP-complete to 
determine if Xe (G) = 3). 
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1.3 Fundamental Open Problems 

The fundamental open problem concerning the total chromatic number is to 
decide if it can be approximated to within 1, as the chromatic index can. 
Considering a maximum degree vertex of G, we see that xr(G) 2:: Ll(G) + 1. 
In fact xr(G) = x(T(G)) 2:: w(T(G)) 2:: Ll(G) + 1, and the second inequality 
is tight here unless G is a graph of maximum degree one. Now, xr(G) is 
not always Ll(G) + 1. Consider, for example, the graph consisting of a single 
edge (what happens with larger even cliques?). Vizing[155] and Behzad[20] 
independently proposed what is undoubtedly the central open problem con
cerning total colourings: 

Conjecture 1.6 {The Total Colouring Conjecture) xr(G):SLl(G)+2. 

We note that for a long period, the best bound on the total chromatic 
number of G was that given by Brooks' Theorem: 2Ll(G). (The case Ll(G) < 2 
is trivial. For Ll( G) 2:: 2, the reader is invited to verify that Ll(T( G)) = 
2Ll(G) and that no component of T(G) is a (Ll(T(G)) + 1)-clique.) It took 
the probabilistic method to improve this far from optimal bound (see [27]). 

The choice of the fundamental open problem concerning edge colourings 
is less clear. However, in the authors' opinion, the central question is to 
determine if we can still approximate the chromatic index to within one if we 
permit multiple edges. 

A multigraph G is similar to a graph except that there may be more than 
one edge between the same pair of vertices. The definition of chromatic index 
and total chromatic number extend naturally to multigraphs (as does the 
notion of chromatic number, however to compute this parameter we need 
only consider one of the edges between each pair of adjacent vertices). The 
chromatic index of a multigraph can exceed its maximum degree by much 
more than one. Consider, for example, the multigraph obtained by taking k 
copies of each edge of a triangle. This multigraph has maximum degree 2k 
but its line graph is a clique of size 3k and so the multigraph has chromatic 
index 3k. A multigraph's chromatic index can also significantly exceed the 
clique number of its line graph, as can be seen by replicating the edges of 
a cycle of length five. However, it still seems possible to approximate the 
chromatic index of multigraphs. 

Definition Recall that a stable set is a set of pairwise non-adjacent vertices, 
we use a:( G) to denote the stability number of G, i.e. the number of vertices 
in the largest stable set in G. 

We define f3(G) to be ~~~~gjll We define f3*(G) to be the maximum 
of f3(H) over all subgraphs H of G. We have: 

Observation 1.7 w(G):::; f3*(G):::; x(G). 
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Proof The first inequality holds because cliques have stability number 
one. Now, x(G) 2:' f3(G) because a colouring is a partition into stable sets. 
Since the chromatic number of G is at least as large as the chromatic number 
of any of its subgraphs, the second inequality follows. D 

In the same spirit, for a multigraph G we define f.l( G) to be the maximum 

over all subgraphs H r;;; G of lu0~()2J l Clearly, f3*(L(G)) is at least f.L(G). 
Since w(L(G)) 2:' L1(G), j3*(L(G)) is at least max(L1(G), f.l(G)) (in fact, as we 
discuss in Chap. 21, seminal results of Edmonds[37] imply f3*(L(G)) is this 
maximum). So, max(f.L(G), L1(G)) is a lower bound on the chromatic index 
of G. Our choice for the central conjecture about edge colourings states that 
this bound is always very close to correct. 

Conjecture 1.8 (The Goldberg-Seymour Conjecture [67, 142]} For 
every multigraph G, Xe(G) :S max(f.L(G), L1 + 1). 

There are even more choices for a central open problem in vertex colour
ing. (In fact Toft and Jensen have written an excellent book, Graph Col
oring [sic] Problems [85] containing over 200 unsolved colouring problems, 
most of which deal with vertex colouring.) Two obvious candidates concern 
the relationship between x and w. 

Definition A graph G is perfect if every induced subgraph H of G satisfies 
x(H) = w(H). 

Now a perfect graph cannot contain a subgraph H which is an induced 
odd cycle with more than five vertices for then x(H) = 3 and w(H) = 2. 
It is also straightforward to verify that the complement of an odd cycle on 
2k + 1 2:' 5 nodes satisfies w = k and x = k + 1 (the colour classes in any 
colouring are one or two consecutive vertices of the cycle). Our first open 
problem is a possible characterization of perfect graphs in terms of these two 
families. 

Conjecture 1.9 (The Strong Perfect Graph Conjecture(Berge [21])) 
A graph is perfect if and only if it contains no induced subgraph isomorphic to 
either an odd cycle on at least five vertices or the complement of such a cycle. 

The second conjecture concerns minors. We say Kk is a minor of G if G 
contains k vertex disjoint connected subgraphs between every two of which 
there is an edge. 

Conjecture 1.10 (Hadwiger's Conjecture [73]} Every graph G satisfies: 
x(G) :S kc = max{k!Kk is a minor of G}. 

We can also define minors of graphs which are not cliques. 

Definitions We contract an edge xy in a graph G to obtain a new graph Gxy 
with vertex set V(Gxy) = V(G)- x- y + (x * y) and edge set E(Gxy) = 
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Fig. 1.2. Contracting an edge 

E(G-y-x)U{(x*y)zlxz or yz E E(G)} (see Fig. 1.2). His a minor of G if H 
can be obtained from G via a sequence of edge deletions, edge contractions, 
and vertex deletions (we regard isomorphic graphs as being equal). 

Note that our two definitions coincide for cliques. 

Remark Note further that kc is also max{w(H)IH is a minor of G}. 

Hadwiger's Conjecture for kc :::; 2 is quite easy. Dirac [36] proved the 
conjecture for G with kc = 3. The case kc = 4 is significantly more chal
lenging. The celebrated Four Colour Conjecture (that every planar graph G 
satisfies x :::; 4) is clearly implied by Hadwiger's Conjecture for kc = 4, 
as it is well known that any graph with a K 5-minor is non-planar. In fact, 
Wagner [159] showed that this case of Hadwiger's Conjecture is equivalent 
to the Four Colour Conjecture. The Four Colour Conjecture remained open 
for over 100 years until being settled in the affirmative by Appel and Hakken 
in 1976 [12]. Hadwiger's Conjecture for kc = 5 was recently resolved by 
Robertson, Seymour, and Thomas [137]. The conjecture remains open for all 
larger values of kc. 

1.4 A Point of View 

We note that many of the problems above concern bounding the chromatic 
number of a graph in terms of its clique number. 

The Total Colouring Conjecture states that x( G) :::; w( G)+ 1 if G is a total 
graph. The Strong Perfect Graph Conjecture involves characterising a special 
class of graphs all of whose members satisfy x :::; w. Hadwiger's Conjecture 
also involves using the clique number as an upper bound on the chromatic 
number, but now we consider the clique numbers of the minors of G rather 
than just G itself. 

Many of the results we discuss in this book consist of proving that for some 
specially structured graphs, e.g. total graphs, we can bound X by (1 + o(1 ))w. 

We will not have much to say about the Strong Perfect Graph Conjecture 
We shall however present some partial results on Hadwiger's Conjecture. We 
shall also present some results about bounding x using w in arbitrary graphs. 
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For example, we shall generalize Brooks' Theorem by proving that there is 
some f > 0 such that x ::::; Ew + (1- E)(Ll + 1). We present this theorem as 
evidence for a stronger statement in the same vein: 

Conjecture 1.11 (Reed [132]} For any graph G, x::::; l~w + ~(Ll + 1)l. 

The proofs of all of the results mentioned above require only the simplest 
of probabilistic tools, and in most cases we analyze a very simple colouring 
procedure. Our intention is to stress the simplicity of the incredibly powerful 
techniques used, particularly early on in the book. 

We also consider another graph invariant the fractional chromatic number. 
This number lies between w and x. We shall study bounding x using the 
fractional chromatic number, possibly in combination with the maximum 
degree. As we shall see, the Goldberg-Seymour Conjecture implies that for 
any line graph G of a multigraph, x( G) is at most one more than the fractional 
chromatic number of G. We shall present results of Kahn which show that 
for such G, x does not exceed the fractional chromatic number significantly. 
These results require much more sophisticated probabilistic and combinato
rial tools but the spirit of the arguments are the same as those introduced 
earlier in the book. This should aid the reader in understanding the more 
difficult material. 

Recapitulating then, we view all these diverse conjectures as problems 
concerning bounding x in terms of either w or the fractional chromatic num
ber and we discuss what light the probabilistic method sheds on this general 
problem. We will also discuss algorithms for obtaining the colourings that 
we prove exist. Of course, there are many graph colouring problems which 
do not fit this paradigm. We will also see how to treat some of these via the 
probabilistic method. 

We complete this chapter with a few more technical results and definitions 
that we will need. 

1.5 A Useful Technical Lemma 

For ease of exposition, we often prefer to consider graphs in which all the 
vertices have the same degree. If this degree is d, then such a graph is called 
d-regular. 

Fortunately, there is a simple construction which allows us to embed any 
graph of maximum degree Ll in a Ll-regular graph. This allows us to extend 
results on d-regular graphs to graphs with maximum degree d. 

The construction proceeds as follows. We take two copies of G and join the 
two copies of any vertex not of maximum degree. If G is not already regular, 
this increases its minimum degree by one without changing the maximum 
degree. Iterating this procedure yields the desired result. 
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1.6 Constrained Colourings 
and the List Chromatic Number 

Often colouring problems impose extra constraints which restrict the set of 
permissible colourings. A common side constraint is to restrict the colours 
permissible at each vertex. 

Definitions Given a list Lv of colours for each vertex of G, we say that 
a vertex colouring is acceptable if every vertex is coloured with a colour on its 
list. The list chromatic number of a graph, denoted xf(G) is the minimum r 
which satisfies: if every list has at least r colours then there is an acceptable 
colouring. Given a list of colours for each edge of G, we say that an edge 
colouring is acceptable if every edge is coloured with a colour on its list. 
The list chromatic index of a graph, denoted x~(G) is the minimum r which 
satisfies: if every list has at least r members then there is an acceptable 
colouring. 

Now, G is k vertex colourable if and only if there is an acceptable colouring 
when every vertex has the list { 1, ... , k}. Thus, the list chromatic number is 
at least the chromatic number. Instinctively, one feels that making the list 
at different vertices dissimilar should make it easier to colour G. However 
this intuition is incorrect, as we see in Fig. 1.3. More generally, one can 
construct bipartite graphs with list chromatic number k for every k (see 
Exercise 1.8). Thus, the list chromatic number can be arbitrarily far away 
from the chromatic number. Once again, it is conjectured that line graphs 
are much better behaved. That is we have: 

Conjecture 1.12 (The List Colouring Conjecture) Every graph G sat
isfies x~(G) = Xe(G). 

A famous special case of this conjecture is due to Dinitz. It states that if 
we have n acceptable integers for each square of an n by n grid then we can 

{ 1 , 2} { 1 , 2} 

{ 1 , 3} { 1 , 3} 

{2,3} {2,3} 

Fig. 1.3. A bipartite graph with list chromatic number three 
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fill in a Latin square on this grid so that each square of the grid contains an 
acceptable integer. Translated into the language of graphs, Dinitz's conjecture 
says that x~(Kn,n) is n (where Kn,n is the bipartite graph which has n 
vertices on each side and n2 edges). Dinitz's conjecture was solved recently 
by Galvin [64]. In fact, Galvin proved the List Colouring Conjecture for all 
bipartite graphs (see [85] for more references). 

1. 7 Intelligent Greedy Colouring 

The proof of Lemma 1.3, actually yields the following two stronger results: 

Lemma 1.13 Any partial Ll + 1 colouring of G can be extended to a Ll + 1 
colouring of G. 

Proof Simply place the l coloured vertices at the beginning of the ordering 
under which we perform the colouring and begin colouring at vertex VZH· D 

Definition The colouring number of G, denoted col( G), is the maximum over 
all subgraphs H of G of 8(H) + 1 

Lemma 1.14 The chromatic number of G is at most the colouring number 
of G. 

Proof Choose an ordering of V(G), beginning with Vn, by repeatedly 
setting Vi to be a minimum degree vertex of Hi = G - {vi+ 1 , ... , Vn}. Then, 
when we come to colour vi, we will use a colour in {1, ... , 8(Hi) + 1 }. D 

Remark This lemma was proved independently by many people, see ([85], p 8) 
for a discussion. 

Definition We use the term greedy colouring algorithm to refer to the process 
which colours V (G) by colouring the vertices in some given order, always 
using the first available colour (under some arbitrary ordering of the colours). 
We also use the same term to refer to the analogous process for extending 
a partial colouring. 

We can also use the greedy colouring algorithm to prove Brooks' Theorem. 
We end the chapter with this proof. 

Proof of Brooks' Theorem. Since G is bipartite unless it contains an odd cycle, 
Brooks' Theorem holds for graphs with Ll = 2. A minimal counterexample 
to Brooks' Theorem must be connected. In fact a minimal counterexample 
must be 2-connected. For if v were a cutvertex of G, and U a component of 
G- v then we could colour U + v and G- U separately and obtain a colouring 
of G by relabeling so that v receives the same colour in these two colourings. 
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We need the following easy lemma whose short proof is left as an exercise 
(see Exercise 1.10). 

Lemma 1.15 Any 2-connected graph G of maximum degree at least three 
which is not a clique contains three vertices x, y, z such that xy, xz E 

E(G), yz rt E(G), and G- y- z is connected. 

Corollary 1.16 Let G be a 2-connected graph which has maximum degree 
Ll 2: 3 and is not a clique. Then, we can order the vertices of G as Vt, ... , Vn 
so that VtV2 rt E(G),VtVn,V2Vn E E(G), and for all j between 3 and n -1, 
Vj has at most Ll-1 neighbours in {vt, ... , Vj-1}· 

Proof Choose x, y, z as in the lemma. set Vt = y, v2 = z. As we remarked 
after the proof of Fact 1.1 we can order G - y - z as V3, ... , Vn = x so that 
for each i < n, Vi has a neighbour Vj with j > i. D 

Now, consider a graph G and ordering as in the corollary. If we apply 
our greedy colouring algorithm to G, we will assign colour 1 to both Vt 
and v2 • Furthermore, for each i between 3 and n- 1, Vi will receive a colour 
between 1 and Ll because it has a neighbour Vj with j > i and so at most 
Ll - 1 of its neighbours have been previously coloured. Finally, since Vn has 
two neighbours of colour 1, it will also be assigned a colour between 1 and Ll. 

Thus, every 2-connected graph of maximum degree Ll 2: 3 has a Ll-
colouring and so Brooks' Theorem holds. D 

Finding colourings using few colours by extending a colouring in which 
colours appear more than once in some vertices' neighbourhoods will be a key 
technique in this book. 

Exercises 

Exercise 1.1 Let G be a graph of maximum degree Ll and r an integer. 
Suppose that we can colour a subset of the vertices of G using Ll + 1 - r 
colours so that no two adjacent vertices are coloured with the same colour 
and for every v E V there are at least r colours which are used on two or 
more neighbours of v. Show that G has aLl+ 1- r colouring. 

Exercise 1.2 Euler's formula implies that every planar graph has a vertex 
of degree five. 

(i) Show this implies that every planar graph has chromatic number at most 
six. 

(ii) Suppose v is a vertex of degree five in a planar graph G and there is 
a colouring of G - v with five colours. Let Gij be the subgraph of G 
induced by those vertices coloured i or j in G- v. Show that if for some 
pair {i,j} there is no path in Gi,j between two vertices of N(v) then 
x(G)::::; 5. 
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(iii) Use (ii) to show that x(G) :S 5 for every planar graph G. 

Exercise 1.3 We consider sets of rectilinear squares in the plane (i.e. the 
sides of the squares are parallel to the x andy axes). We say H is a square 
graph if its vertices correspond to such a set of squares and two vertices are 
adjacent precisely if the corresponding squares intersect. 

(i) Show that if all the squares are the same size then for each vertex v in 
the corresponding square graph H, N ( v) can be partitioned into four or 
fewer cliques. Use this to show x(H) :S 4w(H) - 3. 

(ii) Show that if all the squares are the same size and H is finite then there 
is a vertex of H whose neighbourhood can be partitioned into two or 
fewer cliques. Use this to deduce that x(H) :S 2w(H) - 1. 

(iii) Show that any square graph H contains a vertex H whose neighbour
hood can be partitioned into four or fewer cliques. Deduce x(H) :S 
4w(H)- 3. 

Exercise 1.4 Use a variant of the greedy colouring procedure to show that 
every graph G contains a bipartite graph H with IE(H)I ~ ~IE(G)I. 

Exercise 1. 5 

(i) Show that if H is a bipartite subgraph of G with the maximum possible 
number of edges then d H ( v) ~ dc2( v) for all v and in particular, 6 (H) ~ 
8(G) 
-2-. 

(ii) Show that we can construct a bipartite subgraph H of G with dH ( v) ~ 
dci v) for all v in polynomial time. 

Exercise 1.6 Show that if G has average degree d then it has a subgraph H 
with 6(H) ~ ~· 

Exercise 1. 7 Combine Exercises 1.5 and 1.6 to show that if G has average 
degree d then it has a bipartite subgraph with minimum degree at least ~. 

Exercise 1.8 Show that the list chromatic number of the complete bipartite 
graph Ke\;l),(2k;l) is at least k + 1. 

Exercise 1.9 Show inductively that if G contains 2£ vertices then it contains 
a clique C and a stable set S such that ICI + lSI = e + 1. (Hint: put v1 in 
C U S and meditate on its degree.) Note that this implies that if G has 4£ 
vertices then it contains either a clique of size e or a stable set of size e. 
Exercise 1.10 

(i) Prove that any connected graph G which is not a clique contains three 
vertices x,y,z such that xy,xz E E(G) and yz ~ E(G). 

(ii) Prove that if G is 2-connected and has minimum degree three, there is 
some such triplex, y, z, such that the removal of y, z leaves G connected. 
Note that this proves Lemma 1.15. 



2. Probabilistic Preliminaries 

2.1 Finite Probability Spaces 

We consider experiments which have only a finite number of possible out
comes. We call the set of all possible outcomes, the sample space and denote 
it n. For example, our experiment may consist of rolling a six sided die and 
examining the top face, in which case n = {1, 2, 3, 4, 5, 6}. Alternatively, 
our experiment may consist of flipping a coin three times in a row, then 
n = { H H H, H HT, HT H, T H H, TT H, T HT, HTT, TTT} where H stands 
for heads and T for tails. The reader probably has an intuitive notion of 
what an event is, which corresponds to this word's use in everyday language. 
Formally, an event is a subset A of n. For example, we identify the event 
that the die roll is odd with the subset ( {1, 3, 5} ). Similarly, the event that 
the coin landed the same way up every time is the set ( { H H H, TTT} ). 

A finite probability space (D, Pr) consists of a finite sample space nand 
a probability function Pr: n-+ [0 .. 1] such that 

2.1 I:xE!t Pr(x) = 1. 

We often consider the uniform distribution in which Pr(x) = 1A1 for 
each X in n. In other words a uniformly chosen element of n, or a uniform 
element of n is a random element where each possibility is equally likely. 
We extend Pr to the events in 2n by setting 

2.2 Pr(A) = L:xEA Pr(x). 

So for example, 

Pr(fair dice is odd) = ~· 

If our coin is biased and lands heads two-thirds of the time then 

Pr( all flips the same) = 2
8
7 + 217 = ~. 

Letting A be the event that A does not occur, i.e. A = n - A, we have: 

2.3 Pr(A) = 1 - Pr(A). 
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We also have: 

2.4 Pr(A u B) = Pr(A) + Pr(B) - Pr(A n B), 

and for any partition of il into (disjoint) subsets B1, ... , Bz: 

2.5 Pr(A) = z=!=1 Pr(A n Bi)· 

Now, (2.4) implies: 

2.6 Pr(A U B) ~ Pr(A) + Pr(B) 

and more generally: 

l 

Pr(U~=l Ai) ~ L Pr(Ai)· 
i=l 

This last fact we refer to as the Subadditivity of Probabilities. 
We sometimes use Pr(A, B) for Pr(A n B). 
For any two finite probability spaces (Pr1. il1) and (Pr2, il2), their prod

uct space has sample space il1 x il2 and probability distribution Pr de
fined as follows: Pr(x x y) = Pr1(x)Pr2(y). We can iteratively apply this 
definition to obtain the product of arbitrarily many component subspaces. 
Thus, we can consider a sequence of n independent coin flips as a product 
space. Another example of a product space is the random graph Gn,p which 
has n vertices {1, ... , n }, and in which we choose each of the (~) possible 
edges to be in the graph with probability p, where these choices are made 
independently. Thus, the probability that Gn,p is any specific graph H on 
1, ... , n is p(IE(H)I)(1- p)((~)-IE(H)I). 

For any two events A and B, the conditional probability of A given B, 
denoted Pr(AIB) is, informally, the probability we would assign to A if 

we knew B occurred. Formally, Pr(AIB) = PP~~~) and is read as the 

probability of A given B (if Pr(B) = 0 we set Pr(AIB) = Pr(A)). Note how 
the formal definition agrees with the informal one presented first. 

For example if A is the event that the die roll is odd and B is the event 
that the die roll is at most three, then Pr(AIB) = ~· 

Intuitively, A is independent of B if knowing that B occurs yields no hint 
as to whether or not A occurs. Formally, A is independent of B if Pr(AIB) = 
Pr(A) or equivalently Pr(AnB) = Pr(A)Pr(B). Note that this implies that 
Pr(BIA) = Pr(B), i.e. A is independent of B if and only if B is independent 
of A. Thus, we may speak of a pair of independent events. Note that A is 
independent of B if and only if it is independent of B, by (2.5). 

A set of events is pairwise independent if every pair of events in the set 
is independent. The set is mutually independent if for any subset{ A0 , A1. 
... , Az} of events we have: 
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Note that a set of events may be pairwise independent without being mutually 
independent, consider for example tossing a fair coin three times and the 
three events: the number of heads is even, the first two flips are the same, 
the second two flips are heads. 

The reader should verify that if A1, ... , At are mutually independent then 
Pr(Al n ... nAt) = Pr(Al) X ... X Pr(At). 

An event A is mutually independent of a set of events £ if for every 
131, ... ,13r E £, 

Pr(AI131 n ... n 13r) = Pr(A). 

It is straightforward to show that the mutual independence condition implies 
a more general condition: for every 1311 •.• , 13t, 0 11 ••• , Cs E £, 

Pr(AI131 n ... n 13r n C1 n ... n Cs) = Pr(A). 

2.2 Random Variables and Their Expectations 

A mndom variable defined on a finite probability space (Pr, .n) is a nmc
tion X from n to the reals. For example: the sum of the top faces of two 
rolls of a fair die, the number of heads in N flips of a biased coin which 
comes up heads two-thirds of the time. The random variable X naturally 
defines a probability space (Prx,nx) on its range nx. The corresponding 
probability function Pr x is called the mass function for X and satisfies: 

for each x E nx, Prx(x) = l:)Pr(w)lw E !],X(w) = x}. 

For example, if we roll a fair die twice and let X be the sum of the two 
rolls then nx = {2, 3, ... '12} and 

1 2 
Prx(2) = Prx(12) = 36 , Prx(3) = Prx(ll) = 36 , 

3 4 
Prx(4) = Prx(lO) = 36 , Prx(5) = Prx(9) = 36 , 

5 6 
Prx(6) = Prx(8) = 36 , and Prx(7) = 36 . 

The expected value of a random variable X is: 

E(X) = L Pr(w)X(w). 
wEft 

Intuitively, E(X) is the value we would expect to obtain if we repeated 
a random experiment several times and took the average of the outcomes 
of X. 
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Thus, if X is a random variable which is 1 with probability p and 0 with 
probability 1- p then the expected value of X is p x 1 + (1- p) x 0 = p. In 
the same vein, the expected number of pips on the top face of a fair die after 
it is rolled is L~=l i x ~ = 3.5. 

We remark that 

E(X) = L Pr(w)X(w) = L Pr(w)x 
xEf"lx wEf"l,X(w)=x 

Pr(w) = L xPrx(x). 
xEf"lx wEf"l,X(w)=x xEf"lx 

Thus, if X is the sum of two die rolls then our calculation of Pr x above 
yields: 

E(X) = 
1 2 3 4 5 6 

2x -+3x -+4x -+5x -+6x -+7x-
36 36 36 36 36 36 

5 4 3 2 1 
+8 X - + 9 X - + 10 X - + 11 X - + 12 X - = 7. 

36 36 36 36 36 

There is another equation (whose proof we leave as an exercise) that can 
be obtained by swapping the order of a double sum, which will prove much 
more useful in computing expected values. It is: 

Linearity of Expectation 

Thus, if X is the total rolled using n fair dice then letting Xi be the 
number on the ith dice we have that E(Xi) = 3.5 and since X is the sum of 
the Xi, Linearity of Expectation implies E(X) = 3.5n. Similarly, since there 
are (~) possible edges in Gn,p, each of which is present with probability p, 
the expected number of edges of Gn,p is p(~). As a final example, consider 
a random permutation 1r of 1, ... , n where each permutation is equally likely 
(thus n is the set of all n! permutations of { 1, ... , n} and Pr is the uniform 
distribution on D). Let X = X(n) be the number of i for which n(i) = i, 
that is the number of fixed points of 71". We see that setting Xi to be 1 if 
n(i) = i and 0 otherwise, we have X = 2:~1 Xi. It is easy to show that 
E(Xi) = ~'hence by the Linearity of Expectation, E(X) = 1. Note that we 
have computed E(X) without computing, for example, Pr(X = 0) which is 
much more difficult. 

These last two examples are instances of a general paradigm which will 
reoccur frequently. Many variables are the sum of 0-1 variables and hence 
their expected value is easily computed by computing the sum of the expected 
values of the 0-1 variables. We will see several examples of this approach in 
the next chapter. We use BIN(n,p) to denote the variable which is the sum 
of n 0-1 variables each of which is 1 with probability p (the BIN here stands 
for Binomial which stresses the fact that each of the n simple variables can 
take one of two values). 
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The conditional expectation of X given B , denoted E(XIB) is equal to 
LxEwx xPr(X = xiB). For example, if X is the value of a fair die roll: 

1 1 1 
E(XI X is odd) = 1 x 3 + 2 x 0 + 3 x 3 + 4 x 0 + 5 x 3 + 6 x 0 = 3. 

Similarly, 

E(XI X is even) = 4. 

Linearity of Expectation generalizes to conditional expectation, we leave 
it as an exercise for the reader to obtain: 

Thus, we see that if X is the number of heads in n flips of a coin that 
comes up heads with probability p then considering each flip separately and 
applying (2.7), we have: 

E(XI first flip is a head)= 1 + p(n- 1). 

Similarly, if X = X('lT) denotes the number of fixed points of 7l' as above, 
then we can obtain (another exercise): E(XI7l'(1) = 1) = 1 + (n -1) n~l = 2, 

E(XI7l'(1) = 3) = O+O+(n-2) n~l, and by symmetry: E(XI7l'(1) =/= 1) = ~=i. 
Finally, we note that E(X) = E(XIB)Pr(B) + E(XIB)Pr(B) by the 

definition of P(AIB) and (2.5). That is, E(X) is a convex combination of 
E(XIB) and E(XIB). Thus, one of the latter will be at most E(X) and the 
other will be at least E(X). 

2.3 One Last Definition 

The median of a random variable X, denoted Med( x), is defined to be the 
minimum real number m such that Pr(X :::; m) 2: ~· By symmetry if X is 
the number of heads in n tosses of a fair coin then Med(X) = l i J. Thus, 
the median of X, in this case, is either exactly E(X) or E(X)- ~· 

Intuitively, as long as a variable has a "nice" distribution, the median 
should be very close to the expected value. However this is not always the 
case (see Exercise 2.4). Due mainly to the Linearity of Expectation, expected 
values are usually much easier to compute than medians, and so we tend to 
focus far more on expected values. In fact, medians only show their heads 
twice in this book, and even then they only appear in situations where they 
are in fact close enough to the expected value that the two are virtually 
interchangeable. 
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2.4 The Method of Deferred Decisions 

We frequently consider probability spaces which are the product of indepen
dent subs paces. One example mentioned earlier is G n 1 . In analyzing such 

•2 
an object, we often find it convenient to expose the choices made in some of 
the subspaces and use the outcomes exposed to determine how to continue 
our analysis. This is the simplest case of The Method of Deferred Decisions. 
To illustrate this technique, we will show that the probability that G21 1 

•2 
has a perfect matching is at least ~. Exercise 2.24 asks you to improve this 
result by showing that the probability G21 1 has a perfect matching (that is 

•2 
a matching containing l edges) goes to 1 as l goes to infinity. 

We label the vertices v1 , .. , v2z, We will try to find a perfect matching 
by repeatedly matching the lowest indexed unmatched vertex to some other 
vertex using the following procedure: 

Step 1. Set M = 0 and S = V. 
Step 2. Fori= 1, ... ,l do: 

(2.1) Let j(i) be the smallest integer such that Vj(i) is inS. Consider all 
the pairs Vj(i)' y withy E Sand determine which are edges. 

(2.2) If ::lyE S s.t. vj(i)Y E E(G) then choose Yi inS s.t. Vj(i)Yi E E(G) 
and set M = M + Vj(i)Yii else choose any Yi E S. 

(2.3) Set S = S- Xj(i) - Yi· 

Note that for each pair x, z of vertices, we examine whether there is an 
edge between this pair in Step 2.1 in at most iteration. Specifically the first 
iteration i for which one of x or z is vj(i). So we can think of performing 
the coin flip which determines if vj(i), y is an edge and exposing the result in 
iteration i. Since these coin flips are independent, for every (x, y) considered 
in Step 2.1, the probability xy is an edge is ~-

Now, we let Ai be the event that we fail to find an edge between vj(i) and 
S- vj(i) in iteration i. We want to show that with probability at least ~ none 
of the Ai occur and hence M is a perfect matching. 

By the above remarks, Pr(Ai) = 2-IS-vj(i)l = 2 2i-l-21 irregardless of 
what has happened in the earlier iterations. Thus, the probability that we 
fail in any iteration between 1 and l is, by Linearity of Expectation, at most 
"'l 22i-1-2Z =.! "'Z-1 4-j < 2.. 
L.n=l 2 DJ=O 3 

Note here that we cannot determine whether Ai holds until we have 
performed the first i - 1 iterations. For the outcome of the earlier random 
choices will determine which vertices remain in S, and hence which edges 
we consider in the ith iteration. The key fact that allows us to perform our 
analysis is that regardless of what happens before iteration i, the probability 
of Ai is the same. 

All applications of the Method of Deferred Decisions involve iterative anal
ysis. For the simplest variant of the method, in each iteration we expose the 



Exercises 21 

outcome of the choices for some of the random subspaces of a product space. 
Which outcomes we expose depends on the results of the previous iterations. 
Note that we may not have complete independence between iterations, as 
we do above. (For instance, one can imagine a procedure which is similar to 
the one above but in which the number of vertices in S in an iteration may 
vary depending on the results of earlier iterations.) Rather, we obtain upper 
and/or lower bounds on the probability that certain events hold which are 
valid regardless of the outcome of previous choices. 

In more sophisticated variants of the method, we may expose whether 
or not a certain event holds in an iteration and then in future iterations 
condition on this event holding or not as the case may be. For example, we 
may need to expose whether or not a die roll is odd in one iteration and use, 
in a subsequent iteration, the fact that regardless of the result, we still have 
that the expected value of the die roll is at least 3. 

Exercises 

Most of the exercises presented here are from two excellent introductory 
textbooks on probability theory, one written by Grimmett and Stirzaker[69], 
the other by Grimmett and Welsh[71]. These exercises are marked by a [GS] 
or a [GW] to indicate the source. We thank the authors for allowing us to 
include them. Further exercises can be found in [70]. 

Exercise 2.1 [GS] A traditional fair die is thrown twice. What is the prob
ability that 

(a) a six turns up exactly once, 
(b) both numbers are odd, 
(c) the sum of the scores is 4, 
(d) the sum of the scores is divisible by three. 

Exercise 2.2 [GS] Six cups and saucers come in pairs. There are two cups 
and saucers of each of the three colours in the tricolour: red, white and blue. 
If the cups are placed randomly on the saucers find the probability that no 
cup is on a saucer of the same colour. 

Exercise 2.3 [GW] Show that the probability that a hand in bridge contains 
6 spades, 3 hearts, 2 diamonds, and 2 clubs is 

(In bridge the 52 cards are dealt out so that each player has 13 cards). 



22 2. Probabilistic Preliminaries 

Exercise 2.4 [GS] Airlines find that each passenger who reserves a seat 
fails to turn up with probability 110 independently of the other passengers. 
So Teeny Weeny Airlines always sells 10 tickets for their 9 seat airplane and 
Blockbuster Airways sells 20 tickets for their 18 seat airplane. Who is more 
frequently overbooked? 

Exercise 2.5 Adapted from [GW]. You are traveling on a train with your 
sister. Neither of you has a valid ticket and the inspector has caught you 
both. He is authorized to administer a special punishment for this offence. 
He holds a box containing nine apparently identical chocolates, but three of 
these are contaminated with a deadly poison. He makes each of you, in turn, 
choose and immediately eat a single chocolate. 

(a) What is the probability you both survive? 
(b) What is the probability you both die? 
(c) If you choose first what is the probability that you survive but your sister 

dies? 

Exercise 2.6 [GS] transitive coins Three coins each show heads with prob
ability ~ and tails otherwise. The first counts 10 points for a head and 2 for 
a tail. The second counts 4 points for a head and 4 for a tail. The third counts 
3 points for a head and 20 for a tail. 

You and your opponent each choose a coin; you cannot choose the same 
coin. Each of you tosses and the person with the larger score wins ten million 
francs. Would you prefer to be the first to pick a coin or the second? 

Exercise 2.7 [GS] Eight rooks are placed randomly on a chessboard, no 
more than one to a square. What is the probability that: (a) they are in 
a straight line (do not forget the diagonals)? (b) no two are in the same row 
or column? 

Exercise 2.8 What is the probability that two dice sum to at least seven 
given that the first is even. 

Exercise 2.9 Under what conditions will Pr(A1 U ... UAn) = 2:::~ 1 Pr(Ai)? 

Exercise 2.10 Adapted from [GS]. You have once again been caught by the 
ticket inspector of Exercise 2.5: 

(a) If you choose first and survive what is the conditional probability your 
sister survives? 

(b) If you choose first and die what is the conditional probability your sister 
survives? 

(c) Is it in your best interests to persuade your sister to choose first? Could 
you? Discuss. 

(d) If you choose first, what is the probability you survive given your sister 
survives? 
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(a) Prove the Linearity of Expectation. 
(b) Prove that E(BIN(n,p)) = np. 

Exercise 2.12 Prove that for any c, k, n we have 

Pr(BIN(n,;) ~k) ~ ~~· 
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Exercise 2.13 Adapted from [GS]. Anne, Brian, Chloe, and David were all 
friends at school. Subsequently each of the (~) = 6 pairs met up; at each of 
the six meetings, the pair involved quarrel with some probability p, or become 
firm friends with probability 1 - p. Quarrels take place independently of each 
other. In future, if any of the four hears a rumour they tell it to all their 
firm friends and only their firm friends. If Anne hears a rumour what is the 
probability that: 

(a) David hears it? 
(b) David hears it if Anne and Brian have quarreled? 
(c) David hears it if Brian and Chloe have quarreled? 
(d) David hears it if he has quarreled with Anne? 

Exercise 2.14 Adapted from [GS]. A bowl contains twenty cherries, exactly 
fifteen of which have had their stones removed. A greedy pig eats five whole 
cherries, picked at random, without remarking on the presence or absence of 
stones. Subsequently a cherry is picked randomly from the remaining fifteen 

(a) What is the probability that this cherry contains a stone? 
(b) Given that this cherry contained a stone what is the probability that the 

pig consumed at least one stone? 
(c) Given that the pig consumed at least two stones, what is the probability 

that this cherry contains a stone? 

Exercise 2.15 Consider a random n x n matrix whose entries are 0 and 1. 
Suppose each entry is chosen to be a one with probability ! independently 
of the other choices. Let Ai be the event that all the entries in row i are the 
same. Let Bi be the event that all the entries in column i are the same. Show 
that the set of events {A1, ... , An, B1, ... , Bn} is pairwise independent but 
not mutually independent. 

Exercise 2.16 [GS] On your desk there is a very special fair die, which has 
a prime number p of faces, and you throw this die once. Show that no two 
non-empty events A and B can be independent unless one of A orB is the 
whole space. 

Exercise 2.17 [GW] If A1, ... , Am are mutually independent and P(A) = p 
fori= 1, ... , m then find the probability that (a) none of the As occur, (b) 
an even number of As occur. 
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Exercise 2.18 Calculate the expected number of singleton vertices (incident 
to no edges) in Gn,p· 

Exercise 2.19 [GS] Of the 2n people in a given collection of n couples, 
exactly m die. Assuming that the m have been picked at random, find the 
mean number of surviving couples. This problem was formulated by Bernoulli 
in 1768. 

Exercise 2.20 Give an example of a random variable X for which E(X) is 
far from Med(X). 

Exercise 2.21 Suppose you perform a sequence of n coin flips, the first with 
a fair coin. Then if the ith flip is a head (resp. tails), for the i +1st flip you 
use a coin which comes up heads with probability ~ (respectively ~). What 
is the expected total number of heads? 

Exercise 2.22 Let Xn be the number of fixed points in a random permuta
tion of {1, ... , n }. Show that for n ~ 2, we have: 
Pr(Xn = 1) S n~l Pr(Xn = 0). 

Exercise 2.23 Use the result of Exercise 2.22 and the fact that the expected 
value of E(Xn) is 1 to show that for nat least 3, Pr(Xn = 0) ~ ~· Can you 
calculate this probability more precisely? 

Exercise 2.24 (Hard) Show that the probability that G21 1 has a perfect 
'2 

matching is 1 - o( 1). 



Part II 

Basic Probabilistic Tools 

In these chapters, we present three fundamental tools of the probabilistic 
method. We begin with the First Moment Method, which was for many years 
synonymous with the probabilistic method. While the underlying mathemat
ics is very elementary, the technique is surprisingly powerful. We then turn 
to the celebrated Lovasz Local Lemma, which has been and continues to be 
one of the most useful tools in probabilistic combinatorics. Finally, we discuss 
the simplest of several concentration tools that will be used throughout this 
book, the Chernoff Bound. 

As we wish to emphasize that the probabilistic method can be mastered 
with a very basic understanding of probability, we omit the proofs of these 
tools for now, stressing that the reader need only understand how they are 
used. 



3. The First Moment Method 

In this chapter, we introduce the First Moment Method1, which is the most 
fundamental tool of the probabilistic method. The essence of the first mo
ment method can be summarized in this simple and surprisingly powerful 
statement: 

The First Moment Principle: If E(X) ~ t then Pr(X ~ t) > 0. 

We leave the proof of this easy fact to the reader. 
Applying the first moment method requires a judicious choice of the 

random variable X, along with a (usually straightforward) expected value 
computation. Most often X is positive integer-valued and E(X) is shown to 
be less than 1, thus proving that Pr(X = 0) is positive. 

Recalling that, for such X, E(X) = I:i i x Pr(X = i), it may seem at first 
glance that one cannot compute E(X) without first computing Pr(X = i) 
for every value of i, which is in itself at least as difficult a task as computing 
Pr(X ~ t) directly. Herein lies the power of the linearity of expectation, 
which allows us to compute E(X) without computing Pr(X = i) for any 
value of i, in effect by computing a different sum which has the same total! 
This is the central principle behind virtually every application of the First 
Moment Method, and we will apply it many times throughout this book, 
starting with the example in the next section. 

Another way of stating the First Moment Principle is to say that the 
probability that X is larger than E(X) is less than 1. Our next tool bounds 
the probability that X is much larger than E(X). 

Markov's Inequality: For any positive random variable X, 

Pr(X 2: t) ~ E(X)jt. 

Again, we leave the proof as an exercise. 
Markov's Inequality is frequently used when X is positive integer-valued 

and E(X) is less than 1, in which case we have a bound on the probability 
which the First Moment Principle guarantees to be positive: 

1 For positive integral k, the kth moment of a real-valued variable X is defined to 
be E(Xk), and so the first moment is simply the expected value. 
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Pr(X > 0) <::; E(X). 

The First Moment Method is the name usually used to describe applications 
of these two tools. In the remainder of this chapter, we will illustrate this 
method with four examples. 

3.1 2-Colouring Hypergraphs 

A hypergraph is a generalized graph, where an edge may have more than 
2 vertices, i.e. a hyperedge is any subset of the vertices. If every hyperedge 
has the same size, k, then we say that the hypergraph is k-uniform. Thus, 
a 2-uniform hypergraph is simply a graph. 

By a proper 2-colouring of a hypergraph, we mean an assignment of one of 
2 colours to each of the vertices, such that no hyperedge is monochromatic, i.e. 
has the same colour assigned to each of its vertices. Note that this is a natural 
generalization of a proper 2-colouring of a graph. As we saw in Chap. 1, those 
graphs which can be properly 2-coloured have a precise simple structure which 
is easily recognized. On the other hand, determining whether a hypergraph 
is 2-colourable is NP-complete, even for 3-uniform hypergraphs [152], and 
so characterizing 2-colourable hypergraphs is a very difficult task. In this 
section we provide a simple proof of a sufficient condition for a hypergraph 
to be 2-colourable. 

Theorem 3.1 If 1i is a hypergraph with fewer than 2k-l hyperedges, each 
of size at least k, then 1i is 2-colourable. 

Proof Colour the vertices at random, assigning to each vertex the colour 
red with probability ~ and blue otherwise, and making each such choice 
independently of the choices for all other vertices. In other words, choose 
a uniformly random 2-colouring of the vertices. For each hyperedge e, define 
the random variable Xe to be 1 if e is monochromatic and 0 otherwise. (Xe 
is called an indicator variable.) Let X = I:eEtl Xe, and note that X is the 
number of monochromatic edges. Any one hyperedge, e, is monochromatic 
with probability at most 2-(k-1), and so E(Xe) <::; 2-(k-1). Therefore, by the 
Linearity of Expectation, E(X) = I:eEtl E(Xe) <::; IE(H)I X 2-(k-1) < 1. 
Therefore, the probability that X = 0, i.e. that there are no monochromatic 
hyperedges, is positive. D 

Remark An alternative proof, avoiding the First Moment Principle, would 
have been as follows: For each hyperedge e, we denote by Ae the event that e 
is monochromatic. By the Subadditivity of Probabilities, the probability that 
at least one such event holds is at most I:eEtl Pr(Ae) <::; IE(H)I x 2k- 1 < 1, 
and so the probability that no edge is monochromatic is positive. Note that 
the calculations are identical. 
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As the reader will discover in Exercise 3.3, the Subadditivity of Prob
abilities is a special case of the First Moment Principle. In fact, in many 
applications of the First Moment Method including the one we have just 
presented, one can actually get away with using the Subadditivity of Probabil
ities, which some might prefer since it is a slightly less advanced probabilistic 
tool. However, in our discussion we will always present our proofs in terms of 
the First Moment Method, and will not bother to point out the cases where 
the Subadditivity of Probabilities would have sufficed. 

Theorem 3.1 has been improved twice. First, by Beck [18] who replaced 
2k-l by D(k113-o(l)2k)2 , and then further by Radhakrishnanz and Sriv
inasan [131] who increased the bound to D(k112-o(l)2k). Both of these proofs 
involve a much more complicated application of the First Moment Method. 
Erdos [40] showed that this bound must be at most O(k2 2k), again by using 
the First Moment Method. 

3.2 Triangle-Free Graphs with High Chromatic Number 

A fundamental question discussed in this book is: What can we say about 
x(G) if we bound w(G)? In this section we show that bounding w(G) alone 
does not allow us to say much about x( G) because there are graphs with no 
triangles, i.e. with w ::::; 2, and x arbitrarily high: 

Theorem 3.2 For any k ;-: 1 there exist triangle-free graphs with chromatic 
number greater than k. 

We prove this theorem using a probabilistic construction due to Erdos 
[39], which was one of the first noteworthy applications of the probabilistic 
method. Actually, Theorem 3.2 had been proved many years before Erdos' 
construction by Zykov [160], but this construction yields the much stronger 
generalization that there are graphs with arbitrarily high girth and arbitrarily 
high chromatic number (see Exercise 3.5). The fact that no one was able 
to produce a non-probabilistic construction of such graphs for more than 
10 years [106, 126] is a testament to the power of the First Moment Method. 

This will be our first use of Gn,p, the random graph defined in Chap. 2. 
One of the many reasons why this model is fascinating is that it can often 
be used to prove the existence of large graphs with interesting properties, as 
we will see here. 

Proof of Theorem 3.2. Choose a random graph G from the model Gn,p with 
2 

p = n-3. 

In order to prove that x(G) > k, it suffices to prove that G has no stable 
sets of size I~ l· In fact, we will show that with high probability, G does not 

2 a= D(b) means the same thing as b = O(a), i.e. the asymptotic order of a is at 
least that of b 
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even have any stable sets of size I;~ l , since we will require this stronger fact 
to apply an elegant trick in a few paragraphs. 

We prove the bound via a simple expected number calculation. Let I be 
the number of stable sets of size I ;k l- For each subset S of I 2~ l vertices, we 
define the random variable I 5 to be 1 if S is a stable set and 0 otherwise. 

E(Is) is simply the probability that S is a stable set, which is (1- p) ( r n!2
2

k 1). 
Therefore by Linearity of Expectation: 

Since, for positive x, 1 - x < e-x, this yields: 

E(J) < 2n X e-pn(n-2k)/8k2 

< 2n X e -n4/3 /16k2 

1 
<-

2 

for n ~ 212 k6 . Therefore, by Markov's Inequality, Pr(I > 0) <~for large n. 
Our next step should be to show that the expected number of triangles is 

also much less than one. Unfortunately, this is not true. However, as we will 
see, by applying the clever trick alluded to earlier it will suffice to show that 
with high enough probability the number of triangles is at most ~. 

To do this, we compute the expected value ofT, the number of trian
gles. Each of the G) sets of 3 vertices forms a triangle with probability p3 . 

Therefore, by applying Linearity of Expectation as in the previous example, 

E(T) = (~)p3 
3 3 

< ~! (n-2/3) 
n 

6 

Therefore, by Markov's Inequality, Pr(T ~ ~) < ~ for large n. 
Since Pr( I ~ 1) + Pr(T ~ ~) < 1, the probability that I = 0 and T < ~ 

is positive. Therefore, there exists a graph G for which I = 0 and T < ~. 
And now for the trick that we promised. Choose a set of at most ~ 

vertices, with at least one from each triangle of G, and delete them to leave 
the subgraph c'. Clearly c' is triangle-free, and ic'l ~~-Furthermore, c' 

I 

has no stable set of size 1 2~ l <:::; 1 1 ~ 1 l, and so x( c') > k as desired! D 
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3.3 Bounding the List Chromatic Number as a Function 
of the Colouring Number 

We now discuss the list chromatic number, defined in Chap. 1. We recall 
that the list chromatic number lies between the chromatic number and the 
colouring number. A fundamental though perhaps not well-known result, due 
to Alon [4], implies that a graph's list chromatic number is much more closely 
tied to its colouring number than to its chromatic number. 

Theorem 3.3 There exists a function g( d) tending to infinity with d, such 
that if the minimum degree of a bipartite graph G is at least d then the list 
chromatic number of G is at least g(d). 

It follows immediately from Exercise 1.5 that if G has colouring number 
r, then it has a bipartite subgraph of minimum degree at least r;l. Hence, 
Theorem 3.3 immediately implies: 

Corollary 3.4 There exists a function g'(r) tending to infinity with r, such 
that if the colouring number of a graph G is at least r then the list chromatic 
number of G is at least g' ( r). 

The bipartite examples of Exercise 1.8 show that, in contrast, the list 
chromatic number may be arbitrarily large, even if the chromatic number is 
only 2. I.e., there is no analogue of Corollary 3.4 bounding the list chromatic 
number by a function of the chromatic number. 

In this section, we prove Theorem 3.3 using Markov's Inequality and 
Linearity of Expectation. 

Consider any bipartite graph H with bipartition (A, B) where IAI 2: IBI. 
In what follows, we will only consider lists of size s, each drawn from the 
colours {1, ... , s4 }. We will show that if H has minimum degree at least 

4 
d = s4 ( 88 ) then there is an assignment of lists to A U B such that H does not 
have an acceptable colouring. This clearly proves the theorem. 

We call a set of lists, one for each vertex of A, an A -set and we call a set 
of lists, one for each vertex of B, a B-set. Our strategy will be to first fix 
a B-set B with a certain property, and then try to find an A-set A such that 
there is no acceptable colouring for AU B. 

Consider any particular B-set of lists, B. We say that a vertex v E A 
4 

is surrounded by B if each of the (8
8 ) possible lists appears on at least one 

neighbour of v. We say a B-set B is bad if at least half the vertices of A are 
surrounded by B. Our proof falls into the following two parts: 

4 
Lemma 3.5 If H has minimum degree at least d = s4 ( 8

8 ) then there is a bad 
B -set of lists. 

Lemma 3.6 For any bad B-set B, there is an A-set A such that H does not 
have an acceptable colouring with respect to the lists A U B. 
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Proof of Lemma 3.5: We choose a random B-set by choosing for each w E 
4 

B one of the (8
8 ) possible lists, with each list equally likely to be chosen. 

Consider a particular vertex v E A. We will bound the probability that v is 
surrounded. 

Let X denote the number of subsets of {1, ... , s4 } of sizes which do not 
4 

appear as a list on a neighbour of v. There are (8
8 ) possibilities for such 

a subset, and the probability that one particular subset does not appear 
4 

on any neighbour of vis at most (1- 1/(8
8 ))d. Therefore, by Linearity 

4 4 
of Expectation, E(X) :S (8

8 ) (1 - 1/ (8
8 ) )d, and so by Markov's Inequality, 

the probability that v is not surrounded, i.e. the probability that X > 0 
4 4 

is at most (8
8 ) (1 - 1/ (8

8 ) )d. Since 1 - x < e-x for positive x, this yields 
4 4 1 Pr(X > 0) < 28 X e- 8 < 2. 

Let Y denote the number of vertices in A which are surrounded by B. We 
have already shown that the probability that a particular vertex is surrounded 
is at least ~- Therefore, by Linearity of Expectation, E(Y) ~ ~IAI. By the 
First Moment Principle, the probability that Y ~ ~IAI, i.e. that B is bad, is 
positive. Therefore, there must be at least one bad set. D 

Proof of Lemma 3.6: Consider any bad set Band let A be a random A-set of 
4 

lists, formed by choosing for each v E A one of the (8
8 ) possible lists, with 

each list equally likely to be chosen. We define the random variable Z to 
be the number of acceptable colourings of B which extend to an acceptable 
colouring of A U B, where of course we mean acceptable with respect to the 
lists AU B. We start by bounding E(Z). 

There are exactly sl 8
1 acceptable colourings of B. Consider any particular 

one of them, C. We will bound the probability that C can be extended to 
an acceptable colouring of A U B when A is chosen. We say that a colour 
is available for a vertex v E A if it does not appear on a neighbour of v 
under C. C will be extendible iff for every vertex v E A, the list chosen for v 
includes at least one available colour. The key observation is that if v E A is 
surrounded by B, then v has at most s- 1 available colours from {1, ... , s4 }. 

To see this, note that if v had s available colours, then that subset of colours 
must form the list of at least one neighbour of v, and so one of those colours 
must appear on that neighbour under C - contradicting the assertion that 
they are all available! 

Thus, for any surrounded vertex v, the probability that a random colour is 
available for v is at most ~, and so the probability that the list chosen for v 

s 
contains an available colour is at most s x 8 41 < -1. Since there are at least 

8 8 

~ IAI such vertices, and their lists are chosen independently, the probability 
that every surrounded vertex has an acceptable colour in its list is less than 
(~J~IAI =s-IAl :S s-IBI (where the last inequality is due to the fact that we 
chose A so that IAI ~ IBI). 
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Therefore, by the LinearitY of Expectation, E(Z) < siBI x s-IBI = 1, and 
so with positive probability Z = 0. Therefore there is at least one A-set A 
for which Z = 0. Clearly if we assign the list AU B to H then there is no 
acceptable colouring. D 

In summary, our proof essentially consisted of the following argument: 
We first considered a uniformly random B-set of lists in order to prove the 
existence of a bad B-set, B. We then showed that the expected number of 
acceptable colourings of H for a list formed by taking the union of B and 
a uniformly random A-set of lists is less than 1. (We actually showed that the 
expected value of a slightly smaller variable is less than 1, but with a little 
more care, we could also have shown that the expected number of acceptable 
colourings of H is also less than 1.) 

At first glance, it may appear that this was just an awkward way of 
considering the union of a uniformly random B-set and a uniformly random 
A-set, and showing that the expected number of acceptable colourings for 
such a set of lists is less than 1. It is important to understand that this is not 
at all what happened. In fact, it is not even true that the expected number 
of such colourings is less than 1 (see Exercise 3.8), and this is the reason that 
we had to generate our random set of lists in a 2-step process. 

The reason that we were not simply analyzing the expected number of 
acceptable colourings in a uniformly random set of lists, is that the B-set that 
we chose was not a uniformly random B-set. Rather, we merely considered 
a uniformly random B-set to prove the existence of a B-set which was not 
random and which had some very specific properties, namely it was bad. 

This idea of choosing a combinatorial object one step at a time, at each 
step considering a random choice to prove that we can make a choice which 
has very specific properties, and thus which might not at all resemble a ran
dom choice, will recur frequently in this book. We call it the pseudo-random 
method. 

3.3.1 An Open Problem 

By examining our calculations more closely, the reader will see that we proved 
Theorem 3.3 with g(d) = 8(logd/loglogd). Alon [6] has improved this to 
g(d) = 8(logd), and so, for example, there is a constant A such that every 
bipartite graph G with minimum degree 8 has X£( G) ;:: A log 8. This is best 
possible, up to the value of A, since Xt(Kn,n) = O(logn) (see [45]). 

So we understand the minimum possible list chromatic number of, say, 
a ..1-regular bipartite graph fairly well. The same is far from true about the 
maximum possible list chromatic number. 

Open Question: Determine the smallest function h( ..1) such that every 
bipartite graph G with maximum degree ..1 has X£ (G) :S h( ..1). 
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The best known upper bound on h is h(Ll) <::; O(Ll/ log Ll). This comes 
from Johansson's bound on the list chromatic number of triangle-free graphs 
(see Chap. 13). For all we know, it might be the case that h(Ll) = O(log Ll). 
We don't even have good bounds on the list chromatic number of some 
fairly common bipartite graphs. For example, Alon[6] has asked what the 
asymptotic value is of the list chromatic number of the n-cube. 

3.4 The Co chromatic Number 

We close this chapter with an elegant application of the first moment method 
due to Alon, Krivelevich and Sudakov [7]. 

Recall that the chromatic number of a graph G can be thought of as 
the smallest number t such that V (G) can be partitioned into t stable sets. 
The chromatic number of G is the smallest number t such that V (G) can be 
partitioned into t cliques. The cochromatic number of G, z( G), is the smallest 
number t such that V (G) can be partitioned into t sets each of which is 
either a stable set or a clique. This notion was introduced by Lesniak and 
Straight [104] and inspired in part by its relationship to Ramsey Theory. 
One appealing property of the cochromatic number which distinguishes it 
from the chromatic number is that for any graph G, z(G) = z(G). 

Clearly z( G) <::; x( G), and so it is natural to ask how much smaller z( G) 
can be than x(G). The answer is trivial: the extreme case is the complete 
graph, as z(Kn) = 1 and x(Kn) = n. Noting that the cochromatic number is 
nonmonotonic (i.e. it is not necessarily true that for any subgraph H r;;; G, 
z(H) <::; z(G)), we can ask a more interesting question: Define z*(G) = 

maxHcG z(H), and note that z*(G) <::; x(G). How much smaller can z*(G) 
be than x(G)? 

A straightforward argument (see Exercise 3.9) shows that every graph on 
at most t vertices has cochromatic number at most ( 2 + o( 1)) -1 t t , and so 

og2 

z*(Kt)::; (2 + o(l)) 10~2 t while x(Kt) = t (see [43]). Here we will see that, 
up to a constant multiple, this is the smallest possible value of z* (G) for any 
graph with chromatic number t by showing: 

Theorem 3.7 [7] If x(G) = t then z*(G) 2 410~2 t (1 + o(l)). 

This improves a result of Erdos and Gimbel[42] who proved a lower bound 

of 0(~), and answers Question 17.3 of [85], posed by Gimbel in 1990. 

We first prove that our theorem is true for IGI <::; t 2 : 

Lemma 3.8 If x( G) = t and G has at most t 2 vertices, then z* (G) 2 
4lo~2 t (1 + o(l)). 

Proof Because our desired bound on z* (G) is an asymptotic one, we can 
assume that t is large enough to satisfy a few inequalities implicit in our 
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proof. We must show that G has a subgraph H such that z(H) ?: 410~2 t. To 

do this, we choose Hat random as follows: V(H) = V(G) and for each edge 
e E E( G) we keep e in H with probability ~. This is very reminiscent of the 
random graph model Gn 1, and in fact, if G were the complete graph on n 

'2 
vertices, then our random subgraph H would be distributed exactly as G 1 . 

n,2 

We will show that with positive probability, z(H) is sufficiently high. 
Let X denote the number of cliques in H of size greater than 4log2 t. Let Y 

denote the number of stable sets in H which induce subgraphs with chromatic 
number greater than 4log2 t in G. We will see that with positive probability 
both X and Y are equal to 0, and so there is at least one subgraph H 1 for 
which X and Y are 0. This implies that each colour class of any cocolouring 
of H 1 induces a subgraph of G with chromatic number at most 4log2 t. Thus, 
x(G) ~ z(HI) x 4log2 t and so z(HI)?: 410~2 t· 

I 

To bound the probability that Y = 0, we will focus on Y , the number 
of stable sets in H which induce subgraphs with minimum degree at least 

I 

4log2 t- 1 in G. Note that if Y = 0 then Y = 0, by Lemma 1.14. We will 

now see that E(X) < ~ and E(Y1
) < ~'from which it follows by Markov's 

Inequality and the Subadditivity of Probabilities that 

Pr(X = 0, Y 1 = 0) > 1- (Pr(X > 0) + Pr(Y > 0)) > 1 - ( ~ + ~) = 0. 

2 

Enumerate the a~ (r41!g2 tl) cliques of size l4log2 tl in G: C1 , ... ,Ca. 

For each i, we define the random variable Xi to be 1 if Ci also induces a clique 
in H and 0 otherwise. By the Linearity of Expectation, E(X) = E(Xl) + 

( r 4log2 tl) 
... + E(Xa)· Furthermore, for each i, E(X1) = (~) 2 • Therefore, 

< 
( t2) r 4log2 tl 

(14log2 t l ) ! 

(~) 2(1og2t)(4log2t-l) 

(t2) r4log2 tl c~) (41og2t-l) 

(14log2 tl)! 

t4 

< ( 4log2 t)! ' 

which is less than ~ for t sufficiently large. 
If the subgraph induced by some subset U of V has minimum degree 

at least 4log2 t - 1 in G, then I U I ?: 4log2 t and the number of edges in 
the subgraph is at least ~I Ul ( 4log2 t - 1). Therefore, each subset of size r ?: 
4log2 t has a probability of at most ( ~ )2r log2 t- 5 of being counted towards Y 1

• 
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Therefore, 

1 t
2 

(t2) ( 1) 2r log2 t- ~ 
E(Y) :S L r 2 

r= r 4log2 tl 

< 
r= r 4log2 tr 

< 

t 2r r 1 
- x2"2" x
r! t2r 

which is less than ~ for t sufficiently large. Note how focusing on Y 1 rather 
than Y made our expected value computation easier. 

Therefore, with positive probability, we have both X = 0 and Y' = 0, 
and so Y = 0 as well. D 

And now our main theorem follows: 

Proof of Theorem 3. 7. Again, we can assume that t is large. By Lemma 3.8, 
we can also assume that IV (G) I > t2. If z( G) is at least 10: 2 t then so is z* (G). 

Otherwise, we will see that G contains a subgraph a' such that Ia' I :S x( a' )2 

and x(a') 2: t- tj log2 t. By Lemma 3.8, 

* 1 x(a') t 
z (G) 2: 1 ( (G1 )) (1 + o(1)) 2: -41-(1 + o(1)). 

4 og2 x og2 t 

Our theorem follows immediately since z* (G) 2: z* (a'). 
If z( G) < 10: 2 t then V (G) can be partitioned into k stable sets U1 , ... , Uk 

and £ cliques W1, ... , We for some k + £ < -1 t t . We will take a' to be the og2 

subgraph induced by W1 u ... u We. Clearly x(a') 2: x(G)- k 2: t- tj log2 t 
I 

as any proper colouring of G, along with a new colour for each of U11 ... , Uk 
provides a proper colouring of G. Furthermore, by our bound on z(G), 
G contains no cliques of size greater than x(G) = t, and so la'l :S £t < 
t2 I log2 t which is less than x( a' )2 for t sufficiently large. D 

Exercises 

Exercise 3.1 Prove the First Moment Principle. 

Exercise 3.2 Prove Markov's Inequality. 

Exercise 3.3 Show how to use the First Moment Method to prove the Sub
additivity of Probabilities . 
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Exercise 3.4 

(i) Prove that if H is a hypergraph with every edge of size at least r, then 

H can be 2-coloured such that at most 1~5~il of its hyperedges are 
monochromatic. 

(ii) Prove that if H is a hypergraph with every edge of size at least r, then 

H can be 2-coloured such that fewer than 1~5~i I of its hyperedges are 
monochromatic. 

(iii) Show that for each N, r :;> 2, there exists an r-uniform hypergraph H 
with E(H) :;> N such that every 2-colouring of H produces at least 

1~5~il (1 + o(1)) monochromatic hyperedges. 

Exercise 3.5 Modify the proof of Theorem 3.2 to show that for every g, k 
there exists a graph G without any cycles of length at most g and with 
x(G) > k. 

Exercise 3.6 Show that for any n sufficiently large, there exists a graph 
G on n vertices with chromatic number at least } and with clique number 

at most n 314 . (Hint: What can you say about the chromatic number of the 
complement of a triangle-free graph?) 

Exercise 3. 7 Use the First Moment Method to prove that every graph G 
containing a matching with M edges has a bipartite subgraph with at least 
~(IE(G)I + M) edges. (Hint: think of a way to choose a random bipartition 
such that the M edges of the matching are guaranteed to each have endpoints 
on opposite sides of the bipartition.) 

Exercise 3.8 Consider any bipartite graph H (with no restrictions whatso
ever on the degrees of the vertices in H), and any integer t :;> 3. For each 
vertex v E H, choose for v a uniformly random list of size 3 from amongst the 
colours { 1, ... , 2t}. Show that the expected number of acceptable colourings 
for H with this random set of lists grows very quickly with the number of 
vertices. What are the implications of this fact, in light of the discussion 
preceding Subsection 3.3.1? (Hint: show that even the expected number of 
acceptable colourings in which one part of the bipartition uses only colours 
from { 1, ... , t} and the other side uses colours from { t + 1, ... , 2t} is high.) 

Exercise 3.9 Use Exercise 1.9 to prove that any graph on t vertices has 
cochromatic number at most (2+o(1)) 10~2 c 
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In this chapter, we introduce one of the most powerful tools of the proba
bilistic method: The Lovasz Local Lemma . We present the Local Lemma by 
reconsidering the problem of 2-colouring a hypergraph. 

Recall that in Sect. 3.1 we showed that any hypergraph with fewer than 
2k-1 hyperedges, each of size at least k, has a proper 2-colouring because the 
expected number of monochromatic edges in a uniformly random 2-colouring 
of the vertices is less than 1. 

Now suppose that a k-uniform hypergraph has many more than 2k-1 

hyperedges, say 22k hyperedges. Obviously, the First Moment Method will 
fail in this case. In fact, at first glance it appears that any attempt to apply 
the probabilistic method by simply selecting a uniformly random 2-colouring 
is doomed since the chances of it being a proper 2-colouring are typically very 
remote indeed. Fortunately however, for the probabilistic method to succeed 
we don't require a high probability of success, just a positive probability of 
success. 

To be more precise, we will choose a uniformly random 2-colouring of 
the vertices, and for each hyperedge e, we denote by Ae the event that e 
is monochromatic. Suppose, for example, that our k-uniform hypergraph 
consisted of m completely disjoint hyperedges. In this case, the events Ae 
are mutually independent, and so the probability that none of them hold is 
exactly (1- 2-(k-1) )m which is positive no matter how large m is. Therefore, 
the hypergraph is 2-colourable.1 

Of course for a general hypergraph, H, the events {Aele E E(1i)} are 
not independent as many pairs of hyperedges intersect. The Lovasz Local 
Lemma is a remarkably powerful tool which says that in such situations, as 
long as there is a sufficiently limited amount of dependency, we can still claim 
a positive probability of success. 

Here, we state the Lovasz Local Lemma in its simplest form. We omit the 
proof for now, as we will prove it in a more general form in Chap. 19. 

The Lovasz Local Lemma [44]: Consider a set£ of (typically bad} events 
such that for each A E £ 

(a) Pr(A) 5_ p < 1, and 

1 The astute reader may have found an alternate proof of this fact. 
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(b) A is mutually independent of a set of all but at most d of the other events. 

If 4pd ~ 1 then with positive probability, none of the events in £ occur. 

Remark 4.1 The inequality 4pd ~ 1 can be replaced by ep(d+ 1) < 1, which 
typically yields a slightly sharper result. (Here e = 2.71 .. .) Only rarely do we 
desire such precision so we usually use the first form. Shearer {143} proved 
that we cannot replace "e" by any smaller constant. 

Our first application of the Lovasz Local Lemma is the following: 

Theorem 4.2 If 1l is a hypergraph such that each hyperedge has size at 
least k and intersects at most 2k-3 other hyperedges, then 1l is 2-colourable. 

Remark This application is the one used in virtually every introduction to 
the Lovasz Local Lemma. The authors do not apologize for using it again 
here, because it is by far the best example. We refer the reader who for once 
would like to see a different first example to [125] where this application is 
disguised as a satisfiability problem. 

Proof We will select a uniformly random 2-colouring of the vertices. For 
each hyperedge e, we define Ae to be the event that e is monochromatic. We 
also define Ne to be the set of edges which e intersects (i.e. its neighbourhood 
in the line graph of1l). Recall that INel < 2k-3 by assumption. We shall apply 
the Local Lemma to the set of events£= {Aele E E(1l)}. 

Claim: Each event Ae is mutually independent of the set of events {A f : 

f tJ. Ne} U Ae. 

The proof follows easily from this claim and the Lovasz Local Lemma, as 
Pr(Ae) ~ 2-(k-I) and 4 x 2-(k-I) x 2k-3 ~ 1. The claim seems intuitively 
clear, but we should take care to prove it, as looks can often be deceiving in 
this field. 

Suppose that the vertices are ordered VI, ... , Vn where e = {VI, ... , Vt}. 
Consider any edges !I, ... , fr, 9I, ... , g8 tf. Ne. Let Y be the set of 2-colourings 
for which the event B = Ah n ... n Atr n A91 n ... n A9• holds. 

For any 2-colouring p of G-V (e), define Tp to be the set of the 2t different 
2-colourings of G which extend p. It is straightforward to verify that for 
each p, Y contains either all of Tp or none of Tp. In other words, there is an£ 
such that Y is the disjoint union Tp 1 U ... U TP£ for some Pb ... , Pi· Thus, 

( ) 2t£ 
Pr B = ¥· 

Within each TPi, there are exactly two 2-colourings in which e is monochro
matic, and so Pr(AenB) =~~.Thus, Pr(AeiB) = (~~)/Pr(B) = 2-(t-I) = 
Pr(Ae) as claimed. D 
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The claim in the preceding proof is a special case of a very useful principle 
concerning mutual independence. In fact, we appeal to the following fact 
nearly every time we wish to establish mutual independence in this book. 

The Mutual Independence Principle Suppose that X = Xt, ... , Xm 
is a sequence of independent random experiments. Suppose further that 
A1, ... , An is a set of events, where each A; is determined by F; t;;; X. If 
F; n ( F;1 , ... , F;k) = 0 then Ai is mutually independent of { A;1 , ••• , A;k}. 

The proof follows along the lines of that of the preceding claim, and we 
leave the details as an exercise. 

We end this chapter with another application of the Local Lemma. 

4.1 Constrained Colourings 
and the List Chromatic Number 

As discussed in Sect. 3.3, Alon has shown that a graph has bounded list 
chromatic number if and only if it has bounded colouring number. Thus, 
if we impose no extra conditions on our lists, to approximately determine 
how big our lists must be to ensure that an acceptable colouring exists, we 
need only consider the colouring number. In this section, we show that we 
can ensure the existence of acceptable colourings for much shorter lists, if we 
impose a (natural) constraint on the ways in which the lists can intersect. The 
results discussed in this section first appeared in [133]. For further discussion, 
including some conjectures, the reader should consult that paper. 

As we mentioned in Chap. 1, the greedy colouring procedure yields 
a bound of Ll + 1 on Xt (G). The following theorem suggests that a much 
stronger result, stated as a conjecture below, may be true. The theorem is 
quite powerful in its own right and will be used repeatedly throughout the 
book. 

Theorem 4.3 If there are at least e acceptable colours for each vertex, and 
each colour is acceptable for at most ~ of the neighbours of any one vertex, 
then there there is an acceptable colouring. 

Conjecture 4.4 The ~ in the above theorem can be replaced by e - 1. 

Remark The ~ in the above theorem can be replaced by 2£e by using the more 
precise version of the Local Lemma. Furthermore, using different techniques, 
Haxell [77] has proven that the result holds if the value is ~, and by iteratively 
applying the Local Lemma, Reed and Sudakov [134] have shown that e-o( €) 
is sufficient. 

We now prove Theorem 4.3, which requires an application of the Local 
Lemma. 
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Proof of Theorem 4.3. Fix a graph G and an acceptable list of colours Lv 
for each vertex v, which satisfy the conditions of the theorem. For ease of 
exposition, we truncate each Lv so that it has exactly R. colours. 

Now, we consider the random colour assignment in which each vertex is 
independently assigned a uniform element of Lv. For each edge e = xy and 
colour i E Lx n Ly, we let Ai,e be the event that both x andy are coloured 
with i. We let £ be the set of all such events. We use the Local Lemma to 
show that with positive probability none of the events in £ occur, i.e. the 
colouring obtained is acceptable. 

Consider first the probability of Ai,e, clearly this is ( t) 2 • Consider next 
the dependency between events. If e has endpoints x andy, then Ai,e depends 
only on the colours assigned to x andy. Thus, letting Ex= {Aj.Jij E Lx,x is 
an endpoint of !} and letting Ey = { Aj ,J lj E Ly, y is an endpoint of !} , 
we see that Ai,e is mutually independent of £ -Ex - Ey. Now, since Lx 
has exactly R. elements, and x has at most ~ neighbours of colour i for each 

i E Lx, we see that IExl ::; ~· Similarly, lEy I ::; e:. Thus, setting d = ~'we 
see that each Ae,i is mutually independent of a set of all but at most d of 

the other events in £. Since ( t) 2 x ~ ::; ~, the Local Lemma implies that an 
acceptable colouring exists. This yields the desired result. D 

As is often the case with the Local Lemma, once we choose our bad 
events, the proof is straightforward. However, choosing the good bad events 
can sometimes be a bit tricky. For example, in Exercise 4.2, we see that two 
natural attempts at defining the bad events for this application do not lead 
to proofs. 

Exercises 

Exercise 4.1 Prove the Mutual Independence Principle. 

Exercise 4.2 Show what would go wrong if you attempted to prove Theo
rem 4.3 by giving each vertex a uniformly random colour from its list and 
applying the Local Lemma to either of the following sets of bad events. 

1. For each vertex v, Av is the event that v receives the same colour as one 
of its neighbours. 

2. For each edge e, Ae is the event that the endpoints of e both receive the 
same colour. 

Exercise 4.3 Consider a graph G with maximum degree .1 where every 
vertex v of G has a list Lv of acceptable colours. Each colour c E Lv has 
a weight Wv(c) such that LcELv Wv(c) = 1. Prove that if for every edge uv 
we have LcELunLv Wu(c)wv(c) ::; 8~ then G has an acceptable colouring. 
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The First Moment Principle states that a random variable X is at most E(X) 
with positive probability. Often we require that X is near E(X) with very 
high probability. When this is the case, we say that X is concentrated. In 
this book, we will see a number of tools for proving that a random variable 
is concentrated, including Talagrand's Inequality and Azuma's Inequality. In 
this chapter, we begin with the simplest such tool, the Chernoff Bound. 

Recall that BIN ( n, p) is the sum of n independent variables, each equal 
to 1 with probability p and 0 otherwise. The Chernoff Bound bounds the 
probability that BIN ( n, p) is far from np, its expected value. For a proof, we 
refer the reader to [10] or [112]. 

The Chernoff Bound For any 0 :S t :S np: 

Pr(IBIN(n,p)- npl > t) < 2e-t2
/ 3np. 

Remark In the case that t > np, it is usually sufficient for our purposes to 
use the bound 

Pr(IBIN(n,p)- npl > t) < Pr(IBIN(n,p)- npl > np) < 2e-nv13 . 

Only occasionally in applications of the probabilistic method, does one have 
to resort to the stronger but somewhat more unwieldy bound: 

Pr(IBIN(n,p)- npl > t) < 2e-((H,{P}In(H,{P)-,{p)np, 

which holds for all t. 
To see how strong the Chernoff Bound is, it is instructive to compare it 

with the bound obtained from Markov's Inequality: 

1 
Pr(BIN(n,p)- np > t) < --t-. 

1+-np 

We will illustrate the Chernoff Bound, with yet another application to 
2-colouring hypergraphs. This time, instead of merely ensuring that no hy
peredge is monochromatic, we must ensure that no hyperedge has many more 
vertices of one colour than of the other. 
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Given a hypergraph H, and a 2-colouring C of its vertices, for each hyper
edge e, we define the discrepancy of e to be the absolute value of the difference 
between the number of vertices of e in each colour class. The discrepancy 
of H, with respect to C, is defined to be the maximum of the discrepancies 
of the edges of H. The discrepancy of H, disc(H), is the minimum over all 
2-colourings of the vertex set of H, of the discrepancy of H with respect to 
the 2-colouring. 

For example, if H is k-uniform, then disc(H) < k iff H is 2-colourable. 
Furthermore, disc(H) in a sense measures how "good" a 2-colouring we can 
obtain for H. 

Theorem 5.1 If H is a k-uniform hypergraph with k > 1 edges, then 

disc( H) ::::; )8k ln k. 

Proof We can assume k ~ 9 as if k :=:; 8 then there is nothing to prove as 
disc( H) ::::; k < v8k ln k. 

We two colour the vertex set of H by assigning to each vertex a random 
colour where each colour is equally likely to be chosen, and where the choices 
corresponding to different vertices are independent. For any edge e, the num
ber of vertices in e which get colour 1, is distributed precisely like BIN(k, ~ ), 

and so by applying the Chernoff Bound with t = v2k ln k we find that the 
probability that the discrepancy of e is greater than 2t is at most: 

1 1 2 /3( 1 k) 4 1 
Pr(IBIN(k, 2")- 2"kl > t) < 2e-t ~ = 2k-3 < k. 

Therefore, by Linearity of Expectation, the expected number of edges with 
discrepancy greater than 2t is less than 1, and so with positive probability 
the number of such edges is 0. Thus, the desired two colouring of H exists. 

D 

We refer the reader to [10] for a more thorough discussion of discrepancy, 
including a deep result of Spencer [144], improving Theorem 5.1: 

Theorem 5.2 If H is a hypergraph with k vertices and k edges, then 
disc(H) :=:; 6Vk. 

5.1 Hajos's Conjecture 

In this section, we will see how the Chernoff Bound was applied to resolve 
a strengthening of Hadwiger's Conjecture. First we present a formulation of 
the conjecture which is slightly different from that given in Sect. 1.5: 

Hadwiger's Conjecture If x( G) ~ k then G contains Kk as a minor. 

A Kk-subdivision in a graph G, is a subgraph H <;;; G consisting of k 
vertices v1 , ... , Vk, its centres, along with a collection of (~) paths, one joining 
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each pair of these vertices, such that the internal vertices of each path do not 
lie on any other path. (It is possible that some of these paths are merely 
edges.) Clearly if G contains a Kk-subdivision then it also contains Kk as 
a minor. 

Haj6s proposed the following strengthening of Hadwiger's Conjecture: 
if x(G) 2: k then G contains a Kk-subdivision. Here we will show that 
the uniform random graph usually provides a counterexample, as proved 
by Erdos and Fajtlowicz [41]. We remark that Caitlin [32] was the first to 
construct a counterexample to Haj6s' conjecture. The result of Erdos and 
Fajtlowicz is interesting because it shows that almost every large graph is 
a counterexample. 

Theorem 5.3 For n sufficiently large, there exist graphs with chromatic 
number at least 210~2 n and with no K 8..;n-subdivision. 

Proof We will choose a graph uniformly at random from all graphs on 
n vertices. Note that this is equivalent to choosing Gn,p where p = ! . We 
first saw this random graph model in Chap. 2, and then again in our proof 
of Theorem 3.2. 

Our first step is to show that with high probability x( G 1) > -21 n . n,-z - og2n 

In the proof of Theorem 3.2, we bounded the chromatic number of Gn,p by 
bounding the independence number of Gn,p· We take the same approach here. 
In particular, we will show that with high probability a(Gn,~) ~ f2log2 nl, 
and apply the basic inequality x(G) 2: IGI/a(G). Let X denote the number 
of stable sets of size a = f2log2 n l· 

n 
<
- ' a. 

1 
< -, 

n 

for n sufficiently large. Thus, by Markov's Inequality, Pr(X > 0) < ~, and 

so Pr ( x( G n, ~) < 2lo~2 n) < ~. 
Next, we must show that with high probability G n 1 has no Kt-subdivi-

•"Z 

sion, where£= f8vfnl. We say that U c V(G) is a ~-clique if the subgraph 

of G induced by U has at least ~ (1~1) edges. We will show that with high 
probability Gn 1 has no .1!4 -clique of size £. Note that this will be sufficient 

'2 
for our needs as it is easy to show that for any r, the centres of every Kr-

2 
subdivision on at most r8 vertices must induce a i-clique of size r. 
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Consider any subset of £ vertices and let Y denote the number of edges 

between these vertices. Note that Y is distributed exactly like BIN ( (;), ~). 
Therefore by the Chernoff Bound, 

for n sufficiently large. Thus, the expected number of ~-cliques of size £ is 
less than 

and so by Markov's Inequality, the probability that Gn 1 has a ~4 -clique of 
'2 

size£ is at most e- ~. 
Therefore, for n sufficiently large, the probability that G n 1 has chromatic 

'2 
number at least -21 n and has no Kc-subdivision is, by the Subadditivity of 

og2 n 

Probabilities, at least 1 - * -e- ~ > 0, and so such a graph must exist. D 

Remark Key to this proof was showing that Pr(x( Gn 1 ) < -21 n ) < l. It 
'2 og2 n n 

is worth noting that Bollobas [25] and Matula and Kucera [111] independently 
proved that with high probability x( G n, ~) 210~2 n 

(1 + o(1)). 
As mentioned earlier, this proof does not just provide a counterexample 

to Hajos' Conjecture, but it shows that the vast majority of graphs on any 
large number of vertices are counterexamples. Note however, that for n = 230 , 

8fo is still bigger than -21 n , and so this proof says nothing about graphs og2 n 

on a smaller number of vertices. So perhaps Haj6s can be forgiven for missing 
this plethora of counterexamples. 

Exercises 

Exercise 5.1 Consider any hypergraph H where every edge has size at 
least k and intersects at most d other edges. Use the Chernoff Bound and the 

Local Lemma to prove that if d::; ie£2 f 6k then disc( H) ::; £. 

Exercise 5.2 Use the Chernoff Bound and Linearity of Expectation to prove 
that the probability that G n 1 contains a bipartite subgraph with more than 

'2 

~2 + n 1 edges is o( 1). Thus, the result in Exercise 1.4 is nearly best possible. 



Part III 

Vertex Partitions 

In each of the next four chapters, an important step of the argument 
presented is to find a partition of the vertices with certain desirable proper
ties. To find these partitions, we apply the tools of the previous chapters to 
show that the probability that a randomly chosen partition has the desired 
properties is positive, thereby proving that such a partition exists. 

The next two chapters contain fairly straightforward applications of this 
technique. In the third chapter, we will have to obtain our partition iter
atively - we repeatedly split the vertex set into two parts to obtain finer 
and finer partitions. In the final chapter of the section, we again consider 
an iterative procedure. This time, there are two extra twists. The first is 
that there is some interaction between the random choices in the different 
iterations. The second is that we will have to combine our probabilistic ap
proach with some structural combinatorics (to wit, Tutte's characterization 
of those graphs with perfect matchings). These are both complications which 
will arise in similar settings several times throughout the book. 
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Kostochka [98] and Thomason [149] have shown that if x(G) 2 n(kJiilk) 
then G has a Kk-minor. To date, this is the best asymptotic progress to
wards Hadwiger's Conjecture. Actually, they proved the stronger result that 
if col(G) 2 n(kJiilk) then G has a Kk-minor, and in [150], Thomason 
determined the best possible multiplicative constant for this bound. In this 
chapter, we prove the slightly weaker result, originally shown by Mader [109], 
that if col(G) 2 n(klnk) then G has a Kk-minor. Our main theorem is: 

Theorem 6.1 For k sufficiently large, if G has average degree at least 
lOOk ln k then G has a Kk-minor. 

Corollary 6.2 For k sufficiently large, if col( G) 2 lOOk ln k + 1 then G has 
a Kk-minor. 

Proof If col(G) 2 lOOklnk + 1 then G has a subgraph with minimum 
degree at least lOOk ln k. That subgraph certainly has average degree at least 
lOOklnk, and so by Theorem 6.1, it contains a Kk-minor. D 

It is worth remarking, that Theorem 6.1 would hold for all values of k, if 
we replaced 100 by a much larger constant. 

In Exercise 6.2, you will prove that Theorem 6.1 remains true when we 
replace lOOk ln k by Ckvlu.k, for some constant C. This is best possible up to 
a constant multiple since for k arbitrarily large, there are graphs with average 
degree at least !kJID.k which do not contain a Kk-minor (see [98, 55, 26]). 

Before proceeding with the proof, we will need a few definitions. Recall 
that H is a minor of G if H can be obtained from G by a series of vertex
deletions, edge-deletions and edge-contractions. It follows that Kk is a minor 
of G iff there is a collection of disjoint subsets V1 , ... , Vk c V(G) such that 
(a) the subgraph induced by each Vi is connected, and (b) for each i,j, there 
is an edge from Vi to Vj. We call this collection of subsets a Kk-minor. 

A Kk-split-minorof G is a collection of disjoint subsets V1 , ... , Vk c V( G) 
such that (a) the subgraph induced by each Vi has at most two components, 
and (b) for each i, j, there is an edge from every component of Vi to Vj. 

A graph G is said to be minor-balanced if every minor of G has smaller 
average degree than G. 
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Our proof will consist of 3 steps: 

Lemma 6.3 If G is minor-balanced with average degree d then G has a sub
graph H with at most d vertices and with minimum degree at least ~d- 1. 

Lemma 6.4 If IHI ::; d and 8(H) 2: ~d- 1 for some d 2: lOOk lnk, then H 
has a K4k-split-minor. 

Lemma 6.5 Every K4k-split-minor has a Kk-minor. 

Theorem 6.1 follows immediately from these three lemmas since it is easy 
to verify that every graph G has a minor-balanced minor with average degree 
at least that of G - simply repeatedly replace the graph with a minor of at 
least the same average degree, until no such minor exists. Of these three 
lemmas, only Lemma 6.4 has a probabilistic proof. 

6.1 Step 1: Finding a Dense Subgraph 

In this section, we prove Lemma 6.3. Our main tool is the following: 

Claim 6.6 If G is minor-balanced with average degree d then for each vertex 
v in G and each u E N(v), we have IN(u) n N(v)l > ~d- 1. 

Proof Since G has average degree d, IE(G)I = ~diV(G)I. Furthermore, 
since G is minor-balanced, the minor formed by contracting the edge uv 
has average degree less than d. Therefore, IE(G)I - IN(u) n N(v)l - 1 < 
~d(IV(G)I - 1) and the claim follows. D 

And now the proof of Lemma 6.3 is quite short: 

Proof of Lemma 6.3. Since G has average degree d, it must have a vertex 
v of degree at most d. Set H to be the subgraph induced by N(v). Clearly 
IHI ::; d, and for any u E N(v), Claim 6.6 implies that u has at least ~d- 1 
neighbours in N(v), and soH has minimum degree at least ~d- 1. D 

6.2 Step 2: Finding a Split Minor 

Our main step is to show that the H of Lemma 6.3 has a K4k-split-minor, 
i.e. to prove Lemma 6.4. We will find this split-minor by randomly parti
tioning H into 4k parts, H1, ... , H4k, which with positive probability will 
form the split-minor. We take our random partition in the most natural way 
possible: for each v E V(H), we place v into a uniformly chosen part. We will 
require the following two properties of our partition: 

Property 1 Each vertex has a neighbour in every part. 
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Property 2 For each i, any pair u,v E Hi such that IN(u) nN(v)l2: iiHI 
has a common neighbour in Hi. 

More precisely, we need: 

Claim 6. 7 With positive probability, Properties 1 and 2 both hold. 

Lemma 6.4 follows immediately: 

Proof of Lemma 6.4. By Claim 6.7, there is a partition H1. ... , H4k for which 
Properties 1 and 2 both hold. We claim that such a partition forms a K4k

split-minor. Property 1 clearly ensures that for each i,j there is an edge from 
every component of Hi to Hj, so all we need to show is that each Hi has at 
most 2 components. 

Suppose that Hi has 3 vertices, x, y, z, in different components of Hi. 
IN(x) U N(y) U N(z)l ~ IHI - 3, since neither of x, y, z lies in the neigh
bourhood of another. Also, IN(x)l + IN(y)l + IN(z)l 2: ~IHI - 3, since, 
by hypothesis, the minimum degree in H is at least ~ IHI - 1. Therefore, 
IN(x) n N(y)l + IN(x) n N(z)l + IN(y) n N(z)l 2: ~IHI, and so at least one of 
these intersections has size at least i I HI· But no two of x, y, z have a common 
neighbour in Hi as they lie in different components, and so this contradicts 
Property 2. Therefore, no three such vertices exist and so Hi has at most 2 
components. D 

And now we just need to prove Claim 6.7. This follows from a straightforward 
application of the First Moment Method. 

Proof of Claim 6. 7. Let X be the number of vertices v which violate Property 
1 and let Y be the number of pairs u, v which violate Property 2. 

For any i, the probability that no neighbour of v is placed into Hi is 
(1- 1/4k)deg(v) and so by the Subadditivity of Probabilities, the probability 

that for at least one i, v has no edge to Hi, is at most 4k x (1-1/4k)~d-l. 
Therefore, 

E(X) ~ IHI X 4k X (1- 1/4k)~d-l 
< d X 4k X e-(d-2)/Sk 

Since (1- x) <e-x for positive x, d 2: lOOklnk, and de-(d- 2)/Sk decreases 
as d increases above 8k, we have: 

E(X) ~ 100klnk X 4k X e-121nk 

1 
<-

2 

for k sufficiently large. 
We turn now to computing E(Y). The probability that u, v both lie in 

some Hi is 1/4k, and if they do then the probability that they do not have 
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a common neighbour in H; is (1-1/4k)INunNv 1. Therefore, since (1-x) < e-x 
for positive x, and d2e-df24k decreases as d increases above 50k ln k, we have: 

E(Y) < (IHI) 2_ (1 - 2_) ~ IHI 
- 2 4k 4k 

IH/ 2 1 < __ x _ x e-IHI/24k 
2 4k 

< 1250k(lnk)2e-21nk 

1 
<2 

for k sufficiently large. 

. 1 
smce /HI ~ "2d ~ 50k ln k 

Therefore, by Markov's Inequality, Pr(X > 0) < ~ and Pr(Y > 0) < ~ 
and so by the Subadditivity of Probabilities, the desired result holds. D 

6.3 Step 3: Finding the Minor 

We now complete our proof of Theorem 6.1 by showing that every K4k-split
minor, H 1 , ... , H4k, contains a Kk-minor. First, for ease of discussion, we 
will simplify the structure of our split-minor in two respects: 

1. By contracting each component of each part into a vertex, we will assume 
that each H; consists of either 1 or 2 vertices. 

2. We can assume that in fact each part H; has exactly 2 vertices, To see 
this, note that if £ parts, say H 1, .. , He, each have one vertex and if 
He+l, ... , H4k contains a Kk-c-minor {VC+I, ... , Vk}, then {H1, ... , He, 
Ve+l, ... , Vk} is a Kk-minor. Hence, because 4k - £ > 4(k - £), our 
assumption is justified. 

So to prove Lemma 6.5, it suffices to prove the following. 

Claim 6.8 Suppose that the vertices of a graph S are paired { a 1 , b1 }, ... , 

{ a4k, b4k}, and suppose further that every vertex has a neighbour in every 
pair but its own. Then S has a Kk-minor. 

Intuitively, if the pairs can be labeled so that most of the a; 's are adjacent 
to each other then S has a large clique. Otherwise, the edges must "cross" in 
such a way that by adding only a few extra vertices to a pair we can "connect" 
it, thus creating many disjoint connected subgraphs each containing a pair, 
and thereby forming a large clique-minor. To prove our claim, we show that 
one of these two situations must indeed occur. 

Proof of Claim 6. 8. We say that a triple of pairs H;1 , H;2 , H;3 is a connected 
triple if their union induces a connected subgraph. 
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The subgraph induced by any triple of pairs has 6 vertices and minimum 
degree at least 2. It follows easily that every triple of pairs either induces 
two disjoint triangles, or is a connected triple. Therefore, any collection of 
C pairs which does not contain a connected triple, must induce two disjoint 
£-cliques. By considering a maximum-sized collection of disjoint connected 
triples, one can easily show that S has either a k-clique or a collection of k 
disjoint connected triples. 

If S has a k-clique, then S certainly has a Kk-minor. On the other hand, 
if S has a collection of k disjoint connected triples, then they form a collection 
of disjoint connected subgraphs cl, ... 'ck of s such that each ci contains 
both vertices of a pair (in fact, 3 pairs) and so has a neighbour in every 
other Cj. These subgraphs form a Kk-minor. D 

Exercises 

Exercise 6.1 Mader [109] proved the following strengthening of Lemma 6.3: 

If G is minor-minimal with average degree d sufficiently large then G has 
a subgraph H with at most d vertices and with minimum degree at least ~d. 

Show that by applying this lemma we can modify the proof of Theorem 
6.1 by avoiding the use of split-minors and thus eliminating Lemma 6.5. 
Exercise 6.2 Use Mader's lemma from Exercise 6.1 to find a strengthening 
of Theorem 6.1 to Kostochka and Thomason's result that if G has average 
degree at least O(kJIIlk) then G has a Kk-minor. The outline of your proof 
might be as follows: 

Suppose k is sufficiently large, and take H as guaranteed by Mader's 
lemma. Randomly partition V(H) into 2k subsets H 1 , ... , H2k, each of size 
exactly ll~l J, along with a few extra vertices if 2k does not divide H evenly. 
(where, of course, every such partition is equally likely). 

For each i, define Mi to be the set of vertices in H - Hi which do not 

have a neighbour in Hi. Call a set Hi good if fMif ~ C6o) v1n"k x fHf. Call 
a set Hi nasty if there is at least one Hj, j -=1- i, such that there are no edges 
between Hi and Hj. 

Find a constant C such that if fHf ~ CkJIIlk and o(H) 2 ~CkJIIlk 
then: 

1. The expected number of disconnected Hi is at most ~k. (Hint: consider 
the probability that Hi contains two vertices which do not have a common 
neighbour in Hi-) 

2. Use Markov's Inequality to show that the expected number of sets which 
are not good is at most ~ k. 

3. The expected number of sets which are good and nasty is at most ~k. 
(Hint: bound the probability that there is no edge from Hi to Hj condi
tional on the event that Hi is good.) 

Observe that this implies that G has a Kk-minor. 
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In Part II, we introduced three probabilistic tools and saw an application of 
each of them. In the last chapter, we saw a more complicated application of 
one of them, the First Moment Method. In this chapter, we will illustrate 
the power of combining the other two, the Local Lemma and the Chernoff 
Bound, by discussing their application to total colouring. 

Recall that a total colouring of a graph G consists of a colouring of the 
vertices and the edges so that: 

(i) no two adjacent vertices receive the same colour, 
(ii) no two incident edges receive the same colour, 
(iii) no edge receives the same colour as one of its endpoints. 

The total chromatic number of G, denoted XT(G), is the minimum k for 
which G has a total colouring using k colours. As mentioned in Chap. 1, 
Behzad and Vizing independently conjectured that every graph G has a total 
colouring using ..1( G)+ 2 colours. 

Now, finding a ..1 + 2 vertex colouring presents no difficulty, as the greedy 
colouring procedure discussed in Sect. 1. 7 will generate one for us. Colouring 
the edges with Ll + 2 colours is also straightforward, for we can apply Vizing's 
Theorem which ensures that an edge colouring using ..1 + 1 colours exists. 
Complications arise when we try to put two such colourings together, as an 
edge may receive the same colour as one of its endpoints. The crux of the 
matter is to pair a ..1 + 2 vertex colouring with a ..1 + 2 edge colouring so that 
no such conflicts arise. 

Actually, provided we can find a pairing which generates only a few con
flicts then we can find a total colouring using not many more than ..1 + 2 
colours. For example, if only r conflicts arise then we can recolour the r 
edges involved in conflicts with r new colours to generate a Ll + r + 2 total 
colouring. Of course, we may be able to use fewer than r new colours. For 
example, if the edges involved in conflicts form a matching then we need only 
one new colour. More generally, if we let R be the graph formed by all those 
edges whose colour is rejected because they are involved in a conflict, then 
we can recolour the edges of R with Xe(R) :::; ..1(R) + 1 new colours to obtain 
a ..1 + Ll(R) + 3 total colouring of G. This is the approach we take in this 
chapter. 
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2 

Fig. 7 .1. An edge colouring, a vertex colouring and the resultant reject edges 

To warm up, we present a result from [117] (the proof also appears in [7 4]) 
which uses the Chernoff Bound and the First Moment Method to show: 

Theorem 7.1 Every graph G satisfies: xr(G) :S Ll + flog([V(G)\)l + 3. 

Proof We assume [V (G) I is at least three, as otherwise the theorem 
is trivial. let l = flog([V(G)\)l + 2. Consider an arbitrary Ll + 1 ver
tex colouring C = {51 , ... , S.:1+1} and an arbitrary Ll + 1 edge colouring 
D = {M1, ... , MLl+l} of G. Let C1, ... , C(iHl)! be the (Ll + 1)! vertex 
colourings which are obtained by permuting the colour class names of C. 
Note that if some of the colour classes are empty then some vertex colourings 
may appear more than once on this list. We show that for some i, combin
ing Ci with D yields a reject graph Ri with Ll(Ri) :S l- 1 (to be precise, 
Ri = uf=i1{xy\xy E Mj, x or y receives colour j under Ci}). Thus, we can 
edge colour R using l matchings, thereby completing the desired Ll + l + 1 
total colouring of G. 

To do so, we consider picking a Ci uniformly at random and let R = Ri 
be the random reject graph thereby obtained. We show that the expected 
number of vertices of degree at least l in R is less than one and thereby prove 
that there exists an Ri with maximum degree less than l. 

By the Linearity of Expectation, to show that the expected number of 
vertices of degree at least l is less than 1, it is enough to show that for each 
vertex v, Pr(dR(v) 2: l) < t. 

Now, at most one edge incident to v is in R because it conflicts with v. So 
we consider the event that there are l - 1 edges incident to v which conflict 
with their other endpoint. We need only show that the probability of this 
event is less than t. 

We actually show that for any vertex v, the expected number of sets of 
l-1 edges incident to v, all of which are in R because they conflict with their 
other endpoint is less than l. Applying Markov's Inequality, we obtain the n 
desired result. To this end, we first compute the probability that a particular 
set { vu1 , .. , vu1_I} of l-1 edges incident to v are all in R because they conflict 
with their other endpoint. We let ai be the colour of vui. We let f3i be the 
colour that ui is assigned under C. We are computing the probability that our 
random permutation takes (3i to ai for 1 :S i :S l - 1. This probability is zero 
if the f3i are not distinct. Otherwise, the probability that the permutation 
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does indeed take each of the l - 1 colours f3i to the corresponding ai is: 
(.::1+1-(l-1))! 

(.::1+1)! 

Now, there are at most (z:\) sets of l-1 edges incident to v in G. So the 
expected number of sets of l - 1 edges incident with v which conflict with 
their other endpoint is at most: 

( Ll )(Ll+1-(l-1))! 1 
l-1 (Ll+1)! < (l-1)!" 

It is easy to see that (flog n l + 1)! is greater than n provided n is at least 
three, so the result holds. D 

We now want to apply the same technique to obtain a bound on XT(G) 
which is independent of IV( G) I. To do so, we wish to apply the Local Lemma. 
However, the Local Lemma will only work if we are analyzing a random proce
dure for which the conflicts in distant parts of the graph occur independently. 
One way of ensuring that this is true is to assign each vertex a uniformly 
random colour without considering the colours assigned to the other vertices. 
Our bad events would each be determined only by the colours on a cluster 
of vertices which are all very close together, and so events corresponding to 
clusters in distant parts of the graph would occur independently. 

The problem with this approach is that it is very unlikely to generate 
a proper vertex colouring. To overcome this problem, we will consider a two 
phase procedure, consisting of a random initial phase which retains the flavour 
of the random procedure proposed in the preceding paragraph, followed by 
a deterministic phase which ensures that we have a proper total colouring. 
We first randomly partition V into k sets V1, ... , Vk such that for each i, the 
graph Hi induced by Vi has maximum degree at most l - 1 with l near ~. 
We then greedily colour the vertices of each Hi using the colours in Ci = 

{(i- 1)l, ... , il- 1 }. This yields a kl colouring of V( G). 
We fix any Ll + 1 edge colouring { M1. ... , M.::1+1} before performing this 

process. We say that an edge xy conflicts with the endpoint x if xy is coloured 
with a colour in Ci and xis assigned to Vi. We note that if e does not conflict 
with x then in the second phase, the colour assigned to x will be different 
from that used on e. The advantage to widening our definition of conflict 
in this way is that now the conflicts depend only on the random phase of 
the procedure, and this allows us to apply the Local Lemma. Forthwith the 
details. 

Theorem 7.2 For any graph G with maximum degree Ll sufficiently large, 
3 

XT(G) ~ Ll + 2Ll4 

Proof As usual, we can assume that G is Ll-regular by the construction 
3 

in Sect. 1.5. Set k = k.1 = jLl1l and l = l.1 = l .::1+{4 J. We fix an arbitrary 
edge colouring of G using the colours 1, ... , Ll + 1. We then specify a vertex 
colouring of G using the colours 0, ... , kl- 1 ~ Ll + Lli - 1, as follows. 
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We first partition V (G) into V1 , ... , Vk such that 

(i) for each vertex v and part i, INv n Vii <::; l- 1, 
( ii) For each vertex v, there are at most L1 ~ - 3 edges e = ( u, v) such that 

u E v; and e has a colour in C;. 

Our next step will be to refine this partition into a proper colouring, colouring 
the vertices of v; using the colours in C;. 

By (i), we can do so using the simple greedy procedure of Lemma 1.3, 
since the subgraph induced by v; has maximum degree l - 1. By (ii), the 
reject graph formed has maximum degree at most L1 ~ - 2 (there is a 2 and 
not a 3 here because we may reject an edge incident to v because it has the 
same colour as v). Recolouring these edges with at most L1 ~ - 1 new colours 
yields the desired total colouring of G. 

It only remains to show that we can actually partition the vertices so 
that (i) and (ii) hold. To do so, we simply assign each vertex to a uniformly 
random part (where of course, these choices are made independently). For 
each v, i we let Av,i be the event that (i) fails to hold for { v, i} and Bv be 
the event that (ii) fails to hold for v. We will use the Local Lemma to prove 
that with positive probability none of these bad events occur. Bv and Av,i 
are determined by the colours of the vertices adjacent to v. Thus, by the 
Mutual Independence Principal, they are mutually independent of all events 
concerning vertices which are at distance more than 2 from v, and so every 
event is mutually independent of all but at most (k+ 1).:12 < .:13 other events. 
We will show that the probability that any particular bad event holds is much 
less than 4~3 . Thus, by the Local Lemma, there exists a colouring satisfying 
(i) and (ii). 

Consider first the event Bv. Let Rejv be the set of edges e = ( u, v) with 
the property that e has a colour in C; and u E v;. Since there are k parts, 
the probability that this occurs for a given e is exactly 1;;. Furthermore, as 
the choices of the parts are independent, the size of Rejv is just the sum of L1 
independent 0-1 variables each of which is 1 with probability p = J;;. Applying 
the Chernoff Bound for BIN(Ll,p) we obtain: 

3 

Since k = I L1 j l and LJ.2
4 > ~, it follows that for L1 sufficiently large, 

The size of Nv n v; is just the sum of L1 independent 0-1 variables each of 
which is 1 with probability 1;;, and so applying the Chernoff Bound as above 
we obtain that for large .:1, 
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0 

Remark Actually, we can obtain a L\ + O(L\§ logL\) total colouring using 
exactly the same technique, but the computations are slightly more compli
cated. 



8. The Strong Chromatic Number 

Consider a graph G on kr vertices. We say that G is strongly r-colourable 
if for any partition of V (G) into parts V1, ... , Vk, each of size r, G has 
a r-colouring such that every colour class contains exactly one vertex from 
each part (and so every part contains exactly one vertex of each colour). 

I 
Equivalently, G is strongly r-colourable if for any graph G which is the 
union of k disjoint r-cliques on the same vertex set, x(G U c') = r. A well
known conjecture of Erdos, recently proven by Fleischner and Steibitz [58], 
states that the union of a Hamilton cycle on 3n vertices and n vertex disjoint 
triangles on the same vertex set has chromatic number 3. In other words, C3n 
is strongly 3-colourable. Strongly r-colourable graphs are of interest partially 
because of their relationship to this problem, and also because they have 
other applications (see for example, Exercise 8.1). 

To generalize our definition to the case when r does not divide IV (G) J, 
we set k = IIV~G)Il and we say that G is strongly r-colourable if for any 
partition of V (G) into parts V1 , ... 1 Vk, each of size at most r 1 G has a r
colouring such that each colour class contains at most one vertex from each 
part. Equivalently, G is strongly r-colourable if the graph obtained by adding 
rk- IV(G)I isolated vertices toG is strongly r-colourable. 

The strong chromatic number of G 1 sx (G) 1 is defined to be the minimum r 
such that G is strongly r-colourable. Fellows [54] showed that for every r 2': 
sx (G), G is strongly r-colourable. 

It is not surprising that the strong chromatic number of a graph is often 
larger than its chromatic number. In fact, there are bipartite graphs with 
arbitrarily large strong chromatic numbers since sx(Kn,n) = 2n. To see this, 
note that Kn,n is not strongly (2n- 1)-colourable since if we set V1 , V2 to 
be the two sides of the bipartition, then it is impossible to (2n- 1)-colour 
the vertices so that each colour is used at most once in each Vi; the fact that 
there are only 2n vertices implies that Kn,n is strongly 2n-colourable. 

Thus, Kn,n has strong chromatic number twice as high as its maximum 
degree, and so it is natural to ask if there is any relation between the strong 
chromatic number and the maximum degree of a graph. In this chapter, we 
will see that the strong chromatic number grows at worst linearly with the 
maximum degree by proving the following theorem, due to Alon [3]: 

Theorem 8.1 If G has maximum degree L1 then sx(G)::::; 220 •000 L1. 
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It would be interesting to determine the minimum value of c such that ev
ery graph with maximum degree .1, has strong chromatic number at most c.1 
(this is problem 4.14 of [85]). Kn,n demonstrates that c must be at least 2. By 
applying the proof of this chapter more carefully, c can be reduced below 1010 . 

The first step in the proof of Theorem 8.1 is to show that the strong 
chromatic number grows at most exponentially with the maximum degree: 

Lemma 8.2 If G has maximum degree .1, then Bx (G) ::; 2.1+1. 

Proof We can assume !V(G)I = k2.1+1 for some integer k, as otherwise, 
we can simply add some isolated vertices to G. We first note that since 
by Vizing's Theorem Xe(G) ::; .1 + 1, E(G) is the union of .1 + 1 edge
disjoint matchings M1, ... , M.1+1. We wish to show that if H is the union 
of G and any set of k vertex disjoint 2.1+1-cliques C1, ... , Ck on V( G), then 
x(H) = 2.1+1. 

We will show that we can partition each Ci into two 2.1-cliques, CJ, Cf 
such that every edge of M.1+1 has one endpoint in some C[ and the other 
endpoint in some CJ (where perhaps i = j). Therefore, for g = 1, 2, the 
subgraph Ht induced by Cf, ... , ct is the union of .1 edge-disjoint matchings 
and k disjoint 2.1-cliques. Thus, we can repeat the operation again and again, 
so that at iteration j, H is partitioned into 2j subgraphs, each of which is 
the union of .1 + 1- j edge-disjoint matchings and k disjoint 2.1+1-j_cliques. 
After .1 + 1 iterations, we have partitioned H into 2.1+1 independent sets of 
size k, i.e. we have found our desired colouring. 

It only remains to see how to obtain our initial partition. We form a perfect 
matching MinH by taking an arbitrary perfect matching in each clique Ci. 
Now, x(M.1+J U M) = 2 as it is the union of 2 (not necessarily disjoint) 
matchings. Take any 2-colouring of M.1+1 U M and note that this colouring 
induces a partition of each C; into two parts C{ and Cf with the desired 
properties. D 

Let's look at the proof of Lemma 8.2 in another way. We say that the G
degree of a vertex v in any subgraph of H, is the number of edges of G incident 
to v in that subgraph, i.e. the degree of v not counting the edges added by 
the cliques. The main idea behind our proof is that we repeatedly split the 
cliques in half, each time (essentially) reducing the maximum G-degree of 
the subgraphs by 1 (this is not exactly what happens - we really reduce the 
chromatic index of the subgraphs of G each time, not their maximum degrees 
- but it is close enough). Thus, as long as the size of the original cliques are 
exponential in .1, we will succeed. 

Reflecting on this, it seems remarkably inefficient that upon splitting the 
vertex set of H in half, we can only reduce the maximum G-degree by 1. 
A more reasonable goal would be to cut the maximum degree in half. Note 
that if we could achieve this more ambitious goal at every iteration then we 
would obtain a linear bound on the strong chromatic number. 
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We essentially prove Theorem 8.1 in this manner, by considering random 
partitions. After j iterations, we will have partitioned H into 2i subgraphs, 
each of whose vertex sets is the union of cliques of size kj2i. Unfortunately, 
the maximum G-degrees of the parts are slightly higher than half those in the 
previous iteration. Furthermore, we cannot continue to reduce the maximum 
G-degrees all the way to 0. Instead, at some point we will appeal to Lemma 8.2 
to complete the colouring. This is why the constant term in Theorem 8.1 is 
so high. 

We actually have to stop splitting before the maximum G-degrees ever 
drop below 5000. At this point, we will appeal to Lemma 8.2 to show that 
as long as the size of the cliques at this point is exponential in the maximum 
G-degree of the subgraphs (and thus is a very large constant), we can colour 
the subgraphs. 

More precisely, we express Ll = a2i where a is some real number satisfying 
5000 :S a :S 10,000. We will prove that sx(G) :S 22a+l x 2i, thus proving 
Theorem 8.1, as 22a+l /a < 220•000 . Again, we can add isolated vertices so 
that IV(G)I = k x 22a+l x 2i for some integer k, and so our goal is to prove 
that if G has maximum degree Ll and if H is the union of G and k disjoint 
(22a+l x 2i )-cliques on the same vertex set then x(H) = 22a+l x 2i. To do this, 
we proceed for j iterations, splitting H into 2i subgraphs, each of which has 
G-degree at most 2a + 1. Applying Lemma 8.2, each subgraph has chromatic 
number at most 22a+l and so H has chromatic number at most 22a+l x 2i 
as required. 

Our main lemma is the following: 

Lemma 8.3 Suppose H is the union of a graph G with maximum degree Ll 2:: 
10,000 and k disjoint 2R-cliques C1 , ... , Ck on the same vertex set. Then we 
can partition each Ci into two R-cliques C}, CJ such that fori = 1, 2, each 

vertex has at most ~Ll + 2V Llln L1 G-neighbours in Hi, the subgraph induced 
byCi, ... ,c~. 

Proof We will choose a random partition of each Cj into 2 equal parts, in 
a manner to be described later. For each v E G and i = 1, 2, we will denote 
by At the event that v has more than !Ll + 2J LllnLl G-neighbours in Hi. 
We will apply the Local Lemma to show that with positive probability, none 
of these events occur. Our first step will be to prove that Pr(At) :S s1- for 
each v,i. 

The most natural way to choose our random partition would be to simply 
take a uniformly random partition. Suppose that we do so. If v has at most 
one G-neighbour in each Ci, then the number of its G-neighbours in Hi is 
distributed like BI N(degc( v), ~)and so our desired bound on Pr(A~) follows 
from a straightforward application of the Chernoff Bound. If, on the other 
hand, v has many G-neighbours in some Ci, then this is no longer true as 
the events that those neighbours land in Hi are not independent, and so the 
Chernoff Bound does not apply. 
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This problem can be overcome by applying some of the concentration 
bounds from later chapters, so it is more of a bother than a serious problem. 
There is however, a second problem which is less easily overcome. This arises 
when we try to bound the dependency of the events. A~ is clearly dependent 

I 

on every event A~ such that u and v have neighbours lying in the same clique. 
Thus, the number of events upon which A~ is dependent is a function of R, 
which can be much higher than Ll, and this makes it impossible for us to 
apply the Local Lemma. 

Fortunately, we can overcome both of these problems by not picking our 
random partition uniformly, but rather by using a matching in a manner 
reminiscent of the proof of Lemma 8.2, and of Exercise 3.7. Specifically, we 
first arbitrarily match the vertices of each Cj into pairs. Next, independently 
for each pair, we put the two vertices into different parts, where each of the 
two possible choices is equally likely. 

For any v we let t be the total number of pairs which contain exactly 
one neighbour of v, and note that A~ holds iff the number of such pairs for 
which that neighbour is placed into Hi is more than ~t + 2.../ Llln Ll. I.e., the 
choices for all other pairs, including those containing two neighbours of v, are 
irrelevant! Thus, Pr(A~) = Pr(BJ N(t, ~) > ~t + 2.../ Llln Ll) which by the 

Chernoff Bound is less than 2e-(2v'LllnLl)2/ 3(i) < 1/8..12 , since t :=:; Ll. (Note 
that we can assume 2.../ Llln Ll :=:; ~t here, as otherwise the probability is 0. 
Therefore, the Chernoff Bound applies.) 

Now we turn to bounding the dependency amongst our events. By the 
Mutual Independence Principle, each event A~ is mutually independent of all 

I 

events A~ other than those for which NunNv -=1- 0 or for which a vertex in Nu 
and a vertex in Nv form one of the pairs used to partition a clique. In other 
words, dependency is not created merely by having neighbours which both 
lie in the same clique - they must also both lie on one of these pairs! Thus, 
A~ is mutually independent of all but at most 2Ll2 other events. Therefore, 
our Lemma follows from the Local Lemma since 2Ll2 x (1/8..12 ) = ~· D 

And now we complete the proof of Theorem 8.1: 

Proof of Theorem 8.1. Set do= Ll and di+1 = ~di + 2.../dilndi. By repeated 
applications of Lemma 8.3, we can partition H into 2j subgraphs each of 
which is the union of k disjoint 22a+l_cliques and a graph of maximum 
degree dj. 

Note that dj ~ Ll/2j = a. We will show that dj :=:; 2a. In fact, we show by 
induction that for i :=:; j, we have: di :=:; ~ + 16.../ di ln di. This is clearly true 
fori= 0. For higher i :=:; j, 

di :=:; ~ ( 2~ 1 + 16Vdi-llndi-l) + 2Jdi-llndi-l 

Ll 
= 2i + lOJd;.-llndi-1 



< L1 + 10 12d·ln 2d· - 2' v • • 
L1 

~ 2i + 16y'di lndi, 
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since di 2 a 2 5000. 

Thus the desired result does indeed follow by induction. In particular, dj ~ 

~ + 16Jdj lndj. 
Now, ~ = a. Furthermore, since a 2 5000, we have that every b 2 2a 

satisfies a+ 16y'bln(b) <b. This implies dj ~ 2a. Therefore, by Lemma 8.2 
each of the 2J subgraphs can be 22a+1-coloured. By using a different set of 
colours on each subgraph, we obtain our 22a+l x 2J-colouring of H. D 

Exercises 

Exercise 8.1 Show that Theorem 4.3, with the constant 8 increased to 
220•000 is a corollary of Theorem 8.1. In fact, prove the stronger result that 
we can find a set e different acceptable colourings such that for each vertex v 
and color c E L(v), v receives c in exactly one of the colourings. 
(Hint: given a graph G, with lists of size €, consider forming a new graph a' 
which has exactly € copies of each vertex of G, and where each such collection 
of copies forms an €-clique.) 



9. Total Colouring Revisited 

9.1 The Idea 

In Chap. 7, we constructed total colourings by first choosing an edge colouring 
and then choosing a vertex colouring which didn't significantly conflict with 
it. We then obtained a total colouring by modifying the edge colouring so 
as to eliminate the conflicts. In this chapter, we take the opposite approach, 
first choosing a vertex colouring and then choosing an edge colouring which 
does not conflict at all with the vertex colouring, thereby obtaining a total 
colouring. 

Fig. 9.1. A non-extendible L1 edge colouring 

It is believed that for every (.1 + 3)-vertex colouring, there is some edge 
colouring using the same colours with which it does not conflict. We note 
that the analogous statement does not hold for edge colouring, even if we 
replace the .1 + 3 with 2.1 - 1. To see this, consider the graph obtained from 
a clique of order .1 by adding a pendant edge at each vertex (the case .1 = 4 
is illustrated in Fig. 9.1). The clique has maximum degree .1- 1 and hence 
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has a Ll-edge colouring. We can extend this to a Ll-edge colouring of the 
whole graph by colouring the pendant edge from a vertex v of the clique with 
the colour which does not appear on any of the other edges incident with v. 
But now Ll new colours are needed to colour the vertices of the clique if we 
are to avoid conflicts. 

Given that we cannot always extend (Ll + 3)-edge colourings without 
introducing new colours, why should we expect to be able to extend (Ll + 3)
vertex colourings? The answer is that colouring the vertices places very few 
restrictions on the edge colouring. Specifically, consider fixing a vertex colour
ing C which uses the colours {I, ... , Ll + 3}. Then, for each edge e there is 
a list of Ll + 3 - 2 = Ll + I acceptable colours whose assignment to e will not 
generate a conflict. Thus, if the List Colouring Conjecture is correct there is 
an edge colouring in which each edge receives an acceptable colour and hence 
which does not conflict with C. We note that Ll + 3 is best possible here, as 
Hind [79] has given examples of (Ll + 2)-vertex colourings which cannot be 
extended to (Ll + 2)-total colourings. 

Although we believe that every (Ll + 3)-vertex colouring can be extended 
to a (Ll + 3)-total colouring, we will consider only vertex colourings with 
a special property which makes them easier to extend. Before defining the 
vertex colourings we are interested in, we sketch our approach. 

Definition A total colouring with colour classes {Tt, ... , T£} is an extension 
of a vertex colouring with colour classes { 81, ... , Sm} if m ~ f. and for j 
between I and m, there is a (possibly empty) matching Mj such that Tj = 
Sj U Mj whilst for j > m, Tj is a matching. In this case, we say {81 ... , Sm} 
can be extended to an £-total colouring. 

Definition A matching M misses a set of vertices A if no vertex in A is the 
endpoint of an edge in M. M hits A if every vertex in A is the endpoint of 
an edge of M. 

As discussed in Sect. 1.5, we can assume that G is Ll-regular. We consider 
some (Ll +I)-vertex colouring of G and for I ~ i ~ Ll +I, we let Si be the 
set of vertices of colour i. Suppose that we could choose disjoint matchings 
M1, ... , M,a+l such that each Mi is a perfect matching in G-Si· Then the Mi 
would form a partition of E(G) because each vertex is in exactly one Si, and 
hence is incident to an edge in exactly Ll of these matchings. Thus, giving 
the edges of Mi colour i yields a (Ll +I)-total colouring of G. 

Of course, the approach sketched in the above paragraph will not always 
work, as some Ll-regular graphs have total chromatic number Ll + 2. To see 
what can go wrong, let us consider even cliques. The only Ll + I vertex 
colouring of an even clique assigns every vertex a different colour. Now, for 
each Si, G- Si is odd and hence has no perfect matching. 

Fortunately, this is not a significant problem. For example, for each i we 
can find a matching missing only one vertex of G - Si and such that each 
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vertex is missed by exactly two of these matchings, one of which corresponds 
to the colour assigned to it. Thus, the edges remaining uncoloured after 
deleting M1, ... , Mt1+1 form a I-regular graph, i.e. a matching which can be 
coloured with one new colour. Hence every even clique has total chromatic 
number Ll + 2. 

This notion generalizes to other regular graphs G. For each i, we choose 
some set Xi of vertices in G ~ Si which we allow Mi to miss, such that every 
vertex of G is in a small number of these Xi. Note that if we start with 
a (Ll + I)-vertex colouring and insist that each vertex lies in at most R. of 
the Xi, then the graph G ~ U{ Mi II :S i :S Ll + I} has maximum degree at 
most R. and hence its edges can be (f.+ I)~coloured, yielding a (Ll + R. + 2)
total colouring of G. By considering large values of R., we deal with the parity 
problem mentioned above, as well as with other problems of a similar nature. 

A more significant difficulty arises if we are careless in choosing the 
original vertex colouring. Suppose for example that all the neighbours of 
some vertex v are assigned the colour 1. In this case, M1 must miss v. More 
generally, if a vertex v has a large number of neighbours in each of many 
different si then it may prove very difficult to find the desired total colouring. 
To avoid this problem, we choose a vertex colouring for which the number of 
times any colour appears in a neighbourhood is bounded. 

Definition A k-frugal colouring is a proper vertex colouring in which no 
colour appears more than k times in any one neighbourhood. 

Hind, Molloy and Reed [80] proved the following: 

Theorem 9.1 Every graph G with maximum degree Ll sufficiently large, has 
a log8 Ll-frugal (Ll +I)-colouring. 

In this chapter, we will prove: 

Theorem 9.2 There exists a Ll0 such that for Ll 2 Ll0 every log8 Ll~ frugal 
Ll + 1 colouring of a graph G with maximum degree Ll can be extended to 
a ( Ll + 2log10 Ll + 2 )-total colouring of G. 

Combining these two results yields the main result of [81]: 

Theorem 9.3 If G has maximum degree Ll then xr(G)::; Ll + O(log10 Ll). 

Proof For Ll < Ll0 , the result is true since G has a 2Ll0 +I total colouring, 
and for Ll 2 Ll0 , the result is true by Theorems 9.I and 9.2. D 

It remains to give more details of the proof of Theorem 9.2 which follows 
the lines sketched above. In doing so, the following well-known extension 
of Tutte's Theorem characterizing which subsets of V (G) can be hit by 
a matching will be useful (see Exercise 3.1.8 on page 88 of [107]). 
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Lemma 9.4 For any R ~ V(G), there is a matching hitting R if and only 
if there is no set T of vertices of G such that G - T contains ITI + 1 odd 
components which are completely contained in R. 

To prove Theorem 9.2 using the Local Lemma, we need to find a local 
condition which ensures that the global condition of Lemma 9.4 holds. This is 
provided by the following corollary of Lemma 9.4 whose derivation we leave 
as an exercise (see Exercise 9.1). 

Corollary 9.5 Let R be a subset of the vertices of a graph G such that for 
some positive integer £: 

(i} for each u E R, d(u) ~ Ll(G)- £, and 
{ii} for each v E V(G), if d(v) ~ Ll(G)- £, then IN(v)- Rl > £. 

Then G has a matching hitting R. 

9.2 Some Details 

To recap, we are given a log8 ..1-frugal vertex colouring of G with colour 
classes {St, ... , S.:H1}, which we wish to extend to a total colouring. One 
approach is to find a sequence of vertex sets xl, ... 'x.:1+1 such that (i) each 
vertex is only in a small number of these sets, and (ii) we can find a sequence 
of disjoint matchings M1, ... , M.:1+l such that each Mi misses Si and hits 
V(G) - Si- Xi. In fact, as we will see, we only need to require Mi to hit 
all vertices in V(G)- Si- Xi which have nearly maximum degree. Since Mi 
must miss every vertex in si, it makes sense to pick xi disjoint from si. 

Thus, in choosing our Xi, we require two properties. The first is that no 
vertex lies in too many of these sets: 

{Pl) Each vertex lies in at most log10 ..1 of the Xi. 

The second will allow us to use Corollary 9.5 to ensure that the match
ings Mi exist. Setting Gi = G- Uj<iMj, we require: 

We will actually only choose X 1' ... 'xio where io = ..1-log10 ..1, because 
for higher values of i, ..1( Gi) becomes too small to be manageable. It won't 
harm us to stop here, because this change will only increase by log10 ..1 + 1 the 
number of colours required to finish off the edges not covered by the sequence 
of matchings, and so we will obtain a ..1 + 2log10 ..1 + 2 total colouring. 

There is a fairly straightforward manner in which to choose each Xi 
randomly in order to try to apply the Local Lemma to show that a sequence 
of sets satisfying P1, P2 exists. Unfortunately, this method fails for a very 
subtle reason. 
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False Proof. For each 1 <S i <S i 0 and for each vertex v ~ Si, we place v into Xi 

with probability 8log8 Ll/(Ll- i), where of course these random choices are 

all independent. Av,i is the event that v, i violate property P2, and Bv is the 
event that v violates property Pl. 

Since Ll- i 2 log10 Ll, and since v has at most log8 Ll neighbours in si, if 
de; ( v) > ( Ll- i) - 3log8 Ll then v has at least ~ ( Ll- i) neighbours in Gi- Si. 

Therefore, by the Chernoff Bound, 

For any vertex v, let X ( v) denote the number of sets Xi that v is in. By 

Linearity of Expectation and the fact that Li=l y <S 1 + logj, we have: 

io 81 8 Ll .c. 1 
E(X(v)) <S L ~~ i < 8log8 Ll x L i < 16log9 Ll. 

i=l i=l 

Because the probability that v is in Xi varies with i, X ( v) is not a binomial 
variable and so we cannot apply the Chernoff Bound. However, very similar 
bounds, such as the Simple Concentration Bound presented in Chap. 10, will 
yield 

Pr(Bv) <S Pr(IX( v) - E(X( v) )I > log9 Ll) < 2e-logs .c.. 

(This bound really holds. This is not the mistake in the proof.) 
Furthermore, Av,i is defined only by the random choices of whether u 

goes into Xi for each neighbour u of v, and Bv is determined only by the 
random choices of whether v goes into Xi for each i. Therefore, by the Mutual 

Independence Principle, any event Av,i or Bv is mutually independent of all 
events Au,i and Bu such that u and v are at distance at least 3 in G. Thus, 
each event is mutually independent of all but at most Ll3 other events. Since 

Ll3 x 2e-log8 .C./3 < ~ for Ll sufficiently large, the Local Lemma implies the 
existence of sets X 1 , ... , Xio satisfying P1, P2. D 

The reader who found this proof convincing should try to find the subtle 
error before reading further. 

Error in Proof. The reader who is reading ahead without trying to find the 
error himself, should feel shame and turn back. For the rest of you: 

The error in the proof is our use of the innocuous phrase: for each neigh

bour u of v. Here neighbour refers to neighbour in Gi. Thus, the event Av,i 

is determined not just by the choices of whether the neighbours of v in G go 
into xi. It is also determined by any random choices which help to determine 
which members of N c ( v) lie in N G; ( v). In other words, it is determined by all 
random choices that determine which edges incident to v lie in the matchings 
M 1 , ... , Mi-l· Since these matchings are selected deterministically according 
to Corollary 9.5, for any vertex u anywhere in G, changing whether u is in X1 
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could have sweeping affects on M1 and could conceivably affect which, if any, 
edge incident to v lies in Mj. Therefore, Av,i is dependent on virtually every 
random choice concerning X 1 for every j < i, and so the Local Lemma does 
not apply. 

In order to overcome this problem, we must carry out several applications 
of the Local Lemma- one for each 1 :S: i :S: i0 . More specifically, for each i, in 
sequence, we pick Xi at random and prove that with positive probability P2 
holds for Xi. This will ensure that Mi exists, and so we set Gi+l = Gi- Mi, 
choose Xi+1 at random, and use another application of the Local Lemma to 
show that with positive probability P2 holds for Xi+l· Since we are applying 
a separate application of the Local Lemma for each i, we don't have to worry 
about dependency on the choices concerning X 1 for any j < i. The only 
drawback is that we cannot enforce property P1 through these independent 
applications of the Local Lemma. So we must enforce P1 in a different man
ner, as follows. 

For each i, we will have a set Fi of vertices which are forbidden to go 
into Xi. We wish to place each vertex v into enough sets Fi that v cannot 
appear in more than log10 ..1 sets Xi, thus enforcing Pl. The most natural 
way to do this would be to simply wait until v has been placed into log10 ..1 of 
the Xi and then put v into every subsequent F1. It turns out, however, that 
this is not the best approach (see Exercise 9.2), and it is better to instead 
choose the F1 so that the sets Xi to which v belongs are spread out over the 
entire sequence of sets. Of the various ways to do so, the best is to use the 
following rule: 

9.6 If v E Xi then v E Fj for all i < j :S: i + 1~9~. 

That is, after v is placed in some Xi, the number of subsequent sets for 
which v is forbidden is directly proportional to the number of sets remaining. 
The reader can verify (we will do so in a minute), that this ensures that each 
vertex is in at most log10 ..1 of the Xi, i.e. that P1 holds. 

Of course, we will run into problems if Fi ever grows too big. For example, 
if through some unfortunate stroke of luck, every vertex goes into X1 , then 
for the next several values of i we will have Fi = V (G) and so Xi will be 
empty. To ensure that this does not happen, we will enforce the following 
property: 

(P3) For every vertex v and each i, INc;(v) nXil :S: 20log8 ..1. 

Our aim is to show that the maximum degree of Gi decreases sufficiently 
quickly as i increases. To do this, for each i we must bound the number of 
sets X 1, with j < i, in which a vertex can appear. By focusing only on the 
restriction imposed by (9.6), we get such a bound as follows. 

Set a1 = 1 and recursively define al+1 = az + l~g-;a~. Set k1 = 0 and for 
each 2 :S: i :S: i 0 + 1, set ki to be the largest value of k with ak < i. Clearly, 
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the maximum number of sets Xi with j < i that a vertex can lie in, subject 
to (9.6), is ki. 

For each 1 :S i :S i 0 + 1, set 

Di is the best bound that we can hope for on the maximum degree of Gi, 
since a vertex v of degree Ll in G might lie in up to ki previous sets Xj as 
well as one previous set Sj, and thus would be unmatched in at least ki + 1 
of the matchings M 1 , ... , Mi-l· As we shall see, our construction will in fact 
achieve this bound. 

Note that Ll- ak = (Ll- 1)(1- log1 Ll)k-l and so kio+l < log10 Ll- 2. 

Thus we have Di < Ll- i + log10 Ll, and in particular know that Gio has 
maximum degree at most 2log10 Ll. 

Our main step is to make use of the Local Lemma to obtain an inductive 
proof of the following: 

Lemma 9.7 For each 1 :S i :S io, there is a set Xi c V(G)- Fi- Si such 
that 

(a) P2 holds, 
(b) P3 holds, 
(c) Gi has a matching Mi which misses Si and hits every vertex in V(G)

Si- Xi which has degree at least Di- 2 in Gi. 

Gi and Fi are, of course, defined recursively as discussed earlier. 
With Lemma 9. 7 in hand, the proof of the main theorem follows via some 

routine but tedious calculations, which we dispose of first. 

Proof of Theorem 9.2. The main step is to prove that Ll(Gi) :S Di, as 
mentioned earlier. This is quite simple, we just have to be a little careful. 

Consider any vertex v and any 1 :S i :S io. We wish to show that dci(v) :S 
Di. Let j be the smallest index such that for all j :S r :S i, dcr(v) ~Dr- 2. 
(If no such j exists then clearly dci ( v) :S Di.) Note that if j = 1 then 
dci(v) :S Dj -1 = Ll, and if j > 1 then 

dci (v) :S dci-l (v) :S Dj-1- 3 :S Dj- 2. 

It is easily verified that v lies in Xt for at most ki - kj + 1 values oft with 
j :S t < i if j > 1, and for at most ki- kj such values when j = 1. Also, v 
might lie in St for some j :S t < i. Furthermore, our choice of j ensures that 
by condition (c) of Lemma 9.7, vis not missed by Mt for any other j :S t < i. 
Therefore, for j > 1 we have: 

dci(v) :S (Dj- 2)- ((i- j)- (ki- kj + 2)) 

= Di - (ki - j) + (ki - i) 

= Di 
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If j = 1, we have: 

Now it is straightforward to find our (.1 + 2log10 L1 + 2)-total colouring 
of G which extends { 81, ... , S L1+1}. For 1 :S i :S io, we assign colour i to 
Mi U Si, and for i0 < i :S L1 + 1, we assign colour i to Si. All that remains is 
to colour the edges of Gio+l· Since .1( Gio+d :S Dio+l < 2log10 .1, Vizing's 
Theorem implies that these edges can be coloured with 2log10 L1 + 1 new 
colours. D 

It only remains to prove Lemma 9.7, which we do in the next section. 

9.3 The Main Proof 

Proof of Lemma 9. 7. We assume that the lemma holds for each j < i and 
proceed by induction. Observe that since the lemma holds for all j < i, it 
follows as in the proof of Theorem 9.2 that L1(Gi) :S Di. 

Our first step will be to apply the Local Lemma to show that we can 
choose Xi such that P2 and P3 hold. We will then show that P2 implies 
condition (c). 

As in our false proof, we place each vertex v ~ Fi u Si into Xi with 
probability 8log8 L1/(L1- i), where each of these random choices is made 
independently of the others. For any vertex v, let Av denote the event that v 
violates P2 and let Bv be the event that v violates P3. 
As mentioned earlier, ki < log10 .1-2 and so Di < L1-i+log10 L1 < 2(.1-i). 
Since dci(v)::; Di, the Chernoff Bound yields 

Pr(Bv) :S Pr(BIN ( 2(.1- i), 8~~ ~) > 20log8 .1) < 2e-log8 .d/3 . 

A similar argument yields a bound on Pr(Av), the first step is to bound 
INci(v)- Fil· 

Any vertex u E Fi is there because u E X1 for some j with j < i :S 
j + 1!9~. For such a j, we have .1-i > (1- Iogb.d)(L1- j). Combining these 

two facts, we see that for such a j, we have: j 2: i - 2 ~;!Ji.d. 
In the following, the first line comes from this fact along with the fact 

that our inductive hypothesis P3 holds for each j < i . 

.1- i 
INci(v) n Fil::; 20log8 L1 X 2log9 L1 

40(.1- i) 
log L1 
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Since i :::; i 0 , Ll- i 2: log10 Ll. Therefore, if de; ( v) 2: ( Ll- i)-3log8 Ll then 
since v has at most log8 Ll neighbours in Si, INc;(v)- Fi- Sil 2: !(Ll- i). 
It now follows as in the (correct) calculation in our false proof that by the 
Chernoff Bound, Pr(Av):::; 2e-log8 11/3. 

Each event Av or Bv is mutually independent of all events Au and Bu 
where u, v are of distance at least 3, i.e. of all but at most 2Ll2 other events. 
Since 2Ll2 x 2e-log8 1113 < ~ for Ll sufficiently large, it follows from the Local 
Lemma that with positive probability none of these events occur, and so it 
is possible to choose Xi such that P2 and P3 both hold. 

Now we show that since P3 holds, we can find our desired matching Mi. 
We will apply Corollary 9.5 to Gi- Si, setting f = 2log8 Ll- 1 and letting R 
be the set of vertices of degree at least Di - 2 in Gi - Si -Xi. 

Since Ll(Gi- Si):::; Ll(Gi):::; Di, and since by the frugality of our vertex 
colouring, each vertex has at most log8 Ll neighbours in Si, if v E R then 

and so condition (i) of Corollary 9.5 holds. 
Furthermore, Ll(Gi- Si) 2: Ll(Gi)- log8 Ll 2: (Ll- i)- log8 Ll. Thus, 

property P2 implies condition (ii) of Corollary 9.5. Therefore, G - Si has 
a matching hitting R as required. D 

Exercises 

Exercise 9.1 Prove Corollary 9.5 as follows. Show that for any subset T ~ 
V (G), we have the following: 

(i) every odd component of (G- T) which is contained entirely within R 
has at least Ll( G) - R neighbours in T; 

(ii) every vertex in T has at most Ll( G) - R neighbours in R- T. 

Now argue that Lemma 9.4 implies Corollary 9.5. 

Exercise 9.2 Consider the following two possible ways to construct Fi. In 
each case, explain why it would cause difficulties in our proof. 

1. If v lies in at least log10 Ll sets Xi, then we place v into Fi for every 
subsequent index j. 

2. We divide the indices 1, ... , io into intervals of equal length. In particular, 
we set ak = k x logfo 11 and set h = {ak-l + 1, ... , ak}. If v E Xi for 
some i E h, then we place v into Fi for every subsequent index j in Ik. 



Part IV 

A Naive Colouring Procedure 

The proofs presented in the next two chapters use a simple but surpris
ingly powerful technique. As we will see, this technique is the main idea 
behind many of the strongest results in graph colouring over the past decade 
or so. We suggest that the primary goal of the reader of this book should be 
to learn how to use this method. 

The idea is to generate a random partial colouring of a graph in perhaps 
the simplest way possible. Assign to each vertex a colour chosen uniformly at 
random. Of course, with very high probability this will not be a partial colour
ing, so we fix it by uncolouring any vertex which receives the same colour as 
one of its neighbours. What remains must be a proper partial colouring of 
the graph. We then extend this partial colouring (perhaps greedily) to obtain 
a colouring of G. 

If there are many repeated colours in each neighbourhood, then using 
our greedy procedure we can finish off the colouring with significantly fewer 
than Ll colours (see for example Exercise 1.1). This is the general approach 
taken here. Of course, if N(v) is a clique then there will be no repeated 
colours in N(v) under any partial colouring. Thus, the procedure works 
best on graphs in which each neighbourhood spans only a very few edges. 
Our first application will be to triangle-free graphs, i.e. those in which the 
neighbourhoods span stable sets. 

The key to analyzing this procedure is to note that changing the colour 
assigned to a vertex v cannot have an extensive impact on the colouring we 
obtain. It can only affect the colouring on v and its neighbourhood. This 
permits us to to apply the Local Lemma to obtain a colouring in which every 
vertex has many repeated colours in its neighbourhood provided that for each 
vertex v the probability that N ( v) has too few repeated colours is very small. 

Now, we perform this local analysis in two steps. We first show that the 
expected number of colours which appear twice on N ( v) is large. We then 
show that this random variable is concentrated around its expected value. 
In order to do so, we need to introduce a new tool for proving concentration 
results, as neither Markov's Inequality nor the Chernoff Bound is appropriate. 
In fact, we will introduce two new tools for proving concentration results, one 
in each of the next two chapters. 
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As we shall see, even this naive procedure yields surprisingly strong re
sults. We answer a question of Erdos and Nesetfil posed in 1985 and prove 
a conjecture of Beutelspacher and Hering. Later in the book, we will use more 
sophisticated variants of the same approach to obtain even more impressive 
results. 



10. Talagrand's Inequality 
and Colouring Sparse Graphs 

10.1 Talagrand's Inequality 

In Chap. 5 we saw the Chernoff Bound, our first example of a concentration 
bound. Typically, this bound is used to show that a random variable is very 
close to its expected value with high probability. Such tools are extremely 
valuable to users of the probabilistic method as they allow us to show that 
with high probability, a random experiment behaves approximately as we 
"expect" it to. 

The Chernoff Bound applies to a very limited type of random variable, 
essentially the number of heads in a sequence of tosses of the same weighted 
coin. While this limited tool can apply in a surprisingly large number of 
situations, it is often not enough. In this chapter, we will discuss Talagrand's 
Inequality, one of the most powerful concentration bounds commonly used in 
the probabilistic method. We will present another powerful bound, Azuma's 
Inequality, in the next chapter. These two bounds are very similar in nature, 
and both can be thought of as generalizations of the following: 

Simple Concentration Bound Let X be a random variable determined 
by n independent trials T1, ... , Tn, and satisfying 

changing the outcome of any one trial can affect X by at most c, (10.1) 

then 
t2 

Pr(IX- E(X)I > t) :::; 2e- 2c2n. 

Typically, we take c to be a small constant. 
To motivate condition (10.1), we consider the following random variable 

which is not strongly concentrated around its expected value: 

{ 
n, with probability ~ 

A= 
0, with probability ~ . 

To make A fit the type of random variable discussed in the Simple Con
centration Bound, we can define T1 , ... , Tn to be binomial random variables, 
each equal to 0 with probability ~ and 1 with probability ~, and set A = 0 
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if Tn = 0 and A = n if Tn = 1. Here, E(A) = ~ but with probability 1, 
lA- E(A)I ~ ~· Contrast this with the random variable B = L~=l Ti (i.e. 
the number of 1's amongst T1 , ... , Tn)· The expected value of B is also ~' 
but by the Chernoff Bound, the probability that IE- E(B)I ~ o:n is at most 

2 

2e-¥. The difference is that B satisfies condition (10.1) with c = 1, while 
A clearly does not satisfy this condition unless we take c to be far too large 
to be useful. In essence, the outcomes of each of T1 , ... , Tn combine equally 
to determine B, while A is determined by a single "aU-or-nothing" trial. In 
the language of the stock markets, a diversified portfolio is less risky than 
a single investment. 

It is straightforward to verify that the Simple Concentration Bound im-
2 

plies that Pr(IBIN(n, ~)- ~~ > t)::;: 2e--k, which is nearly as tight as the 
Chernoff Bound. (This is very good, considering that the Simple Concentra
tion Bound is so much more widely applicable than the Chernoff Bound!) In 
the same way, for any constant p, the Simple Concentration Bound yields 
as good a bound as one can hope for on Pr(IBIN(n,p) - npl > t), up to 
the constant term in the exponent. However, when p = o(1), the Simple 
Concentration Bound performs rather poorly on BIN(n,p). For example, if 
p = n-~, then it yields Pr (IBIN(n,p)- npl > ~np) ::;: 2e--h which is far 

worse than the bound of 2e-~ provided by the Chernoff Bound. 
In general, we would often like to show that for any constant o: > 0 there 

exists a (3 > 0 such that Pr(IX- E(X)I > o:E(X))::;: e-/3E(X). The Simple 
Concentration Bound can only do this if E(X) is at least a constant fraction 
of n. Fortunately, when this property does not hold, Talagrand's Inequality 
will often do the trick. 

Talagrand's Inequality adds a single condition to the Simple Concentra
tion Bound to yield strong concentration even in the case that E(X) = o(n). 
In its simplest form, it yields concentration around the median of X, Med(X) 
rather than E(X). Fortunately, as we will see, if X is strongly concentrated 
around its median, then its expected value must be very close to its median, 
and so it is also strongly concentrated around its expected value, a fact that 
is usually much more useful as medians can be difficult to compute. 

Talagrand's Inequality I Let X be a non-negative random variable, not 
identically 0, which is determined by n independent trials T~, ... , Tn, and 
satisfying the following for some c, r > 0: 

1. changing the outcome of any one trial can affect X by at most c, and 
2. for any s, if X ~ s then there is a set of at most r s trials whose outcomes 

certify that X ~ s (we make this precise below), 

then for any 0::;: t::;: Med(X), 

Pr(IX- Med(X)I > t) ::;: 4e- sc2rMed(x) 
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As with the Simple Concentration Bound, in a typical application c and r 
are small constants. 

More precisely, condition 2 says that there is a set of trials Ti1 , •.. , Tit for 
some t :S rs such that changing the outcomes of all the other trials cannot 
cause X to be less than s, and so in order to "prove" to someone that X 2: sit 
is enough to show her just the outcomes of Ti1 , •.. , Tit. For example, if each Ti 
is a binomial variable equal to 1 with probability p and 0 with probability 
1 - p, then if X 2: s we could take Ti1 , •.• , Tit to be s of the trials which 
came up "1". 

The fact that Talagrand's Inequality proves concentration around the 
median rather than the expected value is not a serious problem, as in the 
situation where Talagrand's Inequality applies, those two values are very close 
together, and so concentration around one implies concentration around the 
other: 

Fact 10.1 Under the conditions of Talagrand's Inequality I, JE(X) -
Med(X)I :S 40cyfrE(X). 

This fact, which we prove in Chap. 20, now allows us to reformulate 
Talagrand's Inequality in terms of E(X). 

Talagrand's Inequality II Let X be a non-negative random variable, 
not identically 0, which is determined by n independent trials T1, ... , Tn, and 
satisfying the following for some c, r > 0: 

1. changing the outcome of any one trial can affect X by at most c, and 
2. for any s, if X 2: s then there is a set of at most rs trials whose outcomes 

certify that X 2: s, 

then for any 0 :S t :S E(X), 

Pr(JX- E(X)J > t + 60cyfrE(X)) :S 4e- sc2rE(x). 

Remarks 

1. The reason that the "40" from Fact 10.1 becomes a "60" here is that 
there is some loss in replacing Med(X) with E(X) in the RHS of the 
inequality. 

2. In almost every application, c and r are small constants and we take t 
to be asymptotically much larger than JE(X) and so the 60cyfrE(X) 
term is negligible. In particular, if the asymptotic order oft is greater 
than JE(X), then for any {3 < 8c\r and E(X) sufficiently high, we have: 

j3t2 

Pr(JX- E(X)I > t) :S 2e -E(x). 



82 10. Talagrand's Inequality and Colouring Sparse Graphs 

3. This formulation is probably the simplest useful version of Talagrand's 
Inequality, but does not express its full power. In fact, this version does 
not imply the Simple Concentration Bound (as the interested reader may 
verify). In Chap. 20, we will present other more powerful versions of Tala
grand's Inequality, including some from which the Simple Concentration 
Bound is easy to obtain. The version presented here is along the lines of 
a version developed by S. Janson, E. Shamir, M. Steele and J. Spencer 
(see [145]) shortly after the appearance of Talagrand's paper [148]. 

The reader should now verify that Talagrand's Inequality yields a bound 
on the concentration of BIN ( n, p) nearly as good as that obtained from the 
Chernoff Bound for all values of p. 

To illustrate that Talagrand's Inequality is more powerful than the Cher
noff Bound and the Simple Concentration Bound, we will consider a situation 
in which the latter two do not apply. 

Consider a graph G. We will choose a random subgraph H ~ G by placing 
each edge in E(H) with probability p, where the choices for the edges are all 
independent. We define X to be the number of vertices which are endpoints 
of at least one edge in H. 

Here, each random trial clearly affects X by at most 2, and so X satisfies 
condition (10.1). The problem is that if v is the number of vertices in G, 
then clearly E(X) :::; v, while it is entirely possible that the number of edges 
in G, and hence the number of random trials, is of order v2 . Thus, the Simple 
Concentration Bound does not give a good bound here (and the Chernoff 
Bound clearly doesn't apply). However, if X 2: s then it is easy to find s 
trials which certify that X is at least s, namely a set of sedges which appear 
in H and which between them touch at least s vertices. Thus Talagrand's 
Inequality suffices to show that X is strongly concentrated. 

We will present one final illustration, perhaps the most important of the 
simple applications of Talagrand's Inequality. 

Let O" = x1 , ... , Xn be a uniformly random permutation of 1, .. . , n, and 
let X be the length of the longest increasing subsequence of 0" 1 . A well
known theorem of Erdos and Szekeres [47] states that any permutation 
of 1, ... , n contains either a monotone increasing subsequence of length I y'ri l 
or a monotone decreasing subsequence of length I y'ril. It turns out that the 
expected value of X is approximately 2y'ri, i.e. twice the length of a mono
tone subsequence guaranteed by the Erdos-Szekeres Theorem (see [104, 153]). 
A natural question is whether X is highly concentrated. Prior to the onset of 
Talagrand's Inequality, the best result in this direction was due to Frieze [61] 
who showed that with high probability, X is within a distance of roughly 
E(X) 213 of its mean, somewhat weaker than our usual target of E(X) 112 . 

At first glance, it is not clear whether Talagrand's Inequality applies 
here, since we are not dealing with a sequence of independent random trials. 

1 In other words, a subsequence Xi 1 < Xi 2 < ... < Xik where, of course, i1 < ... 
< ik. 
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Thus, we need to choose our random permutation in a non-straightforward 
manner. We choose n uniformly random real numbers, y~, ... , Yn, from the 
interval [0, 1]. Now arranging y1, ... ,Yn in increasing order induces a permu
tation (j of 1, ... , n in the obvious manner2 . 

If X ;::=: s, i.e. if there is an increasing subsequence of length s, then the s 
corresponding random reals clearly certify the existence of that increasing 
subsequence, and so certify that X ;::=: s. It follows that changing the value of 
any one Yi can affect X by at most one. So, Talagrand's Inequality implies: 

t2 

Pr(IX- E(X)I > t + 60JE(X)) < 4e -sE(x). 

This was one of the original applications ofTalagrand's Inequality in [148]. 
More recently, Baik, Deift and Johansson [15] have shown that a similar result 

holds when we replace JE(X) by E(X)~, using different techniques (see 
also [96]). 

We will find Talagrand's Inequality very useful when analyzing the Naive 
Colouring Procedure discussed in the introduction to this part of the book. To 
illustrate a typical situation, suppose that we apply the procedure using (3l1 
colours for some fixed (3 > 0, and consider what happens to the neighbour
hood of a particular vertex v. Let A denote the number of colours assigned 
to the vertices in Nv, and let R denote the number of colours retained by the 
vertices in Nv after we uncolour vertices involved in conflicts. 

If deg(v) = l1, then it turns out that E(A) and E(R) are both of the 
same asymptotic order as l1. A is determined solely by the colours assigned 
to the l1 vertices in Nv, and so a straightforward application of the Simple 
Concentration Bound proves that A is highly concentrated. R, on the other 
hand, is determined by the colours assigned to the up to l12 vertices of 
distance at most two from v, and so the Simple Concentration Bound is 
insufficient here. However, as we will see, by applying Talagrand's Inequality 
we can show that R is also highly concentrated. 

10.2 Colouring Triangle-Free Graphs 

Now that we have Talagrand's Inequality in hand, we are ready to carry out 
our analysis of the naive random procedure we presented in the introduction 
to this part of the book. In this section we consider the special case of triangle
free graphs. We shall show: 

Theorem 10.2 There is a l1o such that if G is a triangle-free graph with 
l1( G) ;:::: l1o then x( G) :::; (1 - ~ )l1. 

2 Because these are uniformly random real numbers, it turns out that with prob
ability 1, they are all distinct. 
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We shall improve significantly on this theorem in Chap. 13 where with 
the same hypotheses we obtain: x(G) S:: OCo~Ll). 

Proof of Theorem 10.2. We will not specify Llo, rather we simply insist that 
it is large enough so that certain inequalities implicit below hold. We can 
assume G is Ll-regular because our procedure from Sect. 1.5 for embedding 
graphs of maximum degree Ll in Ll-regular graphs maintains the property 
that G is triangle free. 

We prove the theorem by finding a partial colouring of G using fewer than 
Ll - ~ colours such that in every neighbourhood there are at least ~ + 1 
colours which appear more than once. As discussed in the introduction to this 
part of the book, we can then complete the desired colouring using a greedy 
colouring procedure (see Exercise 1.1). We find the required partial colouring 
by analyzing our naive random colouring procedure. 

So, we set C = l ~ J and consider running our random procedure using C 
colours. That is, for each vertex w we assign to w a uniformly random colour 
from {1, ... , C}. If w is assigned the same colour as a neighbour we uncolour 
it, otherwise we say w retains its colour. 

We are interested, for each vertex v of G, in the number of colours which 
are assigned to at least two neighbours of v and retained on at least two 
of these vertices. In order to simplify our analysis, we consider the random 
variable Xv which counts the number of colours which are assigned to at least 
two neighbours of v and are retained by all of these vertices. 

For each vertex v, we let Av be the event that Xv is less than ~ + 1. 
We let £ = {Aviv E V(G)}. To prove the desired partial colouring exists, 
we need only show that with positive probability, none of these bad events 
occurs. We will apply the Local Lemma. 

To begin, note that Av depends only on the colour of vertices which are 
joined to v by a path of length at most 2. Thus, setting 

Sv = {Awlv and ware joined by a path of length at most 4}, 

we see that Avis mutually independent of£- Sv. But JSvl < ..::14 . So, as long 
as no Av has probability greater than ~, we are done. 

We compute a bound on Pr(Av) using a two step process which will be 
a standard technique throughout this book. First we will bound the expected 
value of Xv, and then we show that Xv is highly concentrated around its 
expected value: 

Lemma 10.3 E(Xv) ~ ~ -1. 

Lemma 10.4 Pr(JXv- E(Xv)l > logLl X JE(Xv)) <:do. 
These two lemmas will complete our proof, because 

Ll Ll Ll 
- -1-logLl x JE(X) >- -1-logLlJLl >- + 1 e6 v - e6 2e6 , 
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for L1 sufficiently large, and so these lemmas imply that Pr(Av) < ~ as 
required. 

I 

Proof of Lemma 10.3. For each vertex v we define Xv to be the number of 
colours which are assigned to exactly two vertices in N(v) and are retained 

• I 
by both those vertices. Note that Xv 2: Xv. 

A pair of vertices u, w E N ( v) will both retain the same colour a which is 
assigned to no other neighbour of v, iff a is assigned to both u and wand to 
no vertex inS= N(v)UN(u)UN(w) -u-v. Because lSI::; 3L1-3::; 6C, for 

any colour a, the probability that this occurs is at least (-b) 2 x ( 1 - -b) 60 . 

There are C choices for a and ( ~) choices for { u, w}. Using Linearity of 
Expectation and the fact that e-l/C < 1- -b + 2b, we have: 

for C sufficiently large. D 

Proof of Lemma 10.4. Instead of proving the concentration of Xv directly, we 
will focus on two related variables. The first of these is ATv (assigned twice) 
which counts the number of colours assigned to at least two neighbours of v. 
The second is Delv (deleted) which counts the number of colours assigned to 
at least two neighbours of v but removed from at least one of them. We note 
that Xv = ATv- Delv, and so to prove Lemma 10.4, it will suffice to prove 
the following concentration bounds on these two related variables, which hold 
for any t 2: JL1log L1. 

Claim 1: 
t2 

Pr(IATv- E(ATv)l > t) < 2e-83. 

Claim 2: 
t2 

Pr(jDelv- E(Delv)l > t) < 4e-Ui03. 

To see that these two claims imply Lemma 10.4, we observe that by 
Linearity of Expectation, E(Xv) = E(ATv) - E(Delv)· Therefore, if IXv -
E(Xv)l > logL1JE(Xv), then setting t = !logL1JE(Xv), we must have 
either IATv- E(ATv) I > tor IDelv- E(Delv) I > t. Applying our claims, along 
with the Subadditivity of Probabilities, the probability of this happening is 
at most 

It only remains to prove our claims. 

Proof of Claim 1. The value of ATv depends only on the L1 colour assignments 
made on the neighbours of v. Furthermore, changing any one of these assign
ments can affect ATv by at most 2, as this change can only affect whether 
the old colour and whether the new colour are counted by ATv. Therefore, 
the result follows from the Simple Concentration Bound with c = 2. D 
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Proof of Claim 2. The value of Delv depends on the up to nearly L\2 colour 
assignments made to the vertices of distance at most 2 from v. Because 
E(Delv) :::; L\ = o(L\2 ) (since in fact Delv is always at most L\), the Sim
ple Concentration Bound will not apply here. So we will use Talagrand's 
Inequality. 

As with ATv, changing any one colour assignment can affect Delv by 
at most 2. Furthermore, if Delv 2: s then there is a set of at most 3s colour 
assignments which certify that Delv 2: s. Namely, for each of s colours counted 
by Delv, we take 2 vertices of that colour in Nv and one of their neighbours 
which also received that colour. Therefore, we can apply Talagrand's Inequal
ity with c = 2 and r = 3 to obtain: 

Pr(IDelv- E(Delv)l > t) < 4e 
( t -120-/3Ecoer;;·n 2 

96E(Delv) 
t2 

< 4e-m, 

since t 2: y12llog 21 and E(Delv) :::; L\. D 

So, we have proven our two main lemmas and hence the theorem. D 

10.3 Colouring Sparse Graphs 

In this section, we generalize from graphs in which each neighbourhood con
tains no edges to graphs in which each neighbourhood contains a reasonable 
number of non-edges. In other words, we consider graphs G which have max
imum degree L\ and such that for each vertex v there are at most ( ~) - B 
edges in the subgraph induced by N ( v) for some reasonably large B. 

We note that to ensure that G has a L\- 1 colouring we will need to insist 
that B is at least L\ - 1 as can be seen by considering the graph obtained 
from a clique of size L\ by adding a vertex adjacent to one element of the 
clique. More generally, we cannot expect to colour with fewer than L\ - l ~ J 
colours for values of B which are smaller than L\~ - L\ (see Exercise 10.1). 
We shall show that if B is not too small, then we can get by with nearly this 
small a number of colours. 

Theorem 10.5 There exists a L\0 such that if G has maximal degree L\ > L\0 

and B 2: L\(log L\) 3 , and no N( v) contains more than ( ~) - B edges then 
x( G) :::; L\ + 1 - /!11 • 

Proof The proof of this theorem mirrors that of Theorem 10.2. Once 
again, we will consider Xv, the number of colours assigned to at least two 
non-adjacent neighbours of v and retained on all the neighbours of v to which 
it is assigned. Again, the proof reduces to the following two lemmas, whose 
(omitted) proofs are nearly identical to those of the corresponding lemmas 
in the previous section. 
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Lemma 10.6 E(Xv) 2:: e~~. 

Lemma 10.7 Pr (IXv- E(Xv)l > log.1JE(Xv)) < ~. 

It is easy to see that provided B is at least Ll(log .1) 3 then we can combine 
these two facts to obtain the desired result. D 

Remarks 

1. Using much more complicated techniques, such as those introduced in 
Part 6, we can show that Theorem 10.5 holds for every B. 

2. As you will see in Exercise 10.2, a slight modification to this proof yields 
the same bound on the list chromatic number of G. 

Using our usual argument, we can obtain a version of Theorem 10.5 which 
holds for every .1, by weakening our constant e6 : 

Corollary 10.8 There exists a constant r5 > 0 such that if G has maximal 
degree .1 > 0 and B;:::: Ll(log .1)3 , and no N(v) contains more than(~) -B 
edges then x( G) ::::; .1 + 1 - r5 ~. 

Proof of Corollary 10. 8. Set r5 = min { 1o , ;;t}. Now, if .1 > Llo then the result 

holds by Theorem 10.5. Otherwise it holds because B < :f so we are simply 
claiming that G is .1 colourable, which is true by Brooks' Theorem . D 

10.4 Strong Edge Colourings 

We close this chapter by describing an application of Theorem 10.5 to strong 
edge colourings, which appears in [118] and which motivated Theorem 10.5. 
The notion of a strong edge colouring was first introduced by Erdos and 
Nesetfil (see [52]), and is unrelated to the strong vertex colourings which 
were discussed in Chap. 8. 

A strong edge-colouring of a graph, G, is a proper edge-colouring of G with 
the added restriction that no edge is adjacent to two edges of the same colour, 
i.e. a 2-frugal colouring of L( G) (note that in any proper edge-colouring of G, 
no edge is adjacent to three edges of the same colour and so the corresponding 
colouring of L( G) is 3-frugal). Equivalently, it is a proper vertex-colouring 
of L( G) 2 , the square of the line graph of G which has the same vertex set 
as L( G) and in which two vertices are adjacent precisely if they are joined 
by a path of length at most two in L(G). The strong chromatic index of G, 
sxe (G) is the least integer k such that G has a strong edge-colouring using 
k colours. We note that each colour class in a strong edge colouring is an 
induced matching, that is a matching M such that no edge of G - M joins 
endpoints of two distinct elements of M. 
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e 

Fig. 10.1. An edge and its neighbourhood in L(G)2 

If G has maximum degree Ll, then trivially sxe(G) ~ 2Ll2 - 2Ll + 1, as 
L( G)2 has maximum degree at most 2Ll2 - 2Ll. In 1985, Erdos and Nesetfil 
pointed out that the graph Gk obtained from a cycle of length five by dupli
cating each vertex k times (see Fig. 10.2) contains no induced matching of 
size 2. Therefore, in any strong colouring of Gb every edge must get a different 
colour, and so 

sxe(Gk) = IE(Gk)l = 5k2 . 

We note that Ll(Gk) = 2k, and so sxe(Gk) = ~Ll(Gk) 2 . 
Erdos and Nesetfil conjectured that these graphs are extremal in the 

following sense: 

Conjecture For any graph G, sxe(G) ~ ~Ll(G) 2 • 

They also asked if it could even be proved that for some fixed E > 0 every 
graph G satisfies sxe(G) ~ (2- E)Ll(G)2 . In this section we briefly point out 

Fig. 10.2. G3 
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how Theorem 10.5 can be used to answer this question in the affirmative. For 
other work on this and related problems, see [11], [33], [53], [83] and [84]. 

Theorem 10.9 There is a .10 such that if G has maximum degree .1 2 .10 , 

then sxe (G) :::; 1.99995.12 • 

Corollary 10.10 There exists a constant E > 0 such that for every graph G, 
sxe( G) :::; (2- E)Ll2 . 

Proof of Corollary 10.10. Set E = min{.00005, .J0 }. If Ll(G) ::::=: Llo then the 
result follows from the theorem. Otherwise, we simply need to use the fact 
that Ll(L(G)2):::; 2Ll(G)2 - 2Ll(G) and apply Brook's Theorem. 

To prove Theorem 10.9, the main step is to show the following, whose 
tedious but routine proof can be found in [118]: 

Lemma 10.11 If G has maximum degree .1 sufficiently large then, for each 

e E V(L(G)2), NL(G)2(e) has at most (1- 316 )(2~2) edges. 

Using this lemma, it is a straightforward matter to apply Theorem 10.5 
to yield Theorem 10.9. 

Exercises 

Exercise 10.1 Show that for every .1 and B:::; .1i- .1 there exists a graph 
with .1 + 1 vertices in which the neighbourhood of each vertex contains at 
most ( ~) - B edges, whose chromatic number is l .1 - ~ J . 

Exercise 10.2 Complete the proof of Theorem 10.5 and then modify it to 
get the same bound on the list chromatic number of G. 



11. Azuma's Inequality and a Strengthening 
of Brooks' Theorem 

11.1 Azuma's Inequality 

In this chapter, we introduce a new tool for proving bounds on concentration. 
It differs from the tools we have mentioned so far, in that it can be applied to 
a sequence of dependent trials. To see a concrete example of such a situation, 
imagine that we are colouring the vertices of a graph one by one, assigning 
to each vertex a colour chosen uniformly from those not yet assigned to 
any of its coloured neighbours. This ensures that the colouring obtained is 
indeed a proper colouring, and analyzing such a random process may yield 
good bounds on the minimum number of colours required to obtain vertex 
colourings with certain properties. However, our choices at each vertex are 
now no longer independent of those made at the other vertices. 

In this chapter, we introduce a new concentration inequality which can be 
used to handle such situations, Azuma's Inequality. It applies to a random 
variable R which is determined by a sequence X 1, ... , Xn of random trials. 
Our new tool exploits the ordering on the random trials; it obtains a bound 
on the concentration of R using bounds on the maximum amount by which 
we expect each trial to affect R when it is performed. This approach bears 
fruit even when we are considering a set of independent trials. To illustrate 
this point, we consider the following simple game. 

A player rolls a fair six-sided die n+ 1 times, with outcomes r0 , r 1, ... , Tn· 

Roll 0 establishes a target. The players winnings are equal to X, the number 
of rolls i ~ 1 such that ri = ro. 

It should be intuitively clear that X is highly concentrated. However, 
changing the outcome of ro can have a dramatic effect on X. For example, if 
our sequence is 1, 1, ... , 1 then any change to r 0 will change X from n to 0. 
Thus, we cannot directly apply the Simple Concentration Bound or Tala
grand's Inequality to this problem. It turns out that we can apply Azuma's 
Inequality because the conditional expected value of X after the first roll 
is ~ regardless of the outcome of this trial. Thus, the first trial has no effect 
whatsoever on the conditional expected value of X. 

Remark Of course, we do not need a bound as powerful as Azuma's In
equality, to prove that X is highly concentrated - we could prove this by first 
rolling the die to determine r0 and then simply applying the Chernoff Bound 
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to the sequence r 1 , ... , rn- However, the reader can easily imagine that she 
could contrive a similar but more complicated scenario where it is not so easy 
to apply our other bounds. For one such example, see Exercise 11.1. 

Like Talagrand's Inequality, Azuma's Inequality can be viewed as 
a strengthening of the Simple Concentration Bound. There are three main 
differences between Azuma's Inequality and the Simple Concentration Bound. 

(i) We must compute a bound on the amount by which the outcome of each 
trial can affect the conditional expected value of X, 

(ii) Azuma's Inequality can be applied to sequences of dependent trials and 
is therefore much more widely applicable, 

(iii) The concentration bound given by the Simple Concentration Bound 
is in terms of an upper bound c on the maximum amount by which 
changing the outcome of a trial can affect the value of X. To apply Azu
ma's Inequality we obtain distinct values c1 , ... , Cn where ci bounds the 
amount by which changing the outcome of Ti can affect the conditional 
expected value of X. We then express our concentration bound in terms 
of c1 , ... , en. This more refined approach often yields stronger results. 

Azuma's Inequality [14] Let X be a random variable determined by n trials 
T1 , ... , Tn, such that for each i, and any two possible sequences of outcomes 

I 

t1, ... , ti and t1, ... , t;-1, ti: 

then 

Condition (11.1) corresponds to condition (10.1) in the Simple Concen
tration Bound, however the two inequalities are very different. The following 
discussion underscores the difference between them. Suppose we have an 
adversary who is trying to make X as large as he can, and a second adversary 
who is trying to make X as small as she can. Either adversary is allowed to 
change the outcome of exactly one trial Ti· Condition (10.1) says that if the 
adversaries wait until all trials have been carried out, and then change the 
outcome of Ti, then their power is always limited. Condition (11.1) says that 
if they must make their changes as soon as Ti is carried out, without waiting 
for the outcomes of all future trials, then their power is limited. 

The above discussion suggests that condition (10.1) is more restrictive 
than condition (11.1), and thus that Azuma's Inequality implies the Simple 
Concentration Bound. It is, in fact, straightforward to verify this implication 
(this is Exercise 11.2). As we will see, Azuma's Inequality is actually much 
more powerful than the Simple Concentration Bound. For example, in the 
game discussed earlier, we satisfy condition (11.1) with c0 = 0 and ci = 1 
for i > 0 (by Linearity of Expectation) and so Azuma's Inequality implies 
that X is highly concentrated. 
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Azuma's Inequality is an example of a Martingale inequality. For further 
discussion of Martingale inequalities, we refer the reader to [10], [112] or [114]. 

If we apply Azuma's Inequality to a set of independent trials with each ci 
equal to a small constant c, then the resulting bound is e-.t2 In for a positive 
constant t: rather than the often more desirable e-'t2 /E(X) which is typically 
obtained from Talagrand's Inequality. While the bound given by applying 
Azuma's inequality using such ci is usually sufficient when E(X) = {3n for 
some constant {3 > 0, it is often not strong enough when E(X) = o(n). How
ever, in such situations, by taking at least some of the Ci to be very small, we 
can often apply Azuma's Inequality to get the desired bound of e-(.t2 /E(X)). 

We will see an example of this approach in the proof of Lemma 11.8 later in 
this chapter. 

We now consider variables determined by sequences of dependent tri
als, where the change in the conditional expectation caused by each trial 
is bounded. Our discussion focuses on one commonly occurring situation. 
Suppose X is a random variable determined by a uniformly random permu
tation P of {1, ... , n }, with the property that interchanging any two values 
P(i), P(j) can never affect X by more than c. Then, as we discuss below, we 
can apply Azuma's Inequality to show that X is concentrated. 

For each 1 ::; i ::; n, we let Ti be a uniformly random element of 
{1, ... , n}- {T1, ... , Ti-d· It is easy to see that T1, ... , Tn forms a uniformly 
random permutation. Furthermore, we will show that this experiment satisfies 
condition ( 11.1). 

Consider any sequence of outcomes T1 = t1, ... , Ti-l =ti-l, along with 
two possibilities for Ti, ti, ( For any permutation P satisfying P(1) = 
t1 , ... , P( i) = ti and P(j) = t: for some j > i, we let P 1 be the per
mutation obtained by interchanging P(i) and P(j). Our hypotheses yield 
JX(P)- X(P1 )1 ::::; c. Furthermore, it is easy to see that 

I I 1 
Pr(PIT1 =it, ... , T, = t,) = Pr(P IT1 = t1, ... , T, = ti) = (n _ i)! 

It is straightforward to verify that these two facts ensure that condition (11.1) 
holds, and so we can apply Azuma's Inequality to show that X is highly 
concentrated. (Note that it is important that Azuma's Inequality does not 
require our random trails to be independent.) Of course, Azuma's Inequality 
also applies in a similar manner when X is determined by a sequence of 
several random permutations. 

Remark As discussed in the last chapter, we can generate a uniformly 
random permutation by generating n independent random reals between 0 
and 1. We applied Talagrand's Inequality to this model to prove that the 
length of the longest increasing subsequence is concentrated. We cannot use 
Talagrand's inequality in the same way to prove the above result as the 
condition that swapping two values P(i) and P(j) can affect X by at most c 
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does not guarantee that changing the value of one of the random reals affects 
the value of X by a bounded amount. 

For a long time, Azuma's Inequality (or, more generally, the use of Martin
gale inequalities) was the best way to prove many of the difficult concentration 
bounds arising in probabilistic combinatorics. However, the conditions of 
Talagrand's inequality are often much easier to verify. Thus in situations 
where they both apply, Talagrand's Inequality has begun to establish itself 
as the "tool of choice" . 

It is worth noting, in this vein, that Talagrand showed that his inequality 
can also be applied to a single uniformly random permutation (see Theo
rem 5.1 of [148]). More recently, McDiarmid obtained a more general version 
which applies to sequences of several permutations, as we will discuss in 
Chap. 16. Thus, we can now prove concentration for variables which depend 
on such a set of random trials, using a Talagrand-like inequality rather than 
struggling with Azuma. To see the extent to which this simplifies our task, 
compare some of the lengthy concentration proofs in [132] and [119] (which 
predated McDiarmid's extension of Talagrand's Inequality) with the corre
sponding proofs in Chaps. 16 and 18 of this book. 

Nevertheless, there are still many sequences of dependent trials to which 
Talagrand cannot be applied but Azuma's Inequality can (see for exam
ple [116]). 

11.2 A Strengthening of Brooks' Theorem 

Brooks' Theorem characterizes graphs for which x :S: L1. For L1 at least 3, 
they are those that contain no L1 + 1 clique. Characterizing which graphs 
have x :S: L1 - 1 seems to be more difficult, Maffray and Preissmann [110] 
have shown it is NP-complete to determine if a 4-regular graph has chromatic 
number at most three (if you do not know what NP-complete means, replace it 
by han!). However, Borodin and Kostochka [29] conjectured that if L1(G) 2 9 
then an analogue of Brooks' Theorem holds; i.e. x( G) :S: L1( G) -1 precisely if 
w( G) :S: L1- 1 (this is Problem 4.8 in [85] to which we refer readers for more 
details). To see that 9 is best possible here, consider the graph G, depicted in 
Fig. 11.1, obtained from five disjoint triangles T1 , ... , T5 by adding all edges 
between Ti and Tj if li- Jl = 1 mod 5. It is easy to verify that L1(G) = 8, 
w( G) = 6, and x( G) = 8. Beutelspacher and Hering [22] independently posed 
the weaker conjecture that this analogue of Brooks' Theorem holds for suffi
ciently large L1. We prove their conjecture. That is, we show: 

Theorem 11.1 There is a L12 such that if L1 (G) 2 L12 and w (G) :S: L1 (G) - 1 
then x( G) :S: L1( G) - 1. 

It would be natural to conjecture that Theorem 11.1 could be generalized 
as follows: 
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T2 Ta 

Fig. 11.1. G 

For all k, there is a Llk such that if Ll( G) 2: Llk and w( G) :S Ll( G) + 1 - k 
then x(G) :S Ll(G) + 1- k. 

However this conjecture turns out to be false even for k = 3, as the 
following example shows: For Ll 2: 5, let G .1 be a graph obtained from a clique 
K.1_4 with Ll- 4 vertices and a chordless cycle C with 5 vertices by adding 
all edges between C and K.1_4 (see Fig. 11.2). It is easy to verify that G.1 
has maximum degree Ll, clique number Ll- 2, and chromatic number Ll-1. 

Nevertheless, we can generalize Theorem 11.1 in two ways. Firstly, we can 
bound how quickly x must decrease as w moves away from Ll + 1. 

Theorem 11.2 For all k, there is a Llk such that if Ll(G) 2: Llk and w(G) :S 
Ll(G) + 1- 2k then x(G) :::; Ll(G) + 1- k. 

This result is a corollary of Theorem 16.4 discussed in Chap. 16. As 
pointed out in that chapter, the theorem is essentially best possible for large k. 

Secondly, we can show that if x is sufficiently near Ll then although we 
may not be able to determine X precisely simply by considering the sizes 
of the cliques in G, we can determine it by considering only the chromatic 
numbers of a set of subgraphs of G which are very similar to cliques. For 
example, we have: 

There is a Llo such that for any Ll 2: Llo and k > Ll - J3 + 2, 

there is a collection of graphs H1, ... , Ht, which are similar to k
cliques in that x(Hi) = k, IV(Hi)l :S Ll + 1 and 8(Hi) 2: k- 1, such 
that the following holds: 
For any graph G with maximum degree Ll, x( G) 2: k iff G contains 
at least one Hi as a subgraph. 
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Fig. 11.2. G .<1 

We discuss a number of results of this type in Chap. 15. The proofs of 
these generalizations of Theorem 11.1 all use ideas introduced in its proof. 

Proof of Theorem 11.1. We fix a L12 which satisfies a number of implicit 
inequalities scattered throughout the proof and prove the theorem for this 
value of L12. To this end, we assume the theorem is false and let G be 
a counter-example to it with the fewest number of vertices. Thus, G has 
maximum degree L1 ~ ..12 , w(G) :S ..1- 1, and x(G) = Ll. 

Before presenting the key ideas of the proof, we make the following easy 
observations. 

11.3 Every subgraph H of G with H =/=- G has aLl- 1 colouring. 

Proof If Ll(H) = L1 then the result follows by the minimality of G. Other
wise, the result follows from Brooks' Theorem because w(H) :S w(G) :S Ll-1. 

D 
11.4 Every vertex of G has degree at least L1- 1. 

Proof For any vertex v of G, by (11.3), G - v has a L1 - 1 colouring. 
If v had fewer than L1 - 1 neighbours then we could extend this to a L1 - 1 
colouring of G. D 

We have already seen in Sect. 10.3 that for L1 sufficiently large, if no 
vertex in G has more than (~)-(log ..1)3 L1 edges in its neighbourhood, then 

x( G) :S ..1- (loge6L1)3 :S Ll-1. Thus, the crux of the proof will be to deal with 
vertices which have such dense neighbourhoods. This motivates the following: 

Definitions A vertex v of G is dense if N(v) contains fewer than Ll(log ..1)3 

non-adjacent pairs of vertices. Otherwise, it is sparse. 

We need to investigate the structure surrounding such dense vertices. 

Definition Set r =(log ..1)4 . We say a clique is big if ICI ~ Ll- r. 



11.2 A Strengthening of Brooks' Theorem 97 

We shall prove: 

Lemma 11.5 Every dense vertex is contained in a big clique. 

Lemma 11.6 We can partition V( G) into D~, ... , Dz, S so that 

{i} each Di contains a big clique Ci Furthermore, either Di = Ci or Di = 
Ci +vi for some vertex Vi which sees at least 3.f but not all of the vertices 
ofCi; 

{ii} no vertex of V- Di sees more than 3.f vertices of Di; 
{iii) each vertex of S is sparse; and 
{iv) each vertex v of ci has at most one neighbour outside ci which see more 

than r +4 vertices of Ci, furthermore if I Gil = Ll-1 then v has no such 
neighbours. 

It is this decomposition of G into l dense sets and a set of sparse vertices 
which allows us to prove Theorem 11.1. For, having proved Lemma 11.6, 
to deal with the dense vertices we need only colour each Di. This will be 
relatively easy, for these sets are disjoint and there are very few edges from Di 
to V- Di. 

For ease of exposition, we consider the Ll-regular graph G' obtained 
from G by taking two copies of G and adding an edge between the two 
copies of each vertex of degree Ll-1. We note that applying Lemma 11.6 to 
both copies of G yields: 

Corollary 11.7 There is a decomposition of G' satisfying conditions {i}-(iv} 
of Lemma 11.6. 

Now, by taking advantage of this corollary, we can extend the proof 
technique of the last chapter to prove a useful lemma. 

Definition Consider a decomposition as in Corollary 11.7. For 1 ~ i ~ l, 
if Di is the clique Ci set Ki = Ci else set Ki = Ci n N(vi)· 

Lemma 11.8 There is a partial Ll-1 colouring of G' satisfying the following 
two conditions. 

(a) for every vertex v E S there are at least 2 colours appearing twice in the 
neighbourhood of v, 

{b} every Ki contains two uncoloured vertices Wi and xi whose neighbour
hoods contain two repeated colours. 

To complete a partial Ll- 1 colouring satisfying (a) and (b) to a Ll- 1 
colouring of G' and thereby obtain a Ll- 1 colouring of G, we proceed as 
follows. 

We let U2 be the set of uncoloured vertices whose neighbourhoods contain 
at least two repeated colours and we let U1 be the remaining uncoloured 
vertices. We complete the colouring greedily by colouring the uncoloured 
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vertices one at a time. The only trick is to colour all the vertices of U1 before 
colouring any vertex of U2 . Consider a vertex v of U1 . Since every sparse 
vertex is in U2 by (a), v is in some Di. By (b), the vertices xi and Wi are 
in U2 and hence are uncoloured when we come to colour v. Since v has these 
two uncoloured neighbours, it follows that there is a colour available with 
which to colour v. Thus, we can extend our partial colouring of G' to a .1-1 
colouring of G'- U2 • We can then complete the colouring because for each 
vertex u in U2 there are two repeated colours in N ( u). D 

Remark We note that in proving Theorem 11.1 from Lemma 11.8, we used 
a slight refinement of our greedy colouring procedure. We carefully chose 
the order in which we would complete the colouring, and then coloured each 
vertex greedily when we came to it. This idea, which we first encountered in 
the proof of Brooks' Theorem in Chap. 1, will prove crucial to many of the 
proofs to follow both in this chapter and future ones. 

We have yet to prove Lemmas 11.5, 11.6, and 11.8. We prove the last of 
these in the next section, and prove the first two in the third and final section 
of the chapter. 

11.3 The Probabilistic Analysis 

Proof of Lemma 11.8. We find a partial .1-1 colouring satisfying conditions 
(a) and (b) of Lemma 11.8 by analyzing our naive colouring procedure. In 
doing so, we take advantage of the partition given by Corollary 11.7. Once 
again, we will use the Local Lemma. 

To do so, we need to define two kinds of events. For each v E S, we let Av 
be the event that (a) fails to hold for v, i.e., that there are fewer than 2 
repeated colours on N ( v). For each Di, we let Ai be the event that (b) fails 
to hold for Di, i.e. that there do not exist two uncoloured vertices of Ki each 
of which has two repeated colours in its neighbourhood. We note that if none 
of the events in the set E = (UAv) U (UAi) hold then the random colouring 
satisfies (a) and (b) of Lemma 11.8. To finish the proof we use the Local 
Lemma to show that this occurs with positive probability. 

We note that Av depends only on the colours within distance two of v. 
Also each Ai depends only on the colour of the vertices in Di or within 
distance two of Di. It follows that each event in E is mutually independent 
of a set of all but at most .15 other events. So, we need only show that each 
event in E holds with probability at most .1-6 . 

11.9 Each Av has probability at most ,1-6 . 

To prove this result we consider (as in the last chapter) the variable Xv 
which counts the number of colours assigned to at least two neighbours of v 
and retained by all such neighbours. We first obtain a bound on the expected 
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value of Xv and then bound its concentration using Talagrand's Inequality. 
As the proof is almost identical to one in the last chapter, we omit the details. 

11.10 Each Ai has probability at most _.1-6 • 

To prove this result, we need the following simple corollary of Corollary 11.7. 

Lemma 11.11 For any Di, there are at least£. disjoint triples each of which 
consists of a vertex v of Ki and two neighbours of v outside of Ki both of 
which have at most r + 4 neighbours in Ki. 

Proof of Lemma 11.11. Consider any Di, and corresponding Ki. By definition, 
IKil 2: 3f. Take a maximal set of disjoint triples each of which consists of 
a vertex in Ki and two neighbours of this vertex outside of Di, each of which 
has at most r + 4 neighbours in Ki. Suppose there are k triples in this set 
and let W be the 2k vertices in these triples which are not in Di. By (iv) of 
Corollary 11.7 and the maximality of our set of triples, every vertex in Ki 
is a neighbour of some vertex in W. Hence, (r + 4)IWI 2: IKil, which yields 
k 2: £. as required. D 

To compute the probability bound on Ai, we consider the set Ti of £. 
disjoint triples guaranteed to exist by Lemma 11.11. We let Ti be the union 
of the vertex sets of these triples. We let Mi be the number of these triples 
for which (i) the vertex in Ki is uncoloured, (ii) both the other vertices are 
coloured with a colour which is also used to colour a vertex of Ki, and (iii) 
no vertex of the triple is assigned a colour assigned to any other vertex inTi. 
This last condition is present to ensure that changing the colour of a vertex 
can only affect the value of Mi by two. 

To begin, we compute the expected value of Mi. We note that Mi counts 
the number of triples (a, b, c) in Ti with c E Ki such that there are colours 
j,k,l and vertices x,y,z with x E Ki- Ti- N(a), y E Ki- Ti- N(b), 
z E N(c)- Ti, such that 

1. j is assigned to a and x but to none of the rest of Ti U N(a) U N(x), 
2. k is assigned to bandy but to none of the rest of Ti U N(b) U N(y), 
3. l is assigned to z and c but on none of the rest of Ti. 

To begin, we fix a triple {a, b, c} in Ti. We let Aj,k,l,x,y,z be the event that 
(1), (2), and (3) hold. Since ITil :S ~'the probability of Aj,k,l,x,y,z is at least 
( Ll - 1) - 6 ~. Furthermore, two such events with different sets of indices are 
disjoint. Now, there are at least 2~ choices for both x and y. There are at 
least ;~ choices for z and (Ll- 1)(..1- 2)(..1- 3) choices for distinct j, k, l. 
So, a straightforward calculation shows that the probability that (1), (2), 
and (3) hold for some choice of {j,k,l,x,y,z} is at least (Ll-1)-6 (..1-1) 

(Ll- 2)(..1- 3) 2~ 2 ;~ ~ 2: ~- Since, there are £. triples inTi, the expected 
value of Mi is at least £. ~ 2: ~. 



100 11. Azuma's Inequality and a Strengthening of Brooks' Theorem 

We now prove that Mi is concentrated around its mean, and hence at least 
two with high probability, by applying Azuma's Inequality. To apply Azuma's 
Inequality, we must be careful about the order in which we assign the random 
colours to V (G). We will colour the vertices of V - Ti - Ki first and then 
the vertices of Ti U Ki. So, we order the vertices of Gas WI, ... , Wn where for 
somes, we have {w1, ... , W 8 } = V -Ti-Ki and {ws+1 =, ... , Wn} = TiUKi. 
We then choose the random colour assignments for the vertices in the given 
order. 

For each of these choices we now obtain our bound c1 on the effect of the 
choice on the conditional expected value of E(Mi)· We note that changing 
the colour of any vertex can affect the conditional expected value of Mi 
by at most 2 since it affects the value of Mi by at most 2 for any given 
assignment of colours to the remaining vertices. So, L~-s c] :.::; 22 ITi U Kil 
:.::; 5..:1. Furthermore, changing the colour assigned to a vertex w1 of V-Ti-Ki 
from a to (3 will only affect Mi if some neighbour of Wj in Ti U Ki receives 

either a or (3. This occurs with probability at most ~ where d1 is the 
number of neighbours of w1 inTi U Ki. Hence by colouring w1 we can change 

the conditional expected value of Mi by at most Cj = 4..{ . Since the d1 sum 

to at most ..:12 , 2:~:18 Cj is at most 4..:1. As, each Cj is at most 4, we see 
that 2:~:18 c] :.::; 16..:1. Thus, the sum of all the c] is at most 21..:1. Applying 
Azuma's Inequality with t = ~- 2 yields Pr(Ai) < ..:1-6 , as desired. D 

11.4 Constructing the Decomposition 

In this section we prove our two lemmas on the local structure surrounding 
dense vertices, i.e. Lemmas 11.5 and 11.6. The proofs of these lemmas are 
not probabilistic. We include them for completeness. In these proofs, we 
repeatedly apply the refinement of the greedy colouring procedure discussed 
above. That is, we repeatedly find some partial ..:1- 1 colouring and complete 
it to a ..:1 - 1 colouring by greedily colouring the uncoloured vertices in an 
appropriate order. Crucial to the proofs is the following: 

Observation 11.12 If H is a subgraph of G with at most ..:1 + 1 vertices 
such that every vertex of H has at least ~~ neighbours in H then H is either 
a clique or is a clique and a vertex. 

Proof Let X 1, ... , Xz be a maximum size family of disjoint stable sets of 
size two in H. If l = 0 then His a clique and we are done, so we assume lis 
at least 1. Clearly l:.::; Llt1 . We letS= U~= 1 Xi. We can ..:1-1 colour G- H 
since it is a proper subgraph of G. We claim that if H is not a clique and 
a vertex then we can extend any such colouring to a ..:1 - 1 colouring of G. 

We will first extend our colouring to the vertices of S so that for each i, the 
vertices of Xi get the same colour. To do so, we colour the two vertices of Xi 
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at the same time. Between them, these vertices have at most ;~ neighbours 
outside of H. Our colouring procedure ensures that there are at this point at 
most l colours used on H. Thus, there are at least ~~ - 1 colours which can 
be assigned to both vertices of Xi. So we can indeed extend the colouring 
to s so that each xi is monochromatic. 

Case 1: l 2': ft + 2. 

By our degree condition on H, each vertex of H- S misses at most ft 
vertices of S and hence has two repeated colours in its neighbourhood. So we 
can complete our Ll - 1 colouring greedily. 

Case 2: l < ft + 2. 

Note that C = H - S is a clique with at least ~~ - 3 vertices. By our 

degree and size conditions on H, there are at most ;~ vertices of C which 
miss a vertex in X 1 . Thus, we can find vertices u and v of C both of which 
see both vertices of X 1. In fact, a similar argument allows us to insist that if 
l 2': 2 then u and v both see all of x1 u x2. 

Now, we claim that if l 2': 2 then we can complete our colouring greedily 
provided we colour u and v last. When we colour a vertex of C - u- v it has 
two uncoloured vertices ( u and v). Both u and v have two repeated colours 
in their neighbourhoods. The claim follows. 

Finally, if l = 1 then we let X 1 = { x, y}. Since H is not a clique and 
a vertex, both x and y miss a vertex of C. Since there are no two disjoint 
stable sets of size two in H, they both miss some vertex z of C and see all of 
C- z. In this case, we insist that when extending our colouring of G- H to 
G- ( H- X 1 ) we actually extend it to a colouring of G- ( H- X 1 - z) by using 
one of the ~~ - 1 colours which do not appear on N(x) U N(y) U N(z)- H 
to colour {x,y,z}. Now we can complete the colouring greedily, as all the 
vertices of C - z see the three vertices x, y, z on which we have used one 
colour. D 

Proof of Lemma 11.5. Consider a dense vertex v. Define S(v) = v + {wlw E 

N(v), IN(w) n N(v)l 2': ~~ + r}. Since IN(v)l 2': Ll- 1 and IE(N(v))l :S 
Ll(log Ll) 3 , it follows that IN(v) - S(v)l < r. This implies that Ll + 1 > 
IS(v)l > Ll-r+ 1, and that every vertex of Sv has more than~~ neighbours 
in Sv. By Observation 11.12, either Sv is a clique Cv or there is a vertex w 
of Sv such that Sv - w is a clique Cv. In either case, Cv is the desired big 
clique containing v. D 

A bit more work is required to prove Lemma 11.6. 

Proof of Lemma 11. 6. We have just proven that every dense vertex is in a big 
clique. We now examine these cliques more closely. 
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11.13 If two maximal big cliques cl and c2 with ICll :s; IC2I intersect, then 
ICl- C21 :s; 1. 

Proof By considering a vertex in the intersection of the two cliques, we 
see that their union contains at most L1 + 1 vertices. Hence, we can apply 
Observation 11.12 to the graph obtained from their union. 0 

We then obtain: 

11.14 No maximal big clique C intersects two other maximal big cliques. 

Proof By (11.13), the union S of these three big cliques would contain 
at most ICI + 2 :s; L1 + 1 vertices. Applying Lemma 11.12 to S yields that S 
is a clique or a clique and a vertex. This contradicts our assumption that S 
contains three maximal big cliques. 0 

Now, (11.13), (11.14), and Lemma 11.5 imply that we can partition G up 
into sets E1 , ... , E1 and T such that T is the set of vertices in no big clique 
and hence contains no dense vertices, and each Ei is either a maximal big 
clique Ci or consists of a maximal big clique Ci and a vertex Vi Seeing at least 
L1 - r - 1 but not all of the vertices of ci. 

To complete the proof of Lemma 11.6, we need the following result. 

Observation 11.15 For each vertex v ofCi, there is at most one neighbour 
of v in G - Ci which sees more than r + 4 vertices of Ci. Furthermore, if 
ICil = L1- 1 then there is no such vertex. 

Proof For ICil < L1-1, this proof is similar to the case l = 2 of Observa
tion 11.12 and is left as an exercise. For ICil = L1-1, the proof has the same 
flavour but is slightly more complicated. The reader may work through the 
details by solving Exercises 11.3 -11.5 0 

Corollary 11.16 For each Ci, there is at most one vertex in G- Ci which 
sees at least 3f vertices of ci. 

This corollary ensures that we can obtain D1 , ... , D1 and S satisfying 
(i),(ii), and (iii) of Lemma 11.6 by 

1. Setting Di = Ei if Ei is not a clique, 
2. Setting Di = Ei if Ei is Ci but no vertex v of G-Ci satisfies IN(v)nCil;::: 

3.:1 
4' 

3. Setting Di = Ei +Vi for the unique vertex vi of G- ci satisfying IN (Vi) n 
ci 1 ;::: 

3f otherwise. 

Now, Observation 11.15 implies (iv) of Lemma 11.6 holds as well, and the 
proof is complete. 0 
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Exercises 

Exercise 11.1 Consider the experiment in which we toss a fair coin once 
and then one of two biased coins n - 1 times. If the ith flip came up heads 
then the coin we use for the ( i + 1 )st flip will yield heads with probability ~. 
If the ith flip came up tails then the coin we use for the ( i + 1 )st flip will 
yield tails with probability ~. Let X be the total number of flips which come 
up heads. Prove that each coin flip changes the conditional expected value 
of X by at most 3. Use Azuma's Inequality to prove that X is concentrated 
around its expected value. Can you apply Talagrand's Inequality to obtain 
this result? 

Exercise 11.2 Show that Azuma's Inequality implies the Simple Concen
tration Bound. 

In the following exercises, C is a clique of size L1 - 1 in our minimal 
counterexample G, z is a vertex outside of C which sees at least r + 5 vertices 
of C, and v is a neighbour of z in C. 

Exercise 11.3 Mimic the proof of the case l :::; 2 of Observation 11.12 to 
show 

(a) v has degree L1, and 
(b) the other external neighbour y of v has at most two other neighbours 

in C. 

Exercise 11.4 Assume every neighbour of z in C has degree L1 and no vertex 
outside C + z has more than three neighbours in C n N ( z). Let y be the other 
neighbour of v outside C. Show 

(a) there is a vertex w in N ( z) n C - N (y) such that adding an edge between 
y and the neighbour of w in V - C - z does not create a clique of size L1, 

(b) for any such w there is a colouring of G - ( C - w) - z in which y and w 
receive the same colour, and 

(c) for any such w and vertex x in C - N ( z) there is a colouring of G - ( C -
w - x) in which y and w receive the same colour and z and x receive the 
same colour. 

Exercise 11.5 Combine the last two results to show that z does not exist. 



Part V 

An Iterative Approach 

In this part of the book, we will see how to prove some very strong results 
by applying several iterations of the Naive Colouring Procedure introduced in 
the previous two chapters. In a typical application, we begin by constructing 
a partial colouring just as in Part IV. Instead of completing it greedily, 
we produce a series of refinements, each time using the Naive Colouring 
Procedure again. 

In the first two chapters, we see how applying several iterations yields 
a significant improvement on Theorem 10.2. First we present Kim's proof [95] 
that the chromatic number of any graph without triangles or 4-cycles is at 
most 0(11/ log 11). Then we present a more sophisticated proof by Johans
son [86] who shows that the same bound applies to all triangle-free graphs. 
In the third chapter, we present Kahn's proof [89] that the List Colouring 
Conjecture is asymptotically true. This last result is the one for which Kahn 
first introduced the Naive Colouring Procedure. 

This approach is a special case of the following general technique. We 
construct an object X (for example, a colouring or a stable set of a given 
graph) via a series of partial objects X1, X2, ... , Xt = X. At each step, we 
prove the existence of an extension of xi to a suitable xi+l by considering 
a random choice for that extension and applying the probabilistic method. 
We gain a surprising amount of power by applying the probabilistic method 
to several incremental random choices rather than to a single random choice 
of X. The technique is first used in this book in the proof of Lemma 3.6. 

This technique is often referred to as the "semi-random method", the 
"pseudo-random method" or the "Rodl Nibble". The latter name comes from 
a series of well known papers beginning with Rodl's [138] and continuing 
through [60, 129, 88, 89] and further. However, this is a misnomer since 
pseudo-random arguments appeared much earlier, for example in [7]. 
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12.1 Introduction 

In Chap. 10, we saw that the chromatic number of a triangle-free graph with 
maximum degree Ll (sufficiently large) is at most ( 1 - ~) Ll. The main step 
was to show that after a single iteration of the Naive Colouring Procedure, 
with positive probability every vertex has more than ~ Ll colours appearing 
at least twice in its neighbourhood, and so the colouring can be completed 
greedily. As we remarked, the proof left much room for improvement. For 
example, our lower bound on the difference between the number of vertices 
coloured in each neighbourhood and the number of colours used on those 
vertices was very loose. More importantly, rather than completing the colour
ing greedily, we could have used further iterations of the Naive Colouring 
Procedure on the uncoloured vertices. 

In this chapter and the next we will tighten up the argument and obtain 
the best result possible, up to a constant multiple, namely that the chromatic 
number of such a graph is at most 0( 1nL1L1), as shown by Johansson [86]. On 
the other hand, as we see in Exercise 12.7, for every g, Ll there are graphs 
with girth at least g and with maximum degree Ll whose chromatic number 
is at least 21~.<:1 (1 + o(1)) (where the asymptotics are in terms of Ll). 

Of course, the fact that G is triangle-free is important here, as there are 
many graphs, for example cliques, with chromatic number close to Ll. The 
point is that all of them contain many triangles. Vizing [155] seems to have 
been the first to ask whether the bound in Brooks' Theorem can be improved 
significantly for triangle-free graphs. The first non-trivial result was due in
dependently to Borodin and Kostochka [29], Catlin [31] and Lawrence [102], 
who showed that if G has no triangles (and in fact even if G merely has 
no K4) then x( G) ::; ~ (Ll + 2). Later, Kostochka (see [85]) showed that for G 

triangle-free, x(G) ::; ~..::1+2. This was the best bound known for triangle-free 
graphs until Johansson's result. 

As we will see, 4-cycles are somewhat of a nuisance when applying the 
Naive Colouring Procedure, so in this chapter we will focus on the case where 
our graph has girth at least 5, and present the following result of Kim [95]: 
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Theorem 12.1 If G has girth at least 5 and maximum degree Ll, then 
x(G):::; ln.1.1 (1 + o(1)). 

Note that this is within a factor of 2 of the best possible bound. 
As with most applications of the Naive Colouring Procedure, the proof 

applies equally well to list colourings, and so Kim in fact obtains the same 
bound for the list chromatic number of G (as will the reader in Exercise 12.8). 

To prove Theorem 12.1, we apply the Naive Colouring Procedure repeat
edly, in fact poly(ln Ll) times. For each vertex v we will keep track of a list, Lv, 
of colours which do not yet appear on the neighbourhood of v. Our hope is 
that the sizes of these lists will not decrease too quickly, and in particular 
that none of the lists will shrink to size 0 before the colouring is complete. 

We will close this section by discussing intuitively why the lack of 4-cycles 
helps us here, and why this procedure should succeed only when there are at 
least roughly !~.1 available colours. 

Suppose that we have carried out a number of iterations of the Naive 
Colouring Procedure, using the colours {1, ... , C}. Consider any two vertices 
v1, v2. Their respective lists, Lv1 , Lv2 are two random subsets of {1, ... , C}. 
Are they independent? The answer is certainly NO if they have many common 
neighbours, because every common neighbour which is coloured will cause the 
same colour to be deleted from both lists, and so many such neighbours will 
cause the two lists to coincide much more than two independently chosen lists 
would. But G has no 4-cycles and so v1 and v2 have at most one common 
neighbour! Therefore, the dependency caused by common neighbours is very 
small. Of course, dependency arises in other ways (see Exercise 12.1), but 
it turns out that such dependency is relatively minor. Thus, after several 
iterations of the Naive Colouring Procedure, the set of lists Lv look very 
similar to a collection of independently chosen subsets of {1, ... , C}. 

Consider any vertex v which eventually gets coloured. By symmetry, its 
colour is uniformly chosen from {1, ... , C}. Now consider two vertices, v1 , v2 

which both get coloured. Are their two colours independent? The answer 
is certainly NO if v1 and v2 are adjacent as then the colours could not be 
identical. But what if they are not adjacent? Well again the answer would 
be NO if Lv1 , Lv2 were highly dependent, because at each step v1 and v2 
are assigned colours drawn at random from these lists. For example, if Lv1 

and Lv2 tended to be very similar then the colours eventually retained by v1 

and v2 would be the same with probability much higher than f:. But as we 
discussed in the preceding paragraph, the dependency between Lv1 and Lv2 

is very small, and thus so is the dependency between the two colours. In fact, 
given any independent set of vertices, the colours (if any) which these vertices 
eventually retain are very similar to a collection of colours chosen uniformly 
and independently from {1, ... , C}. 

Let's see now why the foregoing discussion implies, at least intuitively, 
that every vertex will be coloured provided C is just slightly bigger than ln.1.1. 

The only reason that a vertex would remain uncoloured is that all C colours 
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eventually appear on its neighbourhood. So consider the colours assigned to 
the neighbourhood of a vertex v. As G is triangle-free, N ( v) is an independent 
set and so, as we proceed, the colours which are retained on N(v) are nearly 
independent. We need to determine how big C must be in order to ensure that 
at least one colour never appears on N ( v). This is closely related to a special 
case of what is known as the Coupon Collector's Problem [141]. Suppose 
that you collect a sequence of coupons, each with a uniformly random colour 
from {1, ... , C} on it. How many coupons do you have to collect before you 
have at least one of each colour? It turns out that with high probability (see 
Exercise 12.2) the number of coupons will be very close to ClnC. In other 
words, if d( v) is much higher than C ln C, then with high probability the size 
of Lv will eventually shrink to 0, while if d( v) is much lower than C ln C then 
with high probability the size of Lv will always be fairly large. Thus, at least 
intuitively, the breaking point is roughly Ll ~ C ln C, i.e. C ~ ln.ll.ll. 

12.2 A Wasteful Colouring Procedure 

12.2.1 The Heart of The Procedure 

Most of the work in finding our colouring will be achieved through several 
iterations of a variation of our Naive Colouring Procedure. To obtain this 
variation we will tweak our Naive Colouring Procedure in three ways. The 
first tweak is necessary. The other two tweaks are not necessary, but they 
simplify the proof significantly. 

Modification 1: At each iteration, we only assign colours to a few of the 
vertices. 

Recall that in our proof of Theorem 10.2, we carried out a single iteration 
of the Naive Colouring Procedure using ~ colours. For each vertex v, the 
probability that v retained its colour was (1 - L1f2 )Ll which is approxi
mately e-2 . In fact, for any f > 0 the reader can easily verify that if we 
were to use ELl colours, then the probability that v retained its colour would 
be approximately 8 for some positive 8 defined in terms of f. However, in this 
application we are using o(Ll) colours and so we need to be more careful. 

To see this, suppose that we carry out the first iteration of our standard 
Naive Colouring Procedure using l~Ll colours. The probability that v retains 
its colour is (1- Ll/ ~n L1 )Ll ~ i-. Thus, the expected number of neighbours of 
a vertex which retain their colours is approximately 1, which is far too small 
for our purposes. For one thing, the probability that this number is zero is 
approximately ~ which is much too high for us to be able to apply the Local 
Lemma to show that there is a partial colouring in which every vertex has 
even one neighbour which retains its colour. 
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Remark The astute reader may notice that if we start with (1 + t::) InLlLl 

colours, E > 0 (as in fact we will do in this chapter), then the expected 
number of neighbours of v which retain their colour is Ll rh which is large 
enough for us to apply the Local Lemma . However, after several iterations of 
our procedure, the expected value of this number drops to 1, and even lower, 
and so we run into problems. 

To overcome this problem, at each iteration we will activate a small 
number of the vertices, and assign colours only to these activated ver
tices. More precisely, a vertex becomes activated with probability I:Ll , for 
some small constant K < ~ to be specified later. Now during the first 
iteration, the expected number of neighbours of v which are activated is 
Ll x I:Ll, and the probability that an activated vertex retains its colour 
is (1- I:Ll Ll/~nLl)Ll ~ e-K. Thus, the expected number of neighbours of 

a vertex which retain their colours is approximately ;!k I~Ll which is high 
enough for our purposes. 

Modification 2: We remove more colours from Lv than we need to. 

The purpose of the lists Lv is to avoid conflict between colours assigned 
during different iterations. At the end of each iteration, we remove every 
colour that is retained by one of the neighbours of a vertex v from its list, Lv. 
This ensures that those colours will not subsequently be assigned to v. To 
simplify the analysis, we will actually remove a colour from Lv if it is ever 
assigned to a neighbour of v. So in fact, Lv may very well be missing several 
colours which do not appear in N(v) at all, i.e. those which were assigned to 
but not retained by neighbours of v. 

At first glance, it seems that this is far too wasteful to have any chance 
of success. However, as discussed above, we activate so few vertices in each 
iteration that the probability of a colour assigned to a vertex being retained 
is bounded below by e-K for some small constant K. Hence the number of 
colours removed from Lv should be no more than eK times the number of 
colours retained on N(v). Since K is small, eK is very close to 1, and so this 
wastefulness does not actually hurt us very much. Furthermore, the benefit 
of wastefulness to the ease of the proof will be substantial. 

Modification 3: At the end of each iteration, for each vertex v, and colour c 
still in Lv, we perform a coin flip which provides one last chance to remove c 
from Lv. 

If we did not have this modification, the probability that a particular 
vertex keeps a particular colour in its list would vary somewhat over different 
vertices and colours. This final coin flip will serve to make these probabilities 
equal, and thus simplify our computations significantly. (See Exercise 12.3.) 
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Remark The use of equalizing coin flips is one of two popular ways to 
equalize these probabilities. The other is to add artificial vertices to the graph 
in such a way that these probabilities all become equal. This technique can 
be seen, for example, in [95, 89]. 

In summary, we will initially set all lists to { 1, ... , C} where C is the 
number of colours that we are using, and then apply several iterations of the 
following procedure: 

Wasteful Colouring Procedure 

1. For each uncoloured vertex v, activate v with probability ,:4 , where K 
is a small constant to be named later. 

2. For each activated vertex v, assign to v a colour chosen uniformly at 
random from Lv. 

3. For each activated vertex v, remove the colour assigned to v from Lu for 
each u E N(v). 

4. Uncolour every vertex which receives the same colour as a neighbour. 
5. Conduct an "equalizing" coin flip (to be specified later) for each vertex 

v and colour c E Lv, removing c from Lv if it loses the coin flip. 

It is worth noting that if a colour c is removed from a vertex v in Step 4, 
then c was assigned to a neighbour of v and thus must have been removed 
from Lv in Step 3. 

12.2.2 The Finishing Blow 

We will show that with positive probability, after carrying out enough iter
ations of our procedure, the situation will be such that it is quite simple to 
complete our colouring. 

The most natural goal would be to show that we can complete the colour
ing greedily, i.e. to show that for some value L, every list has size at least L, 
while every vertex has fewer than L uncoloured neighbours. Unfortunately, we 
are unable to prove this using our approach (see Exercise 12.6). Instead, we 
will aim to complete the colouring using Theorem 4.3. To do so, we only have 
to achieve the easier goal that for some L, every list has size at least L, while 
for every vertex v and colour c, v has fewer than L/8 uncoloured neighbours u 
such that c E Lu. 

Remark Actually, by using a more complicated proof, it is possible to get 
to a situation where we can complete the colouring greedily. See, for exam
ple, [95]. 
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12.3 The Main Steps of the Proof 

We now present a detailed proof of Theorem 12.1. In this section, we provide 
an outline of the proof, listing all the main lemmas. Their proofs will appear 
in the next two sections. 

As usual, we assume G to be Ll-regular. A construction similar to that 
in Sect. 1.5 shows that the general theorem can be reduced to this case 
(see Exercise 12.4). We will use the Wasteful Colouring Procedure from the 
previous section to show that for any 0 < E < 160 and L1 sufficiently large as 
a function of E, G has a proper (1 +E) lnL\L\ colouring. Note that this implies 
Theorem 12.1. 

We have been discussing the intuition behind this procedure as though 
it were a random rather than a pseudo-random one. The first step in our 
analysis is to decide what conditions we need to impose on the output of each 
iteration. These conditions must ensure that the colouring on each vertex's 
neighbourhood looks sufficiently like that of a typical neighbourhood in the 
random colouring to allow us to complete the analysis. 

It turns out that we only need to focus on two parameters. Specifically, 
for each vertex v, colour c E Lv and iteration i, we define the following to be 
the respective values at the beginning of iteration i of the Wasteful Colouring 
Procedure: 

Ci(v)- the size of Lv 

ti ( v, c) - the number of uncoloured neighbours u of v with c E Lu 

Of course, we define £1(v) = (1 + E) 1nL\L\ and h(v,c) = Ll. 
The importance of these parameters is self-evident, we must know their 

values if we wish to eventually apply Theorem 4.3 to the uncoloured vertices. 
We insist that these parameters behave at each vertex as they would at 
a typical vertex under the random process. As we see below, it turns out that 
to do this we do not need to keep track of any other parameters. 

Rather than keeping track of the values of ci ( v) and ti ( v' c) for every v' c, 
we focus on their extreme values. In particular, we will recursively define 
appropriate Li and Ti such that we can show that with positive probability, 
for each i the following property holds at the beginning of iteration i: 

Property P(i): For each uncoloured vertex v and each colour c E Lv, 

C·(v) > L· ' - ' 

ti(v, c) ::::; Ti 

In order to motivate our definition of Li and Ti, we will briefly consider 
the idealized and simplified situation where at the beginning of iteration i, 
we have that for every v, c, Ci ( v) = Li and ti ( v, c) = Ti, and where we do not 
carry out any equalizing coin flips. 
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In this case, for each colour c E Lv, the probability that Lv keeps c, i.e. 
that c is not assigned to any neighbour of v is 

( K 1 )Ti 
Keep- = 1 - -- x -

' ln..1 Li 

So the expected value of fi+1(v) is fi(v) x Keepi. Note that Keepi is also 
the probability that an activated vertex retains the colour it is assigned. So 
a similar, but slightly more complicated, calculation shows that the expected 
value ofti+l(v,c) is roughly ti(v,c) x (1- h~LlKeepi) x Keepi. 

Now of course, it is too much to hope that we can show that with positive 
probability for every v,c we have J!i+ 1(v) ~ E(J!i+1(v)) and ti+1(v,c) ::; 
E(ti+l(v,c)). However, by using our concentration tools, we can show that 
all these parameters are within a small error term of their expected values. 
Thus we use the following definition: 

We set L1 = (1 + t:) lnLlLl, T1 = ..1, and we recursively define 

L -L K L213 · i+l - i x eepi - i ' 

Ti+l = Ti ( 1 - l:..1 Keepi) x Keepi + Ti213 . 

Initially, T1 >> L1, but as we can see, Ti drops more quickly than Li, 
so we can be hopeful that eventually Ti < ~ Li at which point we can apply 
Theorem 4.3. More specifically, at each iteration, the ratio Td Li decreases by 
roughly a factor of 1- l:Ll Keepi which is at most approximately 1- l:Ll e-K. 

Thus, after O(ln..1lnln..1) iterations, Ti will drop below ~Li. 
Our only concern is to make sure that Li does not get too small before 

this happens. For example, if Li gets as small as ln ..1, then applying the 
Local Lemma becomes problematic and we will no longer be able to ensure 
that property P(i) holds. Initially, Keepi ~ e-K and soLi drops by a linear 
factor at each step. If it were to continue to decrease this quickly, then Li 
would get too small within O(ln ..1) iterations which is too soon. Fortunately, 
as the ratio Td Li decreases, Keepi increases, and so the rate at which Li 
decreases slows down. In fact, we will see that it slows down enough for us 
to be able to continue for the required number of iterations. 

In the previous discussion, we assumed that every J!i ( v) is exactly Li and 
every ti(v,c) is exactly Ti. Of course, we are typically not in this idealized 
situation. That is why we must use our equalizing coin flips, which we are 
now ready to define precisely: 

For any vertex v and colour c, we define Keepi(v, c) to be the probability 
that no neighbour of v is assigned c. Keepi(v, c) is the product over all 
uncoloured u E N(v) with c E Lu of 1 - I:Ll x t)u). If P(i) holds, then 

this is at least Keepi = (1 - I:Ll x 1 fi. Thus, by defining 
' 
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and performing the equalizing coin flip described in Modification 3 by remov
ing colour c from Lv with probability Eqi ( v, c) then for every vertex v and 
colour c E Lv, we ensure that the probability of c remaining in Lv is precisely 
Keepi. 

A subtle problem arises when dealing with ti+l ( v, c). It turns out that 
this parameter is not strongly concentrated, as it can be affected by a large 
amount if c is assigned to v (in particular it drops to zero). To overcome 

I 

this problem, we focus instead on a closely related variable: ti+ 1 ( v, c) - the 
number of vertices u E N(v) which were counted by ti(v,c) and such that 
during iteration i, u did not retain a colour, c was not assigned to any vertex 
of N(u)- v, and c was not removed from Lu because of an equalizing coin 
flip. Because assigning c to v has no effect on t;+l ( v, c), we overcome our 

problem and we can show that t;+1 (v,c) is indeed strongly concentrated. To 
justify focusing on this derived variable, we note that if c is not assigned 
to v then ti+ 1 ( v, c) = t;+ 1 ( v, c). On the other hand, if c is assigned to v then 
ti+1 ( v, c) = 0 which is fine since we are only interested in an upper bound on 
ti+1 (v, c). 

The rest of the proof is quite straightforward, following a series of standard 
steps, despite the fact that some of the mathematical expressions may be 
a little daunting. We will list the main lemmas here, saving their proofs for 
later sections. 

In what follows, all probabilistic computations are in terms of the ran
dom choices made during a particular iteration of our Wasteful Colouring 
Procedure. That is, we have already carried out iterations 1 to i - 1, and we 
are about to carry out iteration i. The first step is to compute the expected 
values of our parameters at the end of iteration i: 

Lemma 12.2 If P(i) holds then for every uncoloured vertex v and colour 
c E Lv 

(a) E(l:',+l(v)) = ei(v) X Keepi; 
1 

( K ) T {b) E(ti+l(v,c)) :S: ti(v,c) 1- InLl x Keepi x Keepi + O(y-). 
' 

As usual, the next step is to prove that these variables are strongly concen
trated. 

Lemma 12.3 If P(i) holds, and if Ti, Li 2 ln7 L1, then for any uncoloured 
vertex v and colour c E Lv, 

(a) Pr (l£i+1(v)- E(£i+I(v))J > L713 ) < Ll-InLl; 

(b) Pr (Jt;+ 1(v,c)- E(t;+1 (v,c))J > ~Ti213 ) < Ll-InLl. 

Thus, by applying the Local Lemma, it is straightforward to prove: 

Lemma 12.4 With positive probability, P(i) holds for every i such that for 
all1:::;: j < i: L1, T1 2 ln7 L1 and T1 2 ~L1 . 
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As is common, the computations would be much easier if the recursive 

formulae for Li+l and Ti+ 1 did not have the L713 , Ti213 terms. So our next step 
will be to show that these "error terms" do not accumulate significantly, using 
the same straightforward type of argument as in the proof of Theorem 8.1. 

I d I 

Lemma 12.5 Define L1 = (1 +E) In Ll, T1 = .1, and recursively define 

T:+ 1 = T: ( 1 ~ 1:.1 Keep;) X Keepi 0 

If for all1 ::=; j < i we have Lj, Tj ~ ln7 .1 and Tj ~ iLj, then 

(Note that in the preceding definition, Keepi is still defined in terms of Ti, Li, 

not T;, L;.) 

With this lemma in hand, it is easy to show the lists never get too small, i.e, 

Lemma 12.6 There exists i* such that 

(a) For all i ::=; i*, Ti > ln8 .1,L; > .1~, and Ti ~ iLi; 

(b) Ti*+l :S: iLi*+l· 

And finally, Lemmas 12.4 and 12.6 yield our main proof: 

Proof of Theorem 12.1. We carry out our Wasteful Colouring Procedure for 
up to i* iterations. If P( i) fails to hold for any iteration i, then we halt. By 
Lemmas 12.4 and 12.6, with positive probability P(i) holds for each iteration 
and so we do in fact perform i* iterations. After iteration i* every list has size 
at least 8 times the maximum over all uncoloured v and c E Lv of ti* +1 ( v, c). 
Therefore, by Theorem 4.3 we can complete the colouring. 

We have proven that for any E > 0, if ,1 is sufficiently large then x( G) <::: 

( 1 + E) lnLlLl. Therefore X (G) <::: InLlLl ( 1 + o( 1)). D 

In the next two sections, we will fill in the proofs of these lemmas. 

12.4 Most of the Details 

In this section, we present all but the concentration details. That is, we give 
the proofs of all the lemmas but Lemma 12.3, which we leave for the next 
section. 
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Proof of Lemma 12.2. 
(a) For any colour c E Lv, the probability that cremains in Lv is precisely 

Keepi. The rest follows from Linearity of Expectation. 
(b) Unless vis assigned c in iteration i, we have t:+1 (v,c) = ti+1 (v,c). 

Therefore, the probability that these two variables differ is at most i .. Since 

t:+l (v, c) cannot exceed Ti, this implies that E(t:+l ( v, c)) ~ E(ti+1 (v, ~))+¥.. 
This fact allows us to focus on E ( ti+ 1 ( v, c)). ' 

Consider any uncoloured vertex u E N(v) such that c E Lu. We will show 
that the probability that u does not retain a colour and that c remains in Lu 
is at most (1- !::c. x Keepi) x Keepi + o(i ). By Linearity of Expectation, 
this will suffice to prove our lemma. ' 

If u is not activated, then u will not be assigned a colour, and the proba
bility that c remains in Lu is Keepi. 

Suppose u is activated and is not assigned c. For each 'Y E Lu - c, we 
compute the probability, conditional on u being assigned"(, that (1) cremains 
in Lu and (2) at least one neighbour of u is activated and assigned 'Y· 

Note that conditioning on u being assigned 'Y has no effect on the colours 
assigned on N(u). So the probability that (1) holds is simply Keepi. For any 
particular vertex w E N ( u) with 'Y E Lw, we consider the probability that 
w is activated and assigned "(, conditional on (1) holding. Since the colour 
activations and assignments are independent over different vertices, this is 
the same as the probability that w is activated and assigned "(, conditional 
on the event Dw that w is not assigned c, which by definition of conditional 
probabilities, is equal to 

Pr((w is activated and assigned 'Y) nDw)/Pr(Dw) 

= Pr( w is activated and assigned 'Y) /Pr( Dw) 

< (~ X _!__) I (1 -~ X _!__) 
- ln ..1 Li ln ..1 Li 

-~x_!_+o( 1 ) 
- ln Ll Li LTJn2 ..1 · 

Therefore, given that u is assigned "f, the probability of (2) conditional on (1) 
holding, is at most 

( K 1 ( 1 ))t;(u;y) ( 1) 
1 - 1 - -- + 0 < 1 -Keep. + o - . 

In Ll Li L2 ln2 ..1 - ~ Li 
~ 

If u is activated and receives c, then the probability that c remains in Lu 
and u does not retain c is zero. 

Therefore, the probability that u does not retain a colour and that c 
remains in Lu is at most: 
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( 11: Ll) x Keepi + l:Ll x ( Li - 1) x L x Keepi ( 1 - Keepi + o ( L)) 
( 1 - l:Ll x Keepi) x Keepi + o ( L ) 

as required. 0 

We postpone the proof of Lemma 12.3 until the next section. 

Proof of Lemma 12.4. We will prove this lemma by induction on i. Property 
P(1) clearly holds. Fori ~ 1, we assume that P(i) holds and we prove that 
with positive probability P( i + 1) holds, by analyzing iteration i. 

For every v and c E Lv we define Av to be the event that li+l ( v) < Li+l 
and Bv ,c to be the event that ti+l ( v, c) > Ti+ 1 . If none of these bad events 
hold, then P( i + 1) holds. 

TI/L1 = O(lnLl) and it is straightforward to verify that Ti/Li = O(lnLl) 
for every relevant i. (In fact this follows immediately from Lemma 12.5 whose 
proof does not rely on any previous lemma.) Furthermore, recall that for 
any vertex v and colour c such that at the beginning of iteration i + 1, 
v is uncoloured and c E Lv, we have ti+ 1 ( v, c) = t~+l ( v, c). Therefore by 

Lemma 12.2, if Bv,c holds then t~+l(v,c) differs from its expected value by 
l 1T2/3 at east 2 i . 
By Lemma 12.3, the probability of any one of our events is at most 

,1- In Ll. Furthermore, each event is determined by the colours assigned to and 
equalizing coin flips for vertices of distance at most 2 from the vertex by which 
the event is indexed. Therefore, by the Mutual Independence Principle, each 
event E is mutually independent of all events involving vertices of distance 
greater than 4 from the vertex by which E is indexed, i.e. of all but fewer than 
Ll4 x (1 + E) 1nLlLl < Ll5 other events. For ..:1 sufficiently large, ..:1-tnLl..:15 < i 
and so the result follows from the Local Lemma. 0 

In the proofs of Lemmas 12.5 and 12.6, it will be useful to have upper and 
lower bounds on Keepi. Clearly Keepi is closely related to the ratio Td Li, 
so we will obtain our lower bound by showing that this ratio is decreasing. 

Lemma 12.7 If for all j < i,Lj,Tj ~ ln7 Ll and Tj ~ ~Lj then Ti/Li < 
Ti-1/Li-1· 

Proof The proof is by induction. We assume that it is true for all values 
up to i and consider i+ 1. Note that this assumption implies Ti/ Li :::; Td L1 < 
lnLl and so Keepi ~ e-KT1/(L1lnLl) + o(1) = e-K(l+e) + o(1). Now, 

Li+1 = Li (Keepi- L;- 113) 



118 12. Graphs with Girth at Least Five 

and, using the facts that T; 2: ln7 Ll and Keepi = f2(1), we have 

K x Keep; 2/3 
Ti+1 = T; x Keep; - T; x ln Ll + Ti 

<::_; T; x Keep;- (K x Keep;) T;6/ 7 + Ti2/ 3 

< T; x Keepi - T;516 

< T; (Keep;- L; 113 ), 

which implies the lemma. 0 

Corollary 12.8 If for all j <::_; i, Lj, Tj > ln 7 Ll and Tj > ~ Lj then 
e-K(l+E) + o(1) < Keep. < 1 - _K_. - '- 10Jn4 

Proof The lower bound is from the third sentence of the previous proof. 
The upper bound follows from Ti 2: ~L; since this implies Keep;<::_; e-K/SlnLl 

< 1 - 10~4' 0 

Proof of Lemma 12.5. This proof is a straightforward induction along the 
I 

same lines as the similar part of the proof of Theorem 8.1. Clearly L; > Li, 

so for part (a) we just have to prove inductively that L: <::_; L; + L:516 . By 
applying Corollary 12.8 along with the fact that for K sufficiently small, the 
function x 516 - x is decreasing on the interval [e-K(l+E) + o(1), 1], and by 
examining the Taylor Series for (1 - y )516 around y = 0 we obtain that for 
sufficiently large Ll: 

5/6 ( 5 K ) ( K ) K Keep - Keep > 1 - - x --- - 1 - -- = ---. 
' ' - 6 10 ln Ll 1 0 ln Ll 60 ln Ll 

I 

Now, we proceed with our induction, using the facts that L; ::::::; L; and L; 2: 
ln 7 Ll. 

I I 

Li+1 = KeepiLi 
15/6 ::; Keep;(L; + L; ) 

2/3 15/6 
= Li+1 + Li + Keep;L; 

< L + K 5/6 L 15/6 + £2/3 _ ___!S__L'5/6 
- '+1 eep, ' ' 60lnLl ' 

15/6 < Li+l + Li+1 . 

For part (b), a virtually identical argument shows that r; 2: Ti- Ti516 . o 

Our next step is to prove Lemma 12.6. Before doing so, it is interesting to 
recall our intuitive discussion from the end of Sect. 12.1. There, we considered 
what would happen to Lv if each of the neighbours of v were independently 
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assigned a random colour from { 1, ... , C}, before v was coloured. If C = 

(1 + c) 1~L1 then the expected number of colours remaining in Lv would be 
C x (1- b )L:l = (1 + c)Ll x Ll-1/(1+<) I ln Ll = (1 + c)Ll</(l+f) I ln Ll. We will 
show that we can ensure Lv is never much smaller than this - we will obtain 
Li ~ ,1</1o. 

Proof of Lemma 12.6. As we discussed earlier, our main goal is to show that Li 
does not decrease too quickly. Of course, it is simpler to focus on L: instead, 

' and to use the fact that Li and Li are very close, by Lemma 12.5. 
' The rate at which Li decreases is equal to Keepi. Our first step will 

be to obtain a lower bound on Keep; which is stronger than that given by 

Corollary 12.8. Again, we will focus on the ratio ri = T;j Li ~ r: = r: I L:. 

i.-1 ( K ) 
r~ = r~ IT 1- lnLl Keepj . 

J=1 

By Lemma 12.7, ri is decreasing. Furthermore, for Ll sufficiently large, we 

have (1- L;fr,Ll) > exp(-( 1 _,14~L;lnL1), and so 

Therefore, since E < 160 : 

, , ( K ( K ))i-1 

ri'5cr1 1-lnLlexp -(1-EI4)lnLlr1 

lnLl ( K ( K ))i- 1 

5c 1 + f 1 - ln Ll exp - (1 + cl2) 

Applying Lemma 12.5, we get nearly the same bound on ri: 

= r~ ( 1 + 0 ( ln -?I 4 Ll)) 

lnLl ( K ( K ))i-1 
< 1 + cl2 1 - ln Ll exp - (1 + cl2) 

This yields a better lower bound on Keepi. 
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> exp - x 1- --exp ( K ln.1 ( K ( 
- (1-t:/4)ln.1 1+t:/2 ln.1 

( K ( K ( K ))i-1
) > exp - 1 + t:/8 1 - ln .1 exp - 1 + t:/2 · 

Therefore we have: 
i-1 

L: = £1 x IT Keepj 
j=1 

.1 ( K ( K ( K ))j-1
) ~ (1 + t:)ln.1 exp -1 + t:/8 ~ 1 - ln.1 exp -1 + t:/2 

= (1 +t:)l:Ll exp ( -1 ~~8 exp (1 +~/2)) 
K 

> (1+t:)ln.1.1 X .1-el+•/2/(1+~). 

We take K = (1 +~)In (1 + 1 ~0 ) ~ 1~0 . Thus, since E < 160 we obtain: 

eK/(l+E/2) _ 1 + t:/100 1 _ :. 

1 + t:/8 - 1 + t:/8 < 9' 

and so 
L: > (1 + t:).:l'/9 /ln.1 > .1'110 . 

Therefore, L: never gets too small for our purposes. Thus, neither does Li. 
The next step is to show that Ti eventually gets much smaller than Li. As 

we discussed earlier, this is straightforward since we have shown ri = r; / L: ::; 
(1 - 1:-..:1 Keep1) i-1 which tends to 0. In particular, since Keep1 is bounded 

from below by a positive constant (see Corollary 12.8), we have r; < 110 £: 
for large enough i = O(lnL1/lnlnL1). By Lemma 12.5, Ti < iLi for the same 
values of i. This implies the existence of i* as required. D 

The only step that remains is to prove Lemma 12.3 which we will do in the 
next section. 

12.5 The Concentration Details 

Now we will complete the proof of Theorem 12.1 by proving Lemma 12.3, 
i.e. that for any v, c E Lv, .ei+ 1 ( v) and t~+l ( v, c) are highly concentrated. 
We will use Talagrand's Inequality, and so to prove that a variable X is 
concentrated, it will suffice to verify the following two conditions for our set 
of random choices. 
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1. Changing the outcome of a single random choice can affect X by at 
most 1. 

2. For any 8, if X 2 8 then there is a set of at most 38 random choices 
whose outcomes certify that X 2 8. 

By Talagrand's Inequality, if these conditions hold then Pr(IX- E(X)I 
> t ~ e-i3t2 /E(X) for some constant (3 > 0 and for any t with JE(X) < < 
t ~ E(X). For each of the X, t that we will consider here this bound is less 
than .:1- In Ll. 

Recall that the random choices for an iteration are as follows. First, for 
each vertex, we choose whether or not to activate it. Next, for each activated 
vertex, we choose a random colour to assign it. Finally, after uncolouring some 
vertices and removing some colours from lists, we carry out an equalizing coin 
flip for each v and colour c which is still in Lv. 

In order to apply Talagrand's Inequality, these choices must be indepen
dent. But, strictly speaking, they are not since whether we carry out a colour 
choice for a vertex depends on the outcome of a previous activation choice. 
Similarly, whether we carry out an equalizing coin flip for a pair v, c depends 
on the outcomes of the earlier choices which determine whether c was removed 
from Lv. 

To overcome this problem, we add a set of dummy choices, where we 
choose a colour for every unactivated vertex and we conduct an equalizing 
coin flip for every v, c such that c was removed from Lv during the iteration. 
Of course, we do not assign the chosen colour to an unactivated vertex and 
if c is no longer in Lv then we do not need to remove c if it loses the equalizing 
coin flip. So these dummy choices have no effect on the performance of the 
iteration. Their only effect is that now the entire set of choices is independent 
and so we can apply Talagrand's Inequality. 

The fact that we need to add dummy choices may seem like an overly 
pedantic point to make, but it was just this kind of dependency which led to 
the subtle error in the false proof from Chap. 9. 

Proof of Lemma 12.3. (a) Here it is easier to show that the number of colours 
which are removed from Lv during iteration i + 1, Z, is highly concentrated. 

Changing the assignment to any vertex u E N ( v) can change Z by at 
most 1, and changing the assignment to any other vertex cannot affect Z at 
all. Furthermore, changing the outcome of any equalizing coin flip can affect Z 
by at most 1. 

If Z 2 8 then for some 8 1 + 8 2 = 8, there are 8 1 neighbours of v who were 
each assigned a different colour from Lv, and 8 2 equalizing coin flips which 
each resulted in a colour being removed from Lv, and so the outcomes of 
these 81 + 82 trials certify that Z 2 8. 

Therefore Talagrand's Inequality implies that 
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By Linearity of Expectation, E(£i+1 (v)) = £i(v)- E(l), and so 

(b) Denote by T the set of uncoloured neighbours of v whose lists contain 
c at the beginning of the iteration. We define X to be the number of vertices 
in T which remain uncoloured after the iteration, and Y to be the number 
of these vertices which remain uncoloured but which either have a neighbour 
other than v that is assigned c, or have c removed from their lists as the 
result of an equalizing coin flip. 

Clearly t:+l ( v, c) = X - Y, and so by Linearity of Expectation, it will 
suffice to show that X and Y are both sufficiently concentrated. 

First we focus on X. We have to be a little careful here because changing 
the colour of v can affect X by a great deal, possibly dropping it to 0 if every 
activated vertex in T receives the same colour and the colour of v is changed 
to that colour. Thus we do not satisfy condition (1) above. To get around 
this problem, we isolate the effect that the colour assigned to v can have as 
follows. 

Let X 1 denote the number of vertices u E T which are assigned either 
the same colour as a neighbour other than v or which are assigned no colour 
(i.e. are not activated) Let X2 denote the number of vertices in T which are 
assigned the same colour as v. As we will see, it is straightforward to apply 
Talagrand's Inequality to X1 since the colour assigned to v has no effect 
on X1 . Furthermore, we will see that X2 is a binomial variable with expected 
value 0(1), and so it is easy to show that with very high probability X2 is 
quite small. 

First, we consider X 1. There are no edges within T, and so changing 
a choice for some u E T can only affect whether or not u remains uncoloured, 
and thus affects X1 by at most 1. Furthermore, no vertex outside of v U T 
has more than one neighbour in T, and so changing one of its choices can 
affect X 1 by at most 1. 

If a vertex u E T does not receive a colour, then the activation choice for u 
certifies this fact. If u receives a colour but is uncoloured because a neighbour 
also receives that colour, then the activation choices and assignments for u 
and that neighbour certify this fact. Therefore, if the number of neighbours 
of v which do not receive and retain a colour is at least s, then there is a set 
of at most 4s choices which certify this fact. 

As X1 :S Ti, we have E(X1) :S Ti and so Talagrand's Inequality now 

implies that Pr (1X1 - E(X1 )1 > ~Ti2/3 ) < ~L1-lnLl. 
x2 is bounded from above in distribution by the binomial variable 

BIN(Ti, lr~Ll- x l. ). As discussed in the proof of Lemma 12.6, Ti/Li = O(lnLl) 
' and so lr~Ll- x £. < !f:. for some absolute constant a. Since Ti 2: ln7 Ll, it follows 

' ' 
from Exercise 2.12 that Pr (x2 > ~Ti2/3 ) < iL1-InLl. 
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Since X 1 :<:::X:<::: X 1 + X 2 , these two bounds together imply that 

Pr (IX- E(X)I ~ ~T;2/3) < ~.:1-InLl. 

By applying a similar argument, in conjunction with an argument similar to 
that from part (a), we get that 

I 

and it immediately follows that t;+l is as concentrated as required. We leave 
the details to the reader (Exercise 12.5), remarking only that a certificate of 
size up to 6s is required. D 

Remark Note that it is only in proving these concentration bounds that we 
used the fact that G has no 4-cycles. 

Exercises 

Exercise 12.1 Suppose that u and v are at distance 10 in G. Explain why 
after several iterations of the Wasteful Colouring Procedure the random 
sets Lu and Lv are not independent. 

Exercise 12.2 Suppose that you collect coupons, one at a time, where each 
one contains a random colour from { 1, ... , c}. Prove that for any constant 
E > 0 and c sufficiently large, after collecting ( 1 + E )cln c coupons, with high 
probability you will have at least one of each colour. (Hint: use the First 
Moment Method). 

Exercise 12.3 Another possibility for an equalizing coin flip would be to flip 
a coin which provides one last chance to uncolour a vertex, thus ensuring that 
the probability that an uncoloured vertex gets coloured is the same for every 
such vertex. Explain why in this particular application, such an equalizing 
flip would not be as useful as the one that we chose to use. 

Exercise 12.4 Use a construction similar to that given in Sect. 1.5 to prove 
that every graph with girth 5 and maximum degree .:1 can be embedded 
in a .:1-regular graph with girth 5. The problem with the construction in 
Sect. 1.5 is that it may create some 4-cycles. 

Exercise 12.5 Complete the proof of Lemma 12.3(b). 

Exercise 12.6 Introduce a new variable, D;, such that at the beginning 
of iteration i, each vertex has at most D; uncoloured neighbours. Obtain 
a recursive formula for D; analogous to those for L; and T;. Analyze the rate 
at which D; decreases, comparing it to L;. In particular, show that it is much 
easier to reach a point where T; < ~ L; than to reach a point where D; < L;. 
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Exercise 12.7 (Hard) See [24] pages 47-53 for a description of how to gen
erate a random Ll-regular graph for any constant Ll, as well as a proof that 
for any constant g, such a graph has girth at least g with probability tending 
to a positive constant (which, of course, is a function of Ll and g) as n, the 
number of vertices, tends to infinity. 

Show that for some k = 21~Ll (1 + o(1)), the expected number of k
colourings of such a graph tends to zero as n tends to infinity, and then 
use the First Moment Method to argue that for Ll, g arbitrarily large there 
exist Ll-regular graphs with girth at least g and chromatic number at least 
2l~Ll (1 + o(1)). 

Exercise 12.8 Modify the proof of Theorem 12.1 to show that if G has 
maximum degree Ll and girth at least 5, then xc(G) :S lnLlLl (1 + o(1)). 
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In Chap. 12 we proved that graphs with girth at least 5, i.e. graphs with no 
triangles or 4-cycles, have chromatic number at most 0( Jn.d.d ). In this chapter, 
we will present Johansson's stronger result [86] that the same bound holds 
even for triangle-free graphs. 

Theorem 13.1 There exists Llo such that every triangle-free graph G with 
maximum degree Ll 2': Llo, has x(G) S \~0.f. 

Remarks 

1. The constant term "160" is not optimal - in fact, Johansson's proof 
replaces it by "9". However, reducing it to a "1" to match the result in 
Chap. 12 looks more difficult, and might require a different approach. 

2. In a subsequent paper [87], Johansson proves that for any fixed t, if G is 
Krfree and has maximum degree Ll, then x(G) s O('d\~~Ll). It would 
be very interesting to remove the extra ln ln Ll term from this bound and 
so extend Theorem 13.1 to Krfree graphs fort> 3. 

3. The bounds in Theorem 13.1 and Remark 2 also hold for XR(G). 
4. Alon, Krivelevich and Sudakov [7] and Vu [157, 158] provide extensions 

of Theorem 13.1 to sparse graphs. 
5. In contrast to Theorem 13.1, for every k there exist triangle-free graphs 

with colouring and chromatic number k, see Exercise 13.1. 

At first glance, it may seem like a minor improvement to reduce the girth 
requirement from 5 to 4. However, it is not as simple as one might expect, 
since the absence of 4-cycles played a crucial role in our proof of Theorem 12.1, 
and allowing for their presence requires some significant modifications in our 
approach. 

Recall our intuitive explanation for the success of our iterative procedure 
in the previous chapter. For any vertex v, because our graph had girth at 
least 5, the lists on the neighbours of v evolved virtually independently of 
each other. This suggested that the colours appearing on N ( v) would be very 
similar to a collection of Ll colours, each drawn at random independently and 
with replacement from the set {1, ... , C}. As long as C is a bit larger than 
ln.d.d, such a collection will, with high probability, not include every colour. 
Thus, with high probability, we will never run out of colours for v. 
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How does the presence of 4-cycles affect this intuition? If two vertices 
u1, u2 E N ( v) share several common neighbours, then their lists do not 
evolve independently. Colours which are assigned to their common neighbours 
are removed from both Lu1 and Lu2 and so those two lists will tend to be 
similar. But that should only help us, since intuitively, this should increase 
the probability that u1 and u2 get the same colour! If v lies in many 4-
cycles, then the set of colours appearing on N ( v) should tend to have more 
repetitions than an independently drawn set, so it should tend to be smaller 
and thus the probability of always having a colour available for v should be 
even higher. 

So it seems likely that the procedure we used in the previous chapter 
should still work. However, because of the 4-cycles, it is more difficult to 
analyze the procedure, and the methods we used to analyze it before will not 
work here. In particular, without 4-cycles, we were able to control the rates 
at which each ITv,cl and ILvl decreased. With the presence of 4-cycles, we 
cannot do this. 

Consider, for example, Tv,c· In an extreme case, if G is a complete bipartite 
graph, then every vertex in N(v) will have the same neighbourhood, and so 
will have the same list. Therefore, after several iterations (ignoring the effect 
of the equalizing coin flips), the size of Tv,c will either have decreased all 
the way to zero, or will only have decreased to the number of uncoloured 
neighbours of v, and both of these extremes will typically have been achieved 
by several colours. Furthermore, the probability of a colour c remaining in 
a list Lv depends heavily on the size of Tv,c, and so with the presence of 
4-cycles, the size of Lv becomes very difficult to analyze. 

So we will not focus on these parameters. Instead, we will focus on the 
probability that two adjacent vertices are assigned the same colour. At first 
glance, this might not seem like the most natural parameter to consider. How
ever, as we shall see, it allows us to bound the probability that an activated 
vertex is involved in a conflict which was, in fact, the most important reason 
for considering the two parameters in the previous chapter1 . Furthermore, we 
will see that an elegant modification of our procedure makes this parameter 
very simple to analyze, thus allowing us to complete our proof. 

13.1 An Outline 

13.1.1 A Modified Procedure 

We will modify the procedure used in Chap. 12, and apply it to colour G 
with the colours {1, ... , C} where C = \~0f. We begin by presenting this 
procedure in a very general form. 

1 We used 1- Keepi:::; 1- (1- ln!fL; f; 
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The essence of the procedure is that in each iteration, 

(i) we make a random choice as to whether to activate each uncoloured 
vertex, where these choices are made independently; 

(ii) for each activated vertex v, we choose a random colour from Lv to assign 
to v; 

(iii) we uncolour every vertex assigned the same colour as a neighbour. 

To specify an instance of this paradigm, we must do two things. First, 
in step (i) we must specify the activation probability. Usually we choose 
a very low probability, so that very few vertices are activated. This is so 
the probability of a vertex receiving the same colour as a neighbour is very 
small- almost (but not quite) negligible. 

Secondly, in step (ii), we must specify the probability distribution from 
which we choose the colour for v. In Chap. 12, we used the most natural 
distribution on Lv -the uniform one. In this chapter, we will see that it can 
be advantageous to use a non-uniform distribution for this step, and so some 
colours will be more likely to be assigned than others. 

Our goal is to reach a final stage where so much of the graph is coloured, 
that with positive probability, we can complete our colouring with an argu
ment very similar to that in Theorem 4.3. 

In order to show that we will colour a lot of our graph, we want to show 
that in each iteration, the probability that an uncoloured vertex v retains 
a colour is high. To do that, we need to show the following: 

(a) the probability that v is assigned a colour is high; and 
(b) the probability that a neighbour of v gets the same colour is low. 

Now, (a) is easy to deal with- it is essentially just the probability that v 
is activated. So we will focus principally on (b). In particular, the key to our 
analysis is ensuring that the following property holds: 

13.2 For every pair of adjacent uncoloured vertices u and v, the probability 
that u and v are assigned the same colour given that they are both activated 
is at most tJ . 

Recall that in analyzing the last iteration of the procedure from the pre
vious chapter, we showed that because the probability of a conflict between 
adjacent activated vertices was sufficiently small, we could apply Theorem 4.3 
to prove that if we assigned a colour to every vertex, then with positive 
probability there would be no conflicts. I.e., an analogue of (13.2) was crucial 
in the analysis of this final iteration. In this chapter, (13.2) will be the key, 
not only to the analysis of the evolution of the iterative procedure, but also 
to administering the final blow. For, given that (13.2) holds, to show that we 
can complete the colouring using one final iteration in which all the vertices 
are activated, we only need a sufficiently good upper bound on the number 
of uncoloured neighbours of each vertex. 
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As we have already stated, the main new ingredient in our procedure 
is that we no longer choose the colour to assign to an activated vertex v 
uniformly from Lv. Rather, some colours in Lv will have a higher probability 
of being assigned than others. We will choose the probability distribution 
for the uncoloured vertices in the ith iteration by modifying that used in 
the previous iteration in such a way that the probability that two adjacent 
vertices are involved in a conflict does not change significantly. This is what 
allows us to ensure that (13.2) continues to hold. 

This ingenious variation on our Naive Colouring Procedure is the funda
mental change that is required to modify the proof of Theorem 12.1 to yield 
a proof of Theorem 13.1. 

13.1.2 Fluctuating Probabilities 

To describe precisely how we iteratively define the probability distributions 
we use to assign colours, we need some definitions. 

In every iteration, each vertex is activated to receive a colour with prob
ability a. For each vertex v and colour c, we use Pi(v,c), or simply p(v,c), 
to denote the probability that c is assigned to v during iteration i if v is 
activated in iteration i. Thus, cis assigned to v with probability a Pi(v,c). 
We use Pi(v), or simply p(v) to denote the vector (Pi(v, 1), ... ,pi(v, C)). We 
indicate that cis not in Lv simply by assigning Pi(v,c) = 0, and so, for 
example, we can express LcELv Pi(v, c) as LcPi(v, c). For any colour c E Lv, 
we let Keepi ( v, c), as usual, be the probability that c is not assigned to any 
neighbour of v during iteration i, i.e. that Lv keeps c. 

Now, initially, we do choose the colours assigned uniformly. That is, for 
each vertex v and colour c, we have P1 ( v, c) = 1/ C. 

Essentially, we will define: 

. ( ) _ { Pi(v, c)/Keepi(v, c), 
P~+l v,c - 0 

' 

if Lv keeps c 
otherwise. 

Observing that E(pi+ 1(v, c)) = (Pi(v, c)/Keepi(v, c)) x Pr(Lv keeps c), 
this immediately yields the following, which is one of the key elements of our 
analysis: 

13.3 E(Pi+l (v, c))= Pi(v, c). 

One of the important benefits of (13.3) is: 

13.4 E( LcPi+l(v, c)) = LcPi(v, c). 

In particular, E( LcP2(v,c)) = 1, clearly a very desirable fact. However, 

a moment's thought should convince the reader that, although this sum may 
often be close to its expected value, it is unlikely to be equal to it. So it 
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seems that this method of iteratively defining the probability distributions is 
problematic as we cannot hope to maintain the property that the sum of the 
probabilities involved is exactly one. 

One way to avoid this problem would be to scale these probabilities so 
that they sum to one, using (13.4) to show that this does not change them 
significantly. However, this would introduce a lot of clutter to our analysis 
and so we take a different approach, described in Sect. 13.1.3 which allows us 
to ignore the requirement that the Pi sum to one. It will again be important 
for our approach that the probabilities sum to approximately one. 

Leaving aside this technical complication for the moment, let's see why 
defining the Pi iteratively in this fashion allows us to keep the probability of 
conflict low. 

Our preliminary discussion suggests that we will be interested in the 
following variable, which is the probability bounded by (13.2): 

Definition For each edge uv, let Hi(u,v) = LcPi(u,c)pi(v,c). 

The key to our analysis is the following: 

Fact 13.5 E(Hi+1(u,v)) = Hi(u,v). 

This crucial fact is precisely the point at which the triangle-freeness of G 
is required in our proof. It is also the most important benefit of the way in 
which we allow our assignment probabilities to vary. 

Proof The key observation is that since u and v have no common neigh
bours and we are using the Wasteful Colouring Procedure, we have for every 
c E Lu n Lv: 

Pr(c remains in Lu n L,) = Pr(c remains in Lu) x Pr(c remains in L,). 

Thus, 

E(Hi+l(u, v)) = 2: Pr(c remains in Lu n L,) 

x (Pi ( u, c) /Keepi ( u, c)) x (Pi ( v, c) /Keepi ( v, c)) 

2: Pr(c remains in Lu) x Pr(c remains in L,) 

x (Pi ( u, c) /Keepi ( u, c)) x (Pi ( v, c) /Keepi ( v, c)) 

L Keepi(u, c) x Keepi(v, c) 

x (Pi ( u, c) /Keepi ( u, c)) x (Pi ( v, c) /Keepi ( v, c)) 

2: Pi(u,c)pi(v,c) 
cEL,nLv 

= Hi(u, v), 

D 
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Fact 13.5, along with our upcoming proof that Hi+l ( u, v) is strongly 
concentrated, allows us to maintain that for every iteration i, 

In particular, we can ensure that no Hi(u, v) exceeds iJ, i.e. that (13.2) holds. 
As mentioned earlier, this is the crux of the proof. 

Having described the key ideas needed in our proof, we are almost ready 
to begin the formal analysis. First however, we must deal with the technical 
difficulty mentioned earlier and one other slight complication. We do so in 
the next two sections. The formal analysis begins in Sect. 13.2. 

13.1.3 A Technical Fiddle 

At first glance, it seems crucial that we maintain LcPi(v, c)= 1 for every v, i. 
In order to free ourselves from this requirement, we will change the way in 
which we randomly assign colours: 

Instead of making a single random choice as to which colour, if any, is 
assigned to v, we are going to make a separate choice for each colour. That 
is, for each colour c E Lv, we assign c to v with probability o: x Pi(v, c), 
where this choice is made independently of the corresponding choices for the 
other colours in Lv. Note that this means that we are not performing a single 
activation flip for v. In effect, we are performing a separate activation flip for 
each colour c, and if v is activated for c, then we assign c to v with probability 
Pi( v, c). 

At first, this may seem like a foolish thing to do, because it is quite 
possible that several colours will be assigned to v. However, it turns out that 
this possibility does not pose a serious problem. If more than one colour 
appears on v, then we simply remove all of them from v - regardless of 
whether they are assigned to any neighbours of v. The probability that v 
receives a second colour, conditional on v receiving at least one colour, will 
be roughly o: which we will choose to be quite small. Thus, the probability 
that v is uncoloured because of a multiple colour assignment is negligible and 
will not have a serious effect on our analysis. Furthermore, we will see that 
there are significant benefits to making the colour assignments independently 
in this way -for example, we will be able to obtain very simple proofs of some 
of our concentration results using the Simple Concentration Bound. 

Remark Here it is important that for a vertex v, we implicitly carry out 
a different activation flip for each colour. Suppose that instead we were to 
activate v with probability o: and then if v is activated, assign each colour 
c E Lv to v independently with probability Pi(v, c). Then the possibility of v 
receiving multiple colours, given that it is activated, would be !?(1) which is 
large enough to affect our analysis. 
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13.1.4 A Complication 

The way in which we define our assignment probabilities creates a complica
tion which we have overlooked thus far: 

Complication: Some of the probabilities might become too large. 

As it stands, there is nothing preventing the value of Pi ( v, c) from exceed
ing one, as it might if Pi- 1 (v,c) > Keepi_ 1 (v,c). Obviously, such a situation 
would be problematic. In fact, it turns out that problems arise in proving 
some of our concentration bounds even if Pi ( v, c) rises up to around h. 

To avoid these problems, we will introduce a restriction which prevents 
any Pi(v,c) from exceeding p = ,1-ll/l2 . If Pi(v,c) reaches p then c will 
become problematic for v and we will no longer allow c to be assigned to v 

(although for technical reasons, it will be convenient to keep Pi(v,c) = p 
rather than to set Pi ( v, c) = 0). We will provide more details of this in the 
next section. 

Most of the work in the proof of Theorem 13.1 will be to show that for 
each vertex v, very few assignment probabilities reach Pi(v,c) = p. 

In the next section we will give a more thorough description of our proce
dure, including the details of how we keep the assignment probabilities from 
exceeding p. We then show how to use this procedure to prove Theorem 13.1. 

13.2 The Procedure 

13.2.1 Dealing with Large Probabilities 

We start by formally describing how we keep the assignment probabilities 
from exceeding p = L:\- 11 I 12 . 

If p( v, c) is ever increased above p, then we set p( v, c) = p, and we will 
keep p( v, c) = p for every subsequent iteration. 

This creates a problem in trying to maintain property (13.3). Ifpi(v, c)= p 
then Pi+ 1 ( v, c) cannot exceed Pi ( v, c). Thus, if there is a chance that c will 
be removed from Lv during iteration i, i.e. that Pi+l ( v, c) = 0, then we have 
E(Pi+l(v,c)) <pi(v,c) which violates (13.3). 

To deal with this problem, we insist that Pi+l ( v, c) cannot be set to 0, 
i.e., p1(v,c) will be fixed at p for every iteration j 2 i. Of course, it is 
possible that c might be assigned to, and even retained by, a neighbour of v 
at some point in the future, and yet this fact will never be reflected by setting 
p( v, c) = 0. To avoid conflicts with such neighbours, we will never allow c to 
be assigned to v in any future iteration. However, it will be very convenient 
to keep p( v, c) = p in order to continue to satisfy (13.3). 

Thus, at iteration i, for each vertex v we define the set of big colours 

B;(v) = {c: Pi(v,c) = p}, 
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and we do not allow any colour in Bi ( v) to be assigned to v. 
We must make one more slight adjustment in the way that we increase 

Pi(v, c) in order to maintain (13.3). If Pi(v, c) < p < Pi(v, c)/Keepi(v, c), then 
we define 

P;(~,c) -Keep;(v,c) 
Eqi ( v, c) = -----'P"----=---,--,--------

1 - Keepi( v, c) 

If c is not assigned to any neighbour of v during iteration i, we set Pi+1 ( v, c) 
= p, as usual. If c is assigned to a neighbour of v then we set Pi+ 1 ( v, c) = p 
with probability Eqi ( v, c) and we set Pi+ 1 ( v, c) = 0 otherwise. Thus, the 
probability that Pi(v, c) is set top is Keepi(v, c)+(1-Keepi(v, c)) xEqi(v, c)= 
Pi(v,c)jp, and so (13.3) holds. 

13.2.2 The Main Procedure 

We set K = 1, i.e. we set the activation probability to be a = ln1.!l. (If we 
were interested in optimizing the constant term in our main theorem, as we 
were in Chap. 12, then we would need to be more careful in our choice of K.) 

Other than the occasional extra coin flip when Pi ( v, c) is particularly close 
top, there are no equalizing coin flips in our procedure. 

In summary, each iteration i of our procedure is as follows: 

1. For each uncoloured vertex v, and colour c ~ Bi(v), we assign c to v with 
probability ln1.!lPi(v, c). 

2. For each vertex v and colour c ~ Bi(v), if c is assigned to at least one 
neighbour of v, then 
- ifpi(v,c)/Keepi(v,c) ~psetpi+1(v,c) =0, 
- else set Pi+l ( v, c) = p with probability Eqi ( v, c) and set Pi+1 ( v, c) = 0 

otherwise. 
3. If cis assigned to v, and either (i) cis assigned to a neighbour u E N(v), 

or (ii) another colour is also assigned to v, then we remove c from v. 
Otherwise v retains c. 

4. If p;(v, c)> 0 and if Pi+ 1(v, c) was not updated in step 2, then 
- if Pi( v, c) /Keepi ( v, c) ::; p then set Pi+l ( v, c) =Pi( v, c) /Keepi ( v, c), 
- else set Pi+l(v,c) = p. 

13.2.3 The Final Step 

Initially, Pl(v,c) = b for all v,c and so H1(u,v) = C x (b) 2 = b for every 
edge uv. Since we have E( Hi+ 1 ( u, v)) = Hi ( u, v) for every iteration i and this 
variable turns out to be strongly concentrated, we will be able to ensure that 
Hi ( u, v) is never greater than ~. We will also ensure that the size of Bi ( v) 
never exceeds l~fi(1 + o(1)). 

We will continue our procedure until the maximum degree of the subgraph 
induced by the uncoloured vertices is at most g, at which point we will be 
able to complete the colouring as follows: 
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For each uncoloured vertex v, we will remove B ( v) from Lv and scale 
p( v, c) for every other c E Lv so that the assignment probabilities sum to 1. 
That is, for each c E Lv- B(v) we set 

*( ) p(v, c) pvc-=--'----.....:.._-:-----:-
' - LcELv-B(v) p(v, c) 

We then assign to v a single colour chosen from this normalized distribution, 
i.e. v receives c with probability p*(v,c). 

SinceBi(v):::; l~fi(l+o(l))andLcP(v,c) ;:::;j l,wehaveLcELv-B(v)p(v,c) 

:2: ~and so p*(v,c):::; 2p(v,c). 
For each edge uv we define Eu,v to be the event that u and v are both 

assigned the same colour. 

Pr(Eu,v) = I>*(u, c)p*(v, c) :S: 4 l:p(u, c)p(v, c)= 4H(u, v) < ~-
c c 

Since the maximum degree of the subgraph induced by the uncoloured ver
tices is at most ~, each of our events is mutually independent of all but at 

most i;; other events (namely those corresponding to the edges which share 
an endpoint with uv). Therefore a straightforward application of the Local 
Lemma implies that with positive probability none of these events hold, i.e. 
that we have successfully completed our colouring. 

13.2.4 The Parameters 

We will keep track of four parameters. We have already mentioned that the 
first three are important: 

defined for each vertex v to be 2::: Pi ( v, c) 
c 

Hi(u,v)- defined for each edge uv to be l:Pi(u,c)pi(v,c) 
c 

defined for each vertex v to be the number of uncoloured 

neighbours of v at the beginning of iteration i 

The final parameter is required to bound the size of Bi ( v). There are 
a number of ways that we might do this, but the simplest way is to focus on 
what is known as the entropy of the assignment probabilities: 

Q; ( v) = - 2::: Pi ( v, c) In Pi ( v, c) , 
(' 

where we take Pi(v, c) lnpi(v, c) = 0 if p;(v, c) = 0. Note that Q;(v) is non
negative since lnpi(v, c) is never positive. 
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Roughly speaking, Q i ( v) measures how widely the assignment probabili
ties vary - the more they vary, the smaller their entropy will be. For example, 
on one extreme, when there is only one non-zero term and it is equal to 1, 
Q = 0, and on the other extreme, when all C terms are equal to b, Q =InC. 
So intuitively, if Qi(v) is not too small, then the values of Pi(v, c) don't vary 
too much, and so not very many of these values are as high as p. Later on, 
we will look more precisely at how a bound on Qi(v) yields a bound on the 
size of Bi(v). 

As usual, our main steps are to bound the expected values of these param
eters after each iteration, and then to show that they are highly concentrated. 
In doing so, we will show that with positive probability, at the beginning of 
each iteration we satisfy the following property: 

Property P: For each uncoloured vertex v and neighbour u E N(v), 

Ci(v) = 1 + 0 (Ll;/lO) 

1 1 
Hi(u,v) ~ C + CLl1/10 

Di(v) ~ Ll x (1- 51!Ll) i-
1 

1 
Qi(v) 2 Q1(v)- 10 lnLl. 

Our two main lemmas are: 

Lemma 13.6 If at the beginning of iteration i we satisfy Property P, then 
for every uncoloured vertex v and edge uv, we have 

(a) E(Ci+1(v)) = Ci(v); 
(b) E(Hi+1(u,v)) = Hi(u,v). 
(c) E(Di+1(v)) ~ Di(v)(1- 31~,1); 
(d) E(Qi+1(v)) 2 Qi(v)- ln2Ll X ~;. 

Lemma 13.7 For each iteration i, uncoloured vertex v and edge uv we have 

(a) Pr (ICiH(v)- E (Ci+l(v)) I> Ll}16 ) ~ Ll-5; 

(b) Pr (1Hi+1(u,v)- E(HH1(u,v))l > c1113 ) ~ Ll-5; 

(c) Pr(IDi+l(v)- E(Di+l(v))l > Ll213) ~ Ll-5; 

(d) Pr (1Qi+1(v)- E(Qi+l(v))l > ~~~) ~ Ll-5. 

These two lemmas yield our main Theorem: 

Proof of Theorem 13.1. We continue our procedure for i* iterations, where i* 

is the minimum integer for which Ll (1- 51~,1( < C/64. 
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Hence i* = O(ln Llln ln Ll). Via iterative applications of the Local Lemma, 
mimicking the proof used in Chap. 12, Lemmas 13.6 and 13.7 yield that 
we can indeed preserve property P for this many iterations, and that more 
strongly, with positive probability, for every vertex v, edge uv, and iteration 

1 :::: i :::: i*' 

C;(v) =1+0(.:1~/6 ) 
1 2i 1 1 

H;(u, v) ::; C + CLl1/3 < C + CLl1/10 

( 
2 )i-1 ( 3 )i-1 

D;(v) < 1--- Ll+iLl213 < 1--- Ll 
- 3lnLl 5lnLl 

Q (~ 2Dj ) ilnLl 
Q;(v) 2 1 - ~ ClnLl - .:1! 

]=1 

1 i-1 ( 3 )j-1 ilnLl 
> Q1 - 80 L 1 - 5ln Ll - Ll! 

j=1 

1 
> Q1- -lnLl. 

40 

Note that our bound on D; and our choice of i* ensures that D;* ( v) ::; ~ for 
every v. 

We will now use our bound on Q;(v) to obtain a bound on IB;(v)l. 
Our strategy will be to show that each colour in B; ( v) contributes roughly 
p x A lnLl to the total change in entropy Q1(v)- Q;(v). Since this change 
is at most io ln Ll, it follows that I B; ( v) I is at most roughly to x ~, or 
more importantly, that the total weight of the colours in B; ( v) is at most 
roughly 130 . 

The most straightforward way to express Q1 ( v) - Q;( v) is as the sum: 
LcP1 ( v, c) ln(p1 ( v, c)) -Pi ( v, c) ln(p;(v, c)). However, the terms of this sum 
turn out to be somewhat awkward to deal with, and so we will simplify 
things by rewriting Q1 ( v). We can look at the entropy as a weighted sum of 
the logarithmic terms. Since, in QI( v ), these logarithmic terms are all equal 
(i.e. since p1 ( v, c) is the same for each colour c), we are free to change the 
weights, as long as their sum is approximately the same. In particular, since 

C; ( v) = 1 + 0 ( Ll- It) x C 1 (v), we can reweight the sum according to the 

vector Pi ( v) as follows: 

c 

=- LP;(v,c)ln(p1(v,c)) ±0 (L1-ItQ1(v)), 
c 
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and so 

Ql (v) - Qi(v) = ±0 ( .,1--fa Q1 (v)) + LPi(v, c) ln(pi(v, c)) -ln(pl (v, c)) 
c 

=±0 (L1--fa lnL1) + LPi(v,c)ln(pi(v,c)/Pl(v,c)). 
c 

Each colour c E Bi(v) contributes fJln(fJ/tJ) > p x 112 lnL1 to the latter 
sum. Furthermore, if Pi ( v, c) is not zero then Pi ( v, c) > Pl ( v, c) and so there 
are no negative terms in that sum. Therefore, we have 

and so 

IBiiP S 1
3
0 + o(1). 

Since i* = O(lnL1lnlnL1), Hi* < 2/C and so, as described in Sect. 13.2.3, 
our final stage will successfully complete the colouring. 0 

It only remains to prove Lemmas 13.6 and 13.7 which we will do in the 
next section. 

13.3 Expectation and Concentration 

Proof of Lemma 13.6. We know that (a) follows from (13.3), and we deal 
with the colours in Bi(v) in a way that ensures that (13.3) continues to hold. 
Now, (b) is simply (13.5). We need to reprove this fact, taking into account 
the way that we deal with colours in Bi(v). This is straightforward; we leave 
the tedious but routine details to the interested reader. 

(c) Consider any vertex u. We let A1 be the event that u is assigned at least 
one colour, A2 be the event that u is assigned at least 2 colours, and A3 be the 
event that some colour is assigned to both u and one of its neighbours. Clearly 
the probability that u retains a colour is at least Pr(A1)- Pr(A2)- Pr(A3 ). 

Now, 

As was shown in the proof of Theorem 13.1, Lc\i!B;(v) Pi(c) ::::: 170 - o(1), 
so by the simplest case of Inclusion-Exclusion, 
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Finally, 

Pr(A3).:::; L L Cn1L1r Pi(u,c)pi(w,c) 
c wEN(u) 

= Cn1L1r 2: Hi(u,w) 
wEN(u) 

:S Cn1L1) 2 ~ + 0 ( C,d~/10) 
1 

< 150 ln .1· 

Therefore, the probability that a particular uncoloured neighbour u of v 
retains a colour is at least 3 1~ Ll and so (c) follows by Linearity of Expectation. 

(d) Recall that for each c ~ Bi ( v), there is K (c) :S Keepi ( v, c) such that 

Therefore, 

{ 
0, 

Pi+l(v,c) = Pi(v,c) 
K(c) ' 

with probability 1- K(c) 
with probability K(c). 

E(Pi+l ( v, c) lnpi+l ( v, c)) = K(c) ( p~~~~) ln(pi( v, c)/ K(c))) 

= Pi ( v, c) (ln Pi ( v, c) - ln K (c)), 

and so, since for each c E Bi( v ), Pi+l ( v, c) =Pi( v, c) = p, we have 

E(Qi+l(v)) ~ Qi(v)- L -pi(v,c)ln(K(c)) 
c~Bi(v) 

~ Qi(v)- L -pi(v, c) ln(K(c)). 
c 

Using the fact that K(c) :S Keepi(v,c) = f1uEN(v)(1- Pi(u,c)/lnL1) along 

with the fact that ln(1 - x) ~ -x- x 2 for x sufficiently small, we have 

E(Qi+l (v)) ~ Qi(v)- L L Pi(v, ;~~(u, c) x (1 + 0 (ln- 1 .1)) 
c uEN(v) 
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1 
= Qi(v)- ln.1 L Hi(u,v) x (1 + 0 (ln- 1 .1)) 

uEN(v) 

2Di 
2: Qi(v)- Cln.1' 

as required. D 

And finally, we outline the fairly simple concentration details: 

Proof outline of Lemma 13. 7. For each colour c E Lv, we let 'Tc be the set 
of random choices which determine the value of Pi+1(v,c). Note that for 
any distinct colours c1, c2, we have that 'Tel' /c2 are disjoint. So for each c, 
we can combine the choices in 'Tc into a single trial and these trials will 
be independent. By doing this, parts (a) (b) and (d) follow easily from the 
Simple Concentration Bound. 

To prove part (c), we first use the Simple Concentration Bound to show 
that the number of neighbours of v which receive at least one colour is suffi
ciently concentrated. Then we prove that the number of these neighbours 
which are uncoloured is sufficiently concentrated. To do this, we let Xv 

I 

be the number of neighbours of v which are uncoloured, and we let Xv 
be the number of neighbours u of v such that (i) u is assigned a colour 
which is assigned to at most .11110 neighbours of v and (ii) u is uncoloured. 

I 

A straightforward application of Talagrand's Inequality implies that Xv is 
sufficiently concentrated, and an easy first moment argument shows that 
Pr(Xv "#X~)< .1-6 . (The first moment argument uses the Chernoff Bound 
and the fact that .1 x p is significantly less than .11110 .) This implies that Xv 
is sufficiently concentrated. We leave the details to the reader. D 

Exercises 

Exercise 13.1 Show that for every positive integer k, there exists a triangle 
free graph G with x( G) =col( G) = k. 



14. The List Colouring Conjecture 

In this chapter we present a second application of an iterative variant of the 
Naive Colouring Procedure: Kahn's proof that the List Colouring Conjecture 
is asymptotically correct, i.e. that for any graph G of maximum degree Ll, 
x~(G) = Ll+o(Ll) (89]. The proofthat we present here is based on the refine
ment of Kahn's argument found in (123], where the o(Ll) term is tightened 
to obtain: 

Theorem 14.1 For any graph G with maximum degree Ll, x~(G) ~ Ll + 
4v'Lllog4 Ll. 

Remark The exponent "4" is not optimal, and the reader will notice that it 
can be easily reduced. However, this approach will not remove the poly(log Ll) 
term entirely, and so prove x~(G) ~ Ll + O(.JLl). Thus, the best known 
bound on the list chromatic index is still worse than even Hind's 1990 bound 
on the total chromatic number [78] - more evidence that the List Colouring 
Conjecture is significantly harder than the closely related Total Colouring 
Conjecture! 

Kahn showed that his result also holds for k-uniform linear hypergraphs, 
for any constant k. (Recall that a hypergraph is k-uniform if every edge has 
size k, and it is linear if no pair of vertices lies in more than one edge.) In [123] 
the o(Ll) term is tightened to show that 

Theorem 14.2 For any k-uniform linear hypergraph H, x~(H) ~ Ll + 
Ll1--k poly(log Ll). 

In both [89] and [123] the reader can find further generalizations to the 
case of those non-linear hypergraphs in which no pair of vertices lies in many 
edges. In [75], Haggkvist and Janssen use a different technique (including 
one probabilistic lemma) to prove that for graphs x~(G) ~ Ll+O(Ll~ logLl). 
Their argument does not extend to hypergraphs. 
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14.1 A Proof Sketch 

14.1.1 Preliminaries 

The proof of Theorem 14.1 is very similar to that of Theorem 12.1, and we 
will concentrate on the points at which it diverges from that proof. We carry 
out several iterations of the Naive Colouring Procedure, this time colouring 
the edges of our graph rather than the vertices. We prove that with positive 
probability we colour enough edges that the graph induced by the uncoloured 
edges can be easily coloured in one final stage. 

As usual, we take L1 to be at least as large as some constant Llo, which 
we do not name, rather stating that it is large enough that several implicit 
inequalities hold. Also, we assume that G is .1-regular, which is permissible 
by the construction in Sect. 1.5. Initially, each edge e of G has a list .Ce 
containing L1 + 4J:1log4 L1 colours which are acceptable for e. We will often 
use Le ~ .Ce to denote a set of colours that are available for e, at a particular 
point of our procedure. 

We use L(G) to denote the line graph of G, and so we are list colouring 
the vertices of L(G). The maximum degree of L(G) is easily seen to be 2.<:1-2, 
and so it is easy to list colour L( G) greedily if each list has at least 2.1 - 1 
colours. However, we wish to use lists of half this size. This leads us to the 
first main difference between our situation here, and that in Chap. 12: 

Difference 1: The number of colours initially available at each vertex is of 
the same asymptotic order as the degree. Because of this, we will not need 
to use activation probabilities here. Unfortunately, there is a price to be 
paid for not using activation probabilities - we will not be able to use the 
Wasteful Colouring Procedure. In other words, we will remove a colour from 
the list Le if that colour is retained by an incident edge, not if it is merely 
assigned to an incident edge. As a result, the expected value computations 
and the concentration proofs are significantly more complicated. 

Remark Although we do not need to use activation probabilities here, we 
might have chosen to do so. This would have allowed us to use the Wasteful 
Colouring Procedure, and simplified some of the analysis, thus depriving the 
reader of learning how to analyze a more delicate procedure. In Exercise 14.2, 
the reader can look at the alternate approach. 

14.1.2 The Local Structure 

As we saw in Chap. 10, the Naive Colouring Procedure works well if a graph 
is sufficiently sparse. It is not hard to verify that each neighbourhood in L( G) 
contains at most .12 edges, and so Exercise 10.2 implies that the list chromatic 
number of L(G) is at most .1(2- ~).Unfortunately, the sparseness of L(G) 
alone will not be enough to reduce this bound all the way to L1 + o(Ll), as 
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desired, since there are graphs which are just as sparse but have chromatic 
number approximately )2.<:1 (see Exercise 14.1). So we will have to look more 
closely at the structure of the neighbourhoods in L(G). 

Fig. 14.1. The Local Structure 

Note that for each vertex v of G the edges incident to v induce a clique 
of L(G) which we denote by Cv. Furthermore, for each edge e = uv of G, 
CunCv = e and the edges of L( G) between Cu-e and Cv -e form a matching. 
This turns out to be the local structure which causes the Naive Colouring 
Procedure to perform well on line graphs. Intuitively, the evolution of the list 
of acceptable colours on an edge e = uv depends heavily on the evolution of 
the lists on edges in Cu - e and Cv - e but is essentially independent of the 
evolution of all other lists. Furthermore, the evolution of the lists in Cu - e is 
essentially independent of the evolution of the lists in Cv - e, because there 
are so few edges between these cliques. 

Our analysis focuses on the set C = {Cvlv E V(G)}. At any point during 
our procedure, we use Lv C Ue,v.Ce to denote a set of colours which do not 
yet appear on any edges in Cv. For any edge e = uv the set of colours which 
are acceptable for e is Lv n Lu. For each c E Lv, we let Tv,c be the set of 
uncoloured edges of Cv for which c is still acceptable, i.e. the set of uncoloured 
edges e = uv such that c E Lu. 

Since each pair of cliques Cu, Cv shares at most one vertex and has 
a relatively small number of edges between them, each list Lv will evolve 
nearly independently of the other lists. A similar property will hold for the 
sets Tv,c· These properties will be crucial to our analysis. 

14.1.3 Rates of Change 

As in Chap. 12, we will keep track of how these parameters change as we 
perform several iterations of our Naive Colouring Procedure. The second 
major difference here concerns the rates at which they change: 

Difference 2: The parameters decrease at approximately the same rate. In 
Chap. 12, the sets corresponding to Tv,c were initially much larger than the 
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lists Lv, but the sizes of these sets dropped much more quickly than the 
sizes of the lists, and so eventually each Lv was significantly larger than 
each Tv,c· In this chapter, the sets drop at approximately the same rate, and 
this requires a more delicate analysis. 

To gain an intuition as to why this is the case, we will consider an iteration 
where every list has size exactly L, and every Tv,c has size almost L. The 
analysis for the general situation is essentially the same. 

The first step is to compute the expected number of colours which remain 
in each Le and the expected number of edges which remain in each Tv,c· 

The probability that an edge e is assigned a particular colour c E Le is 
exactly t. The probability that e then retains c, i.e. that c is assigned to no 
other vertex in Tv,c or Tu,c, is (1- -f)ITv,ci+ITu,cl ~ ~- Since no two edges 
in Tv,c can both retain c, the probability that cis removed from Lv, i.e. that 
exactly one edge in Tv,c retains c, is approximately \Tv,c\ x t X ~ ~ ~-

Because there there are so few edges between the cliques inC, it turns out 
that the colours retained by edges in two different elements of C are largely 
independent. In particular, for an edge e = uv and colour c E Le we will 
show that the probability that c is not retained by any edge in Cu U Cv is 
approximately (1 - ~ )2 , and so: 

14.3 The expected number of colours which remain in Le is approximately 
\Le\(1- ;:\-)2. e 

Recall that Tv,c is the set of uncoloured edges e = uv such that c E Lu. 
If cremains in Lv then such an edge e remains in Tv,c iff (i) e does not retain 
its colour c' -I- c, and (ii) c is not removed from Lu. Since c' -I- c, these two 
events are essentially independent. Furthermore, as shown above, each occurs 
with probability roughly 1 - ::\-. Thus, we will be able to show that: 

e 

14.4 The expected number of edges which remain in Tv,c, conditional on c 
remaining in Lv, is approximately \Tv,c\(1- ~ )2 • 

Now, (14.3) and (14.4), along with a proof that the corresponding vari
ables are highly concentrated, imply that in our iterative procedure \Tv,c\ and 
\Le\ decrease at about the same rate, as claimed. 

Fortunately, each Tv,c is initially slightly smaller than each Le. Since 
these sizes will decrease at approximately the same rate, we will be able 
to ensure that at the beginning of each iteration we still have that each Tv,c 
is slightly smaller than each Le. However, we will never be able to reach 
a situation where every Tv,c is significantly smaller than each Le and this 
makes it difficult to apply Theorem 4.3 at the end of the procedure. 

To overcome this problem, we will have to perform a preprocessing step. 

14.1.4 The Preprocessing Step 

For each edge e = uv, we will choose a set of colours Reservee ~ Ce which we 
will save to use on e during the final stage of our procedure. To ensure that 
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we can use these colours during our final stage, we will have to forbid every 
edge in Cu U Cv from receiving any colours from Reservee during the main 
part of the procedure. The simplest way to do this is to remove Reservee 
from Lu and Lv. 

Thus, for each edge e' E Cv, we will remove Reservee' from Lv. If these 
sets Reservee' are chosen independently, then this could result in a very large 
number of colours being removed from Lv. To avoid this problem, we wish to 
ensure that the sets Reservee' with e' E Cv are somewhat similar. The best 
way to do this is as follows: 

For each vertex v, we will choose a set of colours Reservev. For each edge 
e = uv, we set Reservee = Reserveu n Reservev. We then delete Reservev 
from Lv, thus ensuring that no edge in Cv can receive any colour from 
Reservev during our main procedure. We save the details as to how these 
sets are chosen until the next section (in fact, the next page). 

We will choose these sets so that we remove at most 2v'Lllog4 ..1 colours 
from any Le. Since the size of Leis ..1+4v'Lllog4 ..1, we can afford to do this. 
Furthermore, each Reservee will have size at least ~ logs ..1. 

For each vertex v and colour c, at any point during our procedure we will 
denote by Rv,c the set of uncoloured edges e = vw such that c E Reservew. 
Initially, we will have IRv,cl = O(v'3log4 ..1). To see how the size of Rv,c 
evolves after several iterations of our procedure, observe that since each edge 
in Rv,c remains uncoloured with probability approximately (1- ~),we have 
the following: 

14.5 The expected number of edges which remain in Rv,c is approximately 
1Rv,cl(1- ~ ). 

As we will see, this variable is highly concentrated, and so IRv,cl decreases 
by a factor of about (1- ~) per iteration. Thus it decreases at the square root 
of the rate at which ILel and lTv cl decrease. So by the time lTv cl decreases 7 , , 
from ..1 to log ..1, the size of each Rv,c will have decreased to roughly 

(
l 7 ..1) 1/2 

v'L1log4 ..1 x 0~ = log7·5 ..1. 

Thus, when we finish our iterative procedure, for each colour c, each vertex 
and hence each edge will be incident with O(log7·5 ..1) edges f with c E 

Reserve!. Since IReserveel ~ ~logs ..1, Theorem 4.3 guarantees that we will 
be able to complete our colouring by assigning to each uncoloured edge e, 
a colour from Reservee. 

In the next 3 sections, we present the areas of our proof which differ 
from the proof of Theorem 12.1 -the preprocessing step and final stage, the 
expected value computations which yield (14.3), (14.4) and (14.5), and the 
concentration details. After that, it is straightforward for a reader familiar 
with Chap. 12 to complete the proof. In order to avoid repetitiveness, we 
will omit most of the remaining details and leave them as an exercise. If the 
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reader is keen enough to work them out, she will be beset by a strong feeling 
of deja vu. 

14.2 Choosing Reservee 

Recall that we are given a Ll-regular graph G where each edge has a list .Ce 
of Ll + 4vLllog4 Ll available colours. For each vertex v, we choose a set of 
colours Reservev which cannot be used on any edge incident with v until the 
final stage. For each edge e = uv, we set Le = .Ce - (Reserveu U Reservev) and 
we set Reservee = .Ce n (Reserveu n Reservev)· Until the final stage, each e 
can only receive a colour from Le. Thus, when we reach the final stage, all 
colours from Reservee will be available to e as none of them will have been 
used on an incident edge. 

Lemma 14.6 Given any Ll-regular graph G, along with a list of available 
colours .Ce of size Ll + 4vLllog4 Ll for each edge e, we can choose a set of 
colours Reservev for each vertex v, such that for each edge e = uv and colour 
c E Reservev : 

(a) I.Ce n (Reserveu u Reservev)l::; 3vLllog4 Ll, 
(b) I.Ce n (Reserveu n Reservev) I 2: ~ log8 Ll' and 
(c) l{w E Nv: c E Reservew}l::; 2vLllog4 Ll. 

Proof For each vertex v and colour c s.t. c E .Ct for some edge f incident 
with v, we place c into Reservev with probability p = log4 Ll/vLl. For each 
edge e, vertex v and colour c we define Ae, Be and Cv,c to be the event that e 
violates condition (a), e violates condition (b), and v, c violate condition (c), 
respectively. 

Note that 

E(I.C(e) n (Reserveu u Reservev)l)::; I.C(e)l X 2p ~ 2vLllog4 Ll 
E(I.C(e) n (Reserveu n Reservev)l) = I.C(e)l X p2 ~ log8 Ll 

E(l{w E Nv: c E Reservew}l)::; Ll X p ~ vLllog4 Ll. 

Thus, it is a straightforward application of the Chernoff Bound to show 
that the probability of any one event is (much) less than e-log2 Ll. Further
more, a straightforward application of the Mutual Independence Principle 
verifies that each event E is mutually independent of all those events which 
do not have a subscript at distance less than three from some subscript of E. 
Using the fact that for any vertex v, Cv,c is defined for fewer than 2.12 

colours c, we see that each event is mutually independent of all but fewer 
than .15 other events. Therefore, our lemma follows from the Local Lemma. 
We leave the details for the reader. D 
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14.3 The Expected Value Details 

In this section, we carry out the expected value computations, proving (14.3), 
(14.4) and (14.5). Recall that we are performing a single iteration of our 
procedure (not necessarily the first). Our iterative analysis guarantees that 
at the beginning of this iteration, every list Le has size at least L, and every 
set Tv,c has size at most T where T is almost but not quite as large as L. 
Specifically, we will show that we can guarantee 

14.7 L- yLlog2 ..:1 2:: T 2:: L- 4vLlog4 ..:1. 

Our procedure terminates if L becomes too small, so we also have: 

14.8 L 2:: log7 ..:1. 

We must be specific about how each iteration proceeds. As in Chap. 12, we 
remove colours from some of the lists Le so that they all have size exactly L. 
Also, we will make use of equalizing coin flips which equalize (i) the prob
ability of an edge retaining a colour and (ii) the probability of a colour c 
remaining in a list Lv. 

Specifically, for each edge e = (u, v) and colour c E Le, the probability 
that no edge incident to e is assigned c is 

( 1) ITv,ci+ITu,cl-2 
P(e,c)= 1-L 

> e-(ITv,ci+ITu,ci-2)/L _ 0 (±) 
> e-2 X ( elog2 VLl/L- 0 ( ±)) 
> e -2 x ( 1 + log~ 01 _ 0 ( ±)) 
> e-2. 

In our equalizing flip, if e is assigned c and if no incident edge is assigned c 
then we remove c from e with probability Eq(e,c) = 1-~1( ) > 0. This e e,c 

ensures that the probability that e retains c, conditional on e receiving c is 
precisely P(e,c) x (1- Eq(e,c)) = e-2 . 

Similarly, for every colour c E Lv, the probability that c is not retained 
by any edge ofTv,c is Q(v,c) = 1- ~ITv,cl > 1-e-2 , since each edge ofTv,c 

retains c with probability ~ and it is impossible for two of these edges to 
both retain c. If none of these edges retain c then we remove c from Lv with 

probability Vq(v,c) = 1- ~(~~~.This ensures that the probability that c 
remains in Lv is precisely Q(v,c) x (1- Vq(v,c)) = 1- e-2. 
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In summary, an iteration proceeds as follows: 

1. For each uncoloured edge e = uv, we remove !Lei - L colours from Le 
(where these colours are chosen arbitrarily). Of course when we remove 
colour c from Le, we also remove e from Tu,c and Tv,c· 

2. For each uncoloured edge e, assign to e a colour chosen uniformly at 
random from Le. 

3. Uncolour every edge e which is assigned the same colour as an incident 
edge. 

4. If e is assigned a colour c and does not lose that colour in step 3 then 
uncolour e with probability Eq(e,c). 

5. For each vertex v and colour c E Lv, if cis retained by some edge in Tv,c 
then we remove c from Lv. If cis not retained by an edge in Tv,c then we 
remove c from Lv with probability Vq(v, c). 

For convenience, we will use Lv to denote the contents of the set Lv after 
• I 

step 1, and we will use Lv to denote the contents of Lv at the end of the 
I I 

iteration. We define Le, Le, Rv,c, Rv,c in the same manner. 
For each vertex v and colour c E Lv, we define Tv,c to be the set of edges 

I 

in Tv,c after step 1. We define Tv,c to be the set of edges uv E Tv,c such 
I 

that (i) uv is still uncoloured at the end of the iteration and (ii) c E Lu. 
(This is similar to our definition of t 1 (v, c) in Chap. 12.) Note that if c E L~ 

I I 

then Tu v contains all uncoloured edges e E Cv such that c E Le. 
We ~ow restate (14.3), (14.4) and (14.5) more precisely. 

14.9 For each vertex v and colour c, E(IR~,cl) = (1- -f.z )IRv,cl· 

14.10 For each edge e, E(IL:I) ::::: (1- -f.z )2 ILel· 

14.11 For each vertex v and colour c E Lv E(IT~,cl) :S (1- -f.z )2 1Tv,cl + 1. 

Remark We could remove the "+ 1" in this last equation by complicating 
the proof somewhat. Since this term is dwarfed by the o(L) terms arising 
elsewhere in our proof, we do not bother. 

Proof of (14.9). This is an immediate consequence of the fact that each edge 
retains the colour it is assigned with probability ~. D 

e 

Proof of (14.10). Consider an edge e = uv. For each colour c E Le, we wish 
I I I 

to show that the probability that c is in Le, i.e. that c E Lu n LV, is at 
least (1 - ~ )2 . Now, the probability that c is in L~ is (1 - ~ ), as is the 

e e 
I 

probability that c is in Lv. Thus, our desired bound would follow if these 
two events were independent. Unfortunately, the events are not independent 
because dependency is created by pairs of incident edges, one in Cu and 
one in Cv, and by edges which are incident to edges in both Cu and Cv. 
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However, we will see that such dependency is very minor and does not affect 
the probability that c is in Le by a significant amount. 

Let Ku, Kv be the events that no edge in Cu - e, respectively Cv - e 
retains c. It turns out that the simplest way to compute Pr(Ku n Kv) is 
through the indirect route of computing Pr(Ku U Kv) which is equal to 
1 - Pr(Ku n Kv)· Now, by the most basic case of the Inclusion-Exclusion 
Principle, Pr(Ku U Kv) is equal to Pr(Ku) + Pr(Kv)- Pr(Ku n Kv)· 

- - IT I+IT l-2 We know that Pr(Ku) + Pr(Kv) = u,c Le v,c , so we just need to 

bound Pr(Ku n Kv)· 
Pr(Ku n Kv) is the probability that there is some pair of non-incident 

edges e1 = uw E Tu,c - e, and e2 = vx E Tv,c - e such that e1 and e2 both 
receive and retain c. Note that, as e1, e2 are non-incident, w =f. x. Now, for 
each such pair we let Rq ,e2 be the event that e1 and e2 both retain c. 

Since 

1 ( 1) ITu,cUTv,cUTw,cUTx,cl-2 

Pr(Rq,e2 ) = - 1--
£2 L 

x (1- Eq(e1,c))(1- Eq(e2,c)) 

ITu,c U Tv,c U Tw,c U Tx,cl < ITu,cl + ITw,cl- 1 + ITv,cl + ITx,cl- 1, 

we obtain: 
1 

Pr(Rq,e2 ) > 12 P(e1,c)P(e2,c)(1- Eq(e1,c))(1- Eq(e2,c)) 

1 
£2e4 

It is easy to see that there are at most T incident pairs e1 E Tu,c - e, e2 E 

Tv,c- e, as each edge in Tu,c- e is incident with at most one edge in Tv,c- e. 
Therefore the number of nonincident pairs e1 E Tu,c - e, e2 E Tv,c - e, is at 
least (ITv,cl- 1)(1Tu,cl- 1)- T. 

For any two distinct pairs (e1, e2) and (e~, e;), it is impossible for Rq,e2 

and Re~ ,e; to both hold. Therefore the probability that Rq ,e2 holds for 
at least one non-incident pair, is equal to the sum over all non-incident 
pairs e1, e2 of Pr(Rq,e2 ) which by the above remarks yields: 

P (K K) (ITv,cl- 1)(1Tu,cl- 1)- T 
r u n v 2': £2e4 

Combining this with our bound on Pr(Ku) + Pr(Kv), we see that: 

Pr(K u K) > 1 _ (ITu,cl + ITv,cl- 2) + ((1Tv,ci-1)(1Tu,cl-1)- T) 
u v - Le2 £2e4 

> ( 1 _ ITu,cl- 1) ( 1 _ ITv,cl-1) __ 1_ 
Le2 Le2 Le4 

> (1 _ ITu,cl) ( 1 _ ITv,cl) . 
Le2 Le2 
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Finally, 

I 

Pr(c E Le) = Pr(Ku U Kv)(1- Vq(u,c))(1- Vq(v,c)) 

~ ( 1- ~~:;I) (1- Vq(u, c)) x ( 1- ~~:;I) (1- Vq(v, c)) 

= Q(u,c)(1- Vq(u,c)) x Q(v,c)(1- Vq(v,c)) 

= ( 1 - e12 r 
(14.10) now follows from Linearity of Expectation. 0 

Proof of (14.11}. We will show that for each e = uv in Tv,c, we have: Pr(e E 

T~,c) ~ (1- ~ )2 + t· The result then follows from Linearity of Expectation, 
since ITv,cl ~ L. 

We define A to be the event that e does not retain its colour and B to 
be the event that no edge in Tu,c retains c. We wish to bound Pr(A n B). 
Once again, we proceed in an indirect manner, and focus instead on A n B, 
showing that Pr(A n B)~ 1~:·4 1 + j;, thus implying 

Pr(A n B) = Pr(A) - Pr(B) + Pr(A n B) 

< ( 1 _ ~) _ ITu,cl + ITu,cl + ..!._ 
- e2 £e2 £e4 L 

= ( 1 _ ~) ( 1 - ITu,cl) + ..!._ 
e2 Le2 L 

Therefore 

( 1 ) 2 1 Pr(e E T~,c) = Pr(A n B)(1- Vq(u, c)) :::; 1- e2 + L' 

as required. 
For each colour dELe and edge f = uw in Tu,c- ewe define Z(d, f) to 

be the event that e retains d and f retains c. For each d -# c, we have 

1 ( 2) I(Tv,dnTw,c)+(Tu,dnTu,c)-e- fl 
Pr (Z(d,f)) = £2 1- L 

( 1) I(Tv,dUTw,c)+(Tu,dUTu,c)-(Tv,dnTw,c)-(Tu,dnTu,c)-e- fl 
X 1--

L 

x (1-Eq(e,d))(1-Eq(f,c)) 
< __!__ (1 - ..!..) I(Tv,dUTw,c)+(Tu,dUTu,c)-e-fi+I(Tv,dnTw,c)+(Tu,dnTu,c)-e-fl 

£2 L 

x (1- Eq(e,d))(1- Eq(f,c)). 
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Since 

I(Tv,d U Tw,c) + (Tu,d U Tu,c) 

-e- !I+ I(Tv,d n Tw,c) + (Tu,d n Tu,c)- e- !I 
= ITv,d- el + ITu,d- e- /I + ITu,c- e- /I + ITw,c- /I 
~ ITv,dl + ITu,dl + ITu,cl + ITw,cl- 6, 

We obtain: 

1 ( 1) -2 
Pr(Z(d, f)) s £2 1- L P(e, d)P(f, c)(1- Eq(e, d))(1- Eq(f, c)) 

1 

Since the events Z(d, f) are disjoint, we have: 

Pr(A n B) = Pr(e retains c)+ Pr(Z(d, f)) 

14.4 The Concentration Details 

D 

In this section, we will show that the random variables from (14.9), (14.10), 
(14.11) are highly concentrated. In particular, we prove that there exists 
a constant (3 > 0 such that for each a satisfying log Ll < < a < log2 ..::1: 

14.12 For each e E E(G), Pr (IlL~ I- E(IL~I)I > aJL) S cf3a2
• 

14.13 For each vertexv E V(G) and c E Lv, Pr (IIT~,cl- E(IT~,cl)l > aJL) 

S 6e-f3a2 • 

14.14 For each v E V(G) and colour c, if Rv,c > log4 Ll then Pr (IIR~,cl 

-E(IR~,cl)l >a~) S e-f3a2 
· 

Again, we will use Talagrand's Inequality, and so to prove that a vari
able X is concentrated, it will suffice to verify that for 2 particular con
stants k1 , k2: 
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(A) Changing the outcome of a single random choice can affect X by at 
most k1. 

(B) For any s, if X ;:=: s then there is a set of at most k2s random choices 
whose outcomes certify that X;:=: s. 

By Talagrand's Inequality, if these conditions hold then Pr(IX -E(X)I > 
aE(X) 112 ~ e-f3a2 for f3 < 10k12 k and log .1 < < a ~ JE(X). In all three 

1 2 

proofs, the set of random choices made are the colour assignments and the 
equalizing coin flips, just as in Chap. 12. Of course, we can take f3 to be the 
minimum of the values for f3 yielded by the three proofs. 

Proof of (14.14}. This proof is very similar to the proofs of Lemmas 10.4 and 
12.3, upon observing that changing the colour of an edge e E Cv from c1 

to c2 can only cause at most one edge of Rv,c to be uncoloured, since if more 
than one edge of Rv,c - e were assigned c2 then they would all be uncoloured 
regardless of e's change of colour. The reader who has progressed thus far 
should have no trouble completing the details. 0 

Proof of (14.12}. Proving concentration here is more delicate than the corre
sponding result in the previous chapter because we are not using the Wasteful 
Colouring Procedure and so we must analyze the number of colours retained 
on neighbours of e rather than simply the number of colours assigned to these 
vertices. As with our expected value computation, an indirect approach is 
appropriate. 

So for any e = uv, we let X be the number of colours from Le which are 
assigned to and are retained by at least one edge in CuUCv. For 0 ~ k ~ j ~ 2, 
we define Yj,k to be the number of colours which are assigned to an edge in 
exactly j of Cu, Cv and which are removed from an edge in at least k of Cu, Cv 
during step 3 or 4 of the main procedure. Similarly, we define Xj,k to be the 
number of colours which are assigned to an edge in at least j of Cu, Cv and 
which are removed from an edge in at least k of Cu, Cv during step 3 or 4 of the 
main procedure. Note that Y2,k = X2,k and for j < 2, Yj,k = Xj,k - Xj+l,k· 
Making use of the very useful fact that for any w, if a colour is removed from 
at least one edge in Cw then it is removed from every edge in Cw to which it 
is assigned, we obtain that: 

It is straightforward to show that each Xj,k is highly concentrated. First 
of all, changing the colour assigned to any one edge from c1 to c2 can only 
affect whether c1 and/or c2 are counted by Xj,k, and changing the decision to 
uncolour an edge in step 4 can only affect whether the colour of that edge is 
counted by Xj,k· Therefore, condition (A) from above is satisfied with k1 = 2. 

Secondly, if Xj,k ;:=: s, then there is a set of at most s(j+k) outcomes which 
certify this fact, namely for each of the s colours, j edges on which that colour 
appears, along with k (or fewer) outcomes which cause k of those edges to be 
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uncoloured. Therefore, Talagrand's Inequality implies that for each Xj,k we 

have Pr (1xj,k- E(Xj,k)l > tjE(Xj,k)) < e-~'t2 for some constant --y > 0. 

By our expression for X above, if X differs from E(X) by at least 6tv'k 
then some Xj,k must differ from E(Xj,k) by at least tv'k. Since there are six 

2 
variables Xj,k the probability that this occurs is at most 6e-~'t . I.e. we have: 

I I 

Let X be the number of colours removed from Lu or Lv in step 5. That X 
is highly concentrated follows easily from the Simple Concentration Bound. 
We leave it to the reader to fill in the details and, using the fact that IL~I = 
ILel- (X+ X 1

), complete the proof of (14.12). D 

Proof of {14.13). We again proceed indirectly. We let Av,c be the set of edges 
e E Tv,c which do not retain their colours. We let Bv,c be the set of edges 
e = uv in Av,c such that c is retained on some vertex of Tu,c· We let Cv,c be 

I 

the set of edges e = uv in Av,c- Bv,c such that cis removed from Lu because 
of an equalizing coin flip. 

The proof that IAv,cl is highly concentrated is virtually identical to the 
proof of (14.14). The proof that the IBv,cl and ICv,cl are highly concentrated 
follows along the lines of the proof of (14.12). We leave the details as an 
exercise. Since, T~,v = Av,c - (Bv,c + Cv,c), the desired result follows. D 

14.5 The Wrapup 

The remainder of the proof is along the same lines as the proof of Theorem 
12.1. We apply the Local Lemma for each iteration of our procedure to show 
that with positive probability, the size of every set is within a small error of 
the expected size. An argument very similar to that in Lemma 12.5 shows 
that the accumulation of these small errors is insignificant and an extension 
of this argument establishes (14.7) inductively. By continuing our procedure 
until each Le has size approximately ln7 Ll, we have: 

Lemma 14.15 With positive probability, after several iterations of our pro
cedure we have IRv,cl :::; 5ln7·5 Ll for every vertex v, edge e and colour c. 

Proof After i iterations, the size of each Le is approximately Ll(1- ~ )2; 
e 

and the size of each Rv,c is approximately 2v:1"log4 Ll(1- ~);.If i is such that 
the first term is approximately ln 7 Ll, then the second term is approximately 
2ln 7·5 Ll. We leave the remaining details as an exercise. D 

By using the Reserve colours to complete our colouring, we can complete 
the proof of our main theorem. 
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Proof of Theorem 14.1. We will apply Theorem 4.3 to show that we can 
complete our colouring by assigning to each uncoloured edge e, a colour from 
the list Reservee. Recall that each of these lists has size at least ln8 Ll. For any 
colour c, each uncoloured edge e = uv has at most IRu,c U Rv,cl :S 10ln7·5 Ll 
incident uncoloured edges f with c E Reserve f. Therefore Theorem 4.3 ap
plies. D 

14.6 Linear Hypergraphs 

As mentioned earlier, these arguments extend to yield a bound on the list 
chromatic index of k-uniform linear hypergraphs, for any constant k ~ 2, i.e. 
hypergraphs in which every hyperedge has k vertices, and no two vertices lie 
in more than one hyperedge. We will highlight the 3 main parts of the proof 
of Theorem 14.1 which must be modified to yield Theorem 14.2. The rest of 
the extension should be straightforward to the reader who fully understands 
the material in this chapter. 

First note that any such hypergraph H has the same local structure 
that was so helpful in our proof of Theorem 14.1, except of course that 
each hyperedge e = v1 v2 ... Vk now lies in k different Ll-cliques of L(H): 
Cv1 , ..• ,Cvk· 

Modification 1: The expected value computations. The probability 

that edge e retains colour c E Leis now approximately t (1- t)kT ~ ze-k. 
Thus, the probability that exactly one edge in Tv,c retains c is roughly e-k, 
and so the probability that Le retains cis approximately (1-e-k)k. Similarly, 
the probability that an edge e remains in Tv,c, given that cremains in Lv, is 

approximately (1- e-k)k. Thus our analogues of (14.3) and (14.4) are: 

14.16 The expected number of colours which remain in Le is approximately 

JLeJ(1-:k)k. 

14.17 The expected number of edges which remain in Tv,c, conditional on c 

remaining in Lv, is approximately JTv,cl (1- ~f. 
To prove the precise versions of these statements, we again proceed 

indirectly, this time using a more general form of the Inclusion-Exclusion 
Principle. For example, in the proof of (14.16) fore= v1v2 ... vk, we let Ki 
be the event that no edge of Cv; - e retains c, and we use the identity 

k 

Pr(K1 n ... nKk) = L 
j=l Z<:;::{l, ... ,k};IZI=j 
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Modification 2: The concentration bounds. The arguments proving that 
these variables are concentrated become slightly more complex. In particular, 
for 1 ~ i ~ j ~ k we will be interested in Xj,i, the number of colours which 
were assigned to edges in at least j of the cliques containing e and removed 
from edges in at least i of these cliques. However, nothing really new is needed 
in this part of the argument. 

Modification 3: The preprocessing step. The preprocessing step is also 
slightly different. Again we choose a set Reservev of colours for each vertex v 
in H, but now Reservee is the intersection of k of these sets. It is for this 
reason that we need to insist that each Reservev has .11-kpoly(log Ll) colours 

and hence insist that each edge initially has a set of Ll + .11-kpoly(log.Ll) 
colours. 

Apart from these adjustments, the proof of Theorem 14.2 follows the lines 
of the proof of Theorem 14.1, and the reader is invited to work the details 
out himself (see Exercise 14.3) or consult [123] where they can be found. 

Exercises 

Exercise 14.1 Prove that for D arbitrarily large, there exists a 2D-regular 
graph G such that every neighbourhood in G contains at most D2 edges, and 
x(G) ~ .;2.D. 

Exercise 14.2 Show how to prove Theorem 14.1 using the Wasteful Colour
ing Procedure, at each step activating an edge to receive a colour with 
probability lo~ ..::l. 

Exercise 14.3 Prove Theorem 14.2, using the hints provided in Sect. 14.6. 



Part VI 

A Structural Decomposition 

The pseudo-random colouring procedure we have been analyzing works 
best if there are many non-edges in each neighbourhood. In this part of the 
book, we present a technique for dealing with dense vertices, i.e. vertices 
which have very few non-edges in their neighbourhood. Our approach was 
foreshadowed in the proof of the Beutelspacher-Hering Conjecture. In that 
proof, we showed that the dense vertices in any minimal counterexample 
to the conjecture could be partitioned into disjoint sets each of which was 
either a clique or a clique and a vertex. This aided us in our analysis of the 
pseudo-random colouring procedure. In particular, it enabled us to show that 
we could construct a partial colouring which could be extended to a Ll - 1 
colouring provided we chose the order in which we coloured the uncoloured 
vertices carefully. 

In the next chapter, we present a structural decomposition theorem which 
shows how to find, in a graph G, a family of disjoint dense sets which together 
contain all the dense vertices of G, and behave somewhat like Ll-cliques. We 
then show how this theorem can be used to prove a number of important 
results. 

The approach taken here differs from that taken in the proof of the 
Beutelspacher-Hering Conjecture in the following two important respects. 

(A) It is much more general. It applies to all graphs, not just minimal counter
examples to the Beutelspacher-Hering Conjecture. Furthermore, it ap
plies to a range of definitions of dense; i.e. we can choose how many edges 
we will permit in the neighbourhood of a vertex which is not dense. 

(B) We use the decomposition theorem in creating the partial colouring, not 
just in the analysis. 

As an illustration of (B), consider the simple case in which we have only 
one dense set D which is a clique. Then rather than assign a colour to each 
vertex of D independently, we might well choose a random set of IDI different 
colours and assign them to the vertices of D, using a uniformly random 
bijection. This procedure prohibits any conflicts within D. However, it also 
assigns each vertex of D a uniformily random colour. This second fact aids 
us in our analysis of the vertices not in D. More generally, we can assign 
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colours on a dense set D by finding an appropriate optimal or near-optimal 
colouring of D and then permuting the colour class names. 

Chaps. 17 and 18 contain the most important result obtained using this 
tool, a proof that there is a constant c such that every graph has a Ll + c 
total colouring. Chap. 16 discusses the first result obtained using this tool, 
a proof that the chromatic number is bounded by a convex combination 
of Ll + 1 and w. The next chapter contains a proof of the decomposition 
theorem and describes two methods for choosing appropriate optimal or near 
optimal colourings within a dense set. 



15. The Structural Decomposition 

15.1 Preliminary Remarks 

In this chapter we will obtain a decomposition theorem for general graphs 
similar to that obtained in Chap. 11 for minimal counterexamples to the 
Beutelspacher-Hering Conjecture. That is, we will partition V(G) into sets 
D1 , ... , Dz and S where the Di are "dense clique-like" sets and all the vertices 
in S are sparse. 

A dense set D is like a Ll-clique in that: 

(i) it has about Ll vertices, 
(ii) most of the pairs of vertices within it are adjacent, 
(iii) there are only a few edges between D and G- D, 
(iv) a vertex is in D if and only if most of its neighbours are. 

As in Chap. 11, in defining whether a vertex is dense or sparse we will 
consider IE(N(v))l. We will fix some threshold t and say that a vertex v 
of G is sparse if the subgraph induced by its neighbourhood contains fewer 
than t edges, and dense otherwise. The closer the threshold is to ( ~), the 
more clique-like the dense sets will be. Thus, we introduce a parameter into 
the definition which measures how dense these dense sets are. 

The formal definition is given in the next section. We then present var
ious techniques for partitioning these dense sets into stable sets which we 
will need when modifying the Naive Colouring Procedure as discussed in 
the introduction to this part of the book. Finally, we discuss briefly how 
this decomposition sheds light on the computational complexity of graph 
colouring. 

15.2 The Decomposition 

We say that a vertex v of G is d-sparse if the subgraph induced by its 
neighbourhood contains fewer than ( ~) - dLl edges. Otherwise, v is d-dense 
(we often simply use dense or sparse if dis clear from the context). 

Remark If G is Ll-regular, then v is d-sparse precisely if there are at least 
dLl edges in the subgraph of G induced by N(v). For arbitrary graphs, v can 
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have a clique as a neighbourhood and still be d-sparse, provided this clique 
has fewer than .:1 - d vertices. 

Note that if v is d-dense then there are at most 2d.:1 edges between N ( v) Uv 
and V - N ( v) - v. 

Definition 15.1 Let d be a positive integer and let G be a graph of maximum 
degree .:1. We say D 1 , ... , Dz, S form ad-dense decomposition of G if: 

(a) D 1 , ... , Dz, S are disjoint and partition V; 
(b) every Di has between .:1 + 1 - 8d and .:1 + 4d vertices; 
(c) there are at most 8d.:1 edges between Di and V- Di; 
(d) a vertex is adjacent to at least 3f vertices of Di if and only if it is in D;; 
(e) every vertex in S is d-sparse. 

We shall call D 1 , ... , Dz, d-dense sets, or simply dense sets. Note that 
although every vertex in S is sparse, not every sparse vertex need be in S. 

Fig. 15.1. A Dense Decomposition 

A neighbour u of a vertex v in Di is internal if u is also in D; and external 
otherwise. We define the external and internal neighbourhoods of v similarly. 
We use Outv to denote the external neighbourhood of v. The external neigh
bourhood of a subset X of D; is the union of the external neighbourhoods of 
its elements. 

The key result in this chapter is: 

Lemma 15.2 For every .:1 and d :S 1~0 , every graph G of maximum degree .:1 
has a d-dense decomposition. 

Proof 
For each d-dense vertex v of G, we define a set Dv as follows. 

Step 0. Set Dv = N(v) + v. 
Step 1. While there is at least one vertex y in Dv with !N(y) n Dvl < 3f 

delete some such vertex from Dv. 
Step 2. While there is at least one vertex y outside of Dv with !N(y) n Dvl 

2': 3f add some such vertex to Dv. 
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Note that this procedure does not alternate between additions and dele
tions. This ensures that the set Dv is uniquely defined, i.e. the order in which 
we delete vertices in Step 1 and add vertices in Step 2 is irrelevant. It is also 
immediate that: 

15.3 Every vertex in Dv has at least 3-f neighbours in Dv. 

15.4 Every vertex outside of Dv has fewer than 3-f neighbours in Dv. 

Since ( 4 ; 2d) < ( ~) - d£1, we also have: 

15.5 Every d-dense vertex has at least ..1 - 2d neighbours. 

We also obtain: 

15.6 IN(v)- Dvl :S 6d 

Proof Suppose that more than 6d vertices are deleted in Step 1, and 
let X be the set of the first 6d vertices deleted. Each vertex in X has at most 
3-f neighbours in (v U N(v)) -X. So, since IN(v)l 2': ..1- 2d, each vertex 
in X has at least ~ - 8d > ~ non-neighbours in (v U N(v))- X. But this 
contradicts the fact that there are at most d£1 pairs of non-adjacent vertices 
in v U N(v), thereby proving the desired result. 0 

15.7 IE(Dv, V- Dv)l :S Sd£1. 

Proof Because v is d-dense, there are at most 2d..1 edges out of v U N ( v). 
Deleting a vertex in Step 1 increases the number of edges between Dv and 
G - Dv by at most 3-f. In Step 2 the number of edges out of Dv always 
decreases. So, by (15.6), IE(Dv, V- Dv)l :S 2d..1 + 6de,f) < 8d..1. o 

15.8 IDv- N(v)l :S 4d. 

Proof The ith vertex of V- N(v)- v added to Dv in Step 2 has at least 
3-f- i neighbours in v U N(v). So, since IE(v U N(v), V- N(v)- v)l :S 2d..1 

and I:i:1 ( 3-f - i) > 2d..1, fewer than 4d vertices of V- N ( v) - v are added 
to Dv in Step 2. 0 

Thus, we have: 

15.9 ..1 + 1- 8d :S IDvl :S ..1 + 4d. 

Combining (15.6), and (15.5), we see that IN(v) n Dvl 2': ..1- 8d 2': 3-f. So, 
applying (15.4), we obtain: 

15.10 v E Dv. 

Because Dv is so close to N(v), we can prove: 
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15.11 If x andy are d-dense vertices and Dx intersects Dy then y is in Dx 
and x is inDy· 

Proof Let x andy be two d-dense vertices such that Dx intersects Dy and 
let a be an element of Dx nDy. Now, by (15.3) and (15.8), a is adjacent to at 
least 2f neighbours of x. Similarly, a is adjacent to at least 2f neighbours 
of y. Thus, IN(x) n N(y)l ~ ~· 

Now, since x is a d-dense vertex, there are at most 2dLl :::; Ll2 /50 edges 
between N(x)nN(y) and N(y) -N(x). Since y is ad-dense vertex, there are 
at least IN(x) nN(y)l x IN(y)- N(x)l- Ll2 /100 edges between the two sets. 
So, IN(x) n N(y)l x IN(y)- N(x)l :::; Ll2 /25 and hence IN(y)- N(x)l :::; ~· 

Thus, by (15.5), IN(x)nN(y)l ~ Ll-2d- ~ ~ ~Ll. It follows from (15.4) 
and (15.6) that x is in Dy and y is in Dx. 

0 

By (15.11), for some integer l, we can greedily construct a sequence of 
d-dense vertices x1 , ... , xz and corresponding disjoint sets D1 , ... , Dz with 
D; = Dxi such that every d-dense vertex is in ui=l D;. We let S be the 
remaining (sparse) vertices of G. We have obtained the desired d-dense de
composition of G. 0 

Remark There are many variants of this technique for constructing our 
structural decomposition. For example, one could choose the dense set D; to 
be Dv for the d-dense vertex v in V- uj:i Dj with the most edges in its 
neighbourhood. Also, for small d the constants 4 and 8 can be improved. 

15.3 Partitioning the Dense Sets 

Now consider a graph G of maximum degree Ll and a d-dense decomposition 
D1 , ... , Dz, S of G for some d :::; 1~0 . Since the number of edges from D; 
to G - D; is small, we can almost colour the vertices of D; independently 
of the rest of the graph. Thus, our first step in the modified naive colouring 
procedure will be to find a colouring of each D;. Of course, we eventually need 
to deal with the interaction between D; and G- D;, so this colouring may 
need to be modified. In order to avoid confounding these original colourings 
with our final colouring of G, we prefer to think of the first step as partitioning 
each dense set into stable sets which we call partition classes. In this section, 
we present two different methods for choosing the partitions. Before we do so, 
a few general remarks about what kind of partitions we prefer are in order. 

Our objective is to use as few colours as possible in colouring G. If we 
focus on just one dense set D; in the partition and ignore the rest of the graph, 
then we want to minimize the number of partition classes so our best strategy 
would be to use an optimal colouring of D;. However, we cannot ignore the 
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Fig. 15.2. Gc 

rest of the graph. We also need to worry about the external neighbourhoods 
of the partition classes. 

For example, suppose that for some positive integer k we are trying to 
c = 4k colour the graph Gc of Fig. 15.2 which has a dense decomposition into 
two dense sets D1, D2 (i.e. V(G) = V(Di) U V(D2)) such that: 

(a) D1 is a c-clique, 
(b) D2 consists of a (c- 2)-clique C, a stable set X with four vertices, and 

all possible edges between C and X, 
(c) Each vertex of D1 sees exactly one vertex of X and each vertex of X sees 

exactly k vertices of D1. 

We can c-colour this graph by first colouring D1 , then colouring the three 
vertices of X not adjacent to the vertex of D1 of colour 1 with the colour 1, 
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and finally colouring the remaining c - 1 vertices of D2 with the remaining 
c- 1 colours. However, we run into a problem if we try to extend an optimal 
colouring of D2 to a c-colouring of G. For in an optimal colouring of D2 , all 
of X receives the same colour and we will not be able to use this colour on D 1 . 

Hence we will not be able to extend the partial colouring to a c-colouring of G. 
We can avoid this type of problem by keeping the external neighbourhood 

of each partition class small. Clearly, if this were our only objective then it 
would be best to use a distinct partition class for each vertex of Di· This of 
course, is the worst possible choice with respect to our goal of keeping the 
number of partition classes small. So, in partitioning Di, we need to balance 
these two conflicting objectives. 

In doing so, to bound the size of the external neighbourhoods of the 
partition classes, we begin by considering the size of the partition classes 
themselves. Note that if a partition class has at most two elements then its 
external neighbourhood contains at most ~ vertices. Thus, minimizing the 
number of partition classes of size exceeding two goes a long way towards 
our objective of keeping the external neighbourhoods of the partition classes 
small. 

There are two natural ways to approach satisfying our two conflicting 
desires. We can either prioritize minimizing the number of partition classes 
of size exceeding two (by forbidding them entirely) or prioritize minimizing 
the total number of partition classes. The first approach, then, is to insist that 
there are no partition classes of size exceeding two and choose such a partition 
with the minimum number of partition classes. The second approach is to 
choose an optimal partition of the dense set into stable sets (i.e. a x(Di) 
colouring) in which we minimize the number of partition classes of size ex
ceeding two. 

We close this section by presenting two lemmas which illustrate these 
two techniques. We will use the first lemma in the next chapter. We discuss 
an application of a lemma similar to the second in the final section of this 
chapter. 

When applying these lemmas to help obtain a c-colouring of a graph, 
we choose d so that .::1 - d is much less than c. Thus, we can settle for 
partitioning Di into .::1 - d partition classes, as we thereby ensure that this 
initial colouring uses many fewer than c colours, and hence gives us room to 
manoeuvre. 

In what follows, D 1 , ... , Dz, S is a d-dense decomposition of a graph G 
which is .::1-regular for some .::1 2 lOOd. 

Lemma 15.12 If d :S: 5~0 then each Di can be partitioned into classes of 
size one or two such that: 

(i) the number of partition classes is at most maxn(Ll + 1) + ~w(Di), 
.::1- d}, 

(ii) the external neighbourhood of each partition class contains at most 
~ vertices, and 
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(iii) the number of non-singleton partition classes is at most 5d. 

Proof We show first that there is a partition satisfying (i) and (iii). To 

this end, consider the size mi of a maximum matching in Di· If mi > 5d 
let M be a matching of size 5d in Di. Otherwise, let M be a maximum 
matching in Di. Let C be Di-V(M). There is a partition of Di into ICI + IMI 
stable sets where each vertex of C forms a partition class of size 1 and the 
endpoints of each edge of M form a partition class of size 2. Clearly, this 
partition satisfies (iii). To prove that it satisfies (i), we need only show that 
ICI + IMI:::; max(~(Ll + 1) + ~w(Di), Ll- d). 

We note that we can assume IMI < 5d as otherwise 

ICI + IMI = IDii-IMI:::; (Ll + 4d)- 5d = Ll- d 

and we are done. So, M is a maximum matching of Di and thus C must 
be a clique. Furthermore, we have: ICI = IDil - 2IMI 2: (Ll- 8d) - 10d 2: 
Ll - 18d 2: 4982d. Thus, in particular: 

15.13 ICI 2: 4982. 

Also, 

15.14 for each vertex v of M the number of neighbours of v inC is at least 

3Ll 3Ll 7 Ll ICI 
-- 2IMI > -- 10d > - > -. 

4 - 4 - 10 - 2 

Now, by the maximality of M, if xy is an edge of M then either x sees 
all of C, y sees all of C, or they both see all of C - w for some vertex w. 
By (15.13), 2(ICI - 1) 2: 3 1~1. So, by (15.14), we see that in either case, 

IN(x)nCI+IN(y)nCI 2: 31:f1. Thus there are at least 31MdiCI edges between C 

and V(M), and hence some vertex inC sees at least 3 1~1 vertices of M. So, 

ICI+ 31 ~1:::; Ll+l.l.e., ~ICI+IMI:::; ~(Ll+1). Also, ICI:::; w(Di)· Combining 
these results yields ICI + IMI :::; ~(Ll + 1) + ~w(Di)· Thus we can indeed find 
a partition of Di into classes of size at most two which satisfies (i) and (iii). 

As we remarked earlier, the fact that each partition class contains at 
most two vertices implies that the external neighbourhood of each class in 
such a partition has at most ~ elements. We see now that we can actually 
choose our partition so that these external neighbourhoods have at most i
elements, i.e. so that (ii) holds. 

To this end, we consider a partition satisfying (i) and (iii) which has 
the minimum number of partition classes whose external neighbourhoods 
have more than i- elements. If there is any such partition class U, then we 
know that it has size two, contains a vertex x which has at least ~ external 
neighbours, and another vertex y which has at least ~ external neighbours. 
We will obtain a contradiction by (a) matching x with some vertex z of Di 
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which was a singleton stable set and has fewer than ~ external neighbours 
and (b) making y a singleton partition class. To this end, we note first that 
there are at least ~ - 8d non-neighbours of x in Di, by 15.l(b). We note 
further that all but at most lOd of the vertices of Di form singleton colour 
classes. Furthermore, since d ~ 5£0 by assumption, it follows from 15.l(c) 
that there are fewer than ~ vertices in Di with more than ~ external 
neighbours. Thus, we can indeed find the desired z, indeed we have more 
than ~ - 18d choices. 

D 

Our second approach works particularly well when d is small: 

Lemma 15.15 If d ~ '{] then each Di has a partition into max (x(Di), 
..:1 - d) classes such that the external neighbourhood of each partition class 
contains at most ~ vertices. 

Proof We say a dense set is matchable if there is a matching of size 6d in 
its complement. Now, for each matchable Di, we let ki = IDil - 6d which, 
by 15.l(b), is less than ..:1- d and we take a ki-colouring of Di consisting of 
6d colour classes with 2 elements and IDil - 12d singleton colour classes. As 
each vertex in Di has at most ~ external neighbours, this yields the desired 
partition of Di· It remains to prove the result for dense sets which are not 
matchable. We observe first that: 

15.16 A non-matchable Di has chromatic number at least Ll- 26d. Further
more, it has an optimal colouring in which the singleton colour classes form 
a clique with at least ..:1 - 32d elements, all of whose vertices are adjacent to 
every vertex of each colour class with more than two elements. 

Proof Since Di has at least ..:1 - 8d vertices, in any ..:1 - 26d colouring 
of Di, there must be at least 18d vertices in non-singleton colour classes. But 
each non-singleton colour class U contains a matching in the complement 
of Di with L 1¥-1 J ~ 1~1 edges. The first statement follows. Since Di is not 
matchable, at most 6d of the colour classes in an optimal colouring are non
singleton. Furthermore, in an optimal colouring of any graph, the singleton 
colour classes form a clique. By choosing an optimal colouring with the max
imal number of two element colour classes, we ensure that there is no edge 
of Di joining a singleton colour class and a colour class with k ~ 3 elements, 
as otherwise we could replace these two colour classes with one of size two 
and another of size k - 1. Thus, the second statement also holds. D 

15.17 For a colouring of a non-matchable dense set as in (15.16), the exter
nal neighbourhood of each colour class has at most ~ elements. 

Proof If the colour class has at most two elements then clearly its external 
neighbourhood has at most ~ elements. If the colour class has more than two 
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vertices then, by (15.16), each of its vertices has at least Ll - 32d internal 
neighbours and hence at most 32d external neighbours. Furthermore, the 
colour class can contain at most IDil - (Ll- 32d) :::; 36d vertices. Thus, its 
external neighbourhood has at most (32d)(36d) elements which yields the 
desired bound. D 

Combining (15.16) and (15.17), we see that the desired result also holds for 
non-matchable dense sets, thereby completing the proof of the lemma. 

D 

15.4 Graphs with x Near ..:::1 

15.4.1 Generalizing Brooks' Theorem 

As we discussed in Chap. 1, it is computationally difficult to compute or even 
approximate X· However, Brooks' Theorem shows that it is easy to determine 
whether X = Ll + 1 as follows. If Ll = 2, we need only check if the graph is 
bipartite; if Ll is at least 3, we need only check if any component of G induces 
a ( Ll+ 1 )-clique. It is natural to ask how close x must be to Ll+ 1 to ensure that 
computing xis easy. The following result, due to Emden-Weinert, Hougardy, 
and Kreuter [38], shows that x must be within J3 of Ll + 1. 

Theorem 15.18 For any fixed Ll, determining whether a graph G of max
imum degree Ll has a (Ll + 1- k)-colouring is NP-complete for any k such 
that k2 + k > Ll, provided Ll + 1 - k is at least 3. 

In [124] Molloy and Reed prove the following complementary result (see [121] 
for an earlier result along the same lines): 

Theorem 15.19 For any fixed sufficiently large Ll, determining if a graph G 
of maximum degree Ll has a ( Ll + 1 - k )-colouring is in P for any k such that 
k2 + k:::; Ll. 

The reason k2 + k = Ll is the threshold at which (Ll + 1- k)-colouring 
becomes computationally difficult is that it is at this point that the chromatic 
number begins to be determined by global rather than local factors. The proof 
of the following theorem will be discussed in the next subsection. 

Theorem 15.20 For every Ll, k, and N with k :::; Ll - 1 and k2 + k ~ Ll, 
there exists a graph G with maximum degree Ll such that x(G) > Ll + 1- k, 
IV(G)I ~ N, and for every proper subgraph H of G, x(H) :::; Ll + 1- k. 

This is essentially a tight result, as the following establishes. 
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Theorem 15.21 For all sufficiently large .:1 and k such that k2 + k < .:1, 
there exists an N = N(Ll, k) such that if G has maximum degree .:1 and 
x( G) > .:1 + 1 - k then there exists a subgraph H of G with at most N 
vertices such that x(H) > .:1 + 1 - k. 

Theorem 15.21 was the key ingredient in the proof of Theorem 15.19. In 
fact, Theorem 15.21 implies Theorem 15.19 directly for the case k2 + k < .:1 
because as .:1 is fixed we can use exhaustive search to check all (N(~,k)) < 
nN(LJ.,k) subgraphs of size N(Ll, k) to see if they can be k-coloured. In fact, 
as discussed below, the algorithm is much faster: it runs in linear time. 

In [124], Molloy and Reed conjecture that Theorem 15.21 actually holds 
for all values of .:1 and hence so does Theorem 15.19. 

The difficulty in proving Theorem 15.21 is the dense vertices. If G has no 
1000.J:1-dense vertices then we can use the Naive Colouring Procedure to 
obtain a (.:1 + 1-k )-colouring ( cf. Theorem 10.5). So, in proving the theorem, 
we set d = 1000.J:1 and consider a d-dense decomposition D1, ... , Dt, S 
of G. We construct a partition of Di into x(Di) partition classes each with 
a small external neighbourhood by modifying the proof of Lemma 15.15 (see 
Exercises 15.3-15.5). 

For k2 + k < .:1- k, it turns out that if each Di is ( .:1 + 1 - k )-colourable, 
then by taking advantage of these partitions, we can use a variant of the 
Naive Colouring Procedure to obtain a (.:1 + 1 - k)-colouring of G. This 
proves Theorem 15.21 with N(Ll, k) = .:1 + 4000.J:1 as this is an upper 
bound on the size of each Di· (The proof is quite complicated and is along 
the lines of that discussed in the next chapter.) The proof of the remaining 
case .:1 - k -:=; k2 + k < .:1 is similar in spirit, but requires a somewhat larger 
value for N. 

Returning to the algorithmic consequences of the theorem, we note that 
for k2 + k < .:1 - k, we can find a d-dense decomposition in linear time. 
We can then determine the chromatic number of each dense set, which takes 
constant time for each of the O(n) dense sets (since .:1 is a constant). Thus, 
we can determine if G has a ( .:1 + 1 - k )-colouring in linear time. For the 
remaining values of k where k2 + k -::; Ll, a simple linear time preprocessing 
step transforms them into graphs for which the scheme will work. 

15.4.2 Blowing Up a Vertex 

We complete this chapter by proving Theorem 15.20. 
Central to the proof is the notion of a reducer. A ( c, r )-reducer in G 

consists of a clique C on c - 1 vertices, a stable set X on r vertices, and all 
possible edges between C and X. We further insist that every vertex of C is 
non-adjacent to all of V - ( C U X). 

Clearly, in any c-colouring of a (c, r)-reducer (C, X) of G, all the vertices 
of X receive the same colour. Conversely, since there are no edges from C to 
V- ( CUX), any c-colouring of G-X in which all of X receives the same colour 
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X 
c 

Fig. 15.3. A good (4, 3)-reducer 

can be extended to a c-colouring of G. Thus letting G' be the graph obtained 
from G- (CUX) by adding a vertex adjacent to {wl3u EX s.t. uw E E(G)}, 
we see that G is c-colourable if and only if G' is. We call G' the reduction 
of G by (C, X). 

Note that each vertex in C has c + r - 2 neighbours in total and each 
vertex in X has c- 1 neighbours in C U X. We call a reducer good if each 
vertex of X has at most r - 1 neighbours in G - ( C U X) and hence at most 
c + r - 2 neighbours in total. If c = Ll + 1 - k and r = k + 1 then every vertex 
in a good (c, r)-reducer has degree at most Ll. 

It is easy to see that for any vertex v of degree at most r(r- 1) in any 
graph G', for any c 2: 2 there is a graph G such that G' is the reduction of 
G by a good (c,r)-reducer (C,X) such that G'- v = G- (C U X). 

We shall apply such anti-reductions, for k satisfying k2 + k 2: ..1 and 
k :::; ..1- 1, with c = ..1 + 1 - k and r = k + 1. If we do so, starting with 
a (c + 1)-clique and arbitrarily choosing a vertex to play the role of v, we 
construct larger and larger graphs of maximum degree at most Ll, which have 
no c-colouring. As the reader may verify (see Exercise 15.1), for each graph H 
we construct, every subgraph of H has a c-colouring. This sequence of graphs 
demonstrates the truth of Theorem 15.20. 

In the same vein, we can use reducers to reduce the problem of c-colouring 
to that of c-colouring graphs of maximum degree ..1 (see Exercise 15.2). This 
proves Theorem 15.18. 

Exercises 

Exercise 15.1 For the construction of G' from G discussed in Sect. 15.4.2, 
show that if for every edge e of G, G - e is c-colourable then for every edge f 
of G', G' - f is c-colourable. 
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Exercise 15.2 Prove Theorem 15.18 as follows: 
Fix a ..1, k with k2 + k > ..1 and c = ..1 + 1- k ;::: 3. Use a construction 

similar to that given in Sect. 15.4.2 to obtain from any graph G, a new 
graph G* with maximum degree ..1 such that (i) G is c-colourable if and only 
if G* is, and (ii) IG*I is polynomial in IGI. 

Exercise 15.3 Show that if ..1 is sufficiently large and D1, ... , D1, S is a 
f2001l-dense-decomposition of G and x(Di) :S ..1 - 01, then there is 
a partition of Di into ..1- f 011 + 2 stable sets each of which has an external 
neighbourhood containing at most 3f vertices. 

Exercise 15.4 Show that if ..1 is sufficiently large, k2 + k :S ..1, and 
Db ... , D~, S is a f2001l-dense-decomposition of G then there is a partition 
of each Di into max{x(Di), ..1+1-k} stable sets each of which has an external 
neighbourhood containing at most ..1 vertices. 

Exercise 15.5 Show that for ..1 sufficiently large, if k2+k :S ..1, D1, ... , D1, S 
is a f2001l-dense-decomposition of G, and G has no good (..1+1-k), (k+l)
reducer then there is a partition of each Di into max{x(Di), ..1 + 1- k} stable 
sets each of which has an external neighbourhood containing at most ..1 - k 
vertices. 

Exercise 15.6 As described in Sect. 15.4, Molloy and Reed have shown that 
for ..1 sufficiently large, if k2+k < ..1-k, and if Db ... , D~, Sis any (100001)
dense-decomposition of a graph G with maximum degree ..1, then G is (..1 + 
1- k)-colourable iff every Di is (..1 + 1- k)-colourable. 

Use this fact to provide an alternate proof of Theorem 11.1. 
See [50, 51] for some further results along these lines. 
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In this chapter, we continue our analysis of the relationship between w, Ll, 
and X· To do so, we need to modify our naive colouring procedure so as to 
take advantage of the decomposition result described in the last chapter. The 
analysis of this variant of the Naive Colouring Procedure requires a strength
ening of Talagrand's Inequality obtained by McDiarmid. 

The analysis of the modified Naive Colouring Procedure, including the 
description of McDiarmid's Inequality is contained in Sects. 16.1 to 16.4. 
These results will also be needed in Chap. 18. 

Two basic bounds on the chromatic number of a graph are w :S x and 
x :S ..:1 + 1. The lower bound on x equals the upper bound when both bounds 
are tight, that is, if G is a clique. On the other hand, Brooks' Theorem says 
that if ..:1 2: 3 then the upper bound is tight only if the lower bound is tight, 
i.e. if w = ..:1 + 1. In the same vein, we saw, in Chap. 11, that for sufficiently 
large ..:1, if w < ..:1 then x < ..:1. It is natural to ask how quickly, if at all, X 
must decrease as w moves further away from ..:1. For example, asking if the 
decrease in x must be at least a constant fraction of the decrease in w is 
equivalent to asking if we can bound x by a convex combination of w and 
..:1 + 1. I.e: 

Is there an a > 0 such that: 

16.1 ForLl 2: 3, VG, x(G) :S (1- a)(Ll + 1) + aw. 

As we saw in Exercise 3.6, for every n there are graphs with X= ~ and 
w = o(n). Thus, if (16.1) is to hold then a must be at most ~-

In [132], Reed conjectured that (modulo a round-up) this necessary con
dition is in fact sufficient to ensure that (16.1) holds. Specifically, he posed: 

Conjecture 16.2 VG, x :S fHLl + 1) + ~w l· 
Remark Trivially, if (16.1) holds for a it also holds for any a' :S a since 
w(G) :S Ll(G) + 1. 

An example due to Kostochka [100] shows that this conjecture is false if 
we fail to round up, even for large ..:1. His example is the line graph of the 
multigraph Gk obtained from a five cycle by taking k copies of each edge. 
Clearly, w(L(Gk)) = 2k, Ll(L(Gk)) = 3k-1, and x(L(Gk)) = [5;l Fig. 16.1 
depicts G5 ; Fig. 11.1 depicts L(G3 ). 
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Fig. 16.1. G5 

Partial evidence for Reed's conjecture is given in [132], where he answers our 
first question in the affirmative: 

Theorem 16.3 ::Ja > 0 such that x::::: (1- a)(.d + 1) + aw. 

In fact he proves a stronger result which provides further evidence for his 
conjecture: 

Theorem 16.4 ::3( > 0 such that ifw 2: (1-()(.1+1) then X::::: ~(.1+1)+~w. 

Theorem 16.4 implies Theorem 16.3 with a = ~(, as follows: If w 2: 
(1- ()(.1 + 1) then x::::: ~(.1 + 1) + ~w ::::: (1- a)(.d + 1) + aw (where the 
second inequality holds because w ::::: .1 + 1). If w < (1- ()(.1 + 1) then we 
form c' by adding to G a new component consisting of a (I - ()(.1 +I)
clique. Then x(G) ::::: x(c') ::::: ~(.1 + 1) + ~w(c') ::::: (1 - ~()(.1 + 1) ::::: 
(1- ~()(.1 +I)+ ~(w(G). 

Even further evidence for the conjecture is presented in Chap. 21 where 
we will show that every graph has a fractional ( L1+~+w )-colouring. In this 
chapter, we prove the following weakening of Theorem 16.3 whose proof 
contains most of the key ideas needed in the proof of Theorems 16.3 and 16.4 
but avoids many of the technical complications. 

Theorem 16.5 There exists a t5 > 0 and .10 , such that for all .1 2: .10 

if G has maximum degree .1 and clique number w ::::: .1 - log10 .1 then x ::::: 
(1- 6)(.1 + 1) + 6w. 

Remark Theorem 16.3 implies Theorem 16.5 with .10 = 1 and t5 = a. 

We work through the details of the proof in the next four sections. In the 
final section of the chapter, we discuss the additional complications required 
to prove Theorems 16.3 and 16.4. 
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We set f = (Ll1~~w). Thus, we want to colour G with (1 - E8)(.1 + 1) 
colours. This is easy to do for graphs without ELl-dense vertices using the 
Naive Colouring Procedure. Indeed, Theorem 10.5 implies that Theorem 16.5 
holds with 8 = e-6 for such graphs. 

The decomposition theorem introduced in the last chapter was designed 
specifically to handle the dense vertices. After applying this procedure to 
a graph G with w::::; (1- E)(Ll + 1), we can colour each dense set separately 
using c::::; (1- E8)(.1 + 1) colours, by applying Lemma 15.12. The challenge 
is to avoid conflicts between these colourings of the dense sets, and to assign 
colours to the vertices in S as well. To do so, we must modify the Naive 
Colouring Procedure significantly. In the next four sections, we present and 
analyze the modified procedure. In Sect. 16.5, we use it prove Theorem 16.5. 
We remark that we will present a second application of this modified proce
dure in Chap. 18. 

16.1 The Modified Colouring Procedure 

Suppose that we have a graph G with ad-dense decomposition Dt, ... , D£, S 
for some d ::::; 6~0 . Suppose further that each dense set Di has a partition 
C Pi = { U{, ... , U1ic P; 

1
} into independent sets satisfying the conditions of 

Lemma 15.12. We wish to colour G using c colours for some c which exceeds 
max {ICPil : 1 ::::; i ::::; l}. In our initial discussion, we assume c actually 
exceeds this maximum by at least o:Ll for some small but positive o:. 

We want to obtain a partial colouring in which every vertex has a suf
ficiently large number of repeated colours in its neighbourhood by applying 
a modified Naive Colouring Procedure. As before, the vertices in S are as
signed a uniformly random colour. Now, however, for each dense set Di we 
will use the colouring given by C Pi. In order to make this colouring look 
reasonably random to vertices outside Di, we use a random subset of ICPil 
of our c colours and a random bijection between these colour class names and 
the partition classes in CPi. 

For each vertex v in S, there will still be many colours repeated on N ( v) 
because v is sparse. If a vertex v in a dense set has many external neighbours, 
then it turns out that v is also reasonably sparse and hence there will again be 
many repeated colours on N(v). Those vertices in dense sets which have few 
external neighbours are slightly harder to deal with. However, if a vertex v 
in Di has fewer than o.f -1 external neighbours, then either (a) it has degree 
less than c-1 and so is easy to colour or (b) it is adjacent to at least a.f pairs 
of vertices which form partition classes of size 2 in Di. In the second case, 
since we insist that all such pairs of vertices are assigned the same colour by 
the Naive Colouring Procedure, it is likely that there will be many repeated 
colours in N(v). 

In the general case, when some C Pi has size very close to c and so we do 
not have a spare o:Ll colours to play with, things get a bit trickier. However 
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our analysis still relies on combining the same two approaches: (i) using 
sparseness to deal with vertices in S and the vertices in dense sets with large 
external neighbourhoods, and (ii) taking advantage of the fact that the colour 
assignment on Di agrees with CPi to deal with the remaining vertices. Thus, 
we use the following variant of our Naive Colouring Procedure: 

1. For each vertex v E S, assign to v a uniformly random colour from 
{1, ... ,c}. 

2. For each dense set Di, choose a uniformly random permutation 7ri of 
{ 1, ... , c} and for 1 S: j S: I C Pi I , assign the vertices of Uj the colour 
1ri(j). 

3. For each vertex v E S, if any neighbour of v is assigned the same colour 
as v then uncolour v. 

4. For each Di and partition class Uj E CPi, if any vertex in the external 
neighbourhood of Uj is assigned the colour 7ri (j) assigned to Uj, then 
uncolour all the vertices in u;. 

In the next three sections, we will see how we can analyze this variant of 
the Naive Colouring Procedure to obtain results similar to those obtained in 
the first application that we saw in Chap. 10. 

In this chapter and those following, in order to ease our discussion, each 
vertex of S will also be referred to as a partition class. 

16.2 An Extension of Talagrand's Inequality 

Recall that Talagrand's Inequality only applies to a sequence of independent 
random trials. We have often considered situations in which, for each vertex v 
of our graph, the assignment of a colour to v is a trial. Since these colour 
assignments were independent, we could apply Talagrand's Inequality. How
ever, in the present variant of the Naive Colouring Procedure, these colour 
assignments are not independent, as there is clearly dependency between the 
colours assigned to two vertices in the same dense set. Fortunately, McDi
armid [115] has developed an extension of Talagrand's Inequality which is 
applicable in this situation. 

His extension deals with a series of random trials and random permuta
tions. In this context, a choice is defined to be either (a) the outcome of a trial 
or (b) the position that a particular element gets mapped to in a permutation. 

McDiarmid's Inequality [115] Let X be a non-negative random variable, 
not identically 0, which is determined by n independent trials T1, ... , Tn 
and m independent permutations Ilt, ... , IIm and satisfying the following 
for some c, r > 0 : 
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1. changing the outcome of any one trial can affect X by at most c; 
2. interchanging two elements in any one permutation can affect X by at 

most c; 
3. for any s, if X 2: s then there is a set of at most rs choices whose 

outcomes certify that X 2: s, 

then for any 0 :S t :S E(X), 

Pr(IX- E(X)I > t + 60cJrE(X)) :S 4e sc2rECXl 

Remark 

1. Again, c and r are typically small constants and we usually take t to 
be asymptotically much larger than JE(X} so the 60cJrE(X) term is 
negligible. 

2. Talagrand [148] proved this result for a single random permutation, i.e. 
the case n = 0, m = 1. 

We will apply this inequality for various random variables X determined 
by the colours assigned by our procedure. To do so, we consider the colour 
assigned to a vertex in S to be one of the random trials, and we consider the 
assignment of colours to a dense set Di to be one of the random permutations. 

Note that interchanging 2 elements of a permutation will have one of the 
following effects: (i) the colours assigned to two partition classes are inter
changed, or (ii) the colour assigned to a partition class is changed to a colour 
previously unused on its dense set. Furthermore, the colour assigned to UJ 
is certified by the choice of ;ri(j). Therefore, in order to apply McDiarmid's 
Inequality it is enough to verify that: 

1. making a change of type (i) or (ii) above, or changing the colour of 
a vertex in S, can affect X by at most c, and 

2. if X 2: s then there is a set of at most rs partition classes whose colour 
assignments certify that X 2: s. 

We will see an example of such a usage in Sect. 16.4. 

16.3 Strongly Non-Adjacent Vertices 

In Chap. 10, we showed that a single application of the Naive Colouring 
Procedure to a sparse graph will, with positive probability, result in a partial 
colouring where every vertex has several repeated colours in its neighbour
hood. An important part of that proof rested on the fact that for each 
vertex v, there were many pairs of neighbours u, w E N ( v) which were non
adjacent and thus eligible to retain the same colour. Now that we are dealing 
with dense sets, the situation is more complicated, even for sparse vertices. 
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In particular, it is quite possible that two non-adjacent vertices u, w in 
the neighbourhood of a sparse vertex v are not eligible to retain the same 
colour. For example, perhaps u, w lie in the same dense set Di and do not 
form a partition class. Or perhaps u lies in a dense set Di and there is some 
neighbour x of w such that { u, x} forms a partition class. Since u and x will 
receive the same colour during our procedure, it is not possible for u and w 
to retain the same colour. 

We say that two partition classes are non-adjacent if they do not lie in the 
same dense set and there is no edge between them (recall that the vertices 
of S are partition classes). We say two vertices are strongly non-adjacent if 
they are in non-adjacent partition classes. In order to show that a vertex will 
probably have many repeated colours in its neighbourhood, we will typically 
first show that it has many strongly non-adjacent pairs in its neighbourhood. 

Actually, this still may not quite be enough to ensure that there are 
many repeated colours in the neighbourhood of a vertex. For, there are some 
strongly non-adjacent pairs of vertices which are very unlikely to retain the 
same colour. The extreme example is a pair { x, y} of strongly non-adjacent 
vertices such that N ( x) UN (y) contains all the vertices of some dense set Di 
with I C Pi I = c. In this case, every colour is assigned to either a neighbour 
of x in Di or a neighbour of y in Di. So, no colour can be retained by both x 
andy. Similarly, if every partition class in such a Di is adjacent either to the 
partition class containing x or the partition class containing y then x and y 
cannot retain the same colour. 

We say that a pair x and y of strongly non-adjacent vertices is a mono
colourable pair if for each dense set Di which contains neither x nor y there 
are at most 7 f partition classes of C Pi which are adjacent either to the 
partition class containing x or to the partition class containing y. 

s 
Fig. 16.2. (x, y) is not a monocolourable pair 
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We turn now to proving that certain sparse vertices have many mono
colourable pairs of neighbours. In doing so, it will be convenient to assume 
the graph is Ll-regular. This is no real restriction, as our standard trick allows 
us to reduce most of the problems we are interested in to the regular case. 

So, consider integers d and Ll with d :S 6~0 and a d-dense decomposition, 
D 1 , ... , D1, S of a Ll-regular graph G. By definition, every vertex v E S has at 
least dLl non-adjacent pairs of vertices in its neighbourhood. As we remarked 
earlier, those vertices in dense sets which have large external neighbourhoods 

I 

are also reasonably sparse. In particular, if we define S to be the set of 
vertices in dense sets which have at least ~ external neighbours, then it 

is straightforward to show that each vertex in 5 1 has at least 1~ pairs of 
non-adjacent vertices in its neighbourhood. 

We will choose a partition C P; of each D; satisfying Properties (i)-(iii) 
of Lemma 15.12, and show that this ensures that the vertices in SUS' will 
have many pairs of strongly non-adjacent vertices in their neighbourhoods: 

Lemma 16.6 Every vertex in S u 5 1 has at least 1~ pairs of strongly non
adjacent neighbours. 

Even better, for the partition we have chosen, we can show that such vertices 
actually have many monocolourable pairs of neighbours. 

Lemma 16.7 Every vertex in 5 1 has at least 1~ monocolourable pairs of 
neighbours. 

Lemma 16.8 Every vertex in S has at least 1~ monocolourable pairs of 
neighbours. 

We prove the first two of these three lemmas in Sect. 16.7 at the end 
of the chapter. The proof of the third result is given through the series of 
exercises: Exercise 16 .1--Exercise 16.5. 

16.4 Many Repeated Colours 

Here, we prove that one of the most useful properties of the Naive Colour
ing Procedure also holds for our variant. Namely, we will show that with 
positive probability, we will produce a colouring in which every sufficiently 

I 

sparse vertex, i.e. every vertex in S U S , has many repeated colours in its 
neighbourhood. Recall that we are considering a d-dense decomposition for 
some d :S 6~0 , and we are using the canonical partitions C P; guaranteed by 
Lemma 15.12. 

Lemma 16.9 If Ll is sufficiently large, d :2' (log Ll) 10 , and G is Ll-regular 
then after a single application of our procedure using c :2' (1- 1 ~0 )Ll colours, 
with positive probability we obtain a partial colouring such that: 
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I 

for each vertex v E S U S , the difference between the number of 
neighbours of v which retain a colour and the number of colours 

retained on N ( v) is at least &r - d§ 

The proof of this lemma follows along the same general lines as the proof 
of Theorem 10.5. For each vertex v, we let Xv be the number of colours 
assigned to at most ten vertices of N ( v) and retained by at least two of 
them. We show: 

I d Lemma 16.10 For each v E SUS, E(Xv)?: w· 

Lemma 16.11 For each v, Pr(IXv- E(Xv)l > logLlJE(Xv)) < Ll-6 . 

Given these two lemmas, Lemma 16.9 follows from a straightforward appli
cation of the Local Lemma, as we now show. 

Proof of Lemma 16.9. For each vertex v E SUS', we define Av to be the 
event that Xv < &r - d§. It suffices to prove that with positive probability 
none of these events hold. By Lemmas 16.10 and 16.11, since d ?: (log Ll) 10 , 

the probability of each Av is at most _d-6 . 

As in the proof of Theorem 10.2, each event Av is determined by the 
colours assigned to vertices near v. In particular, letting Bv be the set of 
partition classes adjacent to the partition class containing v and Cv be the 
set of partition classes adjacent to some element of Bv, we see that Av depends 
only on the colours assigned to Ev = Bv U Cv. The difference in this situation 
is that the colour assignments are no longer independent, and in particular, 
there is dependency between the colours assigned to classes of the same dense 
set. Thus, for two events Au, Av to be dependent, we do not need Eu and Ev 
to intersect - it suffices for there to exist a dense set containing an element of 
both Eu and Ev· However, these are the only ways in which two events can 
be dependent, and it is straightforward to confirm that each Av is mutually 
independent of all but at most O(L15 ) other events. Our lemma now follows 
from the Local Lemma. D 

It only remains to prove Lemmas 16.10 and 16.11. 

Proof of Lemma 16.1 0. This follows along the same lines as the proof of 
Lemma 10.3, but the details are a little more delicate. To begin, we recall the 
crucial difference between the two proofs. 

The basic step in both proofs is to compute the probability that two 
neighbours of v retain the same colour. As we have already seen, this prob
ability differs under the two procedures. In particular, under the original 
procedure this probability is at least ~(1 - ~) 2.:1- 2 for any pair of non
adjacent neighbours. whilst under the new procedure it is only non-zero for 
strongly non-adjacent vertices. A more subtle, and at this juncture more 
important, difference is that the probability that two strongly non-adjacent 
vertices retain the same colour depends heavily on the intersection of their 
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neighbourhoods with the various dense sets. This was what motivated our 
definition of a monocolourable pair. 

For example, if u and w are a pair of non-adjacent vertices in S, then 
we can colour u and w independently of the rest of the graph. So, we see 
that letting Y be the probability that a specific colour j is not assigned to 
N(u) U N(w) (note that this probability is independent of the choice of j 
by symmetry), we have that the probability u and w retain the same colour 
is ~. More generally, for any pair of strongly non-adjacent vertices u and w 
let Zuw be the set of partition classes adjacent either to the partition class 
containing u or the partition class containing w and not in the same dense 
set as u or w. Then, letting Yuw be the probability that a specific colour is 
not assigned to Zuw, we have that the probability u and w retain the same 
colour is ~ (we spell out the details below). The first step in the proof will 
be to bound the Yuw. 

To this end, fix a set Z of vertices and a colour j. We will bound the 
probability that j is not assigned to any vertex of Z. For each dense set Di, 
we denote by Zi the number of elements of C Pi that Z intersects. We use zo 
to denote the number of vertices in S n Z. We define 

( 1 )zo 
O(Z) = 1 - ~ X II ( 1 - ~) 

i?:l 

16.12 The probability that j is not assigned to any class of Z is O(Z) 

Proof We only need to verify that the probability that no vertex in ZnDi 
is assigned j is 1 - ~. But this is clear. D 

Suppose that IZI = r, and that for each i ;::: 1 we have Zi :::; t. Define 
a = l f J and b = r - at. Subject to these constraints, it is easy to see 
from (16.12) that O(Z) is maximized at zo = 0, z1 = ... = Za = t, Za+l = b 
and so: 

16.13 O(Z) ;::: (1 - ~) X (1 - ~)a. 

We now consider two strongly non-adjacent vertices u and w. Let Yuw 
and Zuw be defined as above. Note that u and w both retain colour j if and 
only if: 

(i) u and ware both assigned j, and 
(ii) no element of Zuw is assigned j. 

Furthermore, these two events are independent, the first occurs with proba
bility ~ and the second occurs with probability Yuw. Since there are c colours c 
to choose for j, we do obtain, as we thought: 

16.14 the probability that u and w retain the same colour is~-
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In the same vein, we have: 

16.15 If u and w are a pair of strongly non adjacent vertices and X is a set 
of vertices such that no element of X is in a dense set containing either u or 
w then the probability that u and w retain the same colour and this colour is 
not assigned to any of X is li(Zu~ux). 

Combining (16.14) with (16.12) and (16.13) we will obtain: 

16.16 For any monocoloumble pair, { u, w} the probability that u and w retain 
the same colour is at least 2~oc . 

To prove (16.16), we set Z = Zuw and note that IZI S 2.1 and since uv is 
a good pair: Vi, IZuv n D;l S 7~. So applying (16.13) with r = 2.1, t = 7~, 
a= 2 and b =~yields Yuw :;.:> 260 (since c :;.:> (1- 160 ) .1). 

Using (16.15) instead of (16.14) we will obtain the following result: 

16.17 For any monocoloumble pair, { u, w} in the neighbourhood of a ver
tex v, the probability that u and w retain the same colour and this colour is 
assigned to at most 10 neighbours of v, is at least 20boc. 

To prove (16.17), we consider the set Z' which is the union of N(u) U 
N(v) U N(w). We let A be the union of the three dense sets which have the 
largest intersection with Z'. We also consider the set X consisting of those 
vertices of N ( v) - A which are not in a dense set containing either u or w. 
We will show that the probability that u and w retain the same colour and 
that this colour is not assigned to any of X is at least 20boc. Such a colour 
is assigned to at most 2 vertices in each of the 3 dense sets comprising A, 
and at most one other vertex in each of the partition classes containing u, w. 
Thus it is assigned to at most 10 neighbours of v and so (16.17) follows. 

To prove our probability bound, we need to apply (16.13) to Z* = Zuw 
UX. Clearly, IZ*I::; IZ'I::; 3L:L We claim that Z* nD;::; 7f" for every i. 
As Z* <;;;; Z' this is trivially true if D; n Z' s 3f. Since Z' has at most 3.1 
vertices, if IZ' n D;l > 3f then D; <;;;; A and so D; n X = 0. Therefore, 
Z* n Di = Zuw n D;. By the definition of "monocolourable pair"' IZuw n Dil 
::; 7~, and so the claim holds. Thus, we can apply (16.13) with r = 3.1, and 
t = 7~ to obtain (16.17). 

With (16.17) in hand, it is straightforward to complete the proof of the 
lemma. We consider a vertex v of SUS' and let X~ be the set of colours which 
are assigned to at most 10 neighbours of v and retained by at least two of 
them. We consider the number Nv of monocolourable pairs { u, w} for v which 
are assigned a colour in X~. By (16.7), (16.8), and (16.17), Nv 2> ~~ x 20boc· 
Since Nv is clearly at most 45X11 , the lemma follows. D 

Proof of Lemma 16.11. Our proof here is reminiscent of that used to prove the 
concentration results in Chap. 10. Instead of proving the concentration of X 11 

directly, we will focus on a number of related variables. So, for i between 2 
and 10 we define: 



16.5 The Proof of Theorem 16.5 179 

(a) X~ to be the number of colours assigned to exactly i neighbours of v and 
retained by at least two of them, 

(b) Y~ to be the number of colours assigned to at least i neighbours of v, and 
(c) Z~ to be the number of colours assigned to at least i neighbours of v and 

either assigned to at least i + 1 neighbours of v or removed from at least 
i- 1 of them. 

10 . . . . 
We note that Xv = I:i=2 X~ and X~ = Y~- Z~. Thus, it suffices to prove the 
following concentration bounds, which hold for any t > ,j J.L log J.L, where J.L is 
the expected value of the variable considered. 

Claim 1: Pr (IY,~- E(Y~)I > t) < 4e- 3soE(xvJ. 

t2 

Claim 2: Pr (IZ~- E(Z~)I > t) < 4e-7ooE(xvJ. 

We prove both of these claims using McDiarmid's Inequality. 

Proof of Claim 1. The value of Y~ is determined by the colour assign
ments made to the neighbours of v. Furthermore, carrying out either of 
changes (i), (ii) from Sect. 16.2 can affect Y~ by at most 2, as such a change 
can only affect whether the at most two colours involved are counted by Y~. 
Furthermore, to certify that Y~ is at least s we need only specify lOs colour 
assignments; for each of s colours, we specify i <::; 10 assignments of the colour 
to neighbours of v. So, we can indeed apply McDiarmid's Inequality to prove 
our claim. 0 

Proof of Claim 2. As with Y~, carrying out either of changes (i), (ii) from 
Sect. 16.2 can affect Z~ by at most 2, as such a change can only affect whether 
the at most two colours involved are counted by Z~. Furthermore, to certify 
that Z~ is at least s we need only specify at most 19s colour assignments. 
For each of s colours, we first specify i <::; 10 assignments of the colour 
to neighbours of v. We then specify either an (i + l)st assignment on the 
neighbourhood or i - 1 assignments which cause i - 1 neighbours of v to 
lose this colour. So, we can again apply McDiarmid's Inequality to prove our 
claim. 0 

16.5 The Proof of Theorem 16.5 

Recall that we defined E so that w = (1- E)(L1 + 1). We prove Theorem 16.5 
for E ~ 1loo, 8 = 10-9 and L:\0 large enough to satisfy certain implicit 
inequalities. The theorem then follows for arbitrary E with 8 = 10-12 , since 
for E > 10100 , if w ~ ( 1 - E) ( L1 + 1) then w ~ ( 1 - 10100 ) ( L1 + 1) and so 

X~ (1- 10100 X 10-9 ) (L1 + 1) ~ (1- EX 10-12 ) (L\ + 1). 
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Using our standard reduction (from Sect. 1.5), we can reduce the problem 
to the case of regular graphs. So, let G be a ..1-regular graph for some L1 ~ ..10 

with w(G) :S (1- ~:)..1. We set c = l(1- ~:8)(..1 + 1)J, i.e. cis the number 
of colours we will use in our colouring. We set d = 1108 ~:8(..1 + 1)l and 
consider a d-dense decomposition D1, ... , Dz, S of G. Since, d :S 6~0 , for 
each 1 :S i :S l we can find a partition C Pi of Di satisfying the conditions of 
Lemma 15.12. We note that for each i, w(Di) :S (1- ~:)(..1 + 1) < ..1- 8d. So 
Lemma 15.12 guarantees that ICPil :S ..1- d. 

Now, by Lemma 16.9, we can find a partial c-colouring of G so that: 

( 1) For every vertex v in S U S', the number of coloured neighbours of N ( v) 
exceeds the number of colours which appear on N(v) by at least ~ ~ 
~:8(..1 + 1). 

(2) For every two vertex partition class U, either both vertices of U receive 
the same colour or neither is coloured. 

We will complete our partial colouring of G greedily paying particular 
attention to the order in which we colour the remaining vertices. Condition (1) 
implies that the vertices in S U S' will pose no problems so we leave them 
to last. We focus instead on the core vertices, defined to be those vertices in 
dense sets with fewer than ~ external neighbours (or equivalently V- S- S'). 
Condition (2) implies: 

16.18 At most ICPil colours appear on Di. 

Since I C Pi I + ~ :S c - 1, we can certainly colour the core vertices provided 
we ensure that (16.18) continues to hold. 

To this end, whilst colouring the core vertices, we shall insist that at all 
times: 

16.19 For each partition class U there is at most one colour used on the 
vertices of U. 

So, rather than considering the core vertices one at time, we still consider 
any pair forming a partition class as a unit. When we colour such a pair {x, y} 
in Di, we give x andy the same colour. This will be a colour which appears 
neither on Di nor on any external neighbour of x or y. Now, by (16.19) 
there are at most ICPil :S L1 - d colours appearing on Di. Furthermore, 
by definition, each of x and y has at most ~ external neighbours. So, since 
~ > ~:8(..1+1), there will certainly be a colour with which we can colour { x, y}. 
Thus, we can indeed extend our partial colouring to the core vertices, hence 
the theorem is proved. D 
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16.6 Proving the Harder Theorems 

The only differences between Theorem 16.3 and Theorem 16.5 is the former 
must hold (a) when w is arbitrarily close toLl not just when Ll-w ~ (log 8)10 , 

and (b) for all Ll ~ 3 not just those larger than some Llo. 
The second difference is unimportant, as we can deal with it using a simple 

trick which we have applied many times already. Specifically, if the theorem 
holds for 8 = r for Ll exceeding some fixed .10 , then it holds for Ll ~ 3 with 

8 =min (r, Llo\1), since for Ll :S Llo the result reduces to Brooks' Theorem. 

We could not deal with graphs which contain arbitrarily large cliques, 
using the techniques presented in this chapter, because most vertices in 
a dense set containing a clique of size exceeding Ll - (log .1) 10 have very 
small external neighbourhoods. Too small, for us to be able to control the 
number of repeated colours in such a vertex's neighbourhood by applying 
the Local Lemma. However, in this case, the dense sets we are interested in 
are so close to cliques that there are very few edges out of any one of them, 
and hence very little interaction between them. This allows us to deal with 
them separately with a different kind of randomized fix-up procedure. We 
note that our analysis in Sect. 18.4 is along the same lines. In this way, we 
can extend our proof of Theorem 16.5 to a proof of Theorem 16.3. 

We turn now to the proof of Theorem 16.4. We start by recalling the 
differences between Theorems 16.4 and 16.3: 

1. in Theorem 16.4, we require 8 = ~; 
2. Theorem 16.4 only has to hold for w ~ (1- ()(Ll + 1). 

To extend our proof of Theorem 16.3 to one of Theorem 16.4, we only 
need to deal with the first difference, since the second only helps us. 

The proof is similar to that which we have just presented. Once again, 
we need to pseudo-randomly find a partial colouring in which all the core 
vertices are coloured whilst ensuring there are many repeated colours in 
the neighbourhoods of the noncore vertices. There is little change in our 
treatment of the noncore vertices. 

To deal with the first difference, we need to take a much closer look at 
the core vertices. We make the following adjustments in the proof. 

(A) If a core vertex receives the same colour as a noncore neighbour we 
uncolour only the noncore vertex. If two adjacent core vertices receive 
the same colour, we only uncolour the one with the larger external 
neighbourhood. 

(B) Because singleton partition classes of the CPi are easy to deal with when 
we are trying to complete a colouring so that (16.19) holds, we uncolour 
a constant fraction of these at random, only recolouring them after all 
the core vertices of the non-singleton stable sets have been coloured. 

(C) We colour the uncoloured core vertices with smaller external neighbour
hoods before those with larger external neighbourhoods 
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(D) For each core vertex v, we compute a bound on the number of colours 
available for v when we come to colour it, by estimating the number 
of colours retained in its external neighbourhood but not its internal 
neighbourhood. Modification (C) is useful here as it tells us that many of 
the external neighbours of v left uncoloured in the initial pseudo-random 
partial colouring are still uncoloured so will not contribute to this sum. 

(E) We sometimes use stable sets of size 3 in the CPi, this provides us with 
a slightly better colouring and a bit of slack to play with. 

Remark We note that the first two adjustments increase the effect the 
structural decomposition has on the random colouring procedure. It is this in
teraction between the two proof techniques which has proven to be especially 
powerful. 

For details of the proof, see [132]. 

16.7 Two Proofs 

In this section we prove Lemmas 16.7 and 16.8. We need a definition. 

Definition For a vertex v in a dense set Di, we use Out~ to denote the 
vertices of G- Di which are not strongly non-adjacent to v. 

Proof of Lemma 16.6. 

I ' 
Case 1: v E S and v has more than 44d external neighbours. 

We know that v has at least a~ internal neighbours and 44d external 
neighbours. Every external edge from Di corresponds to at most 4 pairs of 
vertices, consisting of one internal and one external neighbour, which are not 
strongly non-adjacent. Thus, by 15.1(c), the number of such pairs which are 
strongly non-adjacent is at least 3-f ( 44d) - 32dL1 = ( ~44d- 32d)L1 > t6 Ll. 

I 

Case 2: v E S and v has fewer than 44d external neighbours. 

We know that v has at least L1 - 44d internal neighbours. Since there are 
at most 5d non-singleton elements of C Pi, at least L1 - 54d > ~~~ of these 
neighbours are singleton elements of CPi. Obviously every w E N(v) n S is 
non-adjacent and hence strongly non-adjacent to at least ~~~ - 3-f = ~ of 
these vertices. For any external neighbour w of v in some dense set Dj, the 
external neighbourhood of the partition class containing w has at most ~ 
elements so w is strongly non-adjacent to at least ~~~ - ~ > ~ of these 
vertices. The fact that v has at least ~ external neighbours now yields the 
desired result. 
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Case 3: v E S. 

Let ti = IN(v) n Dil, and T = L;=l ti = IN(v)- Sl. Since v E S, there 
are at least d!J. pairs of non-adjacent vertices in N ( v). If at least ~ lJ. of them 
lie entirely within S, then we are done as each such pair is also strongly 
non-adjacent. Otherwise, we must have lJ. x IN(v)- Sl > ~LJ., and soT> ~-

If for any i, ti ~ 160d, then, as v has at least ~ neighbours outside Di, it 
follows as in Case 1 that the number of strongly non-adjacent pairs of vertices 
in N ( v) is at least 16~dL1 - 32d!J. > ~~ . 

If ti < 160d for all i, then each u E Din N(v) is strongly non-adjacent 
to at least lJ.- ti - 2( ~) > ~ vertices of N( v) - Di, and so N( v) has more 
than ~ (T x ~) = 1d6 LJ. pairs of strongly non-adjacent vertices. D 

Proof of Lemma 16. 7. To begin, we note that for any vertex w not in some Dj, 
the partition class containing w is adjacent to at most 3.f partition classes 
in Dj· The following observation is an immediate consequence of this fact: 

16.20 If a vertex u in Di forms a singleton element of the canonical par
tition and has at most ~ external neighbours and w is a vertex strongly 
non-adjacent to u then { u, w} forms a monocolourable pair. 

Now, let v be a vertex in S' n Di. We note that because of our bound 
on the edges out of Di all hut at most 64d vertices of Di have fewer than ~ 
external neighbours. 

Case 1: v has more than 44d external neighbours. 

We know that there are at least 3.f - 10d internal neighbours of v which 
form singleton partition classes. Further, there is a setS of at least 3.f -74d 
of these neighbours which have fewer then ~ external neighbours. Every 
external edge from Di causes at most 4 pairs consisting of one internal and 
one external neighbour to not be strongly non-adjacent. Thus, by 15.1(c), the 
number of such strongly non-adjacent pairs consisting of a vertex of S and 
an external neighbour of v is at least ( 3.f - 7 4d) ( 44d) - 32d!J. > ~~ . 

Case 2: v has fewer than 44d external neighbours. 

As in the proof of Case 2 of Lemma 16.6 we obtain that every external 
neighbour of v is strongly non-adjacent to at least i- internal neighbours of v 
which form singleton elements of CPi. Since there are at most 8d!J. edges out 
of Di, all but 64d of these i- internal neighbours have at most ~ external 
neighbours. The result then follows from (16.20) as v has at least ~ external 
neighbours. D 
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Exercises 

Exercise 16.1 Using (16.20), show that for any vertex v E S such that for 
some i we have JN(v) n Dil 2: 200d, there are at least dL1 monocolourable 
pairs in N(v). 

Exercise 16.2 Show that for any vertex v in Di there are at most 2f vertices 
outside Di which are not strongly non-adjacent to v. 

Exercise 16.3 Show that for any vertex v there are at most 8(8d..1)ef -
3f )-1 = 512d partition classes which contain vertices which are strongly 
non-adjacent to v but do not form a monocolourable pair with v. 

Exercise 16.4 

(a) Use Exercise 16.2 and Exercise 16.3 to show that for any vertex v in S 

such that Vi, JN(v) n Dil ::; 200d there are at least I:~=l JN(v) n Dil ~ 
monocolourable pairs in N(v) which contain a vertex from a dense set. 

(b) Deduce that if v E S and JN(v) - Sl 2: d then there are at least ~~ 
monocolourable pairs in N ( v). 

Exercise 16.5 We consider a vertex v of S s.t. JN(v)- Sl ::; d. 

(a) Show that if u is a vertex in N(v) n S which is strongly non-adjacent to 
at least ~ other vertices of N ( v) n S then v forms a monocolourable pair 
with at least ~ vertices of N(v) n S. 

(b) Show that for any non-adjacent pair of vertices in N(v) n S which is not 
monocolourable, at least one of the vertices is non-adjacent to at least ~ 
vertices of N(v) n S. 

(c) Use (a) and (b) to deduce that if N(v) n S contains at least r pairs of 
non-adjacent vertices then it contains {2 monocolourable pairs. Combine 
this fact with Exercise 16.4(a) to deduce that N(v) contains at least ~~ 
monocolourable pairs. 



17. Near Optimal Total Colouring 1: 
Sparse Graphs 

17.1 Introduction 

In the next two chapters, we present the main result of [119]: 

Theorem 17.1 There exists an absolute constant C such that every graph 
with maximum degree L1 has total chromatic number at most L1 + C. 

As usual, we will prove the result for L1 exceeding some absolute con
stant L\0 . Since every graph with maximum degree L1 < Llo has total chro
matic number at most 2L1 < L1 + L\0 , this clearly implies that the total 
chromatic number of any graph G is at most L1( G) plus an absolute constant. 
We do not specify L\0 ; rather we just assume that L1 is large enough to satisfy 
various inequalities scattered throughout the proof. Also as usual, we will only 
prove the result for regular graphs, as the construction in Sect. 1.5 allows us 
to reduce our theorem to this case. 

We will make no attempt to optimize the constant C. In [119] we provide 
a proof for C = 1026 , so long as L1 2: L\0 . By modifying the proof slightly 
and being careful one can obtain C = 500, and by being even more careful 
one could probably obtain C = 100. However, this technique will almost 
certainly not yield a value of C which is close to the target of 2 from the 
Total Colouring Conjecture. 

Our approach is similar to that taken in Chap. 7. We will start with 
an arbitrary L1 + 1 edge colouring, tJf, of G (which is guaranteed to exist 
by Vizing's Theorem). We will then carefully choose a compatible vertex 
colouring using the same L1 + 1 colours. As described at the beginning of 
Chap. 9, we cannot hope to find a vertex colouring which does not conflict at 
all with tJf, so we must settle for one which does not conflict very much. As 
in Chap. 7, any edge e such that one of the endpoints of e receives the same 
colour as e will be called a reject edge. We will refer to the graph R induced 
by the reject edges as the reject graph. We will find a vertex colouring such 
that the maximum degree of R is at most C- 2. By Vizing's Theorem, we can 
recolour the edges of R using L1(R) + 1 :s; C- 1 new colours, thus obtaining 
a L1 + C total colouring of G. 

For any vertex v, since iJI is a proper edge colouring, v can have the same 
colour as at most one reject edge incident to v. All other reject edges incident 
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to v must have the same colour as their other endpoints. It turns out to be 
convenient to use a slight abuse of notation and define the reject degree of v 
in any full or partial vertex colouring of G to be the number of edges e = uv 
such that u has the colour lJi(e). Because degR(v) is at most the reject degree 
of v plus one, it will suffice to find a vertex colouring for which no vertex has 
reject degree greater than C - 3. 

We will begin by discussing intuitively why we might be able to find such 
a vertex colouring using the Naive Colouring Procedure. Suppose we carry 
out a single iteration of the Naive Colouring Procedure, and consider, for any 
vertex v, the reject degree of v in the resulting proper colouring. For any edge 
e = uv, the probability that u receives lJi(e) is .::1~ 1 . Therefore, we see that 

the reject degree of v is dominated by BIN(L\, .::1~ 1 ). Thus, by Exercise 2.12, 
for any constant K, the probability that the reject degree of v exceeds K is 
no more than roughly I, , and so for large values of C we expect that a very 
small (albeit significant) proportion of the vertices will have reject degree 
greater than C - 3. 

If a vertex has too high a reject degree, then we will rectify the problem 
by uncolouring all neighbours of v whose colours are contributing to this 
reject degree. The probability that a particular vertex is uncoloured by this 
rule is a very small constant, much smaller than the probability that it is 
uncoloured because a neighbour receives the same colour. Thus, this increase 
in the probability of a vertex being uncoloured should not significantly affect 
the performance of the Naive Colouring Procedure. In particular, we should 
still be able to use the procedure to iteratively obtain our desired vertex 
colouring. 

As we have seen, the Naive Colouring Procedure often works well when G 
is sparse. In this chapter, we will present a relatively short proof of Theo
rem 17.1 for sufficiently sparse graphs G, along the lines discussed above. 
That is, we prove: 

Theorem 17.2 For any 0 ::; E < 1 there exists Ll., c. such that for every 
E-sparse graph G with maximum degree L\;::: Ll., we have xr(G) ::; L\ + c,. 

Proving Theorem 17.1 for graphs which have dense vertices is more com
plicated. We will need to apply the variant of the Naive Colouring Procedure 
discussed in the last two chapters. In the next chapter we will show how to 
modify our proof to yield a complete proof of Theorem 17.1. 

As described above, to prove Theorem 17.2 we first fix an arbitrary (Ll+ 1 )
edge colouring lJi of G. We then find a vertex colouring on the same colour set 
such that the reject degree of every vertex is bounded. We will find this vertex 
colouring by applying several iterations of our Naive Colouring Procedure, 
modified slightly to ensure that the reject degrees remain bounded. 

To begin, we analyze the first iteration. We will show that with positive 
probability, this iteration will produce a partial colouring with bounded reject 
degree such that every vertex has many repeated colours in its neighbour
hood. We will then see that these repeated colours allow us to continue for 
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many more iterations, keeping the reject degree bounded. As usual, we will 
continue until the vast majority of the vertices have been coloured, and then 
we complete the colouring using a different sort of final step. In the next 
chapter we will use a similar, albeit much more complicated, approach. 

Our situation is not nearly as sensitive as that in Chaps. 12, 13 and 14, 
and so our analysis will not need to be as delicate. In fact our analysis will 
be closer in spirit to the relatively simple proof of Theorem 10.2. 

Note that we can still assume that G is regular since the construction in 
Sect. 1.5 creates no new triangles and so preserves sparseness. 

17.2 The Procedure 

For each i, we will ensure that during iteration i, no vertex has its reject 
degree increase by more than T, where T is a constant to be defined below. 
After some fixed (positive) number I of iterations, so much of the graph will 
be coloured that we will be able to be much more strict about the number 
of reject edges appearing. We will ensure that no vertex can have its reject 
degree increase by more than one during a single iteration, and furthermore, 
that if its reject degree increases by one, then it will not increase at all in 
any subsequent iteration. Thus, at the end of our procedure, no vertex will 
have reject degree greater than IT + 1. 

For each vertex v, we will maintain a list Lv of colours which do not yet 
appear on the neighbourhood of v. Initially, of course, Lv = {1, ... , L1 + 1 }. 
After iteration I, we will also maintain a list of colours Fv which are forbidden 
from being assigned to v in order to keep the reject degree of some neighbours 
of v from increasing further. Until iteration I, Fv = 0. 

Thus, we will perform several iterations of the following procedure: 

1. Assign to each uncoloured vertex v a uniformly random colour from Lv. 
2. Uncolour any vertex which receives the same colour as a neighbour. 
3. In iteration i ~ I: 

For any vertex v which has more than T neighbours u for which u is 
assigned the colour IJF( u, v) in this iteration, we uncolour all such neigh
bours. 

In iteration i > I: 
a) Uncolour any vertex v which receives a colour from Fv. 
b) For any vertex v which has more than 1 neighbour u for which u 

receives the colour IJF( u, v), we uncolour all such neighbours. 
c) For any vertex v which has at least one neighbour u for which u 

receives the colour IJF(u,v), we place !JF(w,v) into Fw for every wE 

Nv. 

4. For any vertex v which retained its colour /, we remove 1 from Lu for 
each neighbour u of v. 
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We will continue for a number of iterations to be specified later, and then 
we complete our colouring with a final phase which we describe in Sect. 17.4. 
Note that we are being a little overcautious here. For example, in Step 3 
we are counting neighbours which were assigned a bad colour regardless of 
whether they were uncoloured in Step 2. This will simplify the proof at the 
cost of an increase in our constant Ce. 

17.3 The Analysis of the Procedure 

To begin, we focus on what happens to the neighbourhood of a particular 
vertex v during the first iteration. We define Av to be the number of colours 'Y 
such that exactly 2 neighbours of v receive 'Y and are not uncoloured in Step 2. 
The same analysis as in the proof of Theorem 10.2 yields that for ( = ~, 
we have: 

17.3 Pr(Av < (Ll) < e-a.::l, for a particular constant a> 0. 

We need to show that with high probability very few of these neighbours lose 
their colour during Step 3, We define Bv to be the number of neighbours of 
v which are uncoloured in Step 3. 

Lemma 17.4 Pr ( Bv 2 ~Ll) :::; e-b.::l for a particular constant b > 0. 

Proof Consider any u E Nv. We will bound the probability that u is 
uncoloured in Step 3. For any particular neighbour w of u, the probability 
that u and T other neighbours of w are each assigned the same colour as the 

edge joining them to u is at most ( .::lrl) ( .::l~l) T+l. Therefore, the probability 

that this happens for some neighbour of u is at most 

Ll(Ll- 1) (-1 )T+l .2_ ~ 
T Ll + 1 < T! < 4 

forT sufficiently large in terms of(. Therefore, E(Bv) < %Ll. 
To complete the proof, we must show that Bv is sufficiently concentrated. 

This follows easily from Talagrand's Inequality after observing that changing 
the colour assigned to any one vertex can affect Bv by at most T + 1, and 
that we can always find a certificate for Bv consisting of the vertices which 
produce all the reject edges. We leave the details to the reader. D 

A straightforward application of the Local Lemma proves that with posi
tive probability, the first iteration produces a partial colouring with bounded 
reject degree for which every vertex has ~ repeated colours in its neighbour
hood. 

Next we prove that given such a partial colouring, the remaining iterations 
of the procedure will, with positive probability, complete it to a colouring 
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with bounded reject degree. To do so, it is no longer necessary that the 
graph be sparse - this was only required to analyze the performance of the 
first iteration. 

So we now turn our attention to the next iterations of our procedure, 
which we will analyze in a significantly different way than we analyzed the 
first iteration. The crucial fact which makes our analysis work is: 

17.5 At the beginning of every iteration after the first, for every uncoloured 
vertex v, the size of Lv exceeds the number of uncoloured neighbours of v by 
at least p11 where p = (12. 

This follows easily from the fact that each such v has at least p11 repeated 
colours in its neighbourhood. 

(17.5) guarantees a significant gap between the size of Lv and the number 
of uncoloured neighbours of v. This gap will be very useful. For one thing, it 
implies that ILvl is always at least p11. Thus, during any iteration after the 
first, the probability that a newly coloured vertex is not uncoloured during 

Step 2 is at least (1 -1l(p11))Ll ~ e-~. 
So we need only bound the probability that a newly coloured vertex v is 

uncoloured in Step 3. For each iteration 2 :S: i :S: I, this probability is at most 
(~) (iJT which, because of the aforementioned gap guaranteed by (17.5), is 

at most ( ~) ( P~ f. So if we choose a constant T which is sufficiently large in 
terms of p then the probability that v is uncoloured during Step 3 is at most 

1 
~e-li. Using this and the Local Lemma, it follows easily that with positive 
probability, for every vertex w, the proportion of uncoloured neighbours of w 

1 
which retain their colours during any iteration after the first is at least te-'ii. 
So, for any choice of I, we can prove inductively that for each 1 :S: i :S: I the 
degree of the subgraph induced by the uncoloured vertices at the end of 
iteration i is at most: 

( 
1 1)i Di = 1- 4e-'ii 11. 

(Note that D1 = (1- ie-1/P) 11 which is less than (1- p)11 since p :s; b, 
so this bound does indeed hold for i = 1). 

We want to show that the same is also true for each iteration i >I. To do 
so, we again show that the probability a vertex v is uncoloured during Step 3 
is at most ~e- 1 /P. To begin, we bound the probability that vis uncoloured 
in Step 3(a). We must first bound IFvl· Again, we use the fact that each Lv 
will always have size at least p11. For any vertex u, the probability that some 
neighbour w of u receives the colour tJr( u, w) during iteration j is at most 
P~ x Dj since for each such w, P~ ~ IL~I· Thus, the expected number of 
neighbours u of v for which tJr( u, v) enters Fv during iteration j is at most 
11 x P~ x Dj = D1 I p. We will be able to ensure that with positive probability, 
at most 2D1 I p colours enter each Fv during iteration j, and so we define for 
each i >I: 
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i-1 

Fi = L 2Djjp. 
j=I+1 

An easy computation shows that, if we take I sufficiently high, each Fi is less 
1 

than ie-li x piJ.. Therefore, the probability that vis uncoloured in Step 3(a) 

is at most ~ < le-i ILvl 4 · 

The probability that v is uncoloured in Step 3(b) is at most ,!h. This 
is because there are at most iJ.Di choices for a path v, a, b where b is an 
uncoloured vertex, and there is at most a (P~)2 probability that v,b receive 
the colours IJi(a,v),IJi(a,b). By choosing I to be sufficiently large, we ensure 

1 
that Di is so small that this probability is also at most ie-li. Therefore, 
the probability that v is uncoloured in either Step 3(a) or 3(b) is at most 

1 
~e-li. This is enough to show that with positive probability, the degree of 
the subgraph induced by the uncoloured vertices is at most Di for iterations 
i >I. 

We will continue fori* iterations, where i* is the minimum value of i such 
that Di :S v'Ll. 

We now specify our choice for I and fill in the details of the proof that 
our procedure works as desired. 

We set r = (1- ie-i). Since r is less than one, E:1 ri is a constant. We 

denote this constant by Q. Then Di = ri iJ., i* = flogr Jzs.l and, whatever 

our choice of I, fori 2: I we have Fi :S 2r; LlQ. We set h = flogr ie-i p2l 
1 

We insist I 2: h which implies that for i 2: I we have Di :S ie -;o p2 iJ.. We 

set I2 = flogr ~e-i l· We insist I 2: I2 which implies that fori 2: I we have 
1 

Fi :S ie-1' x pLJ.. 

Lemma 17.6 If we apply our algorithm with I= max{h,/2 ,2} then with 
positive probability, at the end of each iteration 1 :S i :S i*, every vertex has 
at most Di uncoloured neighbours, and each Fv has size at most Fi. 

Our proof is by induction on i, and so we assume that at the beginning 
of iteration i, each vertex v has at most Di-l uncoloured neighbours, and 
each Fv has size at most Fi_ 1. The facts that at least plJ. vertices are coloured 
in the first iteration (see (17.5)) and that Fv = 0 until iteration I > 1, 
establish the base case i = 1, so we assume i 2: 2. 

As noted earlier, the probability that a vertex u is uncoloured in Step 2 
1 

is at most 1 - e- li . 
Fori :S I, using the same calculation as in the proof of (17.5) we see that 

for the probability that u is uncoloured in Step 3 is at most 

(D·) ( 1 )T+l 1 ( )T 1 1 
Ll T• pLJ. < p p~ < 2e- ;o ' 
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for T sufficiently large in terms of p. 
As described above, for i 2: I a similar calculation shows that the proba

bility u is uncoloured in Step 3(b) is at most 

.1 x Di (p~) 2 
< ~e-~. 

Furthermore, the probability that u is uncoloured in Step 3(a) is at most 

1 1 
IFui/ILul ::=; F;j(pL\) ::=; 4e-i>. 

We let A, B be the number of uncoloured neighbours of v at the begin
ning of iteration i and at the end of iteration i, respectively. By our earlier 

1 
calculations, E(B):::; (1- ~e-i>)A. 

If A :::; Di then B :::; Di. If A > Di, then a straightforward application 
of Talagrand's Inequality, combining ideas from the applications in the proof 
of Theorem 10.2 and Lemma 17.4 shows that B is sufficiently concentrated 
that 

Pr (B 2: (1- ~e-~) A)< e-aD;, 

for a particular constant a > 0. 
We let C be the number of colours which enter Fv during iteration i. 

As discussed earlier, E(C) :::; D;fpL\. A simple application of Talagrand's 
Inequality shows that C is sufficiently concentrated that 

for a particular constant b > 0. 
Lemma 17.6 now follows from a straightforward application of the Local 

Lemma. We leave the details for the reader. D 

17.4 The Final Phase 

At this point, we have a partial colouring in which each vertex v has at most 
v'3 uncoloured neighbours, has reject degree at most I R+ 1 and has a list Lv 
of at least pL\ available colours. It will be convenient for all the lists to be 
the same size, so for each vertex v, we arbitrarily delete colours from Lv so 
that ILvl = pL\. 

We will now show that we can complete the colouring so that no vertex 
has its reject degree increased by more than 1, thus proving Lemma 17.8 and 
Theorem 17.2. 

It is tempting to simply say that the maximum degree of the uncoloured 
subgraph is much less than the size of the lists, and so it is easy to complete 
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the colouring greedily. Unfortunately, it is not easy to greedily complete the 
colouring while at the same time preventing the reject degrees from growing 
too high. A similar problem occurs if we take our usual approach of applying 
Theorem 4.3. Thus we must adopt a new approach. 

For each uncoloured vertex v, we will choose a subset of colours from Lv, 
which we call candidates for v. We will show that with positive probability, we 
can choose a candidate for each uncoloured vertex to complete the colouring. 
In particular, we say that a candidate c is a good candidate if: 

(i) cis not a candidate for any neighbour of v; and 
(ii) there is no candidate c' of any uncoloured vertex v' such that v, v' have 

a common neighbour u where tJt(u, v) = c and tJt(u, v') = c'. 

If we assign a good candidate to every vertex, then condition (i) ensures 
that we will have a proper colouring of G, and condition (ii) ensures that no 
reject degree will increase by more than 1. Thus, it suffices to prove: 

Lemma 17.7 It is possible to choose a set of candidates for each uncoloured 
vertex v so that every such vertex has at least one good candidate. 

Proof For each uncoloured v, we choose 20 uniform random candidates 
from Lv. We define Av to be the event that none of these candidates are good. 

We want to obtain a bound on Pr(Av)- To do so, we first expose the candi
dates for all vertices other than v. After doing so, we define: 

Bad1 = { c E Lv : c is a candidate for some neighbour of v} 
Bad2 = {c E Lv: choosing c for v would violate condition (ii)}. 

We set Bad = Bad1 U Bad2, and we define B to be the event that fBadf ::S 
60VLl. 

Next, we choose the 20 candidates for v. A candidate is good iff it does 
not belong to Bad. Therefore, 

( )

20 9 

Pr(AvfB) ::S 6~:: < .1; . 
So it will suffice to bound Pr(B). 

Since v has at most v'Ll uncoloured neighbours, fBad1f ::S 20VLl. For 
any colour c E Lv, c E Bad2 iff the the unique vertex u joined to v by 
an edge of colour c has another uncoloured neighbour which also produces 
a reject edge to u. Since u has at most v'Ll uncoloured neighbours, this 

happens with probability at most ~~'Jf and so E(fBad2f) ::S 2~~ x fLvf = 

20VLl. A simple application of McDiarmid's Inequality shows that fBad2f is 
highly concentrated: For each vertex w, we can choose the candidates for w 
by taking a random permutation of Lw, and choosing the first 20 colours. 
Exchanging two members of a permutation can, at worse, change one of the 
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candidates, and this can affect 1Bad2 1 by at most 1. Furthermore, it is easy 
to find a suitable certificate. This yields that Pr(B) < L1-lO, which implies 
that 

Pr(Av) ~ Pr(B) + Pr(AviB) < L1-9 . 

Av is mutually independent of all events Aw where w is a distance more 
than 4 from v, i.e. of all but at most L14 events. Since L14 x L1- 9 < i, the 
desired result follows from the Local Lemma. D 

This completes the proof of Theorem 17.2. 
Recall that we only used the fact that G is sparse once in our analysis. 

Specifically, we needed this fact to show that the first iteration yields a partial 
colouring with many repeated colours in each neighbourhood. Thus, if we 
were given such a partial colouring, then we would not require G to be sparse. 
In other words, the same proof used in this chapter will yield the following 
lemma, which will be useful in the next chapter. 

Lemma 17.8 For every p > 0, there exists C = C(p) and L1(p) such that the 
following holds: Consider any graph G with maximum degree L1 2: L1(p), any 
edge colouring of G, and any partial colouring of G where every uncoloured 
vertex has pL1 colours appearing at least twice in its neighbourhood. The 
partial colouring can be completed to a colouring such that the maximum 
reject degree does not increase by more than C. 
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General Graphs 

18.1 Introduction 

In the previous chapter, we proved that for any constant E > 0, graphs 
in which every vertex is ELl-sparse have a ..1 + C(E) total colouring. In this 
chapter, we will show how to modify that proof to handle graphs that include 
dense vertices, thereby proving Theorem 17.1. To do so, we make use of the 
decomposition from Chap. 15. 

Recall that we are assuming G to be a ..1-regular graph for some suffi
ciently large ..1. 

We fix a particular small constant, say 10-10 , and we set E to be the largest 
rational less than 10-10 such that ELl is an integer. Then we consider an ELl
dense decomposition of G into D 1, ... , Dt, S along with the corresponding 
partitions CP1 , ... , CPt yielded by Lemma 15.12. 

As in Chap. 16, we refer to each member of C Pi as a partition class and, 
for convenience, we also refer to each vertex in S as a partition class. Thus, 
most partition classes have exactly one vertex and the rest have exactly two 
vertices. 

Once again, our approach is to fix an arbitrary ( ..1 + 1 )-edge colouring and, 
using the same Ll+ 1 colours, construct a vertex colouring with bounded reject 
degree. To do so, we use a three step process. As in the last chapter, we first 
perform one iteration of our standard colouring procedure, deleting the colour 
on any vertex which conflicts with a neighbour or contributes to the reject 
degree of a neighbour with high reject degree. This implies that the maximum 
reject degree in the partial colouring obtained is bounded. We show that 
with positive probability this partial colouring also satisfies certain properties 
which will allow us to complete it while maintaining a (larger) bound on the 
reject degrees. In the second step, we extend the partial colouring to most 
of the vertices in the dense sets. In the third step we complete the partial 
colouring by colouring all remaining uncoloured vertices, all of which are 
sparse. 

The second step of our process has two phases. In the first, we are mainly 
interested in ensuring that the colouring behaves as we require within each 
dense set. In the second, we need to deal with the interaction between each 
dense set and the rest of the graph. Thus, we can think of our procedure as 
a four phase process, which we describe below. 
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For each vertex v in a dense set Di, we define the internal reject degree 
of v to be the number of its neighbours u E Di such that u has the same 
colour as the edge uv. 

While every vertex in S is sparse by the definition of our decomposition, 
not all vertices in the dense sets are necessarily dense. For example, vertices 
which have sufficiently large outneighbourhoods will be sparse. In particular, 
we define 

' S = {v ~ S: IOutvl ~ 12EL1}. 

We claim that each v E s' is sparse. To see this, note that N ( v) includes at 
least £L1 vertices in Di and at least 12EL1 vertices outside of Di. By part (c) of 
Definition 15.1 of a dense decomposition, at most 8EL12 of the 9EL12 potential 
edges between these two sets are present. Therefore N(v) contains at least 
EL12 non-edges. 

For each dense set Di, a partition respecting colouring of Di is an as
signment of colours to the partition classes of CPi, where each class gets 
a different colour. By the definition of CPi, this must yield a colouring of Di. 
We define a partition respecting partial colouring in the same manner. 

Phase 1: We choose an initial partial colouring. 
We do this using a technique similar to that employed to find the random 

partial colouring of Chap. 16. We give each sparse vertex a uniform colour 
between 1 and L1 + 1. For each dense set Di, we essentially choose a random 
partition respecting colouring with each such colouring equally likely. We 
uncolour vertices involved in conflicts and also those which contribute to 
the reject degree of vertices whose reject degree is high. As in Chap. 17, we 
will ensure that each vertex v E S has at least aLl repeated colours in its 
neighbourhood, for some constant a > 0. In fact, we extend this condition to 

' the vertices of S as well, which we can do since they are also sparse. This will 
allow us to complete the colouring of SUS' in the fourth phase by applying 
Lemma 17.8. We will also impose some further conditions which allow us to 
deal with the other uncoloured vertices in phases II and III. 

Phase II: We assign a colour to every uncoloured vertex in each dense set. 
We ensure that at the end of Phase II, we have a partition respecting 

colouring of each dense set Di such that the maximum reject degree within 
each dense set is bounded by a constant. 

The only problem with the partial colouring produced in this phase is that 
the interaction between the colouring of a dense set and the rest of the graph 
may not be perfect. There will be a small number of vertices in dense sets 
which were coloured during this phase and whose colour is problematic. For 
example, a vertex v E Di might have the same colour as a neighbour outside 
of Di or as the edge joining v to such a neighbour. Such vertices (as well as 
some others coloured in this phase) are said to be temporarily coloured, and 
must be recoloured later. If a vertex has a colour and it is not temporarily 
coloured, then it is said to be truly coloured. If a vertex v E Di is temporarily 
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coloured with the colour of an external edge uv, then since v is eventually 
recoloured, this edge-vertex conflict will eventually be resolved. So we will 
not need to be concerned with any external reject edges being formed during 
this phase. 

We carry out Phase II as follows: For each Di, we will choose a comple
tion of the partial colouring obtained in Phase I uniformly from amongst all 
such completions which yield a partition respecting colouring with bounded 
internal reject degree. The fact that the number of edges from Di to the rest 
of the graph is so small will allow us to ensure that with high probability 
the number of temporarily coloured vertices in Di will be small. Applying 
the Local Lemma we will obtain that with positive probability, the number 
of temporarily coloured vertices in each Di is indeed small. This fact, along 
with the conditions we ensured held in the first phase and a new one that 
we enforce in this phase, will allow us to recolour the temporarily coloured 
vertices not in S' in the third phase. 

The analysis of Phase II is fairly simple. However, it is not immediately 
clear how to get a handle on the uniform distribution over the set of partition 
respecting completions with bounded reject degree. Doing so requires some 
interesting new techniques. 

Phase III: We modify the colourings on each dense set to deal with the 
conflicts between it and the rest of the graph. In other words, we recolour the 
temporarily coloured vertices. At the end of this phase, all vertices outside 
of S U S' will have been coloured definitively. 

The further the chromatic number of Di is from ..1, the more room to 
manoeuvre we will have when modifying the colouring of Di· Thus, the real 
difficulty in this stage is in dealing with dense sets Di for which x(Di) ::::::: ..1, 
which we refer to as ornery sets (a precise definition follows in Sect 18.2.1). 
This phase has two steps: in the first, we focus exclusively on the most 
problematic vertices (the kernels) of the ornery sets; in the second, we deal 
with all the other vertices of the dense sets. The second step is relatively 
easy - it uses a simple greedy colouring procedure similar to many that we 
have seen already. The first step is more difficult. 

In this first step, we recolour a problematic vertex by randomly choosing 
a suitable vertex in the same dense set, and switching the colours of the 
two vertices. Much of the work involves proving that (a) there will be many 
suitable vertices to switch with, and (b) the number of vertices which need 
recolouring is small enough that these switches have a limited total effect on 
the overall colouring. This is very similar to, but more complicated than, our 
treatment of the final phase in the previous chapter. Readers may prefer to 
skip over the technical details. 

Phase IV We complete our colouring by colouring all the remaining un
coloured vertices in S U S' by applying Lemma 17.8. 
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We choose constants C1, C2, C3, C4 which are sufficiently large in terms 
of 1/E, and we ensure that during each Phase i, no reject degree will increase 
by more than Ci. Therefore, at the end of our procedure, no vertex will have 
reject degree greater than C1 +C2+C3+C4. Setting C = C1 +C2+C3+C4+3 
completes the proof. 

Having outlined how each phase proceeds, we turn to the formal details. 

18.2 Phase 1: An Initial Colouring 

In this section, we will precisely define the properties required of the output 
of Phase I and sketch a proof that we can find a partial colouring with the 
required properties. 

18.2.1 Ornery Sets 

In Chap. 16 we discussed the complications involved in extending the proof 
of Theorem 16.5 to a proof of Theorem 16.4. We mentioned that any dense 
set Di with JCPil very close to the number of colours being used is particularly 
troublesome. In this subsection, we discuss these sets more precisely. 

We say that a dense set Di is ornery if 

While all dense sets are close to being cliques, ornery sets are particularly 
close. For one thing, most of their vertices have very small outneighbour
hoods. More specifically, defining the kernel, Ki, of Di to be the set of vertices 
with at most log6 Ll neighbours in G- Di, we have: 

Lemma 18.1 For each ornery Di, 

(a) JDil < Ll + log5 Ll, 
(b) IDi- Kil < log5 Ll, and 
(c) JE(Di,G-Di)l < Lllog7 Ll 

We defer the proof of this lemma to Sect. 18.6. 
Recolouring the ornery dense sets during Phase III will be particularly 

delicate, and so we must impose some conditions on the output of Phase I to 
facilitate that part of our procedure. For one thing, if a colour appears on too 
many edges of E(Di, G- Di), we will not use that colour on Di. Similarly, 
we must restrict the colours that can appear on vertices which are outside of 
Di but which have a reasonably large number of neighbours in Di. We make 
the following definitions for each ornery set Di: 
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Bigi = {v ~ Di: IN(v) n Dil > ..:1718 } 

Overusedi =the set of colours which appear on at least 

Ll- logfo .:1 external edges of Di 

Oftenusedi = the set of colours which appear on at least 

Ia~ .:1 external edges of Di. 

In Sect. 18.6, we will prove the following bounds on the sizes of these sets: 

Lemma 18.2 For any ornery Si, 

(a) ICPil :S Ll + 1- Overusedi; 
{b) IOverusedil :S log4 Ll; 
(c) I Oftenusedi I :S log8 Ll; 
{d) IBigil :S Ll118 log7 Ll. 

In order to facilitate Phase III, we will insist on the following restrictions 
when we carry out Phases I and II: 

Restriction 1: No vertex in Di can receive a colour from Overusedi. 

When we switch colours within Di during Phase III, we will insist that no 
new external reject edges are created. Restriction 1 will be very helpful, since 
without it, colours from Overusedi would be difficult to switch, as they appear 
on external edges incident to so many vertices. 

Note that Lemma 18.2(a) permits this restriction. 

Restriction 2: No two vertices in Bigi can receive the same colour, unless 
they form a partition class in another dense set. 

If we did not impose this restriction, then it is conceivable that by appearing 
on only 2 vertices of Bigi, each with more than ~ neighbours in Di, a colour 
could be, in effect, forbidden from being used on any vertex of Di· (Note that 
if 2 vertices of Bigi form a partition class in another dense set, then neither of 
them has more than ~ neighbours in Di-) If this happened to several colours, 
then it could be very difficult to colour all of Di· 

Restriction 3: No vertex in Bigi can be coloured with any colour from 
Oftenusedi. 

Thus, if a colour is, in effect, forbidden from being switched onto many 
vertices of Di because they are incident to external edges with that colour, 
then it cannot also be forbidden from many vertices in Di by appearing on 
just one vertex in Bigi. Without this restriction, it could be very difficult to 
use such a colour during the switching process in Phase III. 

By Lemma 18.2, Bigi, Overusedi and Oftenusedi are small. As we shall 
see, this implies that enforcing these restrictions has a negligible effect on our 
analysis. (See, for example, the discussion following Lemmas 18.5 and 18.6.) 
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18.2.2 The Output of Phase I 

At the end of Phase I, we will have a partial colouring of G such that each 
partition class of a dense set is either completely uncoloured or coloured using 
a single colour. Restrictions 1, 2, 3 will hold, and the reject degree of each 
vertex will be at most C1 . The following six additional properties will also 
hold: 

The first one will allow us to apply Lemma 17.8 in Phase IV. 

(Pl.l) For each v E SUS', there are at least 4 x~07 L1 colours which appear 
twice in N( v ). 

In the second step of Phase III, we will colour vertices of Di with moderate 
outdegree in a greedy manner. When we come to colour such a vertex v, we 
will want to do so without creating any external reject edges. So the set of 
colours which won't be available for v will include the set of colours which 
appear on N ( v) and the set of colours which do not appear on N ( v) but which 
appear on external edges from v. (There will also be a few other forbidden 
colours, but we don't need to go into such details now.) As usual, we will 
ensure that there will be at least one colour available for v by ensuring that v 
has several repeated colours in its neighbourhood. The following bound will 
suffice: 

(P1.2) For each v E Di-S' such that \Outv\ 2 log3 L1 and vis not in the 
kernel of an ornery set, the number of colours that appear in both Outv and 
N( v) n Di exceeds the number of colours on external edges of v which do not 
appear on N(v) by at least 5E\0utv\· 

To facilitate the next two phases, we need to ensure that there are many 
uncoloured vertices in each dense set. This will give us some room to manoeu
vre while completing the colouring. We define Ui to be the set of uncoloured 
vertices in Di. We shall ensure that the following property holds: 

(P1.3) For every D;, \U;\ 2 (.1 where ( = ( 5b1 ) 
01

. 

As we described in Sect. 18.2, in order to be able to eventually use a colour 
on some vertex in an ornery set D;, we can't have that colour appearing in 
the neighbourhood of too many vertices of D1. 

(P1.4) For each ornery Di and each colour c, the number of vertices in Di 
having an external neighbour outside of Big; with colour c is at most .131132 . 

Finally, there are two similar technical conditions which allow us to com
plete the colouring of the ornery dense sets in Phase III. 
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(P1.5) For each ornery Di and partition class w not in Di there are at least 
,;g-:1.:1 uncoloured non-neighbours of win Di. 

(P1.6) For each ornery Di and colour c ~ Overusedi there are at least 
(log ~)11 uncoloured vertices in Di which are not incident to an external edge 
of colour c. 

18.2.3 A Proof Sketch 

The random process which we consider is an amalgamation of the processes 
used in the previous two chapters. As in Chap. 16, we assign a uniformly 
random colour to each member of S, and a uniformly random permutation 
of colours to the partition classes of each CPi. Here, the colours that we 
use for CPi are a uniformly random subset of {1, ... , Ll + 1}- Overusedi, 
since Restriction 1 forbids us from using any colours from Overusedi. (For 
convenience, we define Overusedi = 0 for each non-ornery Dio) 

We uncolour a vertex in S, or a partition class in a dense set, if it re
ceives the same colour as a neighbour. As in Chap. 17, we will also uncolour 
any vertex in S and any partition class in a dense set which contributes to 
a neighbour having too high a reject degree. We also uncolour vertices which 
violate Restrictions 2 and 3. More specifically, the procedure runs as follows: 

1. For each vertex v E S, assign to v a uniformly random colour from 
{1, ... 'Ll + 1 }. 

2. For each dense set Di, we choose a uniformly random permutation 'Tri 
of {1, ... , Ll + 1} - Overusedi and for 1 :S j :S ICPil, we assign the 
colour 'Tri(j) to the vertices of the jth partition class of Di· 

3. For each vertex v, if any neighbour of v is assigned the same colour as v 
then we uncolour v. If v is in a partition class of size 2, then we also 
uncolour the other member of that class. 

4. For each vertex u, if u has reject degree greater than C1 , then for every 
neighbour v of u such that v has the same colour as the edge uv, we 
uncolour v. If v is in a partition class of size 2, then we also uncolour the 
other member of that class. 

5. For each vertex v E Bigi, we uncolour v if it receives a colour from 
Oftenusedi or if it receives the same colour as some other u E Bigi not 
in the same partition class as v. If v is in a partition class of size 2, then 
we also uncolour the other member of that class. 

The analysis which allows us to claim that properties (P1.1) through 
(P1.6) hold is very similar to that given in the last two chapters. The following 
technical lemmas will be useful. First note that: 

18.3 For any vertex v and colour c, the probability that v is assigned c is less 
than il· 
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Proof If v E S then the probability is .:1~ 1 . If v E Di then the probability 

is at most .:1+1-I01verused;l which is less than i- by Lemma 18.2. D 

Our first technical lemma generalizes (18.3) to larger sets of vertices and 
colours. 

Lemma 18.4 Given any list of partition classes, w1, ... , Wt and colours 
c1 , ... , Ct, the probability that each Wi is assigned ci is at most (%) t. 

We leave the easy proof to the reader (it can be found in [119]). The 
next two symmetric lemmas show that the uncolouring caused by high reject 
degrees or Restrictions 2 and 3 is relatively insignificant. They are very similar 
to Lemma 17.4. 

Lemma 18.5 For any set X of at most 2.1 partition classes, the probability 
that more than 10c10 lXI of these parts are uncoloured in Steps 4 and 5 is at 
most e-aiXI, for an absolute constant a > 0. 

Lemma 18.6 For any dense set D; and any set Y of colours, the probability 
that more than 10\ 0 IYI of these colours are removed from vertices of Di zn 

Steps 4 and 5 is at most e-a!YI, for an absolute constant a > 0. 

The proofs are nearly identical to that of Lemma 17 .4. The main difference 
is that because some of our random choices are random permutations, we 
must use McDiarmid's Inequality. The other difference between these proofs 
and that of Lemma 17.4 is that here we must account for vertices uncoloured 
in Step 5. But this effect is negligible since each vertex v can be in Bigj for 
at most ,1118 ornery sets Dj. Therefore, by Lemma 18.2(c,d), the probability 
of v being uncoloured in Step 5 is at most O(L1114 log7 Ll/Ll), and so Step 5 
only increases the probability of v being uncoloured by o(l). 

With these tools in hand, we now turn our attention to bounding the 
failure probabilities of our properties. 

Consider any vertex v E SUs'. We will bound the probability that (P1.1) 
fails for v. It follows in exactly the same manner as the proof of Lemma 16.9 
that with probability greater than 1- ,1-10 , there are at least 2 x ~07 L1 colours 
which are each assigned to a monocolourable pair of vertices in N ( v), and 
which are not assigned to any neighbours of those two vertices. The only 
difference between our present situation and that in Lemma 16.9 is that 
here some of these colours might be removed in Steps 4 and 5. However, 
Lemma 18.5 implies that with probability at least 1 - ,1- 10 , fewer than 

4x ;o7 L1 vertices in N( v) will be uncoloured in those steps. Therefore, the 
probability that (Pl.l) fails for vis at most 2.1-10 < ,1-9 . 

A similar argument shows that the probability that (P1.2) fails for some 
particular v is at most ,1-9 . We defer the somewhat lengthy details to the 
end of this section. 
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The remaining four properties are much easier to deal with. We leave the 
following as an exercise for the reader: 

18.7 For any vertex v E Di, the probability that, before uncolouring, v has 
internal reject degree greater than c1 is at least ( 0 

( ( is not the optimal constant here. Depending on the proof approach that 
the reader chooses, she might very well obtain a much higher probability.) 

To simplify our proof, we will consider a modified uncolouring rule. We 
suppose that we only uncolour a vertex if it contributes to a neighbour 
having high internal reject degree. In fact, for each vertex v with internal 
reject degree greater than C 1 , instead of uncolouring every internal neighbour 
contributing to this high reject degree, we only uncolour the first C1 + 1 
such neighbours, under some arbitrary predetermined ordering. Of course, 
the probability of (P1.3) failing under this modified rule is smaller than the 
probability under the real uncolouring rule. So this is a valid way to bound 
the latter probability. 

Under this modified uncolouring rule, (18.7) immediately implies that 
E(IUil) ;::: ( x IDil x (C1 + 1). Furthermore, it is easy to see that exchanging 
the colours on two partition classes can affect IUil by at most 4(C1 + 1). 
A straightforward application of McDiarmid's Inequality implies that the 
probability of (P1.3) failing under the modified uncolouring rule is less 
than ,.1-9. Therefore, the probability of it failing under the real uncolouring 
rule is also less than ,.1-9. 

A similar argument proves that the probability of (P1.5) or (P1.6) failing 
for a particular D i and vertex v or colour c is at most ,.1-9. 

We turn now to (P1.4). We consider any specific ornery set Di and 
colour c, and we let Z denote the number of vertices v E Di which have an 
external neighbour outside of Bigi which is assigned c. By Lemma 18.1(c), 
the total number of edges from Di toG- Di is at most Lllog7 Ll, and each 
such edge has less than a il chance of its endpoint outside of Di receiving 
the colour c. Therefore, E(Z) ~ Lllog7 Ll x il ~ 2log7 Ll. 

For each vertex v E S which has a neighbour in Di, we consider the colour 
assignment to v as a random trial. For each of the dense sets Dj which are 
joined by an edge to Di, we consider the entire assignment of colours to Dj 
as a single random trial. Since we are only counting vertices not in Bigi, 
and since any one such vertex has fewer than ..1718 neighbours in Di, the 
outcome of the trial determining the colour assignment to a particular vertex 
in S can affect Z by at most ..17 18 . Since at most 2 vertices in any D j can 
receive c, changing the outcome of the trial determining the entire assignment 
of some D j can affect Z by at most 2..1718 . A straightforward application 

of Talagrand's Inequality yields that Pr(Z > ,.131/32) ~ e-n(-13116 flog 7 .1) 

< ,.1-9. Of course, the probability that Di,c violate (P1.4) is even smaller, 
since some vertices assigned colour c might be uncoloured. 
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Now a straightforward application of the Local Lemma, of the sort that 
we have seen countless times already in this book, implies that with positive 
probability, we will successfully complete Phase I. 

It only remains to deal with (P1.2). The rest of this section is occupied 
with doing so. Many readers may wish to skip these details, as they are 
similar to many proofs found earlier in this book, and move directly to the 
more interesting material in the next few sections. 

Consider some v ~ s' in some dense set Di. We must bound the probabil
ity of (P1.2) failing for v. To do so, we define Y to be the number of colours 
which appear in both Outv and N ( v) n Di at the end of Step 3, and we define 
Z to be the number of colours on external edges from v which appear on 
N(v) n Di at the end of Step 3. If 

(i) Y + Z 2 IOutvl(l + 10~:); 
(ii) fewer than ~:IOutv I external neighbours of v are uncoloured during Steps 

4 and 5; 
(iii) fewer than ~:IOutvl of the colours assigned to external neighbours of v 

are removed from vertices in Di during Steps 4 and 5; and 
(iv) fewer than ~:IOutvl of the colours on external edges from v are removed 

from vertices in Di during Steps 4 and 5, 

then (P1.2) holds for v. Conditions (ii) and (iv) hold with sufficiently high 
probability by Lemmas 18.5, 18.6. 

The proof that (iii) holds with sufficiently high probability is along the 
same lines as the proof of Lemma 18.6. We consider exposing our colour 
assignment in two steps. In the first step, we expose the colour assignments 
to the external neighbours of v. If cl is sufficiently large in terms of 1/~: 
then with high probability, many fewer than 2;;1 IOutvl members of Di will 

have reject degree greater than ~1 after this step; we denote the set of such 
members by T. Let IJt be the set of colours assigned to Outv. In the second 
step, we expose the rest of the colouring. Virtually the same argument as 
that used for Lemma 18.6 implies that, with high probability, fewer than 
~ IOutv I colours in IJt will appear on a vertex in Di which causes a neighbour 
to have reject degree increase by more than ~1 during the second step. If 
a vertex in Di has a colour from IJt removed in Step 4, then either (a) it 
contributed to a reject degree increasing by more than %- in the second step, 

or (b) it was one of the fewer than %- x 2;;1 I Outv I vertices which contributed 

to a vertex from T having its reject degree increase by less than °1 in the 
second step. Therefore, with sufficiently high probability, fewer than ~IOutvl 
vertices of Di lose a colour from IJt during Step 4. It is straightforward to show 
that, with high probability, fewer than ~lOu tv I vertices of Di lose a colour 
from lJt during Step 5. This implies that (iii) holds with sufficiently high 
probability. 

Thus, it will be enough to prove that with high probability condition (i) 
holds. 
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We start by showing that with high probability, Y is large. First we show 
that there are many monocolourable pairs consisting of one vertex in Outv 
and another in N(v) n Di· By Lemma 15.12(iii) and Definition 15.1(b), CPi 
has at least Ll + 1-13t:Ll partition classes of size 1, and at most 64t:Ll of these 
partition classes have outdegree greater than ~ since, by Definition 15.1(c), 
the total outdegree of Di is at most 8t:Ll. Consider any vertex x E Outv. Recall 
that x has fewer than ~ Ll neighbours in Di and if x belongs to a partition class 
of size two, then by Lemma 15.12 that class has fewer than ~Ll neighbours 
in Di. Therefore, there are at least Ll + 1-13t:Ll- 64t:Ll- ~Ll > ~ vertices 
y E Di such that (i) y is a singleton partition class, (ii) IOutyl :S ~'and x, y 
are a strongly non-adjacent pair. By (16.20), x, y are a monocolourable pair. 
Therefore, there are at least ~I Outv I such monocolourable pairs. From this 
collection, we can choose at least ~ I Outv I monocolourable pairs such that no 
partition class intersects more than one of the pairs. By the same argument as 
in the proof of Lemma 16.9 (more specifically, the arguments for Lemma 16.11 
and (16.17)), with probability greater than 1- e-n(IOutvl) > 1- ,1-10, 

at the end of Step 3, at least 40JM x ~ IOutvl of these pairs are such 
that (a) both vertices have the same colour, and (b) that colour does not 
appear on any other partition classes intersecting N(v). This implies that 
Y 2: so1ool0utvl2: 100tl0utvl· 

Ne:X:t we prove that with high probability, Z is large. We denote by X 
the set of colours on the external edges from v. Let Z1 be the number of 
partition classes in C Pi which are adjacent to v and which are assigned 
a colour from X in Step 2. Let Z2 be the number of such classes which are 
uncoloured in Step 3. Thus, Z = Z1 - Z2. To simplify the discussion, we first 
assume that Di is not ornery. 

IN(v) n Dil = Ll- IOutvl > (1 - 12t)Ll. Therefore, since at most 5t:Ll 
partition classes of CPi have size 2, v is adjacent to at least (1 - 17t)Ll 
partitionclassesofCPi. Thus, E(Z1) 2: (1-17t)Llx ft-11 > IOutvlx(1-18t). 
A very simple application of McDiarmid's Inequality (or Azuma's Inequality) 
shows that Pr(Z1 < JOutvl x (1- 20t)) < Ll-10 . 

By (18.3) and the fact that the total number of external edges from Di is 
at most 8t:Ll2 , the expected number of these edges whose endpoints are both 
assigned the same colour from X is at most 8t:Ll2 x lXI x (;~Y = 32tl0utvl· 
Thus, E(Z2) :S 32tl0utvl· McDiarmid's Inequality implies that Pr(Z2 > 
40tl0utvl) < Ll-10 . To see this, note that changing a colour assignment on 
S or interchanging two colour assignments in some D 1 can affect Z2 by at 
most 2. FUrthermore, if Z2 2: s then it is easy to find a set of s colour 
assignments which certify this, namely those assignments that cause the s 
colour classes to be uncoloured in Step 3. 

In the case where Di is ornery, we have to account for the fact that 
any colour in X n Overusedi cannot be assigned to Di. However, since 
IOverusedil < log4 Ll and IOutvl > log7 Ll (since v t/: Ki), this represents 
a negligible number of colours - we omit the details. 
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Therefore, Pr(Z < (1- 60E)IOutvl) < u~- 10 , and so Pr(Y + Z < (1 + 
lOE) I Outv I) < 3Ll-10 which is small enough to show that the probability of 
(P1.2) failing is at most Ll-9 . 

18.3 Phase II: Colouring the Dense Sets 

We now complete the partition respecting partial colouring of each dense 
set Di to a partition respecting colouring of Di with bounded internal reject 
degree. To do so, we use Property (P1.3) which says that, setting ( = ( 5b1 )

01 , 

for each i, the set Ui of uncoloured partition classes in Di has size at least (Ll. 
As we see below, this implies that our partial colouring of Di can be completed 
to a partition respecting colouring of Di in which each vertex has internal 
reject degree at most 1(2 , and such that Restriction 1 continues to hold (i.e. 
no colour in Overusedi appears on Di)· We actually allow the reject degree 
to be even higher, choosing for each Di a uniform element of the set Yi of 
partition respecting completions such that: 

(i) the internal reject degrees are at most c2 = 1 ~0 ' and 
(ii) no colour in Overusedi appears on Di· 

Now, the union of the Yi need not be a colouring, as the colour of a vertex 
may conflict with the colour of an external neighbour. Also, some vertices may 
have high reject degree because of the colours of external neighbours. To deal 
with such problems, we say that any vertex which is assigned, during this 
phase, the same colour as an external neighbour or an edge to an external 
neighbour, is temporarily coloured. To ensure that Restrictions 2 and 3 hold 
on the truly coloured vertices, we also say that a vertex in Bigi assigned 
a colour which is either in Overusedi or assigned to another vertex of Bigi 
not in the same partition class, is temporarily coloured. Note then that if in 
Phase II, v is assigned a colour that an external neighbour u kept in Phase I, 
then v is temporarily coloured but u is not. 

In phases III and IV, we will recolour the temporarily coloured vertices 
along with some of the other vertices coloured in this phase. In order to 
ensure we can do so, we need to bound the number of temporarily coloured 
vertices. We define Tempi to be the set of uncoloured vertices in Di, and for 
each a 2: 1, we define Temp;(a) to be the vertices in Tempi with external 
degrees at most a. We shall ensure that the following property holds: 

(P2.1) For all i and a with log3 Ll <::::a<:::: w-6 ( 2 Ll, ITempi(a)l <:::: 300(-1a. 

We never recolour a vertex coloured in Phase I, so (P1.1) and (P1.2) will 
hold throughout the process. As we will see, it is straightforward to combine 
these properties with (P2.1) and Lemma 17.8 to show that we can recolour 
all of the temporarily coloured vertices, except those in ornery dense sets 
which have low outdegree. 
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To deal with such temporarily coloured vertices in ornery dense sets, we 
need to impose one further condition, reminiscent of (P1.4) 

(P2.2) For each ornery Di and each colour c, the number of vertices in Di 
having an external neighbour outside of Bigi assigned colour c in this phase 
is at most ..131132 . 

We complete this section by showing that with positive probability, our 
choice of colour assignment is such that (P2.1) and (P2.2) hold. To do so, we 
show that for each Di, the probability that either of these properties fails is 
very small. It is then straightforward to apply the Local Lemma to obtain 
the desired result. 

18.3.1 Yi is Non-Empty 

In this section, we prove the following: 

Lemma 18.8 Every partition respecting partial ( L1 + 1) -colouring of a dense 
set Di which leaves at least (Ll partition classes uncoloured and for which the 
maximum (internal) reject degree is at most 1(2 can be completed to a partition 

respecting (Ll +!)-colouring of Di with maximum (internal) reject degree at 

most 1!. 
Proof For any completion of our partial colouring to a colouring of Di, 
we let rej(v) be the (internal) reject degree of v. We consider a partition 
respecting completion 'Y of our partial colouring to a (Ll +!)-colouring of Di 

which minimizes l:vEDi max ( 0, rej ( v) - 1!). If this sum is 0, we are done. 
Otherwise, we choose a vertex u of maximum reject degree. Since rej ( u) > ~ , 
there is at least one neighbour of u contributing to the reject degree of u which 
was uncoloured in the original partial colouring. We let v be such a neighbour, 
and we let w be the partition class containing v. We let c be the colour 
assigned tow. We are going to swap the colour of w with that of some other 
partition class w' which was originally uncoloured. An appropriate choice 
of w' will yield a new partition respecting completion which contradicts our 
choice of 'Y. 

Let 81 be the set of vertices of reject degree exceeding ? . Let 82 be the 
set of partition classes joined to 81 by an edge of colour c. We note that 

l81l :S: ~~~I( :S: \~.Thus l82l :S: ~· 
Let X be the set of edges between wand the elements of 8 1 and let Y be 

the set of colours appearing on X. Note that IYI :s; lXI :s; 21811 :s; ~· 
Thus, there are at least 7f~ partition classes which were uncoloured 

under the original partial colouring which are neither in 82 nor coloured 
using a colour in Y. It is easy to verify that swapping the colour on w with 
the colour on such a colour class w' does not increase the reject degree of 
any vertex in S1 , nor does it increase the reject degree of any vertex outside 
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Fig. 18.1. Y = {r,g,b,p} 

of 8 1 by more than 2. Furthermore, it decreases the reject degree of u by one. 
Thus, this new colouring does indeed contradict our choice of 'Y. D 

We note that the same result holds for ornery dense sets via the same 
proof, even if we impose Restriction 1 on our partial colouring and extension. 

18.3.2 Our Distribution is Nearly Uniform 

We will show that the probability that a partition class in Ui is assigned any 
specific colour c when we choose a uniform element of Yi is not much greater 
than the probability it is assigned this colour if we simply choose a uniform 
partition-respecting extension regardless of the resulting reject degrees. 

Lemma 18.9 For any uncoloured w E CPi and c E {1, ... , Ll + 1}, the 
probability that c is assigned tow is at most 

1
Ji 1 • 

Proof Given any assignment in Yi under which w gets c, for any other 
colour c', we say that c and c' can be switched if assigning w the colour c' and 
assigning the (at most one) partition classes assigned c' the colour c, results 
in another assignment of Yi· Following the lines of Lemma 18.8, we will show 
that c can be switched with at least 9 11~il other colours. 

To this end, let 8 1 be the set of vertices of reject degree at least 1~0 - 2. 
Let 8 2 be the set of partition classes joined to 8 1 by an edge of colour c. We 
note that IBtl < IDil( < ~ < .IQJ_ Thus IS2I < IUil. - 99 - 88 - 88 - 88 

Let X be the set of edges between wand the elements of 81 and let Y be 
the set of colours appearing on X. Note that IYI ::; lXI ::; 2lSt I::; 1 ~1 1 • 

Thus, there are at least 85J~il > 9 11~il partition classes of Ui which are 
neither in 82 nor coloured using a colour in Y. It is easy to verify that 
swapping the colour on w with the colour on such a colour class w' does not 
increase the reject degree of any vertex in 81. Furthermore, it increases the 
reject degree of any other vertex by at most 2. Thus, we can indeed switch c 
with at least 9 11~il other colours. 
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It is easy to see that no colour assignment can be obtained via a single 
switch from two distinct assignments of Yi in which w receives c. Therefore, 
the number of assignments of ri in which w does not get c is at least 190 1 ui 1 

times the number of assignments in which w receives c. So, the probability 
that w receives cis at most 911S;I < 1J;I as claimed. D 

In fact, a nearly identical argument shows that the same bound holds, even 
when conditioning on a prescribed set of colour classes receiving a prescribed 
set of colours, as long as that set is not too large. The proof is essentially 
identical to that of Lemma 18.9 and we omit it. 

Lemma 18.10 Consider any t S:: ~~~ and any set of t partition classes 
w1 , ... , Wt E CPi not coloured in Phase I, and c1 , ... , Ct E {1, ... , Ll+1}. For 
any other originally uncoloured partition class w and colour c, the probability 
that w receives c, conditional on the event that each wi receives Ci is at 
most 1J; 1 • 

This immediately yields the following: 

Corollary 18.11 For any t S:: ~ and any originally uncoloured w1, ... , Wt E 

C Pi and c1 , •.• , Ct E { 1, ... , Ll + 1}, the probability that each Wi receives ci 
is at most ( ( ~ ) t . 

18.3.3 Completing the Proof 

For each ornery dense set Di and log3 Ll S:: a S:: 10-6( 2 Ll, we let Ai,a be the 
event that Di violates (P2.1) for this value of a, and Bi be the event that Di 
violates (P2.2). We show below that the probability of any of these events is 
at most _,1-lO. It is straightforward to verify that each event is mutually inde
pendent of all but at most ..19 other events. So, a straightforward application 
of the Local Lemma will imply that, with positive probability, Phase II will 
be successful. 

We actually prove that our bound on the probability of Ai,a failing, holds 
given any choice of assignments on the other dense sets. Summing over all 
such assignments then yields the desired result. 

We consider separately the set 81 of vertices put into Tempi (a) because 
of Restrictions 2 and 3, the set 82 of vertices put into Tempi(a) because 
they conflict with an external neighbour, and the set 83 of vertices put into 
Tempi(a) because they conflict with an edge to an external neighbour. We 

prove that fori E {1, 2, 3}, Pr (l8il > 100(-1a) S:: Ll~ 10 • The desired result 
follows. 

Having fixed the colour assignment outside of Di, we consider any ver
tex v E Di with outdegree at most a. Clearly, v lies in Bigi for at most ajLl718 

ornery sets Dj, so by Lemma 18.2(c,d), there are fewer than 23/ 4 log7 Ll 
colours whose assignment to v would cause v to be added to s;. Further
more there are fewer than 2Ll vertices in Di. So, by Corollary 18.11, for 



210 18. Near Optimal Total Colouring II 

k ::; ~' the probability that there are at least k vertices in 51 is at most 

e~)( 2a~~~: L1)k(c~)k. Setting k = 100(-1a yields the desired bound on the 

probability 51 is large. 
To bound the size of 5 2 , we actually consider the number s4 of partition 

classes of D; which contain a vertex of 52. We note that I 521 :S 2s4 . If s4 = k 
then we can choose a set F of k edges from the set Di (a) = { v E Di : 
IOutvl :Sa} to V- Di so that: (i) no partition class of Di is incident to more 
than one edge ofF, and (ii) for every edge e ofF, the endpoint of e in Di 
is assigned the colour assigned to the other endpoint of e. Since there are at 
most 2aLl edges out of Di(a), Corollary 18.11 implies that for k :S ~' the 
probability that s4 is at least k is at most e~L1) ( (~ )k. Setting k = 50(-1a 
yields the desired bound on the probability 5 2 is large. 

To obtain a bound on the probability that 53 is large, we proceed similarly. 
The details are left to the fastidious reader. 

Our bound on the probability of Bi falls into two parts. An expected value 
computation and a concentration result. 

18.12 For any ornery Di and colour c, the number ni,c of vertices in Di 
having an external neighbour outside Bigi assigned colour c in this phase has 
expected value at most log8 Ll. 

Proof For any vertex v E Di, the probability that v has an external neigh
bour assigned colour c in this phase is at most IOutvl x (~ by Lemma 18.9. 
Therefore, the expected number of vertices in Di with such an outneighbour 
is at most LvED; IOutvl x (~ which, by Lemma 18.1(c), is less than log8 Ll. 

0 

Now, ni,c is determined by the choice for each D1 of which if any vertex 
of D1 is assigned c. These choices are independent and each affects the value 

of ni,c by at most Ll *. Furthermore to certify that ni,c is at most k we need 
only specify at most k such choices. Thus, a straightforward application of 
Talagrand's Inequality now yields the desired bound on Pr(Bi)· 

18.4 Phase III: The Temporary Colours 

In this phase, we change the colours of all temporarily coloured vertices other 
than those in 5'. As we said earlier, the ornery sets pose the most difficulties. 
The first step of this phase is to deal with the kernels of the ornery sets. The 
second step is to recolour the remaining temporarily coloured vertices, which 
we will do greedily. 

We do not require Restrictions 1, 2, 3 to hold during Phase III or IV. For 
example, it is permissible to assign a colour from Overusedi to a partition 
class in Di· 
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We warn the reader that, while the idea behind Step 1 is fairly simple, 
the details of the analysis are somewhat involved. Step 2, on the other hand, 
will just be a simple analysis of a greedy procedure. 

18.4.1 Step 1: The Kernels of the Ornery Sets 

For each ornery Di we will recolour all vertices in Tempi n Ki, as well as a few 
other vertices of Ki coloured in Phase II, such that the following properties 
hold. 

(Q3.1) We create no new external reject edges. 
(Q3.2) NovE Ki has the same colour as an external neighbour. 
(Q3.3) The reject degree of any vertex increases by at most 2. 

For each ornery set Di, and each v E Tempi n Ki, we will swap the colour 
of v with that of a vertex in Ki - Tempi coloured in Phase II, and so we 
refer to v as a swapping vertex. If { u, v} form a partition class of size 2, and 
if u E Ki, then u will also get the colour that is swapped onto v, and so we 
refer to { u, v} as a swapping pair. But if u ~ Ki, then its large outdegree may 
make it difficult to find a colour that is suitable for both v and u. So u will 
not receive the same colour as v and { u, v} is not a swapping pair. Instead, 
we place u into Tempi so that we don't have to worry about the possibility 
of u conflicting with the vertex with which v swaps. This increases the size 
of Tempi. However, we will also delete v from Tempi at the end of this phase 
since it is being recoloured. So because u has larger reject degree than v, 

18.13 {P2.1) will continue to hold for all i and ai::; 10-6 ( 2 .1. 

For any swapping vertex v, we must select the vertex with which v swaps 
carefully, to avoid creating any conflicts. We define Swappablev to be the set 
of vertices v' E Di with the following properties: 

(a) v' forms a partition class of size 1 in CPi, which was uncoloured in Phase I 
and is now truly coloured, 

(b) v' E Ki, 
(c) no vertices in Outv', nor any external edges from v' have colour c, and 
(d) no vertices in Outv, nor any external edges from v have the colour cur-

rently assigned to v'. 

For each swapping pair w = { v1 , v2}, we set Swappablew = Swappablev1 n 
Swappablev2 • The reader should note that Swappablev1 and Swappablev2 

differ in very few vertices; thus intuitively, treating these two vertices as 
a pair will not create significant extra difficulties. 

Note that swapping the colour of any one swapping vertex/pair w with 
that of some w' E Swappablew will preserve properties (Q3.1), (Q3.2) and 
(Q3.3). However, we will perform all swaps, over all dense sets, simultaneously 
and an infortuitous combination might lead to a violation of (Q3.2) or (Q3.3). 
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In order to deal with this concern, we will actually choose several possible 
candidates w' for w to select from, and show that each swapping class will be 
able to select from amongst its candidates in such a way as to avoid conflicts. 

So for any swapping vertex/pair w of colour c, we will select a subset 
Candidatew <;:; Swappablew of size 20, whose elements we refer to as can
didates. We want each Candidatew to contain at least one good candidate, 
where "good" is defined so that, regardless of which candidates the other 
swapping vertices/parts choose, swapping the colour of w with that of a good 
candidate will neither create any conflicts, nor increase any internal reject 
degree which is increased by another swap. It is easy (if tedious) to formulate 
this condition precisely as follows: 

(Q3.4) For each swapping vertex/pair w, there is some w' E Candidatew 
of colour c' such that 

(a) w' is not a candidate for any other swapping vertex/pair; 
(b) w' is not an external neighbour of any member of Candidatex for any 

swapping vertex/pair x (in some other dense set), which also has colour c; 
(c) w' is not an external neighbour of any swapping vertex/pair x, which has 

a candidate of colour c; 
(d) for every swapping vertex/pair x which has an external neighbour in w, 

no member of Candidatex has colour c'; 
(e) w has no external neighbour which is a candidate of some swapping 

vertex/pair x of colour c'; and 
(f) there is no vertex u, swapping vertex/pair WI of colour ci, and candi

date w~ of WI with colour c~, all in the same dense set as w and w', and 
with either 
(i) the edge ( u, w') present and coloured c, and the edge ( u, wD present 

and coloured CI; 

(ii) the edge (u, w') present and coloured c, and an edge from u to w1 

present and coloured c~; 
(iii) an edge from u tow present and coloured c', and the edge (u,wD 

present and coloured ci ; or 
(iv) an edge from u tow present and coloured c', and an edge from u 

to w1 present and coloured c~. 

For each swapping vertex/pair w, we will swap the colour on w with that 
on the candidate referred to in (Q3.4). (Q3.4) obviously enforces properties 
(Q3.1) and (Q3.2). It also enforces (Q3.3) since by (Q3.4(f)) no reject degree 
is affected by more than one swap, and each swap involves only 2 colours. It 
only remains to be shown that we can in fact construct the sets Candidatew 
satisfying (Q3.4). 

Lemma 18.14 We can choose the sets Candidatew for all swappable ver
tices/pairs w, such that (Q3.4) holds. 

To choose Candidatew, we will simply select 20 members of Swappablew 
at random. We will use the Local Lemma to prove that (Q3.4) holds for 
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every w with positive probability. The first step is to show that Swappablew 
is large: 

Lemma 18.15 For each swapping vertex/pair w, ISwappablewl ~ 310~1 Ll" 

Proof We denote the colour of w by c. 

Claim 1: There are at least 210~ 1 Ll vertices in Ki which were truly coloured 
in Phase II and are neither incident to any external edge of colour c, nor 
adjacent to any vertex of G- Di of colour c. 

Proof: 

Case 1 c E Oftenusedi. 
By Restriction 3, no vertex of Bigi is truly coloured c. Further, by Restric

tion 1, c tf- Overusedi. Thus, by Properties (P1.6), (P1.4), and P(2.2), there 

are at least logf\ Ll - 2Ll M vertices of Di which were not coloured in Phase I 
and are neither adjacent to an external neighbour truly coloured c, nor joined 
to an external neighbour by an edge of colour c. By Lemma 18.1(b) all but 
log5 ..::1 of these vertices are in Ki. Furthermore, since each vertex in Ki has 
external degree at most log6 ..::1, (P2.1) implies all but fewer than log7 ..::1 of 
these kernel vertices are truly coloured in Phase II. Thus we have at least 
logf\ Ll -2..::1M -log5 ..::1-log7 ..::1 > 210~ 1 Ll vertices which were truly coloured 
in Phase II and are neither incident to any edge of E(Di, G- Di) of colour 
c nor adjacent to any vertex of G - v of colour c. 
Case 2 c tf- Oftenusedi. 

At most one partition class within Bigi has colour c, and by (Pl.5), there 
are at least 2..::1/ log ..::1 uncoloured vertices in Di which are not adjacent to 
that class. Since c tf- Oftenusedi, at most ..::1/ log ..::1 of these vertices have an 
external edge of colour c. We can proceed as in Case 1 to show that at least 
~ - ~ - 2..::131 / 32 -log5 ..::1 -log7 ..::1 > Ll of these vertices are as 
log Ll log Ll 2 logll Ll 
required by Claim 1. D 

Since Di is ornery, ICil ~ ..::1- log4 ..::1, and by Lemma 18.1(a), IDil :S 
..::1 + log5 ..::1. Thus, the number of vertices in Di which do not lie in singleton 
partition classes is at most 3log5 ..::1. If w is a swapping vertex, then since 
wE Ki, IOutwl :S log6 ..::1 and so at most 4log6 ..::1 vertices of Di have a colour 
appearing on an external neighbour of w or an external edge from w. If w is 
a swapping pair, then both vertices in w are in Ki and so at most 8log6 ..::1 
vertices of Di have such a colour. Also, again by Property (P2.1), !Tempi n 
Kil :S log7 ..::1. 

Therefore, by Claim 1, ISwappablewl ~ 210~ 1 Ll - 3log5 ..::1- 8log6 ..::1-

log7 ..::1 ~ 3lo~1 Ll" D 

With Lemma 18.15 in hand, we can proceed with our proof of the main 
lemma of this subsection: 
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Proof of Lemma 18.14 For each swapping vertex/pair w, we define A2.4(w) to 
be the event that (Q3.4) fails to hold for w. Letting c' be the graph obtained 
by adding edges to G to make each dense set a clique, it is easy to see 
that that for any w, A2.4(w) is mutually independent of the set {A2.4(wl): 
distG' (w, w1) 2 7}. Since c' has maximum degree less than 2Ll, it suffices to 
show that Pr(A2.4(w)) is less than Ll-8 . 

To this end, consider any swapping vertex/pair w of colour c. We will 
consider the number of members of Swappablew which would make bad 
candidates, i.e. those that would not meet the criteria of condition ( Q3.4). 
They fall into the following six (random) subsets of Swappablew. 

Bad1 ={w'lw' is a candidate for another swapping vertex/pair x} 
Bad2 ={w'lw' is an external neighbour of a candidate for another 

swapping vertex/pair x, of colour c} 
Bad3 ={w'lw' is an external neighbour of another swapping vertex/pair x, 

which has a candidate of colour c} 
Bad4 ={w'lw' has the same colour as a candidate for another swapping 

vertex/pair x, which has an external neighbour in w} 
Bad5 ={w'lw' has the same colour as a swapping vertex/pair x, which has 

a candidate with an external neighbour in w} 
Bad6 ={w'l there is some vertex u, and another swapping vertex/pair w1 of 

colour c1 and with candidate w~, violating condition ( Q3.4) (f)} 

We set Bad= U~=l Badi. 
Our proof will have two steps. We first randomly select the candidates of 

all swapping vertices/pairs other than w, and show that with high probability, 
!Bad! :::; log20 Ll. Next, we randomly select the candidates for w, showing 
that if !Bad! :::; log20 Ll then the probability of choosing no good candidates 
is small. 

The second of these steps is easy. By Lemma 18.14, we are choosing 20 
candidates from at least logt\ L1 vertices. So if !Bad! < log20 Ll, then the 
probability of choosing only bad candidates is less than 

( 
20 )20 log L1 Ll < Ll-10. 

3logll L1 

So it only remains to bound the size of Bad. 
Since there are at most log7 Ll swapping vertices/pairs in Di, each having 

20 candidates, we have 1Bad11:::; 20log7 Ll. 
Since w has at most 2log6 Ll external neighbours, each having at most 20 

candidates, IBad4l :::; 40 log6 Ll. 
Since Di has at most log7 Ll swapping vertices/pairs, each having at most 

20 candidates, 1Bad61 :::; 9 x 20log7 Ll. 
To bound the size ofBad2, we recall that by Lemma 18.1(c), LvED; IOutvl 

:::; Lllog7 Ll. Lemma 18.15 implies that the probability that a particular vertex 
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is a candidate for a swapping vertex/pair of colour c is at most 60 10~11 .<l. 

Thus, the expected number of vertices in Di having external neighbours which 

are candidates for such a vertex/pair is at most LvED; \Outv\ x 6010~11 .<l :::; 

60log18 Lt Now, the exact value of Bad2 is determined by the independent 
choices of the candidates for all the swappable pairs/vertices in G. Further
more, since each such candidate lies in the kernel of another ornery set, 
it has at most log6 Ll neighbours in Di. Therefore, changing one of these 
choices can affect the value of \Bad2\ by at most log6 Ll. If \Bad2\ ~ s then 
there is a set of at most s choices which certify this, namely the choices 
of an external neighbour of each member of Bad2 to be a candidate for 
a swapping vertex/pair of colour c. So, applying Talagrand's Inequality yields: 
Pr(\Bad2\ > log19 Ll):::; ,1-10. 

To bound the size ofBad3, we once again use the fact that LvED; \Outv\ :::; 
Lllog7 Ll. Lemma 18.15 implies that the probability that a swapping pair/ver

tex chooses a candidate of colour c is at most 60 10~11 .<l • Thus, the expected 
number of external neighbours of Di which choose such candidates is at most 
60 log18 Ll. The rest of the analysis is the same as that for Bad2, showing that 
Pr(\Bad3\ > log19 Ll) < Ll- 10 . 

To bound the size of Bad5 we use the fact that w has at most 2log6 Ll 
external neighbours. By property (P2.1) no dense set has more than 300(-1 

log6 Ll swapping pairs/vertices, and so each neighbour is a candidate for 

an expected number of at most 300(-1 log6 Ll x 310~ 1 .<l < log~ .<l swapping 
pairs/vertices. Therefore, the expected size of Bad5 is o(1) and the probability 
that it is larger than log Ll is less than Ll- 10 , by a similar analysis to that in 
the preceding paragraphs. 

Therefore, the probability that \Bad\ > log20 Ll is less than 3Ll-10 and so 
Pr(A2.4(w)) < 4Ll-10 • 0 

18.4.2 Step 2: The Remaining Temporary Colours 

The remaining temporarily coloured vertices are relatively straightforward to 
deal with. We wish to colour all such vertices such that (i) we create no new 
external reject edges, (ii) there are no adjacent v E Di, u E Dj, j < i, with 
the same colour, and (iii) the reject degree of any vertex increases by at most 
C3 - 2. Thus, by Property (Q3.3), no vertex has its reject degree increase by 
more than C3 during Phase III. 

We deal with the sets Di in sequence. Within each Di, we colour the 
vertices one at a time. 

For a given Di, we first recolour all the temporary vertices with external 
degree at most log3 Ll. If there are any such vertices, then Di is not ornery, 
for otherwise they would lie in the kernel Ki, and would have been recoloured 
in Step 1. Furthermore, by (18.13), \Tempi(log3 Ll)\ :::; 300(-1 log3 Ll. 
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Because Di is not ornery, it has fewer than Ll + 1 - log4 Ll partition 
classes, and each partition class has at most one colour. Thus there are at 
least log4 Ll colours not already used on the vertices of Di, and we will use 
these new colours to recolour Tempi(log3 Ll) in a greedy manner. 

We will not allow a vertex to receive the same colour as a neighbour, an 
external edge, or an edge joining it to a neighbour whose reject degree has 
already increased by at least C3- 3 during this step. When we come to v, it 
has at most 

(a) 300(-1 log3 Ll new colours forbidden because they have already been used 
in Di, 

(b) 2log3 Ll new colours forbidden because they appear on an external neigh
bour, or an external edge of v, and 

(c) 300(-1 log3 Ll/(C3 - 3) new colours forbidden because of vertices in Di 
whose reject degrees have already been increased by C3 -3 during Step 2. 

Since we have log4 Ll new colours to choose from, we will always be successful. 
We then recolour the rest of Tempi in non-decreasing order of external 

degree. When we come to colour a vertex v with external degree a, there will, 
by Property (P1.2), be at least 5w colours available which do not appear on 
any neighbours of v, or any external edges of v. By (18.13), ITempi(a)i :S: 
300(-1a for each a :S: 10-6 ( 2 Ll, and for each a > 10-6 ( 2 Ll, ITempi(a)i :S: 
IDil < 2Ll < 2 x 106(-2a. Thus, there are at most 2 x 106(-2a/(C3 - 3) 
colours forbidden because of vertices in Di whose reject degrees have already 
been increased by C3 - 3 during Step 2. For C3 sufficiently large in terms 
of 1/E (and hence, in terms of 1/(), this is less than 5w, so we will always be 
successful in finding a suitable colour to assign. 

18.5 Phase IV - Finishing the Sparse Vertices 

At this point, we have a partial proper colouring of G, such that: 

(a) every vertex in G - ( S U s' ) is coloured, 
(b) the reject degree of each vertex is at most cl + c2 + c3, and 
(c) for each uncoloured v, N(v) has at least 4 x~07 Ll colours which appear 

truly twice (i.e. P(1.2) holds). 

By Lemma 17.8, we can now complete the colouring of G without in
creasing any reject degree by more than c4, where c4 = C(E/4 X 107) from 
Lemma 17.8. This yields a vertex colouring of G such that every reject degree 
is at most C - 3, and so we can recolour the reject edges with C - 1 new 
colours, thus obtaining our desired total colouring. 
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18.6 The Ornery Set Lemmas 

We close this chapter with a few of the promised details regarding ornery 
sets. 

Proof of Lemma 18.1: 
In the proof of Lemma 15.12, we considered the clique C consisting of 

the singleton colour classes of C Pi and the matching M of Di formed by the 
remaining two-vertex partition classes of CPi. We actually proved that for 
any Di satisfying I C Pi I ?: .:1 - d, we have I C I + ~I M I :::; .:1 + 1 by considering 
the number of edges between C and V ( M). In particular, this inequality 
holds for the ornery dense sets. Since ICI + IMI = ICPil ?: .:1 + 1 -log4 .:1, 
this implies IMI :::; 2log4 .:1 and so IDi I = ICI + 21M I :::; .:1 + 1 + log4 .:1. 
This proves (a). Furthermore, these inequalities imply ICI ?: .:1 - 3log4 .:1. 
So, every vertex in C has at most 3log4 .:1 + 1 external neighbours and so is 
in the kernel. Thus IDi -Kil:::; 2IMI:::; 4log4 .:1 which proves (b). Finally, we 
see that IE(Di, V- Di)l:::; (3log4 .:1 + 1)ICI + 2IMI.:1 which, by our bound 
on IMI, is at most 0(.:1log4 .:1) < .:1log7 .:1, thus proving (c). 

Proof of Lemma 18.2 
Part (b) is a simple corollary of part (a), since Di is ornery and so ICPil?: 

.:1 + 1 - log4 .:1. 
Parts (c) and (d) follow immediately from the fact that each ornery Si 

has at most .:1log7 .:1 external edges, by Lemma 18.1(c). 
So the main work is to prove part (a): 
In Lemma 15.12, we actually showed that for IMI ?: .:1- d, and thus for 

ornery sets, the number of C toM edges is at least ~ICIIMI. This implies 
that the number of edges out of Di from C is at most 

ICI(.:1- (ICI- 1))- ~ICIIMI = ICI(.:1-ICI-IMI + 1)- ~ICIIMI. 

It also implies that the number of edges out of Di from V(M) is at most 

2IMI.:1- ~ICIIMI = ~IMIICI + 2IMI(.:1-ICI). 

By our bounds on the size of C and M above this is at most 

1 
2IMIICI + 12log8 .:1. 

So, the total number of edges between Di and V- Di is at most 

ICI (.:1- ICI - IMI + 1) + 12log8 .:1 

ICI(.:1 + 1 - ICPil) + 12log8 .:1 

< (.:1- ~ ) (.:1 + 1- ICPil) 
log .:1 
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+( ~ +1)(..1+1-ICPil)+12log8 ..1 
log ..1 

< (..1- ~ )(..1+1-ICPil)+~+12log8 ..1 
log ..1 log ..1 

< (..1- ~ )(..1+2-ICPil). 
log ..1 

So, IOverusedil < ..1 + 2 -ICPil, which is the desired result. D 



Part VII 

Sharpening our Tools 

In the next two chapters we take a closer look at two of the most important 
probabilistic tools we have been using: The Local Lemma and Talagrand's 
Inequality. 



19. Generalizations of the Local Lemma 

As we have seen, the Local Lemma allows us to use a local analysis to obtain 
a global result. From this perspective, a drawback of the version presented 
in Chap. 4 is that it requires global bounds p and d. These global bounds can 
make it difficult to apply the Local Lemma if, for example, the probabilities 
of the bad events vary widely. In this chapter we will discuss a few use
ful generalizations of the Local Lemma, each of which incorporates varying 
probabilities of the bad events. The simplest of these is: 

The Asymmetric Local Lemma Consider a set £ = {AI. ... , An} of 
(typically bad) events such that each Ai is mutually independent of£- (DiU 
Ai), for some Di ~ £. If for each 1 ~ i ~ n 

(a) Pr(Ai) ~ t• and 
(b) LAjED; Pr(Aj) ~ t• 
then with positive probability, none of the events in £ occur. 

Note that the Local Lemma in its simplest form as presented in Chap. 4 
is clearly a special case of the Asymmetric Local Lemma. 

In our first generalization, we allow for some variance in the sets 'D; - they 
can contain a few high probability events, or many low probability events, so 
long as the sum of the probabilities is at most t. In our next generalization, 
we allow even more variance. Essentially, we allow the sum of the probabilities 
over Di to vary as a function of Pr(Ai)· The tradeoff is that as Pr(A;) drops 
exponentially, the sum can increase linearly. It is not quite as clean as this, 
since our sum actually involves terms which are larger than the probabilities 
of events in Di. Nevertheless, this version can be quite useful. 

The Weighted Local Lemma Consider a set£= {A1 , ... ,An} of (typi
cally bad) events such that each Ai is mutually independent of£- (DiU Ai), 
for some Di ~ £. If we have integers t1, ... , tn 2 1 and a real 0 ~ p ~ t 
such that for each 1 ~ i ~ n 

(a) Pr(A;) ~pt;; and 

(b) LAjED; (2p)tj ::; 1 
then with positive probability, none of the events in £ occur. 
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Roughly speaking, the Weighted Local Lemma works well when each 
event Ai has a "size", corresponding to ti, such that Pr(Ai) is exponentially 
small in its size, and the number of events with which Ai is dependent is 
linear in its size. For example, in the next section, we see an application to 
hypergraph colouring where ti corresponds to the size of the edge represented 
by Ai. 

Remarks 

1. Replacing (b) by 'EAjE'D; pti :S i yields an immediate corollary of the 

Asymmetric Local Lemma. Replacing (b) by 'EAjE'D; pti :S ~' yields 
an untrue statement (see Exercise 19.1). In order to permit the RHS of 
(b) to grow with ti we need to increase the terms in that sum from pti 
to (2p)ti. 

2. As the reader will see upon reading the proof of the Weighted Local 
Lemma, the constant terms in the statement can be adjusted somewhat 
if needed. 

Our third generalization is the most powerful (as well as the most unwieldy): 

The General Local Lemma Consider a set£= {A1 , ... , An} of (typically 
bad} events such that each Ai is mutually independent of£- (Vi U Ai), for 
some Vi <:::; £. If we have reals x1, ... , Xn E [0, 1) such that for each 1 :S i :S n 

Pr(Ai) :S Xi IT (1 - Xj) 

AjE'D; 

then the probability that none of the events in £ occur is at least n~l (1 -
xi)> 0. 

In the next few sections, we give some applications of these generaliza
tions. Following that, we will present a proof of the General Local Lemma 
and show that it implies all of the other versions. Finally, we will discuss 
one last generalization: The Lopsided Local Lemma, which will be used in 
Chap. 23. 

19.1 Non-Uniform Hypergraph Colouring 

When we introduced the Local Lemma in Chap. 4, our first application 
was to a problem concerning 2-colouring hypergraphs. In this section, we 
present some applications of our new versions of the Local Lemma to similar 
problems. These examples provide a good opportunity to compare the various 
versions. 

Theorem 19.1 lf1i is a hypergraph with minimum edge size at least 3, such 
that each edge of 1l meets at most ai other edges of size i, where 



19.1 Non-Uniform Hypergraph Colouring 223 

L . 1 
a-2-t <-

t - 8' 

then 1l is 2-colourable. 

Proof The proof is nearly identical to that of Theorem 4.2. We assign 
a uniformly random colour to each vertex (where, of course, these choices 
are made independently), and for each edge e, we define Ae to be the event 
that e is monochromatic. 

If e has size i, then Pr(Ae) = 2-(i-1). Furthermore, setting Ve = {At : 
f n e-/:- 0}, we have that each Ae is mutually independent of all other events 
not in Ve. Therefore, the result follows from the Asymmetric Local Lemma. 

0 

Remark It is worth noting that in order to apply the simplest form of the 
Local Lemma, we would have required the much more restrictive condition 
that ~ ai2-k :::; g, where k is the smallest edge size in the graph. 

Our next application will be to colouring hypergraphs for which we have 
a bound on the number of edges that each vertex lies in, rather than on the 
number of edges that each edge meets. 

Theorem 19.2 If1l is a hypergraph with minimum edge size at least 3, such 
that each vertex of 1l lies in at most Lli edges of size i, where 

""Ll-2-i/2 < _1_ 
LJ t - 6J2' 

t 

then 1l is 2-colourable. 

Proof Again, we assign a uniformly random colour to each vertex (where, 
of course, these choices are made independently), and for each edge e, we 
define Ae and Ve as in the previous proof. 

We will apply the Weighted Local Lemma. The obvious choice for the 
"size" of Ae would be the number of vertices in e. Clearly, this choice yields 
that Pr(Ae) is exponentially small in its size, and the number of other events 
on which Ae is dependent is linear in its size. Thus, the Weighted Local 
Lemma seems promising. 

Since Pr(Ae) = (~)iel- 1 , the most natural thing to do would be to set 
te = lei - 1, and p = 1/2. Of course, this creates problems with the "2p" 
terms in condition (b). To avoid these problems, we scale the size a little, 
setting te = ~ (I e I - 1) and p = 1. We still have that for each hyperedge e, 
Pr(Ae) =pte and furthermore, we now have: 
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j 

where the last inequality uses the fact that lei > 3. Therefore our result 
follows from the Weighted Local Lemma . D 

Remark It is worth noting that if we only have a bound on the number of 
edges that each vertex lies in, and if the maximum edge size of the hypergraph 
is not bounded by a constant, then we are unable to bound the number of 
edges of size i that each edge intersects, and this makes the Asymmetric Local 
Lemma difficult to apply. 

19.2 More Frugal Colouring 

Recall from Chap. 9 that a proper vertex-colouring of a graph is said to be 
{3-frugal, if for each vertex v and colour c, the number of times that c appears 
in the neighbourhood of v is at most {3. 

Consider any constant {3 2: 1. Alon (see [80]) has shown that for each Ll, 
there exist graphs with maximum degree L1 for which the number of colours 

required for a {3-frugal colouring is at least of order ..11+~. We prove here 
that this is best possible as shown by Hind, Molloy and Reed [80]. 

Theorem 19.3 If G has maximum degree L1 2: (3!3 then G has a {3-frugal 
proper vertex colouring using at most 16L1I+b colours. 

Proof For {3 = 1 this is easy. We are simply trying to find a proper vertex 
colouring of the square of G, i.e. the graph obtained from G by adding an 
edge between any two vertices of distance 2 in G. It is straightforward to show 
that this graph has maximum degree at most L12 and so it can be properly 
(L12 + 1)-coloured. 

For {3 2: 2, we use the Asymmetric Local Lemma. Set C = 16L11+fr. We 
assign to each vertex of G a uniformly random colour from { 1, ... , C}. For 
each edge uv we define the Type A event Au,v to be the event that u, v both 
receive the same colour. For each { u1, ... , Uf3+l} all in the neighbourhood 
of one vertex, we define the Type B-event Bu1 , ... ,uf3+1 to be the event that 
u1, ... , Uf3+l all receive the same colour. Note that if none of these events 
hold, then our random colouring is {3-frugal. 

The probability of any Type A event is at most 1/C, and the probability 
of any Type B event is at most ljC!3. By the Mutual Independence Principle, 
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each event is mutually independent of all events with which it does not have 
any common vertices, which is all but at most ((3 + 1)..1 Type A events and 
((3 + 1)..1(~) Type B events. Now, 

1 (Ll) 1 ((3+1)..1 ((3+1)..1.8+1 
((3 + 1)..1 X C + ((3 + 1)..1 (3 X C.B < C + (3!C.B 

_(3+1+(3+1 
- 16..1 ~ (3!16f3 

1 
<4 

for Ll ~ (3f3. The proof now follows from the Asymmetric Local Lemma. D 

It is instructive to note here that if we had tried to use the Local Lemma in 
its simplest form, we would have had to take p = 1/C and d = ((3 + 1)..1(~). 
Thus pd would have been much bigger than 1 for large Ll and so that form 
of the Local Lemma would not have applied. 

19.2.1 Acyclic Edge Colouring 

A proper edge colouring of a graph is said to be acyclic if the union of any 
two colour classes is a forest. This concept was introduced by Griinbaum (72]; 
see [85] for a more thorough discussion of acyclic colourings. The following 
result was proven by Alon, McDiarmid and Reed (8]. 

Theorem 19.4 If G has maximum degree Ll then G has an acyclic proper 
edge colouring using at most 9..1 colours. 

The constant 9 can be easily improved. In fact, Alon, Sudakov and Zaks [9] 
have conjectured that "9..1" can be replaced by "Ll + 2". Reed and Sudakov 
in (135] prove that it can be replaced by Ll + o(Ll). 

Proof Set C = 9..1. We assign to each edge of G a uniformly random 
colour from {1, ... , C}. For each pair of incident edges e, f, we define the 
Type 1 event Ae,J to be the event that e, f both receive the same colour. For 
each 2k-cycle C, we define the Type k event Ac to be the event that the edges 
of C are properly 2-coloured. The probability of each Type 1 event is 1/C 
and the probability of each Type k event, k ~ 2, is less than 1/C2(k-l}. In 
order to apply any version of the Local Lemma, we must bound the number 
of events that each event is dependent on. 

Claim: For each k ~ 2, no edge lies in more than Ll2k-2 2k-cycles. 

Proof Consider any edge u, v. There are at most Ll2k-2 paths of the form 
u, x1, x2, ... , X2k-2. Therefore, there are at most Ll2k- 2 cycles of the form 
u,xl,X2,····x2k-2,v,u. 
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By the Mutual Independence Principle, each event is mutually indepen
dent of the set of events with which it does not share any common edges. For 
any k ~ 1, any Type k event involves 2k edges, and each edge belongs to at 
most 2Ll Type 1 events and, by our Claim, at most Ll2(£-l) Type f events 
for f ~ 2. Therefore, each Type k event is mutually independent of all but at 
most 4kLl Type 1 events and 2kLl2(£-l) Type f events, f ~ 2. 

We set p = 1/C. For each Type 1 event E, we set tE = 1, and for each 
Type k event E, k ~ 2, we set tE = 2(k- 1). As we shall see, this satisfies 
the conditions of the Weighted Local Lemma. 

(a) If E is Type 1 then Pr(E) = 1/C = 1/CtE. If E is Type k, for k ~ 2, 
then Pr(E) = 1/C2(k-l) =ptE. 

(b) If E is Type k for any k ~ 1 then 

8k (2) 2£-2 

= g-+2kxL 9 
£22 

8 8 
= 9 k + 77 k < k "5_ t E. 

Therefore, the proof follows from the Weighted Local Lemma. D 

Remark Note the similarities between this proof and the proof of Theorem 
19.2. In both cases, there was no upper bound on the number of events of 
any one type that another event might interact with, which is why we needed 
to use the Weighted Local Lemma. 

19.3 Proofs 

Proof of the General Local Lemma. Consider any set S of our events, along 
with any event Ai r:J. S. We will prove by induction on the size of S that 

19.5 Pr(Ail nAjES A1) "5. xi. 

Upon proving (19.5), the General Local Lemma follows immediately as 

Pr (Al n ... nAn) = Pr(Al) X Pr(A2IA1) X Pr(A3IA1 n A2) 

X ... X Pr(AniAl n ... n An-1) 
n 

~ II (1 - Xi) > 0. 
i=l 

Since Pr(Ai) "5. Xi, (19.5) holds for lSI = 0. Now, consider any partic
ular Ai, S, and suppose that (19.5) holds for every event and every smaller 
set. We will need the following consequence of the hypotheses of the lemma: 
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19.6 (19.5} holds if S is disjoint from Di· 

Now, let S1 = S n Vi and let S2 = S- S1. Applying (19.6), we see that 
we can assume that S1 is non-empty. Using the fact that Pr(XIY) = Pr(X n 
Y)/Pr(Y) three times, we obtain Pr(AIB n C) = Pr(A n BIC)/Pr(BIC). 
Therefore 

_ Pr(Ai n (nA1Es1Aj)l nA1Es2 A1) 
Pr(Ail nA1Es A1) = · 

Pr( nA1 ES1 A1 I nA1 ES2 A1) 

Clearly, the numerator is at most Pr(Ail nA1Es2 Aj)· So, applying (19.6) 
again, we have: 

19.7 the numerator is at most Pr(Ai)· 

For convenience of notation, relabel the events of S1 as B1, ... , Bt. The 
denominator is equal to 

Pr(B1I nA1Es2 A 1) x Pr(B2IB1 n (nA1Es2 Aj)) 

x ... x Pr(BtiBl n ... n Bt-l n (nA1Es2A1)). 

Thus, by our induction hypothesis, 

as required. D 

Proof of the Asymmetric Local Lemma. Set xi = 2Pr(Ai) for each i. Since 
Pr( Ai) :::; ~, we have Xi :::; ~. Setting a = 2ln 2, we will use the fact that 
(1- x) ~ e-a x for x :S ~-

Xi II (1- Xj) ~Xi II e-a xi 

AjE'Di AjE'Di 

~ 2Pr(Ai) x exp-a/2 

= Pr(Ai) 

Therefore the Asymmetric Local Lemma follows from the General Local 
Lemma (and thus, so does the simple form of the Local Lemma). D 

Proof of the Weighted Local Lemma. Set Xi = (2p)ti for each i. Since p:::; ~ 
and ti ~ 1, we again have Xi :::; ~. Again we set a = 2ln 2 and make use of 
the fact that (1- x) ~ e-ax for x:::; ~-
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X; II (1- Xj) = (2p)t; II ( 1- (2p)tj) 
AjED; AjED; 

2': (2p)t; x exp (-a 2:::.: (2p)ti) 
AjED; 

:;:: (2p)t; x exp(-a ti/2) 
= pti 

Therefore the Weighted Local Lemma follows from the General Local Lemma. 
0 

19.4 The Lopsided Local Lemma 

The astute reader may have noticed that in our proof of the General Local 
Lemma, we did not require the full power of the independence properties 
guaranteed in its hypotheses. All we needed was for (19.6) to hold, and this 
might have happened even if A2 was not quite mutually independent of the 
events in S2 • By replacing our usual independence condition by a condition 
which is essentially the same as (19.6) we get a slightly stronger tool: 

The Lopsided Local Lemma [44]: Consider a set E of (typically bad) 
events such that for each A E E, there is a set D(A) of at most d other events, 
such that for all S C E- (AU D(A)) we have 

Pr(AI nA1Es AJ) ~ p. 

If 4pd ~ 1 then with positive probability, none of the events in E occur. 

Our independence condition simply says that conditioning on no bad 
events outside of D(A) occurring does not increase the chances of A occurring. 

Remark Similar modifications can be made to each of our other versions of 
the Local Lemma. 

We close this chapter with the following illustration of the Lopsided Lo
cal Lemma, due to McDiarmid [113], which is an improvement of our first 
application of the Local Lemma, Theorem 4.2. 

Theorem 19.8 If 1{ is a hypergraph such that each hyperedge has size at 
least k and intersects at most 2k-2 other hyperedges, then 1{ is 2-colourable. 

Proof The proof follows along the same lines as that of Theorem 4.2. This 
time, we define our bad events as follows: For each edge e, we Re, Be are the 
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events that e is monochromatically Red, Blue respectively. D(Re) = {BJ : 
f n e -1- 0} and D(Be) = {RJ: f n e -1- 0}. Intuitively, it seems clear that we 
satisfy the first condition of the Lopsided Local Lemma, since if f intersects e 
then conditioning on f not being monochromatically Red will decrease the 
probability of e being monochromatically Red. We leave a formal proof as 
Exercise 19.2. Since each event has probability 2

1k and we are taking d = 2k-2 , 

we also satisfy the second condition, and so the Theorem follows. D 

Theorem 4.2 implies that every hypergraph with minimum edge size k 
and maximum degree k is 2-colourable for k 2 10. Theorem 19.8 implies 
that "10" can be replaced by "8". Using Remark 4.1 to make our calculations 
more precise, we can get tighter versions of these two theorems and they 
yield k 2 9 and k 2 7, respectively. Thomassen [151], using very different 
techniques, improved this result further to k 2 4. It is not true for k :=:; 3. 

Exercises 

Exercise 19.1 Show that there exists a set of events£= {A1 , ... , An} with 
each Ai is mutually independent of£- (Vi U Ai), for some Vi ~ £, along 
with integers t1, ... , tn 2 1 and a real 0 :=:; p :=:; { such that for each 1 :=:; i :=:; n 

(a) Pr(Ai) :=:; pti, 

(b) LAj EDi pti :::; 1, 
and Pr(Al n ... nAn) = 0. 

Exercise 19.2 Complete the proof of Theorem 19.8. 



20. A Closer Look at Talagrand's Inequality 

When presenting Talagrand's Inequality in Chap. 10, we sacrificed power 
for simplicity. The original inequality provided by Talagrand is much more 
general than those we stated, but it is somewhat unwieldy. In this chapter, we 
will see Talagrand's original inequality, and we will show how to derive from 
it the weaker inequalities of Chap. 10. In order to give the reader a better idea 
of how the full inequality can be used, we will present a few other weakenings 
that can be derived from it, each one a generalization of those that we already 
know. 

We do not include a proof of Talagrand's Inequality, as this proof is 
presented (very well) elsewhere, for example in [114, 146], and in the original 
paper [148]. 

20.1 The Original Inequality 

Consider any n independent random trials T1, ... , Tn, and let A be the set 
of all the possible sequences of n outcomes of those trials. For any subset 
A~ A, and any real f, we define At~ A to be the subset of sequences which 
are within a distance f of some sequence in A with regards to an unusual 
measure. In particular, we say that x = (x1 , ... , xn) E At if for every set of 
reals b1, ... , bn, there exists at least one y = (y1, ... , Yn) E A such that 

Setting each bi = 1 (or in fact, setting each bi = c for any constant c > 0), 
we see that if y E At then there is an x E A such that x and y differ on at 
most fyn trials. Furthermore, if y E At, then no matter how we weight the 
trials with bi 's, there will be an x E A such that the total weight of the trials 
on which x and y differ is small. 

Talagrand's Inequality: For any n independent trials T11 ..• , Tm, any set 
A~ A and any real f, 
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By again considering bi = c for all i, we see that if an event A holds 
with reasonably high probability then with very high probability the random 
outcome will not differ in many trials from at least one event in A. 

Suppose that X is a real-valued variable determined by our sequence of 
trials such that changing the outcome of a trial can affect X by at most c. 
Suppose further that for some interval R of the real line, X lies in R with 
reasonably high probability (say, at least ~ ). Then Talagrand's Inequality 

implies that with very high probability (i.e. 1- 2e-e2 14 ), X will not differ in 
more than ly'n trials from some outcome yielding a value in Rand so X will 
take a value that is very close to R (i.e. within cly'n). With a bit of work, 
these ideas can be fleshed out to obtain the Simple Concentration Bound 
from Chap. 10. 

As we shall see now, by considering only slightly more general se
quences {bi}, namely each bi E {0, c }, we will obtain Talagrand's Inequality I 
from Chap. 10. 

Talagrand's Inequality I Let X be a non-negative random variable, not 
identically 0, which is determined by n independent trials T1, ... , Tn, and 
satisfying the following for some c, r > 0: 

1. changing the outcome of any one trial can affect X by at most c, and 
2. for any s, if X 2 s then there is a set of at most rs trials whose outcomes 

certify that X 2 s, 

then for any 0 :S t :S Med(X), 

Pr(IX- Med(X)I > t) :S 4e- sc2rMed(x) 

Proof Define A = {x : X(x) :S Med(X)}, and C = {y : X(y) > 
Med(X)+t}. We first prove that C <:;;; Ae, where C = tjcJr(Med(X) + t). So 
consider some x E C. Let I be the set of indices of the at most r(Med(X)+t) 
trials whose outcomes certify that X(x) 2 Med(X) + t. For each i, we set 
bi = c if i E I and bi = 0 if i ~ I. Note that 

m 

LbT = c2 III :S rc2 (Med(X) +t) = (t/C)2 . 

i=l 

Now consider any yEA. Define y' to be the outcome which agrees with x 
on all indices of I, and on yon all other indices. Since I certifies that X(x) 2 
Med(X) + t, we also have X(y') 2 Med(X) + t. Since y andy' differ only 
on trials in I on which x and y differ, and since changing the outcome of 
any one Ti E I can affect X by at most bi = c, we have that X (y) > 
X(y') - l:x;#y; bi 2 Med(X) + t- l:x;#Y; bi. Thus, 
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Since this is true for every yEA, we have x ~At. 
Therefore C <:;;; At. Now, Pr(A) 2:: ~' by the definition of median. So by 

Talagrand's Inequality: 

This is the first side of our concentration bound. 
Next, set c' = {x: X(x) 2:: Med(X)}, A' = {y: X(y) < Med(X)- t} 

and £ = tjcy'rMed(X). By a nearly identical argument, we obtain that 

c' <:;;; A~, and so Pr(A~) 2:: ~ by the definition of median. So, applying 
Talagrand's Inequality, we have: 

Therefore 

Pr(A1
) ::::; 2e- 4c2rMed(X). 

Pr(IX- Med(X)I > t)::::; Pr(C u A') 
t2 

::::; 4e- 4c2r(Med(X)+t) 

t2 
::::; 4e- sc2rMed(X) 

as required, since t ::::; Med(X). D 

To obtain Talagrand's Inequality II, we first prove Fact 10.1; we restate 
both of these below. 

Fact 20.1 Under the conditions of Talagrand's Inequality I, IE(X) -
Med(X)I::::; 40cy'rE(X). 

Proof First, observe that E(X)- Med(X) = E(X- Med(X)). So, since 
the absolute value of a sum is less than the sum of the absolute values of 
its terms, we obtain: IE(X) - Med(X)I = IE(X- Med(X))I ::::; E(IX
Med(X)I). We will bound this latter term by partitioning the positive real 
line into the intervals Ji = (i x cy'rMed(X), (i + 1) x cy'rMed(X)], defined 
for each integer i 2:: 0. Clearly, E(IX -Med(X)I) is at most the sum over all Ji 
of the maximum value in Ii times the probability that IX- Med(X)I E h 
We bound this latter probability by the probability that IX- Med(X)I is 
greater than the left endpoint of the interval. 
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E(IX- Med(X)I) -::;; L(i + 1)cylrMed(X) x Pr(IX- Med(X)I 

> icylrMed(X)) 
2 

< cJrMed(X) x L(i + 1)4e-1r 

< 28cyirMed(X). 

Since X 2 0, we have E(X) 2 ~Med(X), and so 28cylrMed(X) -::;; v'2 x 

28cJrE(X) < 40cJrE(X) as required. D 

Talagrand's Inequality II Let X be a non-negative random variable, not 
identically 0, which is determined by n independent trials T1 , ... , Tn, and 
satisfying the following for some c, r > 0: 

1. changing the outcome of any one trial can affect X by at most c, and 
2. for any s, if X 2 s then there is a set of at most rs trials whose outcomes 

certify that X 2 s, 

then for any 0-::;; t-::;; E(X), 

Pr(IX- E(X)I > t + 60cylrE(X))-::;; 4e- sc2rE(xJ. 

Proof Applying Fact 20.1, then Talagrand's Inequality I, and then Fact 20.1 
again, we obtain: 

Pr(IX- E(X)I > t + 60cylrE(X)) 

< Pr(IX- Med(X)I > t + 20cylrE(X)) 

-::;; 4e-(t+2Dcy'rE(X)) 2 /8c2 rMed(X) 

-::;; 4e -(t+20cy'rE(X)) 2 /8c2 r(E(X)+40cy'rE(X)). 

So it suffices to show that (t + 20cJrE(X))2 /8c2r(E(X) + 40cJrE(X)) is 
at least as big as t 2 / (SerE( X)). This is true since 

(t + 20cylrE(X))2 x E(X)- t2 (E(X) + 40cylrE(X)) 

> 40tcylrE(X) x E(X)- 40t2cyirE(X) 

2 0, 

as t -::;; E(X). 

20.2 More Versions 

D 

In this section, we further illustrate the power of Talagrand's Inequality by 
presenting a few more consequences of it. We leave the proofs as exercises 
since they are variations of the proofs in the previous section. 
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When we used Talagrand's original inequality to prove Talagrand's In
equality I, we used the certificate I and the bound c to prove that, for our 
choice of bi, if X(y) is much smaller than X(x) then L:x;;iy; bi must be large 

in terms of (L;bt) 112 • 

The key to the proof was to choose an I certifying that X ( x) ;:::: s and 
set bi to be c if i E I and 0 otherwise. This immediately yields: 

20.2 I: bt ::; c X III-
Using the fact that changing the outcome of any one trial can affect X by at 
most c, we obtained: 

20.3 X(y) ;::=: S- C X l{i E I: Xi=/:- yi}i ;::=: S- L:x;ty; bi. 

These two bounds were the main parts of the proof. 
Our next inequality is more suitable when the amounts by which changing 

the outcome of each trial can cause X to decrease vary significantly. Here, 
instead of conditions 1 and 2 from Talagrand's Inequality I, we simply re
quire (i) a reworking of (20.3), which uses a general sequence {bi} rather than 
setting each bi =cor 0, and (ii) a bound on I; bf instead of (20.2) (since we 
no longer have the bound bi :S c). 

Talagrand's Inequality Ill: Let X be a non-negative random variable, 
not identically 0, which is determined by n independent trials T1, ... , Tn. 
Let r be an arbitrary positive constant. Suppose that for every outcome x = 
(x1, ... , xn) of the trials, there exists a list of non-negative weights b1, ... , bn 
such that: 

1. I; bf :S r x X ( x); and 
2. for any outcome y, we have X(y) ;::=: X(x)- Ex;#Y; bi, 

then for any 0::; t::; E(X), 

t2 

Pr(IX- E(X)I > t + 60yfrE(X))::; 4e -srE(x). 

Enforcing that I; bt ::; r x X ( x) can be difficult when X ( x) is very small. 
So instead, it is often convenient to replace this by an absolute bound D 
(which is usually taken to be of the same order as E(X)): 

Talagrand's Inequality IV: Let X be a non-negative random variable, not 
identically 0, which is determined by n independent trials T1, ... , Tn. Suppose 
that for every outcome x = (x1, ... , xn) of the trials, there exists a list of non
negative weights b1, ... , bn such that: 

1. E bf :S D; and 
2. for any outcome y, we have X(y) ;::=: X(x)- Ex;#Yi bi, 

then for any 0::; t::; E(X), 
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t2 
Pr(IX- E(X)I > t + 60JD) :::; 4e-m. 

Our final generalization is that our conditions do not have to hold for 
every outcome X. They only have to hold with moderately high probability, 
say, at least ~: 

Talagrand's Inequality V: Let X be a non-negative random variable, not 
identically 0, which is determined by n independent trials T1. ... , Tn. Let F 
be the event that for the outcome x = (xi. ... , Xn) of the trials, there exists 
a list of non-negative weights b1, ... , bn such that: 

1. E b~ :::; D; and 
2. for any outcome y, we have X(y) ~ X(x)- Lx;#Y; bi, 

then for any 0:::; t:::; E(X), 

t2 
Pr(IX- E(X)I > t + 60JD) :::; 4e-w + 2Pr(F). 

In Exercise 20.2 you will show that Talagrand's Inequality IV simplifies 
the proof of Lemma 10.4. 

Exercises 

Exercise 20.1 Prove Talagrand's Inequalities III, IV, V. 
Hints: For III, consider the function f(a) = a - t-..ja1JVI, and show that if 
a ~ M then ¢(a) ~ f(M). For V, consider the set C = F n {x : X(x) ~ 
Med(X)}. 

Exercise 20.2 Use Talagrand's Inequality IV to simplify the proof of Lem
ma 10.4 by analyzing Xv directly instead of focusing on ATv and Delv. 



Part VIII 

Colour Assignment via Fractional Colouring 

In this part of the book, we introduce a new technique for assigning colours 
to the vertices of a graph when applying the naive colouring procedure. In 
particular, rather than picking the colours independently at random and 
resolving conflicts by uncolouring, we will avoid conflicts by choosing the 
vertices to be assigned each colour from a probability distribution on the 
stable sets. We will prove that we can still perform a local analysis and apply 
the Local Lemma, even though our choice of colour assignments is made 
globally. 

In order to do so we need to show that, for the distributions we use, the 
colour assigned to a vertex is essentially independent of the assignments in 
distant parts of the graph. 

Chapter 23 presents the most difficult theorem proved using this tech
nique: Kahn's proof that the list chromatic index is assymptotically equal 
to the fractional chromatic index. Chapter 22 presents an analysis of the 
probability distributions that Kahn uses in his proof, the so-called hardcore 
distributions. Chapter 21 presents some results with the same flavour which 
are much easier to prove. 



21. Finding Fractional Colourings 
and Large Stable Sets 

In this preliminary chapter, we introduce the notion of a fractional colour
ing. We then present some results on finding large stable sets and fractional 
colourings of certain special graphs. These results give some of the flavour 
of the approach taken in the remainder of this part of the book. Although 
the approach described in the next two chapters is similar, the technical 
complications will increase dramatically. 

21.1 Fractional Colouring 

A fractional vertex colouring is a set { 8 1 , ... , 81} of stable sets and corre
sponding positive real weights, {w1, .. , w1} such that the sum of the weights of 
the stable sets containing each vertex is one. I.e. Vv E V, L{S;:vESi} Wi = 1. 
As an example, consider C5, the chordless cycle on five vertices. There are 
exactly five stable sets of size 2 in c5. Furthermore, each vertex of c5 is in 
exactly two of these stable sets. Thus, assigning a weight of ~ to each of these 
five stable sets yields a fractional vertex colouring of G. 

Of course, each stable set weight in a fractional vertex colouring will be 
at most one. We note that a vertex colouring is simply a fractional vertex 
colouring in which every weight is an integer (to be precise, each weight is 1). 
Letting S = S(G) be the set of stable sets in G, we note that we can also 
describe a fractional vertex colouring by an assignment of a non-negative real 
weight ws to each stable setS in S(G) so that the sum of the weights of the 
stable sets containing each vertex is 1. 

A fractional vertex colouring is a fractional vertex c-colouring if 
LSES(G) ws = c. The fractional chromatic number of G, denoted x~(G), 
is the minimum c such that G has a fractional vertex c-colouring. Since every 
colouring is a fractional colouring, x~ (G) :::; x( G). To see that this inequality 
can be strict, we note that x(C5) = 3 but that the fractional colouring given 
above shows that x~(C5) :::; ~-

We define fractional edge colourings and the fractional chromatic index, 
x; (G) similarly. In the same vein, we define fractional total colourings and the 
fractional total chromatic number, xT(G). Of course, here we need to assign 
weights to the set of matchings of G, M (G), and the set of total stable sets 
of G, I( G). 
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We note that if G has n vertices then X~ (G) 2: a~) (recall that n:( G) is 
the size of a largest stable set in G), because for any fractional colouring we 
have: 

n= 2: 
vEV {SES:vES} SESvES SES 

Thus for example we see that x~(C5 ) 2: ~ and hence the fractional colouring 
given above is optimal and X~ ( C5 ) = ~. 

Since the fractional chromatic number does not decrease as we add vertices 
and edges, we see that x~(G) 2: max { ~~~Zj 1 1H <:;;; G}. 

In fact, as the reader can easily verify, a similar argument shows that 
X~ (G) is at least the solution to: 

21.1 max LvEV x(v) 

s.t. VS E S( G), LvES x( v) ::; 1 

over all non-negative weightings x on V. 
We obtain the first bound given above on x~(G) from (21.1) by setting 

each x( v) = a(~) and our second by setting each x( v) either to 0 or a(k) 

depending on whether or not v is in H. 
Now, it follows immediately from LP duality that the fractional chromatic 

number is in fact equal to the maximum in (21.1), (see e.g. [140]). Despite this 
pleasing result, it is still NP-complete to compute the fractional chromatic 
number of a graph. In fact, recent results [13] show that it is difficult to 
approximate the fractional chromatic number of graphs with n vertices to 
within a factor of n€ for some small positive E. 

The seminal result on fractional edge colourings, due to Edmonds [37], is: 

Theorem 21.2 The fractional chromatic index of G is the maximum of .1 
and max { ~~m~~ll : H <:;;; G, IV(H)I odd}. 

We now restate this result in terms of weightings of the line graphs as 
in (21.1). Theorem 21.2 says that a non-negative weighting of maximum 
total weight in which no matching has weight exceeding one can be obtained 
in one of the following two simple ways: 

(i) assigning 1 to every edge incident to one particular vertex, or 
(ii) for an appropriate odd cardinality subgraph H, assigning the weight 

wuiJI~l to each of the edges of H. 

Remark Clearly, for any H <:;;; G s.t. the maximum matching in H has size k, 
assigning the weight .f to each edge of H yields a feasible solution to (21.1) 
in the line graph of G. Thus, if the weighting of maximum weight is as in (ii) 
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then the corresponding H contains a matching of size IV(~)I- 1 (the largest 
value possible). 

Using this characterization, Padberg and Rao [127] were able to obtain 
a polynomial time algorithm for computing the fractional chromatic index of 
a graph and indeed an optimal fractional edge colouring. 

The complexity of computing the fractional total chromatic number of 
a graph remains unclear. See [94] for some partial results. 

We close this section by presenting Edmonds' result in its more well-known 
garb, as a characterization of the matching polytope, and then explaining why 
the two results are equivalent. 

Let G be a graph with m edges. Fix an enumeration e1, ... , em of E(G). 
A is the incidence vector of a matching M if M = {eilxi = 1}. We use XM 

to denote the incidence vector of M. The matching polytope for G, denoted 
MP( G) is the convex hull of the incidence vectors of the matchings in nm. 
Equivalently, y E nm is in MP( G) if and only if it can be expressed as a con
vex combination of incidence vectors of matchings (i.e. y = LMEM(G) aMXm 

where the aM are non-negative and sum to 1). Edmonds proved: 

Theorem 21.3 A non-negative vector x is in MP( G) if and only if: 

(a) for each vertex v, Lei:lv Xi~ 1, and 
(b) for each subgraph H which has an odd number of vertices, LeiEE(H) Xi ~ 

IV(H)I-1 
2 

Remark Since (a) and (b) hold for every incidence vector of a matching, they 
clearly hold for every vector in the matching polytope. The difficult part of 
the theorem is to prove the converse. 

Remark Edmonds was interested in finding the maximum weight matching 
in a graph whose edges had been assigned weights. It is well known and 
easy to see that the maximum of a linear function on a convex polytope is 
achieved at a vertex. Thus, finding the weight of a maximum weight match
ing amounts to computing the maximum of a linear function on MP(G). 
Edmonds first developed a polynomial-time algorithm for finding maximum 
weight matchings, and then used it to obtain the polyhedral characterization 
of Theorem 21.3 [37]. 

We observe that given a fractional c edge colouring, we can demonstrate 
that ( ~, .. , ~) is in MP (G) by setting aM = ~ for each matching M. 
Conversely, if we have some aM which demonstrate that ( ~' .. , ~)is in MP(G) 
then we can obtain a fractional c edge colouring by setting WM = aMc. Thus, 
we have: 

21.4 G has a fractional c edge colouring if and only if ( ~, ... , ~) is in 
MP(G). 



242 21. Finding Fractional Colourings and Large Stable Sets 

So, Theorem 21.2 follows from Theorem 21.3. In fact, both theorems hold 
for graphs with multiple edges, and so we can obtain the reverse implication 
by taking multiple copies of edges and scaling. We omit the details as we do 
not need the result. 

21.2 Finding Large Stable Sets in Triangle-Free Graphs 

In Chap. 13, we showed that there is a constant c such that every triangle
free graph has chromatic number at most ~~:Ll . A corollary of this theorem 

is that there is a positive E ( = ~) such that every triangle free graph contains 

a stable set withE IV(G~log Ll vertices. This result had been proved earlier by 
Ajtai, Komlos and Szemeredi [1]. The proof was simplified and the constant 
improved by Shearer [143] and Alon [5]. 
In this section, we show: 

Theorem 21.5 Every triangle-free graph G contains a stable set with at least 
IV(Gi~og Ll vertices. 

We do so by computing the average size of a uniformly chosen random 
stable set. The result and proof technique are both due to Shearer [143], 
although our exposition is closer to that given in [5]. 

Proof of Theorem 21.5 We can assume that Ll ~ 28 , as otherwise we need only 
use a colour class in a Ll colouring. We let n = IV (G) J. We choose a uniformly 
random stable setS and bound E(JSI). We show that E(JSI) ~ n~~Ll, which 
proves the theorem. 

By Linearity of Expectation: E(JSJ) = l:vEV Pr(v E S). We show that 
for every vertex v, 

Claim 21.6 Pr(v E S) + iE(JS n N(v)l) ~ ~~~Ll· 

This implies that 

'"""" 1 '"""" n log Ll ~ Pr(v E S) + Ll ~ E(JS n N(v)l) ~ ~· 
vEV vEV 

Since E(JS n N(v)J) = l:wEN(v) Pr(w E S), and each vertex w is in d(w) 
neighbourhoods, this yields: 

L (1 + d~)) Pr(v E S) ~ n~~Ll· 
vEV 

Since d~) < 1, we have l:vEV Pr(v E S) ~ n~~Ll, which is the desired 
result. 
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Thus, to prove Theorem 21.5, it remains only to prove Claim 21.6. To do 
this, we condition on the intersection of S with G - v - N ( v). In particular, 
letting S' be the random stable set S - v - N ( v), we show that for each 
RES(G-v-N(v)): 

1 log L1 
Pr(v E SIS'= R) + L1 E(IS n N(v)IIS' = R):::: 4<1 . 

Since 

Pr(v E S) = Pr(v E SIS'= R)Pr(S' = R) 
RES(V -N(v)-v) 

and 

E(IN(v) n Sl) = E(IN(v) n SIIS' = R)Pr(S' = R), 
RES(V -N(v)-v) 

summing over all such R yields Claim 21.6. 
So, we fix a stable set R of G- v- N(v), and condition on the event 

that S' = R. Note that this implies that S- S' ~ (v U N(v))- N(R). We 
set W = (v U N(v)) - N(R). Since we are choosing S from the uniform 
distribution on S(G), for any two stable sets W1 and W2 contained in W we 
have: 

Pr(S = R +WI)= Pr(S = R + W2). 

Thus, 

Pr(S = R + W1IS' = R) = Pr(S = R + W21S' = R). 

This implies that if S" is a uniformly chosen random stable set in W, 
Pr(v E SIS'= R) = Pr(v E S") and E(ISnN(v)IIS' = R) = E(IS"nN(v)l). 
So, we need only prove: 

Pr(v E S") + ~ E(IS" n N(v)l);::: l:~L1· 

Now, W consists of v along with a stable set W' all of whose vertices 
are adjacent to v. Thus, W contains 21W'I + 1 stable sets, one of which is v 
and the rest of which are the subsets of W'. So, Pr(v E S") = -1 W~I and 

2 +1 
IW'I IW'I E(IS" n N(v)l) = -2-21~'1+1. Now, if IW'I:::;: logL1-loglogL1 + 1 then 

Pr( v E S") exceeds l~g.6..6.. On the other hand, if I W'l ;::: log L1 -log log L1 + 1, 
then E(IS" n N(v)l) ;::: logL1-~glogL1. Since for L1;::: 28 , we have loglogL1 
< lo~ .6., the result follows. D 
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21.3 Fractionally, X < w+t+l 

Recall that Conjecture 16.2 states that if a graph has maximum clique size w 
and maximum degree Ll then its chromatic number is at most fw+f+1l In 
this section, we prove a fractional version of this conjecture: 

Theorem 21.7 For every graph G, we have x~(G)::::; w(G)±~(G)±l. 

Note that, since x*(v) ::::: a(G)' this theorem implies that every graph G 

contains a stable set of size w+2~±l. This weaker statement was proven inde
pendently and much earlier by Fajtlowicz [48] (see also [49]). 

Proof of Theorem 21. 7. Our approach is to consider choosing stable sets 
where each maximum stable set is equally likely. The key to the proof is the 
following lemma, whose proof is similar to that of Claim 21.6 of the previous 
section. 

Lemma 21.8 If S is a randomly chosen uniform maximum stable set then 
for every vertex v of G, we have: 

Pr(IS n N(v)l = 1)::::; (w -l)Pr(v E S). 

Proof We again condition on our choice of S' = S- v- N(v). We show 
that for each stable set R E S(G- v - N(v)), which can be extended to 
a maximum stable set by adding vertices of v + N(v), we have: 

21.9 Pr(IS n N(v)l =liS'= R)::::; (w- l)Pr(v E SIS'= R). 

As in the last section, summing over the possible choices for R yields the 
desired result. 

So, fix such a stable set R in V- N(v)- v and let W = N(v) +v- N(R). 
By our choice of R, we have a( G)= IRI + a(W). I.e., any maximum stable 
set U with U- v- N ( v) = R must contain a maximum stable set of W. Thus, 
if W is not a clique then we are done because Pr(IN(v) nSI =liS'= R) = 0. 
If W is a clique then IRI =a( G)- 1, and Sis equally likely to be R + w 
for each vertex of W. So, we are done because Pr(v E SIS'= R) = 1J, 1 and: 

Pr(IN(v) n Sl =liS'= R) = 1 ~J,~ 1 ::::; fwi. D 

We note that since S is a maximum stable set, we have Pr( v E S) = 
Pr(IS n N(v)l = 0). So, since for any non-negative integer valued random 
variable X, E(X) ;::: 2- Pr(X = 1)- 2Pr(X = 0), Lemma 21.8 implies the 
following analogue of Claim 21.6: 

21.10 E(IS n N(v)l) ;::: 2- (w + l)Pr(v E S). 

Summing (21.10) over all v E V, we obtain LlE(ISI);::: 2n-(w+l)E(ISI). I.e., 
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21.11 E(ISI) 2 w/2+1, 

which implies Fajtlowicz's result. 
Now, suppose that every vertex is equally likely to be inS. That is, there 

is some p such that 'Vv E V, Pr( v E S) = p. If this were the case then we 
would be done as follows. Applying (21.11), we obtainp 2 w+~+l' So, setting 
WR = lPr(S = R) for each maximum stable set R in G yields the desired p 

fractional colouring of G using total weight ~ :::; w+f+ 1 . 

Of course, some vertices may be more likely to appear in S than others, 
and so the argument above does not always apply. For example, if G is K 1 ,LJ. 
and v is the vertex of degree Ll in G then Pr( v E S) = 0 whilst for every 
other vertex w of G, Pr(w E S) = 1. In such situations, if we set WR = 
w+f+1 Pr(S = R) for each stable set RES then, by (21.11), the sum over 
all of the vertices of the weight of the stable sets containing them is at least 
n. However, we might not have a fractional colouring as for some vertices 
the total weight of the stable sets in which they appear may be less than 
one, whilst for other vertices this value may exceed one. So, in the general 
situation, we will need to use a more sophisticated (iterative) approach to 
construct the desired fractional colouring. 

We will once again begin by assigning each maximum stable set of G 
the same (positive) weight. However, we will choose this weight so that the 
weight of the stable sets containing each vertex is at most one. A voiding waste 
in this way will allow us to complete the fractional colouring in subsequent 
iterations. 

In iteration 1, we set w = max{Pr(v1ES)IvEV} and set WR = w · 
Pr(S = R) for each maximum stable set R. Now, for every vertex v, the 
sum of the weights of the stable sets containing v is at most one, and for 
at least one vertex this inequality is tight. We delete any such vertices and 
continue. In each iteration we increase the weight on each maximum stable 
set in the graph induced by the remaining vertices by the same amount. 
We bound this increase so as to ensure that the total weight of the stable 
sets containing a vertex never exceeds one. The formal description of the 
procedure follows. 

1. Set ws = 0, 'VS E S(G). Set Go= G. Set i = 0. 
Set T = 0 (T stands for Total weight used). 
For each v E V(G), set wov = 0 (wo stands for weight on). 

2. If V(Gi) = 0 or T = w+f+1 then stop. 
3. For each vertex v of Gi, let Pi ( v) be the probability that vis in a uniformly 

chosen random maximum stable set of Gi. Set low = min{ 1~(v)v !v E 

V(Gi)}. Set vali = min(low, w+f+1 ~ T). 
4. Let Si be the set of maximum stable sets of Gi. For each stable set in Si, 

increase ws by f;:;. For each vertex v of Gi, increase wov by Pi(v)vali. 
Increase T by vali. 



246 21. Finding Fractional Colourings and Large Stable Sets 

5. Let Gi+1 be the graph induced by those vertices v which satisfy wov < 1. 
Increment i and go to Step 2. 

We show now that this procedure terminates. Our choice of vali ensures 
that T never exceeds w+f+1. Our choice of vali thus ensures that if the ith 
iteration is not the last then V(Gi+l) is strictly contained in V(Gi), as every 
vertex of Gi minimizing 1~(v)v will not be in Gi+l· Thus, the algorithm must 
terminate. 

We claim that at the end of this procedure, the ws yield the desired 
fractional vertex colouring. We note that it is easy to verify by induction 
that at the end of each iteration, Vv E V, wov = L:{SESivES} Ws and T = 
l:sES ws. Furthermore, our choice of low and vali ensure that no wov ever 
exceeds 1. Thus, if we stop because V(Gi) = 0 then we have the desired 
fractional colouring. It remains only to show that if we stop because T = 

w+f+1 then each wov = 1 and we still have the desired fractional colouring. 
To this end, assume the contrary and let v be a vertex of G with wov < 1 

when we complete the iterative process. For each vertex u and iteration i, 
we let ai(u) be the amount by which wou was augmented in iteration i, 
i.e. ai(u) = valiPi(u). By (21.10), since vis in each Gi, we have: 

21.12 For each i, l:uEN(v) ai(u) 2 2(vali)- (w + 1)ai(v). 

Summing over the iterations, we obtain: 

21.13 l:uEN(v) WOu 2 2T- (w + 1)wov > w + L1 + 1- (w + 1) = L1. 

But for each u in N(v), wou:::::; 1, so we obtain a contradiction. 

Exercises 

D 

Exercise 21.1 Show that in fact the fractional chromatic number of G is at 
most the maximum over all vertices of INv(GJI+wv where Wv is the maximum 
size of a clique containing v (McDiarmid, unpublished). 



22. Hard-Core Distributions on Matchings 

In the preceding chapter, we analyzed two distributions on stable sets. In the 
first, each stable set was equally likely. In the second, each maximum stable 
set was equally likely. Our analyses allowed us to find large stable sets and 
fractional colourings using few colours. In both cases, the analysis involved 
showing that certain properties held in the neighbourhood of a vertex, re
gardless of what the stable set looked like further away from the vertex. This 
makes these two distributions attractive candidates for use in conjunction 
with the Local Lemma, for their local analysis leads to global results. 

In this chapter, we present a special type of probability distribution, the 
hard-core distributions, of which these two are (essentially) examples. We 
then discuss a specific hard-core distribution which we will use in the next 
chapter to construct edge colourings of multigraphs. Our analysis focuses 
on showing that certain properties hold in the neighbourhood of a vertex, 
regardless of any conditioning on what the stable set looks like far away from 
the vertex. We hope that the results of the last chapter have whetted the 
reader's appetite for this more extensive excursion into the realm of hard
core distributions. 

22.1 Hard-Core Distributions 

A probability distribution p on the stable sets of G is hard-core if it is obtained 
by associating a positive real >.( v) to each vertex of G so that that the 
probability that we pick a stable set S is proportional to flvES >.(v). I.e., 
setting >.(S) = flvES >.(v) we have: 

(S) = >.(S) 
p LTES(G) >.(T). 

We call the >.( v) the activities of p. 
The use of the name hard-core for such distributions arose in statistical 

physics, see e.g. [68]. They have also proven important in other contexts, 
see e.g. [103, 130], although under different names. 

We note that if we set each >.( v) = 1 then we obtain the uniform distri
bution as a hard-core distribution. Also, if we let each >.( v) = N where N 
goes to infinity, then we approach the uniform distribution on the maximum 
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stable sets, as the probability of not picking a maximum stable set goes 
to zero. Thus, the distributions of the last chapter are (essentially) hard
core distributions where the >.( v) are all equal to some fixed >.. In these 
distributions, all the stable sets of a given size are equally likely and our 
choice of >. indicates whether we prefer larger or smaller stable sets, and to 
what extent. 

For a given probability distribution on the stable sets of a graph, we refer 
to the probability that a particular vertex v is in the random stable set as the 
marginal of pat v and denote it /p(v). The vector fp is called the marginals 
ofp. 

All this notation carries through for probability distributions on match
ings in multigraphs in the natural way. 

The following three observations are fundamental, the second in particular 
will be used frequently without being referenced. 

22.1 If M is chosen according to a hard-core distribution on the matchings 
of a multigraph G then: 

'Ve = xy, fp(e) = >.(e)Pr(x fl. V(M),y fl. V(M)). 

Proof For each matching L containing e, p(L) = >.(e)p(L- e). 0 

22.2 If M is chosen according to a hard-core distribution on the matchings 
of a multigraph G then: 

22.3 If M is chosen according to a hard-core distribution on the matchings 
of a multigraph G then: 't:/x E V(G) 

Pr(x E V(M)) = L >.(xy)Pr(x fl. V(M),y fl. V(M)). 
xyEE(G) 

The following lemma shows that we can generate a matching drawn from 
a hard-core distribution one edge at a time. 

Lemma 22.4 Suppose e = xy is an edge of a multigraph G and M is chosen 
according to a hard-core distribution on the matchings of G. Suppose M 1 

(resp. M2) is chosen from the matchings of G- e (resp. G- x- y) using the 
hard-core distribution with the same activities. Then: 

(a) for any matching N in G- e, Pr(M1 = N) = Pr(M = Nle fl. M); 
(b) for any matching N in G-x-y, Pr(M2 = N) = Pr(M = N +ele EM). 

Proof Let wl = LMEM(G-e) >.(M). Let w2 = LMEM(G-x-y) >.(M). 
Let w3 = LMEM(G) >.(M). Then w3 = wl + >.(e)W2. Furthermore, for 
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N E M(G- e), we have: Pr(M1 = N) = >.~), Pr(M = N) = >.~),and 
Pr(e ¢ M) = tR· Thus, (a) holds. Similarly, for N E M(G-x-y) we have: 

Pr(M = N) = >.(N) Pr(M = N +e) = >.(N)>.(e) and Pr(e E M) = >.(e)W2 • 
2 w2 ' W3 ' W3 

Thus, (b) holds. D 

22.2 Hard-Core Distributions 
from Fractional Colourings 

In this chapter, we prove the existence of hard-core distributions on the 
matchings of G with certain desirable approximate independence properties. 
More precisely, we consider the question: what conditions on a vector x 
(indexed by the edges of a graph) are sufficient to ensure that there is a hard
core distribution with marginals x for which the probability a particular edge 
is in the random matching is not significantly affected by the choices made 
in distant parts of the graph? (Recall that the marginal on an edge is the 
probability this edge is in the random matching.) To begin, we consider an 
easier related question: for which non-negative vectors x does a hard-core 
distribution p exist with marginals x? 

Our first remark is that a probability distribution is nothing but a convex 
combination of matchings (we set p(M) =aM). Thus, Edmonds' characteri
zation of the Matching Polytope (Theorem 21.3) can be restated as: 

Theorem 22.5 There is a probability distribution p with marginals x if and 
only if: 

(a) \fv E V, Le3 v Xe ~ 1, and 

(b) VH ~ G, IV(H)l odd, LeEE(H) Xe ~ IV(~)I-l. 

Surprisingly, to ensure that there is a hard-core distribution with given 
marginals, we do not need to strengthen these conditions to any great extent. 
Specifically, Lee [103] and independently Rabinovich, Sinclair and Widger
son [130] showed: 

Theorem 22.6 There is a hard-core probability distribution p with margin
als x if and only if the inequalities (a) and (b) above are strict. 

This result can be obtained via the classical technique of Lagrange mul
tipliers. Since this technique is not a topic of the book, we omit the proof. 
Applying (21.4), we deduce from this result: 

Theorem 22.7 There is a hard-core probability distribution p with marginals 
( ~, ... , ~) if and only if there is a fractional c' -edge colouring of G with c' < c, 
i.e. if and only if x: < c. 
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It turns out that to ensure that we can choose a hard-core distribution p 
with marginals x such that the probability that a particular edge is in the 
random matching is not significantly affected by our choices in distant parts 
of the graph, we need only strengthen the conditions in Theorem 22.6 slightly. 

Definition For 0 < t < 1, we say that a non-negative vector xis in tMP(G) 
if 

(a) 'iv E V, LvEe Xe :=::; t, and 

(b) VH s::; G, jV(H)I odd, LeEE(H) Xe :=::; t IV(~)l-l. 

Theorem 22.6 states that for any 8 > 0, if x is in (1 - 8)MP(G) then 
there is a hard-core distribution whose marginals are x. Actually, for any 
such hard-core distribution, the probability that a particular edge is in the 
random matching is not significantly affected by our choices in distant parts 
of the graph. The only catch is that our definition of distant depends on 8. 
We now make this rather vague statement more precise. 

We saw in applying the hard-core distributions of the last chapter that 
there seemed to be some degree of independence between what the random 
stable set looked like in one neighbourhood of the graph, and what it looked 
like elsewhere. For example, in studying triangle-free graphs, we obtained 
a lower bound on Pr(v E S) + Ll- 1E(IS n N(v)l) which held independently 
of our choice of S-v-N(v). We will need very strong independence properties 
of this type. In particular, we will use hard-core distributions such that for 
a random matching M chosen according to the distribution and for any two 
far apart edges e and f: Pr(e E Mlf E M) ~ Pr(e E M). (I.e. Pr(e E 
M, f EM)~ Pr(e E M)Pr(f EM).) 

This will not be the case for an arbitrary choice of graph and activities. 
Consider, for example, a chordless cycle C with 2n edges and a hard-core 
distribution in which A( e)= 23n for each edge e. Since C has fewer than 22n 

matchings, we can easily compute that M is almost always one of the two 
perfect matchings on C. In fact, M is a perfect matching with probability 
exceeding 1 - 2~. Thus, for each edge e of C, Pr(e E M) ~ ~· Moreover, 
for any two edges e and f of C, no matter how far apart, we have either 
Pr(e E Mlf E M) ~ 1 or Pr(e E Mlf E M) ~ 0. Thus, this hard-core 
distribution does not have the desired independence properties. 

The hard-core distribution of the last paragraph is badly behaved because 
the associated A are too large. It turns out that the hard-core distributions we 
will use have bounded A and this fact will provide the independence properties 
we need. Specifically, we will show: 

Lemma 22.8 [92] VO < 8 < 1, 38' > 0 such that if p is a hard-core 
distribution with marginals in (1 - 8)MP(G) and M is a matching chosen 
according top then Vx,y E V(G),Pr(x f/_ V(M),y f/_ V(M)) > 8'. 

Applying (22.1), we can then obtain: 
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Corollary 22.9 VO < 8 < 1, :JK such that if p is a hard-core distribution 
with marginals in (1 - 8)MP( G) then 

1. \feE E(G), .\(e)< Kfp(e), and 
2. \fx E V(G) we have: Le:lx .\(e) < K. 

Proof Set K = Jr. By (22.1), for an edge e with endpoints x and y, 
fp(e) = .\(e)Pr(x ~ V(M), y ~ V(M)). So, by Lemma 22.8, .\(e) < Kfp(e). 
Since Le:lx fp(e) = Pr(x E V(M)) < 1, this implies the desired results. 0 

Applying this corollary, Kahn and Kayll [92] obtained the following strong 
result about the independence properties of hard-core distributions on match
ings. 

Definition Suppose that we are choosing a random matching M from some 
probability distribution. For a vertex v we say that an event Q is t-distant 
from v if it is completely determined by the choice of all the matching edges 
at distance t or greater from v. We say that an event is t-distant from an 
edge e if it is t-distant from both ends of e. 

Lemma 22.10 Fix K > 0 and an f strictly between 1 and 0. Lett= t(t:) = 
8(K +1)2C 1 +2. Consider a multigraph G and hard-core distributionp whose 
activities satisfy: (*)\fx E V(G), Lnx .\(f) < K. If we choose a match
ing M according to p then the following is true: 

For any edge e and event Q which is t-distant from e, 
(1- t:)Pr(e EM) ~ Pr(e E MIQ) ~ (1 + t:)Pr(e EM). 

Their results also imply: 

Corollary 22.11 For any 0 < 8 < 1, there exists K = K(8) such that 
for any multigraph G with fractional chromatic index c, there is a hard-core 
distribution p with marginals e~o, ... , 1 ~ 8 ), such that \feE E(G), .\(e)~ lf 
and for all v E V(G), Lt:lx .\(f) ~ K. 

Proof By Theorem 22.7 there exists a hard-core distribution with the 
given marginals. By (21.4), the vector(~, ... ,~) is in MP(G) and so 
e~", ... , 1 ~8 ) is in (1 - 8)MP(G). The result follows by Corollary 22.9. 

0 

In the next chapter, we will combine these last two approximate inde
pendence results with the Lopsided Local Lemma to obtain results on edge
colouring multigraphs. 

The rest of this chapter is devoted to proving Lemma 22.8 and Lem
ma 22.10. The key to these results is showing that hard-core distributions 
are fixed points of a certain map on probability distributions over M(G) 
which we do in the next section. 

Thus far in the book, we have tended not to focus on the proofs of our 
probabilistic tools, particularly when these proofs are long, focussing instead 
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on presenting applications of these tools. We break with this tradition here, 
partly because the proofs are combinatorial in nature, partly because we 
present modified versions of the original proof which some readers may find 
easier to digest. 

The reader who wishes that we had continued to spare him the grubby 
details, can skip immediately to the next chapter. He will not miss anything 
that is required in the remainder of the book. 

22.3 The Mating Map 

In analyzing hard-core distributions we will often generate a matching from 
a pair of matchings. We say that two (ordered) pairs of matchings (M1, M2 ) 

and (M3,M4) are compatible if M1nM2 = M3nM4 and M1UM2 = M3UM4. 
We note that compatability is an equivalence relation. For each pair (Mt. M2 ) 

of matchings, each component of M1 U M2 is a path or a cycle. Furthermore, 
M1 n M2 consists of the union of some of the single edge components of 
M1 UM2. 

We say that a component of M1 U M2 is interesting if it is not an edge 
of M1 n M2. We note that each interesting component U of M1 U M2 has 
precisely one partition into two matchings, namely: {M1 n U, M2 n U}. It 
follows that if M1 U M2 has l interesting components then there are precisely 
21 pairs of matchings compatible with (M1 , M2 ). 

For any pair (M1, M2) of matchings, we let ¢(M1, M2) be a uniformly 
chosen pair of matchings (Mi, M2) compatible with (Mt, M2). We define 
0( M1, M2) to be Mi. Clearly, 0( M1, M2) can be generated from M1 U M2 by 
setting for each component U of M1 U M2: O(M1, M2) n U = M1 n U with 
probability ~' and O(M1, M2) n U = M2 n U with probability ~' with these 
choices made independently. 

For a given probability distribution p, we can generate a random match
ing M by choosing M1 and M2 independently according top, and then setting 
M = O(M1, M2). This generates a new probability distribution on M(G). We 
obtain the mating map Y by letting Yp be the new distribution obtained upon 
applying this procedure top. We use Y for Yv when the choice of pis clear. 
Our analysis of hard-core distributions relies on the following result: 

Lemma 22.12 Every hard-core distribution is a fixed point of the mating 
map. 

Proof We use gp or simply g to denote the probability distribution on pairs 
of matchings obtained by choosing independent random M1 , M2 according 
to p, and taking the random pair of matchings ¢( M1 , M2 ). Let p be a hard
core distribution. We actually show 

22.13 For all Mf, M~ E M(G), g(M{, M~) = p(M{)p(M~). 
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M1 () M2 
0 0 

0 
M1- M2 

0 

0 
M1 () M2 

0 
M1 

interesting uninteresting 

Fig. 22.1. The components of M1 U M2 

This implies: Y(M) = I:M'EM(G) g(M, M') = I:M'EM(G) p(M)p(M') = 
p(M), as required. It remains only to prove (22.13). 

So, fix a pair (M{, M~) of matchings. Let S = S(M{, M~) be the equiv
alence class of pairs of matchings compatible with (M{, M~). Let l be the 
number of interesting components of M{ U M~. Then lSI = 21• So, for any 
(N1, N2) E S, we have: 

22.14 Pr(¢(N1,N2 ) = (M{,M~)) = 2-1• 

Furthermore, setting W = I:MEM(G) >.(M), for such a pair we have: 

p(Nl)p(N2) = >.(NI) >.(N2) 
w w 

>.(N1 U N2) >.(N1 n N2) 
w w 
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Thus, 

>.(M{ u M~) >.(M{ n M~) 
w w 

= >.(M{) >.(M~) = (M') (M') 
W W P 1P 2· 

g(Mf,M~) = L Pr ((M1,M2) = (N1.N2)) 
(N1,N2)ES 

x Pr ( ¢(N1, N2) = (Mf, M~)) 

L p(NI)p(N2)2-l 
(N1,N2)ES 

L p(M{)p(M~)T1 

(N1,N2)ES 

= ISip(M{)p(M~)2-l 

= p(M{)p(M~). 

22.4 An Independence Result 

0 

We now restrict our attention to some positive 8 < 1 and a hard-core distri
bution p with marginals in (1 - 8)MP(G). Using the seemingly innocuous 
fact that p is a fixed point of the mating map, we will give a straightforward 
description of how conditioning on some vertex not being on the random 
matching generated according to p affects the probability that other vertices 
are on this matching. We then apply this result to prove Lemma 22.8. 

Notation: For a matching Nand vertex x, we use x-< N to mean xis an 
endpoint of an edge of N. For Z ~ V(G), we use ZnN for {xlx E Z, x-< N}. 
M always refers to a random matching generated according top, and M1 , M2 

to a random pair of matchings generated independently according to p. 

For any such pair M1, M2 we will think of M1 UM2 as a spanning subgraph 
and thus M1 U M2 may have singleton (i.e. single vertex) components. For 
each component U of M1 U M2, we set (}(MI. M2) n U to be either M1 n U or 
M2 n U, where each possibility is equally likely. Of course, if U is a singleton 
component, it makes no difference which choice we make, since M1 n U = 

M2 n U. But it will be convenient for us to distinguish between the choice of 
M1 n U or M2 n U, even when U is a singleton. 

We use dxy to denote Pr(x -/- M, y -/- M). 
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To begin, we relate dxy to Pr(x -/< M)Pr(y -/< M) which would be its 
value if the events x -< M and y -< M were independent. This result, though 
simple, is the key to the analysis: 

Definition For a pair { x, y} of vertices of G, we let Ev ( x, y) be the event 
that x and y are the endpoints of an even path which is a component of 
M1 U M2 (recall that the length of a path is the number of edges it contains). 
We let Od(x, y) be the event that x andy are the endpoints of an odd path 
which is a component of M1 U M2. 

Lemma 22.15 For all x,y E V(G) with x =1- y, we have: 

1 1 
dxy = Pr(x-/< M)Pr(y-/< M) + 2Pr(Od(x, y))- 2Pr(Ev(x, y)). 

Proof We generate the random matching M by first generating M1 ,M2 
and then setting M = O(M1,M2). 

We let Ux be the component of M1 U M2 containing x and Uy be the 
component containing y. We let A 1(x) be the event that x -f< M1 and M n 
Ux = M1 nUx. We let A2(x) be the event that x -/< M2 and M nUx = 
M2 nUx. We recall that, by our remarks above, these events are well-defined 
and disjoint even if Ux is a singleton. We define A1(y) and A2(y) similarly. 
Then, 

Now 

and 

dxy = Pr(A1(x),A1(y)) + Pr(A1(x), A2(y)) + Pr(A2(x), A1(y)) 

+ Pr(A2(x), A2(y)) 

= 2Pr(A1(x), A1 (y)) + 2Pr(Al(x), A2(y)), by symmetry. 

1 
Pr(A1(x),A1(y)) = 4Pr(x-/< M17y-/< M1,Ux =/:- Uy) 

1 
+2Pr(x-/< M1, y-/< M1. Ux = Uy), 

1 
= 4Pr(x-/< M1. y-/< M1) 

1 
+4Pr(x-/< M1, y-/< M1, Ux = Uy), 

Pr(Od(x,y)) = Pr(x-/< M1,Y-/< M1.Ux = Uy) 

+Pr(x -/< M2, y -/< M2, Ux = Uy) 

= 2Pr(x-/< M1, y-/< M1, Ux = Uy), by symmetry. 

So, we obtain: 



256 22. Hard-Core Distributions on Matchings 

Similarly, we have: 

So, 

1 1 
2Pr(x-/< M1, y-/< Ml) + 2Pr(x-/< M1, y-/< M2) 

1 1 +4Pr(Od(x, y))- 4Pr(Ev(x, y)). 

Since M, M 1 and M2 all have the same distribution, we obtain: 

Rearranging this equation yields the desired result. D 

Now, the proof of Lemma 22.8 falls into two parts. We show: 

(i) if some dxy is very small then there is a small set S such that for all 
u, v E S, duv is small whilst for all u E S, v rf_ S, duv is big. 

(ii) there is no set S as in (i). 

Combining these two results yields a lower bound on min { dxy} whose 
precise value depends on the definition of "very small" in (i). Both parts of 
the proof require us to apply Lemma 22.15. We shall also need the following 
weak triangle inequality, which holds for all d. 

Lemma 22.16 Suppose dxy < d and dxz < d. Then dyz < 88-1d. 

Proof Consider our random pair of matchings (M1 , M 2 ). Let E be the 
event that y-/< M1,z-/< M1 and x-/< M2. Note that Pr(x-/< O(M1,M2),y-/< 
O(M1,M2)I(Ux # Uy)nE) 2: i and Pr(x-/< O(M1,M2),z-/< O(M1,M2)I(Ux # 
Uz) n E) 2: i· Furthermore, if E holds then either Ux =I Uy or Uz =I Uy. 
Combining these two facts we obtain: 

This implies: 

Pr(x-/< O(M1,Mz),y-/< O(M1,M2)IE) 
1 

+ Pr(x-/< O(M1, M2), z-/< O(M1, M2)IE) 2: 4· 

22.17 dxy + dxz :2': iPr(E). 

Now, since p has marginals in (1- 8)MP(G), Pr(x -/< M) 2: 8. So, as M1 , 

M 2 and M have the same distribution, we obtain: 

Pr(E) = dyzPr(x -/< M) 2: 8dyz 
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So dxy + dxz 2: %dyz, and the result follows. 0 

To prove Lemma 22.8, we need only prove it for 8 < 110 , since if the 
statement of the lemma holds for some value of c5 it holds for all larger values 
of c5 with the same value of c5'. So we assume c5 < 110 in what follows. We can 
now establish item (i) preceding the statement of Lemma 22.16: 

Lemma 22.18 There is a c5' > 0 such that if there exist x andy with dxy < 8' 
then there exists a set S with 2 ~ lSI ~ cS- 2 + 1 and c5* > 0 such that: 

812(8*)2 * 
't/u, v E S, duv < ---sooo-, and 't/u E S, v r:f_ S, duv > c5 . 

Proof Set c5o = 8; and recursively define for 1 ~ i ~ I cS-21, c5i = 
10-7c5~_1c515. Set c5' = c5r8-2l· 

Suppose that there exists a pair of vertices { x, y} with dxy < c5'. Set 

Sx = {z: dxz < 82
2 

}. We need: 

22.19 ISxl < cS-2 • 

Proof Since fp E (1- c5)MP(G), by definition Pr(x-/. M) 2: c5, so 't/z E 

V(G) : Pr(x -f. M)Pr(z -/. M) 2: c52 • Thus, by Lemma 22.15 't/z E Sx : 
Pr(Ev(x,z)) > c52 . Since the events Ev(x,z1 ) and Ev(x,z2 ) are disjoint 
events for z1 -f:. z2 , the result follows. 0 

Since Sx has fewer than cS- 2 elements, there is ani with 0 ~ i < cS-2 such 
that there is no z with dxz E [c5i+l,c5i)· That is, for some i with 0 ~ i < 8-2 , 

we have: 

(i) dxy < c5' < 10-7 c5~c515 
(ii) ,llz such that 10-7 c5~c5 15 ~ dxz < c5i 

For some such i, we let S =xU {z: dxz < w-7 c5tfll5}. For any u, v E S, 
applying Lemma 22.16, to x, u, v yields that: duv < w-6 c5Jc514 . Now for any 
u E S and v r:f_ S, as (ii) holds, applying Lemma 22.16, to u, x, v yields: 
duv 2: ~c5i. By (i), { x, y} ~ S and so lSI 2: 2. Since S ~ Sx + x, lSI ~ 8-2 + 1. 
So, we obtain the desired result with 8* = ~8i. 0 

By this result, to complete the proof of Lemma 22.8, we need only show: 

Lemma 22.20 There is no set S with 2 ~ lSI ~ 8-2 + 1 and c5* > 0 such 
. 812(8*)2 * 

that. 't/u, v E 8, duv < ---sooo-, and 't/u E S, v r:f_ S, duv > 8 . 

Proof We assume the contrary and choose an S and c5* for which the 
lemma fails. We first prove: 

22.21 :3 distincty1,y2 E S s.t. Pr(y1 -/. (MnE(S)),y2 -/. (MnE(S)) 2:86 . 

Proof We assume the contrary and define the random set S' = { zlz E S, 
z -/. M n E(S)}. By assumption, 
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We note that lSI and IS'I have the same parity. 
Thus, if lSI is even then, Pr(IS'I > 0) = Pr(IS'I ~ 2) < 82, and so: 

E(IS'I) < 82ISI. But for each z E V(G), Pr(z-/< M) ~ 8 and summing over 
all z E S we see that E(IS'I) ~ 8ISI, a contradiction. 

If lSI is odd, then our bound on Pr(IS'I ~ 2) yields: E(IS'I) < 1 +82(ISI-
1). So, E(IMnE(S)I) = fSf~~(IS'I) > fS~~ 1 (1-82). But since p has marginals 

in (1-8)M'P(G), E(IMnE(S)I) = LeEE(S) fp(e) S fS~~ 1 (1-8), which yields 
a contradiction. D 

Now if y -!< M n E(S) then either y -!< M or y -< M- E(S). Further, by 
. 1512(15*)2 156 

assumptwn, Vy1,y2 E S, dy1 ,y2 < ----soocJ < 4 . So, by (22.21) and the fact 
,6 ,1o,. ,6 

that .<!_ + -2u_u + ~ < 86 either 4 160 3 - ' . 

or 

8108* 
3y1, y2 E S, s.t. Pr(y1 -/< M, Y2 -< M- E(S)) > 160 , 

286 
::ly1,Y2 E S, s.t. Pr(y1-< M- E(S),y2-< M- E(S)) > 3· 

15 10 15* Case 1: ::ly1,y2 E S, s.t. Pr(y1-/< M,y2-< M- E(S)) > 160· 
We choose such a pair (y1 , Y2)· We focus on the event A that 

Y1-/< M1,Y2-/< (M1 n E(S)), 

V(Mr) n (S- Y1- Y2) = S- Y1- Y2,Y2-/< M2. 

Using the fact that for all wE S, dy1w S 80100 812 (8*)2 and summing over 
all of the at most l8~ 2 J w in S - Y1 - Y2 we see: 

So, we obtain: 

22.22 Pr(y1 -/< M, Y2 -< M- E(S), V(M) n (S- Y1 - Y2) = S- Y1 - Y2) 

> _1 8108* - 15-2 812(8*)2 > _1 8108* 160 8000 - 200 . 

Since Pr(y2 -!< M 2) > 8, (22.22) implies 

Pr(A) ~ 2~0 8 11 8*. 

We partition the pairs of matchings in A into equivalence classes where 
( M{, M2) and ( M{, M~) are in the same equivalence class if M2 = M~ and 
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Mi either is M{ or differs from M{ only in the choice of the edge incident 
to y2 . (I.e. all of the at most two edges in the symmetric difference of Mi 
and M{ contain y2.) We note that for a given equivalence class C, there is 
at most one pair of matchings N(C) = (N1, Nz) inC, such that Y1 and Y2 
are in the same component of N1 U N2 . Furthermore, there exists a pair of 
matchings in C, L(C) = (L1, Lz) such that Yz -/< L1 and Yz -/< Lz. Note 
that N1 = L1 U e for some edge e = yzw with w ¢ S and Nz = Lz. Thus 
>..(NI)>..(Nz) = >..(LI)>..(L2)>..(e). 

Since y2 E Sand w ¢ S, we have: Pr(y-/< M, w-/< M) 2: 6*. By (22.1), it 
follows that >..(e) ::; (6*)-1. 

Next, we note that, letting Q be the event that (M1, Mz) = (N1, N2), 
we have Pr(QI(M1, Mz) E C) ::; Pr(QI(M1, Mz) E {(N1, Nz), (L1, Lz)}) = 

.X(e) (J*)-1 ( J, J, I( ) C)) 1 ( .X(e)+l ::; 1+(8*) 1 . Moreover, Pr Y1 7' M, Yz 7' M M1, Mz E 2: 4 1 -
1 J* Pr(QI(M1, Mz) E C) 2: 4+4(8*) 1 2: s· 

Summing over the equivalence classes in A, we see: 

So, 

But, this contradicts our choice of S. 

Case 2: Case 1 does not hold. In this case, we know 

266 
:3y1,y2 E S, s.t. Pr(y1-< M- E(S),yz-< M- E(S)) > 3· 

We choose such a pair (y1, y2 ). We focus on the event B that 

Y1 -< M1 - E(S), Yz -< M1 - E(S), 

V(M!) n (S- Y1- Yz) = S- Y1- Y2,Y2-/< Mz. 

Using the fact that Case 1 does not hold, and summing over all pairs 
(w,yi) with winS- Y1- Yz we see: 

Pr(y1-< M- E(S), Yz-< M- E(S), V(M) n (S- Y1- Yz) = S- Y1- Yz) 

> 266- l6-2J6106* > ~. 
3 160 2 

Since Pr(y2 -1< M2 ) > 6, this implies Pr(B) ::;:: 8;. We can partition B 
into equivalence classes, just as we partioned A, and mimicing the reasoning 
in Case 1, show that for each equivalence class C: 

6* 
Pr(y1 -< M- E(S),yz-/< MI(M1,M2) E C) 2: 16 . 
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So, 

which contradicts the fact that Case 1 does not hold. 

Remark The 8 from the analogous inequalites in Case 1 is replaced by a 16 
here because there may be two matchings in each equivalence class for which 
Uy1 = Uy2 rather than just one. D 

22.5 More Independence Results 

In this section, we prove Lemma 22.10. Thus, we no longer assume that /p E 

(1- 8)M'P(G), simply that for some K and all x, we have: Lnx >..(!) :::; K. 
The idea of the proof is quite simple: we consider some fixed edge e of G 

and, by analyzing the mating map, bound the probability that a random pair 
(M1, M2) of matchings is bad in the sense that (i) e E M1 U M2, and (ii) the 
component, Ue, of M1 U M2 containing e intersects the set of edges t-distant 
from e. This will be enough to imply the result, for if we consider a fixed pair 
M1, M2 which is not bad then the event "e E O(M1, M2)" will be independent 
of the choice of the edges of O(M1, M2) which are t-distant from e. 

To show that the probability of (M1 , M2 ) being bad is very small, we 
compare the set B of bad pairs with the set B' of pairs which are not bad 
but are obtained from a bad pair by deleting one edge in one of the matchings. 

Note that if (M1, M2) is a bad pair then there are at least one and at most 
two paths P of Ue satisfying: one endpoint of P is on e, the other endpoint 
of P is t-distant from e, and no internal vertex of P is t-distant from e or 
on e. Deleting one edge from each such path yields a pair in B'. Thus, there 
are at least t - 1 pairs of B' corresponding in this fashion to each pair of B. 

Remark Note that although every nearly bad pair is obtained from a bad 
pair by deleting one edge, there are bad pairs from which we must delete two 
edges to obtain a nearly bad pair. We highlight this asymmetry between the 
definition of nearly bad pair and the correspondence between bad pairs and 
nearly bad pairs to simplify the reader's task. 

Of course, there may be many pairs in B corresponding to each pair 
in B'. In fact, for some graphs, B is much larger than B'. However, every 
pair in B corresponding to a specific pair (£1 , £ 2 ) in B' arises by adding up 
to two edges each of which is incident to one of the two vertices which are the 
endpoints of the component of £ 1 U £ 2 containing e. This allows us to use the 
fact that I: f3y >.. f :::; K for each y in V, to show that the probability that 
( M1, M2) is bad is much smaller than the probability it is in B'. Forthwith 
the details. 



22.5 More Independence Results 261 

Proof of Lemma 22.10 We let G(e, d) be the graph induced by the vertices 
at distance at least d from e. Recall that t = 8(K + 1)2c 1 + 2. and consider 
a fixed matching N in E(G(e, t- 1)). A matching Lis consistent (with N) 
if L n E(G(e, t- 1)) = N. Let Cons be the event that M is consistent. We 
shall prove that, for every edge e, letting Ae be the event that M contains e, 
we have: 

22.23 (1- t)Pr(Ae) < Pr(AeiCons) < (1 + t)Pr(Ae)· 

Now, by definition, for each event Q which is t-distant from e there is 
a subset M(Q) of M(G(e, t -1)) such that 

Q = ULEM(Q)M is consistent with L. 

Summing (22.23) over all the matchings in M(Q) yields Lemma 22.10. 
So, we need only prove (22.23). In doing so, we essentially follow the 

outline sketched above. However, since we are focusing on a particular match
ing N of G(e, t - 1), our definition of bad must be modified slightly. To 
wit, we say a pair of matchings (£1, £2) is bad if £1 is consistent, £1 U £2 
contains e, and the component of £1 U£2 containing e intersects E( G( e, t-1) ). 
We let (M{,M~) = ¢(M1 ,M2). Thus, M,M1,M2,M{,M~ all have the same 
distribution and (M1 , M2 ) and (M{, Mn have the same (joint) distribution. 
Let Bad be the event that (M{, M~) is bad. We show: 

22.24 IPr(Cons n Ae)- Pr(Cons)Pr(Ae)l ~ 2Pr(Bad). 

22.25 Pr(Bad) < ~Pr(Cons)Pr(Ae)· 

Combining these results we have: 

IPr(AeiCons)- Pr(Ae)l 

I Pr( Cons n Ae) - Pr(Ae) I < 2Pr(Bad) < t:Pr(Ae)· 
Pr(Cons) - Pr(Cons) 

This proves (22.23); it remains only to prove (22.24) and (22.25). 
In doing so, we will use: 

22.26 Pr(Cons n Ae)- Pr(Cons)Pr(Ae) 

= Pr(Cons n Ae)Pr(Ae)- Pr(Cons n Ae)Pr(Ae). 

Proof 

Pr(Cons n Ae)Pr(Ae)- Pr(Cons n Ae)Pr(Ae) 

Pr(Cons n Ae)- Pr(Cons n Ae)Pr(Ae)- Pr(Cons n Ae)Pr(Ae) 

Pr(Cons n Ae)- Pr(Cons)Pr(Ae). 

D 
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Proof of (22.24). Using the fact that p fixes the joint distribution on match
ings, we have: 

Pr(e 'f_ M~,M~ is consistent,e EM~)= Pr(ConsnAe)Pr(Ae), 

and 
Pr(e EM~, M~ is consistent, e 'f_ M~) = Pr(Cons n Ae)Pr(Ae)· 

ForM{, M~ witheE M{ U M~, we let Ue be the component of M{ U M~ 
containing e, otherwise Ue is not defined. We consider generating a new pair 
of matchings (L1, L2 ) by swapping our choice of M{ n Ue and M~ n Ue if 
Ue exists. Clearly, this new pair of matchings has the same distribution as 
(Mf, M~) (as we can make our choice on Ue by choosing one of M 1 U e or 
M2 U e not to be M{ U e). Furthermore, if neither the new pair nor the old 
pair is bad then 

e 'f_ M~, M~ is consistent, e E M~ 

if and only if 

Combining this fact with the two equations above, we obtain: 

IPr(Cons n Ae)Pr(Ae)- Pr(Cons n Ae)Pr(Ae)l:::; 2Pr(Bad). 

By (22.26), this is the desired result. 0 

Proof of {22.25). We say a pair of matchings (L1, L2), which is not bad, 
is nearly bad if L1 is consistent, e E L1 U L2, and there is a bad pair of 
matchings (L~,L~) from which we can obtain (L1,L2) by deleting an edge 
f =/= e from the component of L~ U L; containing e. Note that this implies 
that the component of L1 U L2 containing e is a path rather than a cycle. 

For any bad pair ( L~, L~) of matchings, we say a path of L~ U L~ is critical 
if one of its endpoints is one, one of its endpoints is in G(e, t- 1), and none 
of its internal vertices are in G(e, t- 1) or on e. Clearly, L~ U L~ contains 
either one or two critical paths and these paths are disjoint. Furthermore, 
a critical path contains at least t - 2 edges and if we delete exactly one edge 
from each critical path in a bad pair of matchings, we obtain a nearly bad 
pair of matchings. 

We consider a bipartite graph F whose edges link the bad pairs of match
ings to the nearly bad pairs. Specifically, a bad pair ( L~, L~) is linked to 
a nearly bad pair (L1, L2) if we can obtain (L1, L2 ) from (L~, L~) by deleting 
exactly one edge from each critical path of L~ U L~. The remarks of the last 
paragraph imply that every bad pair has at least t- 2 neighbours in F. 

We consider a nearly bad pair ( L1 , L 2 ) and let x 1 and x 2 be the endpoints 
of the component of L1 U L2 containing e. We let S = S(L 1 , L 2 ) be the set 
of bad pairs of matchings adjacent to (L1 , L2 ) in F. Thus any pair in S is 
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obtained from (£1 , £ 2 ) by adding an edge adjacent to x1, an edge adjacent 
to x2, or two edges, one adjacent to x1 and the other to x2. So, 

L A(LDA(L;) ~ L A(/t)A(Ll)A(£2) 
(L~ ,L~)ES fi 3Xl 

+ L A(/2)A(Ll)A(L2) 
f23x2 

+ L L A(/t)A(/2)A(Ll)A(L2)· 

I.e., 

f13xl f23x2 

L A(L~)A(L;) 
(L~,L~)ES 

< (1 + L A(/t)) (1 + L A(h)) A(Ll)A(£2) 
h3xl f23x2 

< (K + 1)2 A(Ll)A(£2)· 

On the other hand, as noted above, each bad pair is adjacent in F to at 
least t - 2 nearly bad pairs. So, reversing the order of a double summation, 
we obtain: 

A(L~)A(L;) 2 (t- 2) X L A(L~)A(L;). 
(£1,£2) (L~,L~)ES(£1,£2) 

nearly bad 

Combining these results we see: 

(L~, L~) 
bad 

L A(LDA(L;) ~ (~ ~ ~) 2 L A(Ll)A(£2)· 
(L~,L~) (£1,£2) 

bad nearly bad 

Now, for every nearly bad pair of matchings (Ll> £2), £ 1 is consistent, by 
definition. Furthermore, e is in precisely one of £ 1 or £ 2 because otherwise, 
however we add an edge to one of the matchings, e remains a component of 
the union of the two new matchings and hence we have not constructed a bad 
pair. So, since t = 8(K + 1)2c 1 + 2, the last inequality implies: 

E - -
Pr(Bad) ~ S(Pr(Cons n Ae)Pr(Ae) + Pr(Cons n Ae)Pr(Ae)) 

E -
~ 8(2Pr(Cons n Ae)Pr(Ae) 

+(Pr(Cons n Ae)Pr(Ae)- Pr(Cons n Ae)Pr(Ae))). 

Since Pr(Ae) ~ 1, applying (22.26), we obtain: 
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E 
Pr(Bad) <:::: S(2Pr(Cons n Ae)+(Pr(Cons n Ae)-Pr(Cons)Pr(Ae))) 

E 
<:::: s(2Pr(Cons)Pr(Ae)+IPr(Cons n Ae)-Pr(Cons)Pr(Ae)l) 

So, (22.24) yields: 

E 
Pr(Bad) <:::: S(2Pr(Cons)Pr(Ae) + 2Pr(Bad)). 

I.e. 

E 
< 2Pr(Cons)Pr(Ae)· 

0 



23. The Asymptotics 
of Edge Colouring Multigraphs 

As we mentioned in Chap. 1, one of the most celebrated conjectures concern
ing edge colouring is the Goldberg-Seymour Conjecture which states that for 
any multigraph G: Xe(G):::; max(L1+1, lx;(G)l). In this chapter, we present 
Kahn's proof of: 

Theorem 23.1 [90] Xe(G):::; (1 + o(1))x;(G). 

We then discuss Kahn's proof of the analogous result for list colouring: 

Theorem 23.2 [91] x~(G):::; (1 + o(1))x;(G). 

In both proofs, we use a variant of our naive colouring procedure. The 
key new ingredient in the proof of Theorem 23.1 is a new method of assigning 
colours. For each colour c. we choose a matching Me from some hard-core 
distribution on M( G) and assign the colour c to the edges in Me. By assigning 
each colour exclusively to the edges of one matching, we avoid conflicting 
colour assignments and the resulting uncolourings. This new assignment pro
cess is also an important ingredient in the proof of Theorem 23.2, which 
requires a number of other ingenious new ideas. 

23.1 Assigning the Colours 

As we saw in Chap. 22, if we scale a fractional c-colouring by dividing each 
matching's weight by c then we obtain a probability distribution p on the 
matchings of G, under which we expect each edge to be in a random matching 
with probability ~. In both proofs, we shall assign colours to the edges of G 
using such a probability distribution. 

At first sight, this may appear to be a significant departure from our 
standard approach of randomly assigning each vertex a colour independently 
and then uncolouring vertices involved in conflicts. However, further reflection 
shows that the two approaches are, in fact, quite similar. To illustrate, we 
recall our approach to colouring triangle-free graphs. 

For each vertex v in the triangle-free graph, and colour 1, we assigned v 
the colour 1 with a probability p"' ( v), independently of the colour assignments 
to the other vertices. Thus. for each set T, the probability q'Y(T) of the set 
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of vertices assigned 1 being T, was TivETP-y(v) Tiv(tT(l- P-y(v)). Now, for 
any stable set S, we let F(S) be the set of all T such that S = { v E Tl 
Jlu E T s.t. uv E E( G)}. Then the probability of S being the set of vertices 
assigned 1 and not uncoloured due to conflicts was p~(S) = "LrEF(S) q-y(T). 
So, in this earlier proof, we were implicitly assigning each colour 1 using 
a probability distribution p~ on the stable sets. 

The difference in our new approach is that we explicitly impose the condi
tion that the set of edges to which we assign 1 is a matching from the outset, 
rather than dealing with this problem in a second phase by uncolouring edges 
in conflicts. With the previous approach, the colour assignments in the first 
phase were completely independent, so we were in a position to apply the 
simplest version of the Local Lemma in our analysis. We will still need to 
apply the Local Lemma to obtain global results via a local analysis under the 
new procedure. In order to do so, we need to know that for the probability dis
tribution we choose from, events in distant parts of the graph have a limited 
effect on the probability that a particular edge is in our random matching. It 
is for this reason that we will restrict ourselves to hard-core distributions. For 
such distributions, the approximate independence results of the last chapter 
imply that we can use the Local Lemma in performing our analysis. However, 
because these results yield only approximate independence we will need to 
apply the Lopsided Local .Lemma rather than the simpler version we have 
used previously. Before presenting our two proofs, we recall the approximate 
independence results we will use. 

Remark Note that, in our procedure for colouring triangle-free graphs, if we 

let Z = TivEv(l- P-y(v)) and A-y(v) = 1 ~;~(~) then q-y(v) = (f1vET A-y(v))Z. 
I.e., the probability that we pick a set T is proportional to A-y(T) = 
TivET A-y(v). So, in the triangle-free case we assigned colours according to 
a hard-core distribution over the subsets of V and then dealt with conflicts 
by uncolouring the vertices involved. The only difference in our new approach 
is that we deal with conflicts by restricting our attention to matchings, 
i.e. restricting our random choice under the hard-core distribution to these 
conflict-free sets of edges. 

23.1.1 Hard-Core Distributions and Approximate Independence 

We will use the following results developed in the previous chapter: 

Corollary 22.11 For any 6 > 0, there exists a K = K(6) such that for 
any multigraph G with fractional chromatic number c there is a hard-core 
distribution p with marginals e~c~, ... , 1 ~c~) such that Ye E E(G), >.(e) ::; If 
and hence Yv E V(G), "Le 3 v >.(e) :S K. 

Lemma 22.10 Consider any K > 0, multigraph G, and hard-core dis
tribution p such that (*) Yv E V(G), "Le 3 v >.(e) ::; K. If we choose 
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a matching M according top then, for any f strictly between 1 and 0, setting 
t = 8(K + 1)2c 1 + 2, we have: 

For any edge e and event Q which is t-distant from e, we have: 

(1- E)Pr(e EM) ~ Pr(e E M[Q) ~ (1 + E)Pr(e EM). 

In the proofs, we will repeatedly apply Corollary 22.11 to a graph F to 
obtain a hard-core distribution p with marginals ( x~(;), ... , x~(;)) for some 
small 8 > 0 such that for every edge e of G, Le3v .\(e) ~ K, for some constant 
K = K(8). We will then be able to apply Lemma 22.10 to this distribution 
to prove that whether or not a given edge is in a random matching chosen 
from this distribution is essentially independent of distant events. 

23.2 The Chromatic Index 

We now prove Theorem 23.1. As discussed above, we will assign colours to 
edges using a hard-core probability distribution on the matchings where each 
edge is in the random matching with probability ~ for some c ~ x: (G). 
Now, if we choose c matchings independently from this distribution then the 
expected number of colours assigned to each edge is one. However, we would 
be unlikely to obtain a colouring, as some edges would be assigned many 
colours and others none. In fact we would expect to leave roughly 1!1 edges 
uncoloured. So, instead, for some N much less than c we will delete a set of N 
matchings chosen using our probability distribution. We want to show that 
when we delete these matchings we reduce the fractional chromatic index by 
about N. In order to do so, we will need to choose N reasonably large for 
if N is too small, then the probability that the random matchings behave as 
desired locally is too small. Forthwith the details. 

Proof of Theorem 23.1 We show that for all f > 0 there is a Xo = xo(E) 
such that in any multigraph whose fractional chromatic index exceeds xo we 
can choose a set of N > 0 matchings whose removal reduces x: by at least 
(1 + E)-1 N. Using the fact that Xe ~ 2..1 ~ 2x: to resolve the base case in 
which x: ~ xo, we can therefore obtain by induction that every multigraph 
has an edge colouring using at most (1 + E)x: + xo colours. Since this bound 
holds for all E > 0, Theorem 23.1 follows. 

Specifically, we prove: 

Lemma 23.3 \IE > 0, 3xo s.t. if x:(G) ~ xo then we can find N = 
lx: (G)! J matchings in G whose deletion leaves a graph G' with x: ( G') :::; 
x:(G)- (1 + E)-1 N. 

Proof Clearly we need only prove the lemma for f less than lo as if it holds 
for f then it holds for all E1 > f. So, fix an f strictly between 0 and lo. We de
fine Xo (f) so that it satisfies certain implicit inequalities scattered throughout 
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3 
the proof. Fix a graph G. Let N = lx:(G)4 J and let c* = x;- (1 + E)-1 N. 
Define r5 = ~. Take a hard-core distribution p and corresponding K as in 
Corollary 22.11 for this value of r5. Set t = 8(K + 1) 2 (~)- 1 + 2. We will 
delete N random matchings chosen according top and show that with positive 
probability the resulting graph G' has fractional chromatic index at most c*. 

Because of Edmonds' characterization of the matching polytope, the frac
tional chromatic index of G' is this low precisely if 

23.4 Vv: d0 ,(v)::;; c* 

and 

23.5 VH <;;; G' with IV(H)I odd: IE(H)I::;; (fV(~)I- 1 )c*. 

We actually show that with positive probability: 

23.6 Vv: d0 ,(v)::;; c*- ~N 

and 

23.7 V odd connected H C G' with IV(H)I < ~1, we have: IE(H)I < 

( fV(H)I-1) * 
2 c . 

Clearly, (23.6) implies (23.4). We claim that (23.6) and (23.7) imply (23.5). 
To prove our claim, we note first that if (23.6) holds then by summing 
degrees we have that for subgraphs F with an even number of vertices, 

IE(F)I < cvr)i) c*. Further, any odd subgraph H can be split into a com

ponent H' with an odd number of vertices, and a subgraph F with an even 
number of vertices. These two remarks imply that given (23.6), to prove (23.5) 
it is enough to prove it for connected H. Further, by again summing degrees, 
we see that if (23.6) holds then (23.5) can only fail for H with fewer than 

£LIN vertices. This proves our claim. 
4 

So, we let Av be the event that (23.6) fails for v. For each subset H of V 
which induces a connected subgraph of G, has an odd number of vertices 
and satisfies IHI ::;; £LIN we let AH be the event that (23.7) fails for the 

4 

subgraph of G' induced by H. We will use the Lopsided Local Lemma to 
show that with positive probability none of these bad events hold thereby 
proving (23.6), (23.7), the lemma and the theorem. 

To apply the Lopsided Local Lemma, we need to perform a local analysis 
conditioned on the outcome of distant events. To do so, we need to introduce 
some notation. 

So, for each vertex v, we let S<t( v) be the set of vertices within distance t 
of v, and we let S*(v) be the set of events indexed by a vertex of S<t(v) or 
a setH intersecting S<t(v). For each setH for which we have defined AH we 
let S*(H) be the union of S*(v) over all v in H. Clearly, every S<t(v) has at 
most Llt elements. Further, since c* ::;; 2Ll, we have: £LIN ::;; .d!. So, every u is 

4 
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1 

in at most .,;1<1 3 sets H for which we have defined AH. Hence every S*(v) 
1 

has at most L1 t+ <13" + 1 elements Thus, since every H for which we de-
fine q*(H) has fewer than L1 vertices, every S*(H) has less than D = 
.,;1t+<1:l +2 elements. 

We let M1, ... , MN be our random matchings. For any vertex v, we let Qv 
be our (random) choice of {M1 - S<t(v), M2- S<t(v), ... , MN - S<t(v)} 
(recall that M- X = M n E(G- X)). For any set H, for which we have 
defined AH, we let QH be our (random) choice of {M1- S<t(H),M2-
S<t(H), ... 'MN - S<t(H)}. 

To be able to apply the Lopsided Local Lemma to complete the proof, we 
need to show: 

Lemma 23.8 (a) For every v and Qv we have: Pr(AviQv)::; eb' and 
(b) for every H for which we define AH and QH we have: Pr(AHIQH)::; eb. 
Proof We note first that by Lemma 22.10 and our choice oft, for any Qv 
and for each i between 1 and N, the probability that an edge e incident to 

v is in Mi conditional on our choice of Qv is at least (1 - ~) x~(~) ~ :~(A). 
Since x; (G) ~ .:1, we have: 

Now, N = o(x;(G)) and so: 

Since, c* = x; (G) - ( 1 + E) - 1 N and E ::; 110 , this yields: 

As the choices of the Mi are independent and each affects the degree of v in G' 
by at most 1, we can apply the Simple Concentration Bound to prove (a). 

The proof of (b) is similar. By Lemma 22.10, for any QH and for each i 
between 1 and N, the probability that an edge e with both endpoints in H 

is in Mi, conditional on our choice of QH, is at least (1- ~) x~(~) ~ x~(g). 
Furthermore, the number of edges of G with both endpoints in H is at most 
x; (G) L IH~ - 1 J. Performing calculations similar to those in the last paragraph, 
we obtain that the expected number of edges in the subgraph of G' induced 

by H is less than ('H~- 1 ) (c* - ~N). Since the choices of the Mi are inde-

pendent and each affects the number of edges in H by at most IV(~)I- 1 , we 
can apply the Simple Concentration Bound to prove (b). D 
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The proof of Lemma 23.3 follows via the Lopsided Local Lemma because 
every event t-distant from v (resp. H) is determined by Qv (resp. QH)· For 
completeness, we provide the details. 

We note that all the bad events not in S*(v) are determined by Qv. Thus, 
if for some v, we choose a subset :F of this set of events and let E be the event 
(nAE.rA), then we can partition the possible choices for Qv into two families 
F(E) and F(E) such that E = ULEF(E)(Qv = L) and E = ULEF(E)(Qv = L). 
So, for any such E, summing the bound given by Lemma 23.8(a), over the L 
in F(E) yields Pr(AviE) S eb· Similarly, all the bad events not in S*(H) 
are determined by Q H and so for any event E obtained in a similar way by 
choosing a subset of these bad events, we have: Pr(AHIE) S eb. The fact 
that there is a non-zero probability that both (23.6) and (23.7) hold now 
follows, via an application of the Lopsided Local Lemma. D 

23.3 The List Chromatic Index 

In this section, we discuss the proof of Theorem 23.2. The iterative proof 
technique is very similar to that we used to bound the chromatic number 
of triangle free graphs in Chap. 13. In each iteration, we have a list Le 
of acceptable colours for each edge, and a probability distribution on the 
matchings in each colour class (of course, in Chap. 13, we were considering 
vertices and stable sets). Our distributions in each iteration are chosen so 
that for each edge e, the expected number of matchings containing e (or, as 
we expressed it in Chap. 13, the sum over all colours 'Y of the probability 
that e is assigned 'Y) is very close to 1. We choose a matching of each colour 
from the corresponding distribution, with these choices made independently. 
Next, for each colour"(, we activate each edge assigned 'Y independently with 
some probability a which is o(1). We only retain colours assigned to activated 
edges. This ensures that very few edges are assigned more than one colour, 
which is what allows us to choose the matchings of each colour independently. 
We then restrict our attention to the uncoloured edges, updating the graph 
by deleting the coloured edges and updating the Le by deleting any colour 
assigned to an edge incident to e. 

To make this proof technique work, we need to show that: 

(i) at the beginning of each iteration, we can choose new probability distri
butions so that (a) for each uncoloured edge e, we maintain the property 
that the expected number of random matchings containing e is very 
near 1, and (b) we can apply the Lopsided Local Lemma to analyze the 
iteration, 

(ii) after some number of iterations, we can complete the colouring greedily. 

As in the last section, we will choose our random matchings from a hard
core distribution. We assume that each Le originally has C colours for some 
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C 2: (1 + t:)x~(G). For each colour class "f, we let G7 be the subgraph of 
G formed by the edges for which 'Y is acceptable. Since G7 <:;:; G, X~ ( G7 ) ~ 
x~(G). Thus, by Corollary 22.11, we can find a hard-core distribution on 
the matchings in G7 with marginals (-b, ... , -b) whose activity vector >.7 

satisfies: >.7 (e) ~ ~ for all e, where K is a constant that depends on E. 

The choice of the marginals ensures that (i)(a) holds in the first iteration. 
By Lemma 22.10, the bound on the activities ensures that the distribution 
satisfies ( *) and hence ( i) (b) holds. 

As we shall see, to ensure that (i) continues to hold, we will use the 
same activity vector >. to generate the random matching assigned colour 'Y 
throughout the process. This is a new and clever twist to our approach. 
Of course in each iteration we restrict our attention to the subgraph of G7 

obtained by deleting the set E* of edges coloured (with any colour) in previous 
iterations and the endpoints of the edges in the set E; of edges coloured 'Y 
in previous iterations. 

This technique for choosing (new) probability distributions ensures that 
all of our distributions satisfy (*) of Lemma 22.10, as the bound on the sum 
of the >.around a vertex still holds. So, (i)(b) also remains true throughout 
the procedure. 

Unlike the >. values, the marginals on each edge will change drastically 
from iteration to iteration. Indeed if e is incident to an edge coloured 'Y 
then the probability it is assigned 'Y drops to 0. However, by Lemma 22.4, 
choosing a matching M of G7 - V(E;) - (E* - E;) using the original >. 
is equivalent to choosing a random matching M' on G7 using the hard-core 
distribution with the same >. but conditioned on E; E M' and E* - E; rf_ M', 
and then setting M = M' - E;. This equivalence is what allows us to show 
that, for any particular uncoloured edge e, the expected number of random 
matchings containing e remains near 1, and hence that (i)(a) continues to 
hold throughout the process. The proof is discussed more fully below. 

The fact that (i)(a) holds throughout implies that, in each iteration, the 
probability that an edge retains a colour remains near the activation proba
bility a. This allows us to prove that the maximum degree in the uncoloured 
graph drops by a factor of about 1 - a in each iteration. The proof that 
(ii) holds is now straightforward. After log 1 3K iterations, the maximum 

r=a 
degree in the uncoloured graph will be less than 2t . Furthermore, for each e 
and "(, the probability that e is in the random matching of colour 'Y is at 
most >.7 (e) ~ ~·Since (i)(a) continues to hold, this implies there are at least 
f > ~ colours available on each edge and so the colouring can be completed 
greedily. 

Note that in proving (i) and (ii) we repeatedly use the fact that though 
the marginals may vary, the probability that e is assigned 'Y is bounded above 
by >.7 (e) ~ ~, a fact the reader would do well to have in mind whilst reading 
the remainder of the chapter. 
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The proof that this approach works is long and complicated, and we 
present only the key ideas. 

23.3.1 Analyzing an Iteration 

An iteration proceeds as follows: 

Step 1. We pick, for each colour 'Y, a matching M-y according to a hard-core 
probability distribution P-y on M ( G-y) with activities A-y such that for 
some constant K: 
(a) VeE E(G), 2:-y Pr(e EM"~)~ 1, 

(b) V"(, e E E( G), A'Y(e) ::::; ~ and hence Vv E V(G), l:e3 v A'Y(e) ::::; K. 
Step 2. For each"(, we activate each edge of M'Y independently with proba

bility o: = log ~(G), to obtain a submatching F-y. We colour the edges of F'Y 
with the colour 'Y and delete V(F'Y) from G-y. We also delete from G'Y, 
every edge not in M'Y which is in F'Y' for some "(1 =f. 'Y· For technical 
reasons, we do not delete edges of ( M'Y - F'Y) n F'Y' from G'Y (this may 
result in edges receiving more than one colour, which is not a problem). 

Step 3. Note that the expected number of edges removed in Step 2 is less 
than o:jE(G)I because the expected number of colours retained by an 
edge is very close too: but some edges retain more than one colour. As in 
previous chapters, we will perform an equalizing coin flip for each edge e 
of G'Y - M'Y so that every edge not in M'Y is deleted from G'Y in either 
Step 2 or Step 3 with probability exactly o:. 

By the outcome of the iteration we mean the choices of matchings, activa
tions, and helpful coin flips. We let G~ be the graph obtained after carrying 
out the modifications to G'Y performed in Steps 2 and 3 of the iteration. 
We let M~ be a random matching in G~ chosen according to the hard-core 
distribution with activities A'Y. For an edge e, we define 

L1(e) = L Pr(e E M'Y). 
G-y3e 

We need to show that we can perform our iteration in such a way that G~ 
and M~ satisfy the conditions which allow us to continue our iterative process. 

Lemma 23.9 We can choose an outcome R such that for every uncoloured 
edge e of G we have: 

1 
(P1) L Pr(e E M~IR)- L1(e) < (log-:1) 4 , 

G~3e 

and for every vertex v incident to more than ~ edges we have: 
(P2) the proportion of edges incident to v which are coloured is~ o:- (log 1 L1) 4 . 
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As sketched in the last section, this result allows us to prove Theorem 23.2. 
We omit the details of the proof that Lemma 23.9 implies the theorem, as this 
is the type of routine iterative analysis we have seen many times. Instead, in 
the remainder of the chapter, we focus on the proof of Lemma 23.9. 

Of course, we apply the Lopsided Local Lemma. The difficult part of the 
proof is to show that, for each edge e = uv, the probability that Property (P1) 
holds is very close to 1, conditioned on any choice of outcomes for distant 
events. The proof of the analogous result for (P2) is much simpler and very 
similar to the proof of Lemma 23.8 from the last section. 

In proving that (P1) is extremely likely to hold for e, we find it convenient 
to avoid conditioning on e being uncoloured. To state the precise result we 
will prove, we need some definitions. So, for each e and 'Y with e E a"Y, if e 
is not incident to any vertex of F"~ we let a; . = a~ + e. Otherwise, we let 
a;= a~. We let M; be a random matching chosen according to the hard
core distribution on M (a;) using the activity vector A"Y. For an outcome R 
we let 

L2(e, R) = L Pr(e E M~IR). 
G~3e 

We lett'= 8(K + 1)2 (logL1)20 + 2 and lett= (t')2. We use Q to denote 
our random choice of the outcome of the iteration. For any edge e = uv, 
we let Re be the (random) outcome of our iteration in G - S <t ( { u, v}), 
i.e. Re consists of { M"Y - S <t ( { u, v}) b a colour}, together with the choices 
of the activated edges in a- S<t({u,v}) which determine the {F"Y- S<t 
( { u, v}) b a colour}, and the outcomes of the equalizing coin flips for edges in 
in this subgraph. For a choiceR; for Re, we let Q(R;) be a random outcome 
chosen conditional on Re = R;. We will show 

23.10 for every edge e of G and possible choiceR; for Re, we have: 

Remark This statement, at first glance, may be confusing. It concerns the 
random process of choosing the outcome Q(R;) of our iteration, given any 
choice R; of the outcome in distant parts of the graph. The claim is that 
the random sum L2(e, Q(R;)), each of whose terms is determined by the 
colour assignments and coin flips for the edges near e, is highly concentrated 
around £ 1 (e) which, by hypothesis, is near one. 

We note that for an uncoloured edge e, a~ = a; and so M~ = M;. 
Thus (23.10) implies that for each such uncoloured edge e, (P1) holds for e 
with probability very near one. To avoid burdening the reader with unimpor
tant and cumbersome technical details we actually first prove the following 
weakening of (23.10). 
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23.11 for every edge e of G, we have: 

We note that this result concerns an unconditioned choice of the random 
outcome whereas (23.10) concerns an outcome where the choices made far 
from e are fixed. The new ideas needed to prove Lemma 23.9. are all found in 
the proof of (23.11). This proof occupies the next three sections. In the final 
section of the chapter, we discuss strengthening it to obtain (23.10), and then 
combining this result with the Lopsided Local Lemma to prove Lemma 23.9. 

23.3.2 Analyzing a Different Procedure 

To prove (23.11), we first focus on one particular colour I· As a prelude to 
analyzing the three step procedure that makes up an iteration we first analyze 
a similar but slightly different procedure. From now on, we refer to our first 
process as REAL and the new process as IDEAL. IDEAL has two steps. 
In the first, we choose a matching M'Y according to p'Y as in REAL. In the 
second, the edges of G'Y are independently activated with probability a and 
we obtain a new graph H'Y by deleting the vertices in the set F'Y of activated 
edges in M'Y and the activated edges not in MT 

Note that both processes make the same choice of M'Y and FT In fact, 
there is only one difference between the way in which IDEAL constructs H'Y 
and the way in which REAL constructs G~. It is that the edge deletions are 
not independent under REAL, as we determine which edges of G'Y- V(F'Y) 
to delete by choosing the M'Y' and activating some of their edges. However, 
as we shall argue later, the two processes are so similar, that we can use our 
analysis ofiDEAL to prove (23.11). To do so, we let N~ be a random matching 
chosen from H'Y according to the hard-core distribution with activities >."1. 
We first study the probability that e is in N~ and then show this is close to 
the probability that it is in M~. 

We begin with the following result, which is the key to the whole analysis. 

23.12 Under the IDEAL process, for each colour 1 and edge e, 

Pr(e E N~le unactivated for 1) = Pr(e E M'Y). 

Proof We note that every edge, in M'Y or not, is activated with proba
bility a. So, we can perform the activation and choice of M'Y independently. 
In fact, we shall first decide which edges are activated and then choose M'Y. 
Knowing which edges are activated allows us to choose M'Y via a two step 
process. We can first make our choices on the activated edges and then 
make our choices on the unactivated ones, conditioned on our choices for the 
activated edges. That is we first choose the matching F'Y consisting of those 
activated edges of M'Y and then choose the rest of M'Y. We can choose F'Y by 
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considering each activated edge in turn. Recursively applying Lemma 22.4, 
we see that the distribution of M 7 - F7 is precisely the same as the hard-core 
distribution obtained using the activity vector >.7 on the graph obtained from 
G7 - V(F7 ) by deleting all the activated edges. That is, M7 and F7 UN~ 

have exactly the same distribution. Now, the probability that e E F7 is clearly 
aPr(e E M7 ) so Pr(e EN~)= (1- a)Pr(e E M7 ). Further, the probability 
that e is unactivated is exactly 1 -a, so (23.12) follows. D 

Once again, we want to avoid conditioning on e being unactivated. So 
for each e and "( with e E G7 , if e is not incident to any vertex of F7 we 
let H~ = H7 +e. Otherwise, we let H~ = HT We let N~ be a random 
matching chosen according to the hard-core distribution on M(H~) using 
the activity vector >.I'. From ( 23.12), some straightforward calculations allow 
us to deduce: 

23.13 for each colour"( and edge e, 

K2 
Pr(e E Ml')- C2 :S Pr(e EN;) :S Pr(e E M7 ). 

Proof For any two matchings F and M of G7 with F ~ M we let 
Ev(F, M) be the event that Fl' = F and Ml' = M. 

If e fj M then if e is unactivated N~ = N~ while if e is activated then 
e fj N~. So, for any two matchings F and M of G7 with F ~ M and e fj F 
we have: 

Pr((e EN~) n Ev(F, M)) 

Pr(e unactivatediEv(F, M))Pr((e EN;) n Ev(F, M)) 

(1- a)Pr((e EN;) n Ev(F, M)). 

For any two matchings F and M of Gl' with F ~ M and e E F we have: 

Pr((e EN~) n Ev(F, M)) = Pr((e EN;) n Ev(F, M)) = 0. 

For any two matchings F and M of Gl' with F ~ M and e EM-F we have: 

Pr((e EN~) n Ev(F, M)) = Pr((e EN;) n Ev(F, M)). 

Summing over all F, M with F ~ M, yields: 

Pr(e EN~)= (1- a)Pr(e EN;)+ aPr((e EN;) n (e E Ml'- Fl')). 

In the proof of (23.12) we obtained: Pr(e EN~)= (1-a)Pr(e E Ml'), which 
implies: 

a 
Pr(e E Ml') = Pr(e EN;)+ --Pr((e EN;) n (e E Ml'- Fl')). 

1-a 



276 23. The Asymptotics of Edge Colouring Multigraphs 

Now, Pr(e E M-y - F-y) S Pr(e E M-y) S A-y(e) S ~- In the same vein, 
Pr(e E N~le E M'"Y- F-y) S A-y(e) S ~-The desired result follows. 0 

Having dealt with the conditioning, we can now prove an analog of (23.11). 
For any possible choice R of M'"Y and the set of activated edges for each "( in 
IDEAL, we let 

L3(e, R) = L Pr(e E N;IR). 
a;:Je 

We let Q* be a random choice of the M'"Y and the set of activated edges for 
each 'Y· We show: 

23.14 for every edge e of G, we have: 

Pr (1L3(e, Q*)- L1(e)l > 2(lo~ .1)4 ) S ~e-Ll!. 
Proof By (23.13), the expected value of the first sum differs from the 

second sum by at most ~2 
. So, we need only show that the first sum is highly 

concentrated around its expected value. However, this is easy to see. Note 
first that each term is between 0 and ~, as the >."! are bounded by ~. Further, 
since we are considering IDEAL, the term corresponding to 'Y depends only 
on the choices for G-y, so we are considering the sum of a set of ILel S C 
independent random variables. The Simple Concentration Bound now yields 
the desired result. 0 

It remains only to compare IDEAL with REAL. In doing so, it is impor
tant to recall that our choice of Q* is coupled to our choice of Q in that the 
two procedures make the same choice of F-y and M'"Y. So, H'"Y and G~ differ 
only in the choice of which edges of G'"Y- M-y- V(F'"Y) are deleted. Note that 
this implies that e E H~ if and only if e E G~. 

We shall show, in the next two sections, that the probability that e is 
in N~ and the probability that e E M~ are essentially determined by the 
common choice of (F-y,M-y) and hence L2 (e,Q) is very near L 3 (e,Q*) with 
high probability. To this end, for any matchings F, M of G'"Y with F <;;; M, 
we let Q(F, M) be a random choice of Q conditioned on Ev(F, M) and 
let Q*(F, M) be a random choice of Q* conditioned on Ev(F, M). We shall 
compare L2(e, Q) and L3(e, Q*) term by term, and show: 

23.15 for each colour"(, edge e, and matchings F, M in G'"Y with F <;;; M: 

Pr (1Pr( e E M~ IQ(F, M)) - Pr( e E N~ IQ' ( F, M) )' 

> Pr(e E N~IQ*(F,M))) 
2(log .1)4 

1 < -,13 _e . 
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Summing over all C choices for 1, we obtain that for any (coupled) choice 
of Q and Q*, we have: 

23.16 for every edge e of G, we have: 

(I ( Q) ( Q*)l L3(e,Q*)) -Ldc Pr L2 e, - L3 e, > 2(log L1) 4 :S: e · 

We note that L3 (e,Q*) is concentrated near L1(e), by (23.14). Also, since 
1 -Lli 

C = O(L1), we have e-Ll-:1 C < ~ , so (23.16) combined with (23.14) 
yields (23.11). Thus, it remains only to prove (23.15). 

23.3.3 One More Tool 

To compare Pr(e E M~) with Pr(e E N~) we need to introduce path-trees, 
defined by Godsil [66] who called them trees of walks. 

For a vertex v in a graph H, we use T(H, v), or simply T, to de
note the path-tree of H rooted at v. The vertices of T correspond to the 
non-empty paths beginning at v. The root of T is { v} and for any path 
P = {v1 = v,e1 ,v2,e2, ... ,vz,ez,vz+d the father of Pis P- ez, i.e. 
{v1 = v, e1, v2, e2, ... , vt}. Note that 

23.17 If v has neighbours u1 , ... , uz then T( H, v) is isomorphic to the tree 
obtained from disjoint copies of T(H- v, ui) fori = 1, ... , l by adding a new 
root adjacent to the root of each of these l trees. 

We define a natural projection 1r from T to H by setting n( { v1 = 
v, e1, v2, e2, ... , vz, ez, Vt+d) = Vt+l and n(P, P-ez) = ez. Note that n-1(v) = 
{ v} and for each edge e with end points u and v, 1r -l (e) is the edge between v 
and { v, e, u}, but the preimages of other vertices and edges typically have 
many elements. For any weighting .>.. on E(H) we obtain a corresponding 
weighting on E(T) by setting .>..(e) = .>..(n(e)), Ve E E(T). Given a hard
core distribution PH or simply p, on M(H) with an associated .>.., we obtain 
a corresponding hard-core distribution PT on M(T) by using the weighting.>.. 
on E(T). 

We now present the central result which allows us to consider trees rather 
than general graphs in the analysis of our iterative colouring procedure. 

Definition As in the last chapter, for a vertex v and matching N we use 
v-< N to mean that vis the endpoint of an edge of N. 

Lemma 23.18 For every edge e ofT incident to {v}, Pr(e) = PH(n(e)). 
Hence, if MH is chosen according to PH and Mr is chosen according to PT 
then: 

Pr(v -f. MH) = Pr({v} -f. Mr). 
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Proof We prove this statement by induction on IV(H)I. It is clearly true 
if v is incident to no edges. Hence, we can assume that the set N ( v) of neigh
bours of v is non-empty. We need the following which is obtained from (22.3) 
by replacing Pr(x -/< M n y -/< M) by Pr(x -/< M)Pr(y -/< Mix -/< M). 

23.19 For any vertex x in a graph F and random matching M, chosen 
according to a hard-core probability distribution with activities A: 

Pr(x-/< M) = (1 + L A(xy)Pr(y-/< Mix-/< M)) -l (23.1) 
xyEE(F) 

For each child u of { v} in T, let Tu be the subtree ofT rooted at u which 
contains all its descendants. Let Mu be a random matching in Tu drawn 
from the hard-core distribution using the same A as PT· By (23.17) and our 
induction hypothesis we have that for each such u, 

Pr(u-/< Mu) = Pr(1r(u)-/< MH-v) 

Combining this fact with an application of (22.4) to the set of edges of H 
incident to v, we obtain: 

By again applying (22.4), this time in T, we obtain: 

Thus: 

23.20 Pr(1r(u)-/< MHiv-/< MH) = Pr(u-/< Mrl{v}-/< Mr). 

Further, A({v},{v,e,u}) = A(1r(e)) for each child u of {v}. So, apply
ing (23.19) with x = v in G and x = {v} in T yields Pr(v-/< MH) = 
Pr( { v} -/< Mr ). Now, using this fact, the fact that A( { v }, { v, e, u}) = A(1r(e)) 
and (23.20) we see that for every child u of { v} in T we have: Pr( e E Mr) = 
Pr(1r(e) E Mr). 

D 

We show now that the marginals for a hard-core distribution on the 
matchings in a tree are indeed easy to compute. This suggests that trans
forming the analysis of a hard-core distribution on an arbitrary graph to an 
analysis of the corresponding tree using Lemma 23.18 should indeed help us. 

Consider a rooted tree T, hard-core distribution p on M(T), correspond
ing A and matching Mr chosen according top. We can work out the prob
ability that each edge is in Mr recursively, working our way up from the 
leaves, as described below. 

(A) For each leaf w set r(w) = 1. 
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(B) For each non-leaf node w after having defined r(u) for every u in the set 

C(w) of children of w set r(w) = ( 1 + I:uEC(w) .X(wu)r(u)) -l. 

Applying (23.19) as in the proof of Lemma 23.18, and working our way 
up from the leaves, we can show that for every node w with father x, r(w) = 
Pr(w-/< MTix-/< MT ). Similarly, for the root Wo ofT: r(wo) = Pr(wo -/< MT)· 

Thus, by Observation 22.1, for every edge wow ofT incident to the root: 

Pr(wow E MT) = .X(wow)r(wo)r(w). 

By Lemma 23.18 this result can be applied to compute the probability 
a particular edge of a general graph is in a matching generated according 
to some hard-core distribution. In the next section, we use this fact to 
prove (23.15). 

23.4 Comparing the Procedures 

To prove (23.15), we consider a fixed arc e = uv of G'"Y and condition on 
a fixed choice of F'"Y = F and M'"Y = M. If e is incident to an edge of F'"Y there 
is nothing to prove. Otherwise, e E G~ and e E H~. We use e' to denote 
1r-1 (e) in what follows. 

We let M1 be a random matching in T(G~, v) chosen according to the .X'"Y 
and M2 be a random matching in T(H~_,v) chosen according to the .X"~" By 
Lemma 23.18, we can consider these trees rather than the corresponding 
graphs and heoce we need to prove: 

23.21 The probability that: 

> 

IPr(e' E M1IQ(F,M)) -Pr(e' E M2IQ*(F,M))I 
Pr(e' E M2IQ*(F, M)) 

1 
is at most e-Ll3". 

2(log .1)4 

Remark We highlight for the reader the fact that this statement, which 
holds for every pair (F, M), concerns the random choices of Q(F, M) and 
Q*(F, M) for such a pair. 

To simplify matters, we want to consider bounded size trees. Recall that 
t' = 8(K +1)2 (log.1)20 +2 = yfi. We letT' be the subtree ofT(G- V(F'"Y),v) 
within distance t' of {v}. We let U1 be the (random) forest formed by the 
arcs ofT' which correspond to edges of Gy which are in G~ (i.e. those which 
were not activated under REAL). We let U2 be the (random) forest formed 
by the arcs of T' which correspond to edges which are in H~. (i.e. those 
which were not activated under IDEAL). We note that the component T1 
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of U1 containing vis precisely the subtree ofT(G~,v) consisting of those arcs 
within distance t' of { v}. Similarly, the component T2 of U2 containing { v} 
is precisely the subtree ofT( H;, v) consisting of those arcs within distance t' 
of {v}. 

We let Mf be a random matching in Ti chosen according to the hard-core 
distribution given by the AT We note that by Lemma 22.10 (applied to the 
appropriate tree), for any choice C of Q*(F, M) U Q(F, M) and i E {1, 2} we 
have: 

( 1- (log ~)20 ) Pr(e' E MfjC) :::; Pr(e' EMil C) 

:::; ( 1 + (log ~)20 ) Pr(e' E M{IC), 

Remark This statement holds for every choice of Q(F, M) and Q*(F, M), 
and is simply comparing the choice of a random matching in a tree and in 
its truncation to the subtree within distance t' of e. 

Thus, to prove (23.21) and hence (23.15) we need only show: 

23.22 The probability that: 

jPr(e EM{IQ(F, M))- Pr(e EM~IQ*(F, M))l > Pr(e ~~~c;;)~F, M)) 

1 

is at most e-Ll:J. 

Remark Again, we note that this statement holds for every pair (F, M) and 
concerns the random choices of Q(F, M) and Q*(F, M) for such a pair. 

Now, we know how to compute Pr(e' E M{IQ(F,M)). We apply (A) 
and (B) of the last section to T1 with .X = .X1 thereby defining r 1 . Then, 
Pr(e' EM{= A1 (e)r1 (v)r1 ({v,e,u}). In the same fashion, we can compute 
Pr(e' E M~IQ*(F, M)) by applying (A) and (B) to T2 with A= A1 thereby 
defining r2 and set Pr(e' E M~IQ*(F,M)) = A1 (e)r2(v)r2({v,e,u}), 

It will be convenient to extend our definition of ri to all of V' = V(T'). 
So, for every vertex y of V', we let C(y) be the children of y in T', and 
Ci(Y) = {xix E C(y),xy E Ui}. We define ri(Y) on V' recursively starting at 
the leaves ofT' by setting ri(Y) = 1 if Ci(Y) = 0 and setting ri(Y) = (1 + 
LwEC;(y) A1 (yw)ri(w))- 1 otherwise. We also define r3(y) on V' recursively 
starting at the leaves ofT' by setting r3(y) = 1 if C(y) = 0 and setting 
r3(y) = (1 + (1- a) LwEC(y) A1 (yw)r3(w))- 1 otherwise. 

For each yin V' and i E {1, 2}, we let Di(Y) be the event that 

L A1 (yw)r3(w)- (1- a) L A1 (yw)r3(w) > Ll-1. 
wEC;(Y) wEC(y) 
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Remark Di (y) is a random event as the Ci (y) are random sets determined 
by the outcome of our two processes REAL and IDEAL. 

We will show: 
1 

23.23 \::lyE V', i E {1,2},we have: Pr(Di(y)):::; e-Ll"2". 

I 1 
Since V' has at most Llt :S eLl ru nodes this yields: 

2 

23.24 Pr(D1(y) and D2(y) fail for ally) :S ~e-Ll 5 . 

We will also show: 

23.25 If Di(Y) fails for ally E V' and i E {1, 2}, then 

IPr(e' EM{IQ(F, M))-Pr(e' EM~IQ*(F, M))i< Pr(e' ~~~~*)~F, M)). 

Combining (23.25) and (23.24) yields (23.22), which is the desired result. 

Proof of {23.23). We note first that since each edge of G'Y- M'Y is in Ui with 
probability 1- a:, if y is incident to no edge of M'Y then the expected value of 
the first sum in the definition of Di(Y) is equal to the second. Further, r3 is 
by definition always below 1 so each term in these sums is at most ~. Since 
at most one edge incident to y is in M'Y, the expected value of the first sum 
differs from the second by at most ~. 

It remains to prove that the first sum is concentrated. If i = 2 then the 
edges incident to y are activated and deleted independently. Since each of 
the Ll deletions affects the value of the sum by at most ~, we can apply the 
Simple Concentration Bound to obtain the desired result. If i = 1 then we 
need to be a bit more careful. Rather than proving concentration on the sum 
of >. x r3 on the edges which remain we consider the sum of this product 
over the edges which are deleted. We again use the fact that deleting an 
edge causes this new sum to increase by at most ~. We claim that deleting 
an edge will increase the new sum by at least (K~l)C' To see this we note 

that by definition r 3 Cw) is at most LJ=wx >.(!) + 1 which is at most K + 1. 
Furthermore, the fact that the marginal on each edge in the first iteration 
was ~ implies that each>.(!) is at least ~·The claimed result follows. Now, 
those edges incident to y which are activated and deleted are determined 
by the choice of the F~ for 1' -1- "Y. To certify that edges of weight W have 
been deleted we need only specify one matching containing each deleted edge. 
So, by our claim, we require at most WC(K + 1) matchings to certify that 
the new sum is W. Also each matching chosen causes us to delete at most 
one edge and hence affects the new sum by at most ~. Thus, we can apply 
Talagrand's Inequality to the random variable which is C times the new sum 
to obtain the desired result. D 
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Proof of (23.25}. The proof is straightforward. We prove by induction on j 
that if Di(Y) fails fori E {1, 2} and every y in U then for each vertex y at 
distance t' - j from v in T': 

( 1 + ~!) -l r3(y) :S ri(Y) :S ( 1 + ~!) r3(y). 

Since Pr(e E M~IQ(F, M)) = >.-y(e)r1(v)r1( {uev}) and Pr(e E M~IQ*(F, M)) 
= >.-y(e}r2(v)r2({uev}), (23.25) follows. 

To prove our inequality, we note that it holds for leaves of T' as in this 
case r1 = r2 = r3 = 1. So, we can assum-e that C(y) =f. 0. So, we have: 

The proof that ri(Y) :S ( 1 + ~) r3(y) is symmetric. 

Thus, we have shown that (23.15) and hence (23.11) holds. 

23.4.1 Proving Lemma 23.9 

0 

To complete the proof of Lemma 23.9, we need to discuss (a) how we obtain 
the extension {23.10) of (23.11) in which we condition on the choiceR of the 
matchings at distance t = (t') 2 from e, and (b) how to combine {23.10) with 
the Lopsided Local Lemma to show that we can ensure that (P1) and (P2) 
hold everywhere with positive probability, thereby proving Lemma 23.11. 

Strengthening (23.11) to obtain (23.10) is straightforward. The reader can 
verify that in the proof of (23.11) we bound Pr(e E M~IQ) by considering 
only the intersection of the matchings F-y and M-y with the set E' of edges 
of G at distance at most t' from e. On the other hand, R is determined 
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by the choice of the matching edges at distance at least t = (t')2 from v. 
Hence, the edges of E' are at distance at least t- t' > > t' from the matching 
edges determined by R. It follows by Lemma 22.10 that the probability that 
an edge in E' is in M7 or F7 given R is not significantly different from 
the unconditional probability that it is in M7 or F7 . This allows us to use 
essentially the same proof as above, just carrying through an extra error term 
as we recursively compute r1 and r2. We omit the details. 

At first sight, it appears that we cannot use (23.10) to prove Lemma 23.9. 
The natural first step would be to consider for each edge e, the event Ae that 
(P1) fails for e and for each vertex v, the event Av that (P2) fails for v. We 
would like to deduce from (23.10) that for all x E VUE, the probability 
that Ax holds is small regardless of the outcome of all the events indexed by 
edges and vertices t-distant from x. Unfortunately, although Q(e) determines 
whether Av holds for all v which are t-distant from e, it does not determine 
whether A f holds for f which are t-distant from e. This is because the exact 
probability that f E M~ can only be determined by examining all the edges 
of G~. Indeed it may be that the presence or absence of e in G~ will decide if 
(P1) holds for f or not. Thus, the Lopsided Local Lemma cannot be applied 
to this set of events. Has our analysis then all been for nought? 

Fortunately not! The key point is that, as we used repeatedly throughout 
the last proof, for any edge e with endpoints u and v, Pr(e EM~) is within 
a factor of 1 + (log 1Ll)20 of Pr((e E Z~), where Z~ is a random matching 
in G~ n S<e(v) chosen using the activity vector .A7 . So, we define, for each 
edge e, the new event A~ that 

and note that by the above remarks, if the A~ hold, so do the Ae. But now, 
since A~ is defined by the choice of edges of the matchings within t' of e, for 
any edge fat distance at least t + t' from e, Aj is determined by Q(e). So, 
we are in a position to apply the Lopsided Local Lemma to prove that with 
positive probability all the Av hold, and all the A~ and hence all the Ae hold. 
We omit the routine details. 



Part IX 

Algorithmic Aspects 

In the next two chapters we discuss efficient algorithms for finding many 
of the colourings whose existence we have demonstrated via the probabilistic 
method. Once again, Linearity of Expectation plays a crucial role. 

In the next chapter we present a simple algorithm, due to Erdos and 
Selfridge, which finds a proper 2-colouring of a hypergraph H provided the 
expected number of monochromatic edges in a uniformily random 2-colouring 
of H is less than one. The core of the algorithm is a procedure which efficiently 
calculates the expected number of monochromatic edges in a uniformly ran
dom completion of a partial colouring using Linearity of Expectation. 

We then turn to the much more difficult task of making our applications 
of the Local Lemma algorithmic. We first present an algorithm due to Beck 
for finding proper 2-colourings of k-uniform hypergraphs of sufficiently low 
degree. We then generalize the approach so it can be used to develop algo
rithms to find the structures guaranteed to exist for a much wider class of 
applications of the Local Lemma. 

The analysis of Beck's algorithm and its generalizations are much more 
difficult than the analysis of the Erdos-Selfridge algorithm. However, as we 
shall see, Erdos and Selfridge's simple but powerful idea plays a crucial role 
in these more complicated algorithms. 



24. The Method of Conditional Expectations 

Throughout this chapter, we consider hypergraphs for which the expected 
number of monochromatic edges in a uniformly random 2-colouring is less 
than one. To begin, we present an efficient algorithm, due to Erdos and 
Selfridge [46] for finding proper 2-colourings of such hypergraphs. 

We then consider a related game in which two players Red and Blue 
alternately colour vertices of a hypergraph until all the vertices are coloured. 
If any edge is monochromatically coloured then the first player to have 
monochromatically coloured an edge wins. Otherwise, the game is a draw. 

We shall see that for the hypergraphs under consideration optimal play by 
both players ensures that the game ends in a draw, and provide an efficiently 
computable strategy that the players can use to ensure this outcome. 

Note that the final position in a drawn game is a proper 2-colouring, so 
the second result implies the first. 

24.1 The Basic Ideas 

For the rest of this chapter, we use H to denote a hypergraph with vertex set 
{ v1 , ... , Vn} and edge set E such that the expected number of monochromatic 
edges in a uniformly random 2-colouring of H is less than one. This implies 
that H has a proper 2-colouring, we want to find such a creature. To do so, 
we will colour the vertices one by one, ensuring that every partial colouring 
we construct can be completed to a proper 2-colouring. 

Choosing the colour of the first vertex v1 is easy because it is irrelevant, 
by the symmetry between the two colours. 

As the reader may suspect, the best colour to assign the second vertex v2 is 
that which is not assigned to v1 . Indeed, we will show that for any assignment 
of different colours to v1 and v2, the expected number of monochromatic edges 
in a uniformly random 2-colouring completing this assignment is less than 
one. This implies that we can indeed complete such a partial assignment to 
a proper 2-colouring. 

By symmetry, we can restrict our attention to the case in which v1 is 
red and v2 is blue. To compute the conditional expectation of the number 
of monochromatic edges we apply Linearity of Expectation. I.e., we compute 
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the conditional probability that each edge is monochromatic and sum these 
probabilities to obtain the conditional expectation. 

If e is disjoint from {VI, v2} then the conditional probability that e is 
monochromatic is 2 x 2-lel as the conditioning is irrelevant. If e contains VI 

but not v2 then for e to be monochromatic, all the vertices in V(e) -VI 

must be coloured red, so the conditional probability that e is monochromatic 
is 2I-Iel. If e contains v2 but not VI then for e to be monochromatic, all the 
vertices in V(e) - v2 must be coloured blue, so the conditional probability 
that e is monochromatic is 2I-Iel. If e contains both v2 and VI then e cannot 
be monochromatic, so the conditional probability under consideration is zero. 

Thus, setting E' = E- {ele E E,{vi,v2} s:;; V(e)}, we see that the 
expected number of monochromatic edges given that VI is red and v2 is blue 
is 

L 2I-Iel :::; L 2I-Iel < 1. 

eEE' eEE 

So there is indeed a proper 2-colouring in which VI is red and v2 is blue. 
We will proceed in a similar manner to choose our partial colourings so 

that for every partial colouring P, the expected number of monochromatic 
edges in a uniformly chosen completion of P is less than one. In particular, 
this implies that the final colouring in the sequence has no monochromatic 
edges. 

Crucial to this approach is the fact that we can use Linearity of Expec
tation to compute these expected values, as we did above. Forthwith the 
details. 

24.2 An Algorithm 

As usual, we let X = X (C) be the number of monochromatic edges under 
a colouring C. If C is a random colouring then X is a random variable. 
For a partial colouring P, we let CEp(X) be the expected value of X 
for a uniformly chosen random completion of P. I.e. CEp(X) = E(X(C)) 
where Cis the colouring obtained by colouring each vertex uncoloured by P, 
independently, red with probability ! and blue with probability ! . 

We will iteratively construct partial colourings Po, PI, ... , Pn where for 
each i: 

(a) the set of vertices coloured under Pi is {VI, .•• , Vi} (thus P0 colours no 
vertices), 

(b) Pi and Pi-I agree on {vi,· .. ,vi-I}, and 
(c) CEp;(X) < 1. 

Clearly, CEpn(X) = X(Pn)· Since, by (c), X(Pn) < 1, it must be zero. 
Thus Pn is the desired proper 2-colouring. 



24.3 Generalized Tic-Tac-Toe 289 

Having constructed Pi_ 1 , there are two possible choices for Pi, we can 
extend Pi- 1 either by colouring Vi red or by colouring it blue. We denote the 
first possibility by P[ and the second by pib. We shall show: 

Observation 24.1 We can compute CEp(X) in polynomial time for any 
partial colouring P. 

and: 

Observation 24.2 min(CEp;(X), CEpb(X))::; CEp;_ 1 (X). 
t 

With these results in hand, it is easy to iteratively construct P~, ... , Pn. 
Given Pi_1 we simply compute CEp;(X) and CEpb(X) and choose for Pi 

one of these possibilities which minimizes CEP; (X).' 
The proof of Observation 24.1 is straightforward. To compute CEp(X) 

we simply compute the conditional probability for each edge e that e will be 
monochromatic and sum these values. If e contains vertices of both colours 
this probability is zero. If e contains no coloured vertices, this probability 
is 21-lel. Finally, if e contains coloured vertices of only one colour and u 
uncoloured vertices then this probability is 2-u. 

The proof of Observation 24.2 is also straightforward. Actually a stronger 
fact is true: CEp;_ 1 (X) lies between CEp;(X) and CEpb(X). To gain an 

t 

intuition as to why this is true, readers should consider the similar statement: 

The average height of the people in a room lies between the average 
height of the men and the average height of the women. 

With this hint, fastidious readers should be able to fill in the details of 
the proof, which we omit. 

24.3 Generalized Tic-Tac-Toe 

The English children's game Tic-Tac-Toe will be familiar to many readers 
(actually, a variant of this game was played in Egypt in 1440 BC, and a related 
game, renju, in China in 2500 BC). Two players Nought (0) and Cross (X) 
alternately place their symbol in the squares of a 3x3 grid (see Fig. 24.1). 
A player can only place his symbol in an unoccupied grid square so the game 
lasts for at most nine moves. The first player to place his symbol on all 
the squares in a line (row, column, or diagonal) wins. If all the squares are 
occupied and no player has covered a line then the game is a draw. 

We can reformulate this game in terms of bicolouring hypergraphs. The 
Tic-Tac-Toe hypergraph has 9 vertices and 8 edges and is depicted in 
Fig. 24.2. Two players Blue and Red alternately colour an uncoloured vertex. 
The first player to monochromatically colour an edge wins. If the players 
complete a proper 2-colouring of the hypergraph then the game is a draw. 
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X 0 

0 

X X 
Fig. 24.1. 

We can, of course, play this game on any hypergraph H. For some hy
pergraphs, the first player wins while for others the second player can force 
a draw. The second player can never win because the game is so symmetric 
that the first player can steal any winning strategy for the second player 
(see. Exercise 24.1). In general it is PSpace-complete to determine if the 
second player can force a draw for an input hypergraph H ( cf. [136]). However, 
as we shall see, the techniques of the previous section can be used to show 
that for certain hypergraphs, the second player can force a draw. 

Lemma 24.3 If the expected number of monochromatic edges in a uniformly 
random bicolouring of H is less than 1, then the second player can force 
a draw in Generalized Tic- Tac- Toe on H. 

Fig. 24.2. The Tic-Tac-Toe Hypergraph 



24.4 Proof of Lemma 24.3 291 

Remark The natural converse to this statement is false. I.e., there is no 
lower bound on the expected number of monochromatic edges in a random 
colouring which guarantees that the first player wins.. To see this, consider 
the hypergraph Hn which consists of n disjoint edges each with two vertices. 
The expected number of monochromatic edges in a random colouring of Hn 
is -i. However, the second player can draw by always playing in the edge 
which the first player just played in. 

Remark The bound in Lemma 24.3 is tight, as the following example shows. 
Let Fn be the hypergraph with 2n + 1 vertices a1, a2, ... an,bl, ~, ... , bn, c 
whose edge set contains exactly the 2n subsets of vertices consisting of c and n 
other vertices all with different indices. The expected number of monochro
matic edges in a uniformly random bicolouring of H is exactly one. On the 
other hand, the first player can win Generalized Tic-Tac-Toe on Fn by first 
picking c and then always picking a vertex with the same index as that just 
picked by the second player. 

We prove Lemma 24.3 below. First however, we discuss a relationship 
between Generalized Tic-Tac-Toe and the Local Lemma, and present an 
intriguing conjecture due to Beck. 

We note that two players can cooperate to arrange a draw when playing 
Generalized Tic-Tac-Toe on F precisely if there is a proper 2-colouring of F 
such that the number of vertices of each colour differ by at most one. It 
is an easy matter to modify our earlier proofs of the existence of proper 
2-colourings for k-uniform hypergraphs of bounded degree to prove the exis
tence of such special proper colourings for k-uniform hypergraphs of bounded 

k 
degree (indeed, a bound of 126k will do, see Exercise 24.2). This does not 
imply that the second player can force a draw on all such graphs however, as 
the first player may be able to avoid all the drawing positions with optimal 
play. However, Beck has raised the possibility that if the maximum degree 
of a k-uniform hypergraph is sufficiently small then the second player can 
indeed force a draw. Specifically, he proposed 

Conjecture 24.4 There exists a constannt c > 1 such that if the maximum 
degree of a k-uniform hypergraph H is less than ck then the second player 
can force a draw when playing Generalized Tic- Tac- Toe on H. 

For more on this open problem and some partial results see [16, 17] 

24.4 Proof of Lemma 24.3 

To ease the exposition in this section, we assume that the players in a game 
of Generalized Tic-Tac-Toe continue to alternate turns until the whole graph 
is coloured, even if one obtains a monochromatic edge. 
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Lemma 24.3 asserts that a certain condition ensures that the second player 
can prevent the first player from obtaining a monochromatic edge first. We 
find it more convenient to prove that this condition allows the second player 
to prevent the first player from obtaining a monochromatic edge at all. That 
is, we prove the following strengthening of Lemma 24.3 

Lemma 24.5 Suppose Blue and Red play Generalized Tic- Tac- Toe (to com
pletion) on a hypergraph H for which the expected number of monochromatic 
edges in a uniformly random 2-colouring is less than one. Then, if Blue 
plays second, he has an efficiently computable strategy to prevent Red from 
colouring all of any edge. 

Now, the expected number of all red edges in a uniformly random 2-
colouring of a hypergraph is clearly exactly half the expected number of 
monochromatic edges. Furthermore, any initial move can at most double the 
expected number of all red edges. Combining these two facts, with the lemma 
below yields Lemma 24.5. 

Lemma 24.6 Suppose Blue and Red play Generalized Tic- Tac- Toe (to com
pletion) on a hypergraph H for which the expected number of all red edges in 
a uniformly random 2-colouring is less than one. Then, if Blue plays first, 
he has an efficiently computable strategy to prevent Red from colouring all of 
any edge. 

Proof We use R = R( C) to denote the number of all red edges in a colour
ing C. For any partial colouring P, we use CEp(R) to denote the expected 
number of all red edges in uniformly chosen random completion of P. Blue 
simply colours the vertex v which minimizes the value of CEp(R) for the 
resultant partial colouring P. 

Clearly, Blue can efficiently compute the value of CEp(R) for any can
didate partial colouring P, using an algorithm similar to that for computing 
CEp(X). We claim that no matter what vertex w Red chooses to colour on 
his next turn, letting P1 be the partial colour before Blue's turn and P2 the 
partial colouring after Red's turn, we have: CEp2 (R) ~ CEp1 (R). Iteratively 
applying this claim proves Lemma 24.6, as the initial condition implies that 
for the original colouring Po, CEp0 (R) < 1 and hence this will also be true 
for the final colouring. 

It remains only to prove the claim. To do so, we consider the set E1 of 
edges which contain v and contain no blue vertex, and the set E2 of edges 
which contain wand contain no blue vertex. We let E 3 = E1 n E 2 . For every 
edge e in E1 U E2, we let u(e) be the number of uncoloured vertices in e 
under P1. 

We note that colouring v blue decreased the conditional expected value 
of R by L::eEE1 2-u(e). On the other hand, if Blue had coloured w blue he 

would have decreased the conditional expected value of R by L::eEE2 2-u(e). 

It follows that 



24.4 Proof of Lemma 24.3 293 

L Tu(e) ~ L Tu(e). 

eEE1 eEE2 

Now, CEp2 (R) is clearly CEp1 (R)- LeEEl 2-u(e) + LeEE2 -E1 2-u(e). 
The desired claim follows by the above inequality. D 

Exercises 

Exercise 24.1 Prove that there is no hypergraph H on which Generalized 
Tic-Tac-Toe is a win for the second player, if both players play optimally. 

Exercise 24.2 Prove that if His a k-uniform hypergraph with 2n vertices 
k 

and maximum degree at most {6 k , then we can 2-colour H so that there 
are n vertices of each colour and no monochromatic edge. 



25. Algorithmic Aspects of the Local Lemma 

In this chapter, we discuss finding proper 2-colourings of hypergraphs where 
each edge intersects a bounded number of other edges. We present the fol
lowing theorem of Beck [19]: 

Theorem 25.1 There is a deterministic polytime algorithm which will find 
a proper 2-colouring of any hypergraph H in which each edge has size at 
least k and intersects at most d ::; 2k/l6- 2 other edges. 

Recall that Theorem 4.2 implies that such a 2-colouring exists, even if we 
replace the exponent "k/16- 2" by "k- 3", but the approach taken here to 
actually construct the 2-colouring efficiently requires the smaller bound on d. 

We will first present a randomized algorithm, and then show how to use 
the techniques of the previous chapter to derandomize it. 

Since there is no bound on the number of edges in our hypergraph, the 
expected number of monochromatic edges in a uniformly random 2-colouring 
can be arbitrarily large. So picking such a random colouring will not work, 
and a direct application of the Erdos-Selfridge approach is also doomed to 
failure. Instead, we will take a different approach. 

As in the previous chapter, we will colour the vertices one-at-a-time, but 
here our choice of colours is different. We will not specify how to make 
the colour choices until later in our discussion as how we do so depends 
on whether we are using a randomized algorithm or a deterministic one. 
However, the reader should be aware that these choices are not made to avoid 
monochromatic edges. Rather, we avoid monochromatic edges by permitting 
ourselves to leave some vertices uncoloured. Specifically, when we consider 
a vertex v, if it lies in an edge half of whose vertices have been coloured, all 
with the same colour, then we will not colour v. This ensures that after this 
first phase, no completely coloured edge is monochromatic. Indeed, if an edge 
does not contain vertices of both colours then at least half of its vertices are 
uncoloured. 

In our second phase, we will colour the vertices which were passed over 
in the first phase so that every edge contains a vertex of both colours. Since 
the only edges with which we need to concern ourselves have at least k/2 
uncoloured vertices, and since d x 21-k/2 < :t, a simple application of the 
Local Lemma (namely Theorem 4.2), ensures that there exists a completion 
of the partial 2-colouring to a proper 2-colouring. 
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We have thus reduced our problem to a similar smaller problem which, 
at first sight, does not seem any easier to solve. It turns out however, that if 
we make a judicious choice of the colour assignments in our first pass, then 
the smaller problem will have a very simple structure and so we will be able 
to quickly find a completion of our colouring in a straightforward manner. 

One way to make judicious choices is to simply assign a uniformly random 
colour to each vertex that we colour. This ensures that the probability of 
the first k/2 vertices of an edge all being given the same colour is at most 
2-k/2 . Using this fact, we can show that with sufficiently high probability, 
the subhypergraph we need to colour in the second phase has very small com
ponents. So we can carry out the second phase by using, on each component, 
an exhaustive search through all possible colourings. 

This yields a fairly simple randomized algorithm. To derandomize the 
algorithm, we must find a deterministic way of carrying out the first phase so 
that the components of the resulting subhypergraph are all small. We can do 
so by applying the Erdos-Selfridge technique; when colouring a vertex, we 
choose the colour which minimizes the conditional expected number of large 
components. 

In this introductory discussion, we have oversimplified the procedure 
somewhat. For example, we usually repeat the first phase twice to reduce 
even further the size of the components which we colour using brute force. 
Also, when derandomizing the algorithm, we do not compute the conditional 
expected number of large components in the subhypergraph considered in 
the second phase. Instead, we bound this number by focusing on a larger 
variable which is simpler to deal with. These and other details will be given 
more fully in the next section. 

25.1 The Algorithm 

25.1.1 The Basics 

We start by presenting the randomized form of our algorithm in the case 
where k is fixed. We are given a hypergraph H on n vertices and m hyperedges 
satisfying the conditions of Theorem 25.1. Since we are doing an asymptotic 
analysis of the running time, we can assume that m is large. 

In the first phase, we arbitrarily order the vertices v1, ... , Vn. We go 
through the vertices in this order, assigning a uniformly random colour to 
each vertex. After colouring Vi, if an edge e containing vi has half its vertices 
coloured, all with the same colour, then we say that e is bad, and for each 
Vj E e with j > i, at step j we will pass over Vj without assigning it a colour. 

We let U denote the set of vertices which are not coloured during this first 
phase, and we let M denote the set of edges which don't yet have vertices of 
both colours. For each e E M we define e' to be the set of uncoloured vertices 
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in e. An important consequence of our procedure is that every e' has size at 
least ~k. 

In our second phase, we colour U. No edge outside of M can become 
monochromatic, no matter how we colour U, so we can ignore all such edges 

I 

in this phase. Thus, we focus our attention on the hypergraph H with vertex 
set U, and edge set { e1 : e E M}. As we observed, each edge of H 1 has size at 
least ~k, and no edge intersects more than 2k/l6 - 2 other edges. Therefore the 

I 

Local Lemma implies that there exists a proper 2-colouring of H . Clearly, 
using such a 2-colouring to complete the partial colouring formed in the first 
phase will yield a proper 2-colouring of H. 

I 

The main part of our analysis is to show that the components of H will 
all be small. In particular, letting m be the number of edges in H, we will 
prove the following. 

Lemma 25.2 With probability at least ~, every component of H' has at most 
5(d + 1) logm vertices. 

I 

So we can run Phase I, and if H has any component with more than 
5( d + 1) log m vertices, then we start over. The expected number of times we 

I 

must do this is at most 2. Having obtained such an H , we can find a proper 
I 

2-colouring of H in polynomial time using exhaustive search. For, to find 
I 

such a 2-colouring of H , we need only find a proper 2-colouring of each of 
its components. Since k = 0(1) we have d = 0(1) and so there are only 
2°(logm) = poly(m) candidate 2-colourings for each of these components. 

The main step is to prove Lemma 25.2, which we do now. We will bound 
I • the expected number of large components of H by showmg that every such 

component must have many disjoint bad edges. Because disjoint edges become 
bad independently, the probability that a specific large collection of disjoint 
edges all turn bad is very small. This will help show that the probability 

I 

of H having a big component is small. 
As usual, we use L(H) to denote the line graph of H. L(a,b)(H) is the 

graph with vertex set V(L(H)) (= E(H)) in which two vertices are adjacent 
if they are at distance exactly a orb in L(H). We call T ~ E(H) a (1, 2)-tree 
if the subgraph induced by T in £(1,2) (H) is connected. We call T ~ E(H) 
a (2,3)-tree if the subgraph induced by Tin £(2,3l(H) is connected and T 
is a stable set in L(H) (i.e. no two edges ofT intersect in H). We call an 
(a, b)-tree bad if it contains only bad edges from H. 

I 

Lemma 25.3 Every component C of H with f vertices contains a bad (2, 3)-
tree with at least f/(k(d + 1)) edges. 

This lemma follows immediately from two simple facts: 

Fact 25.4 Every component C of H 1 with f vertices contains a bad (1, 2)-tree 
with at least f/k edges. 



298 25. Algorithmic Aspects of the Local Lemma 

I 

Proof Note that every vertex of C lies in a bad edge, by definition of H . 
Since each edge contains at most k vertices, the number of bad edges in C is 
at least ijk. 

Let T be a maximal subset of the bad hyperedges of C which forms 
a (1, 2)-tree. We show that T contains all the bad hyperedges of C. Suppose 
the contrary and consider some bad hyperedge e i T. If e intersects T, 
then e can be added to T to form a larger (1, 2)-tree, thereby contradicting 
the maximality ofT. Otherwise, since Cis connected, there must be a path 
from T to e; let P be the shortest such path. Let eo, et, e2 be the first three 
hyperedges of P, where eo is in T. Consider any v in e1 n e2 and any bad 
edge f containing v. Now, f does not belong toT, by the minimality of P, 
but f is of distance at most 2 from T. Thus f can be added to T to form 
a larger bad (1, 2)-tree, thereby contradicting the maximality ofT. 0 

Fact 25.5 For any (1, 2)-tree with t hyperedges, there is a subset of at least 
tj(d + 1) of these hyperedges which forms a (2, 3)-tree. 

Proof Consider any (1, 2)-tree T and a maximal subset T' of the hyper
edges ofT which forms a (2, 3)-tree. Consider any hyperedge e E T- T'; we 

I 

will show that e must intersect some edge in T . This implies our fact since 
I I 

every hyperedge in T intersects at most d hyperedges in T - T . 
I 

So suppose that e does not intersect any hyperedges in T . Since T is 
a (1, 2)-tree, there must be a path in £(1,2) (H) from T' toe; let P be a shortest 

I 

such path, and let e0 E T be the first hyperedge in P. If this path has no 
internal hyperedge then e is at distance 2 in L(H) from eo and so e can be 
added toT' to form a bigger (2, 3)-tree, thereby contradicting the maximality 
ofT'. 

Otherwise P has at least 1 internal edge, so let eo, e1, e2 be the first 3 
I I 

edges on P, where again e0 E T. If e1 does not intersect any edge in T 
then we can add e1 to T' to form a larger (2, 3)-tree. Otherwise, since e2 
is at distance at most 2 from e1, it is at distance at most 3 from an edge 

I I 

in T . By the minimality of the path, e2 does not intersect any edges in T , 
so we can add e2 toT' to form a larger (2, 3)-tree, thereby contradicting the 

I 

maximality of T . 0 

These two facts imply Lemma 25.3. Along with Claim 25.6, below, and 
Markov's Inequality, this yields Lemma 25.2. 

Claim 25.6 The expected number of bad (2,3)-trees with at least ~logm 
edges is less than ! . 
Proof We first show that for each r ~ 1, H contains fewer than m x ( 4d3 t 
different (2, 3)-trees with r hyperedges. To choose such a (2, 3)-tree, we will 
first choose an unlabeled tree T on r vertices. It is well-known that there 
are at most 4r choices forT (cf. [76]). We then choose an edge of H to map 
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onto each vertex ofT, starting with an arbitrary vertex VI ofT, and then 
proceeding through the rest of the vertices ofT in a breadth-first order. There 
are m choices of an edge in H to map onto VI· For every subsequent vertex Vi 

ofT, we have already specified an edge e' which maps onto a neighbour of vi· 
Thus, the edge mapping onto Vi must be to one of the at most d3 neighbours 
in £(2•3)(H) of e'. Therefore, there are a total of 4r x m x (d3y-I < mx (4d3Y 
such (2, 3)-trees, as required. 

Now consider any such tree. It is easily seen that the probability of a par
ticular edge becoming bad is at most 2I-!k. Furthermore, since no two edges 
of the tree intersect, the probability that all of them become bad is at most 
(2I-!ky. Therefore, the expected number of bad (2,3)-trees of size r is at 
most m(4d3 x 21-!ky. Since d::; 2k/I6- 2 , this expected number is at most 
m(23k/16-4 x 21-!ky < m x 2-5kr/I6 , which is less than ~ for r::::: ~ logm. 
Of course, if there is a bad (2, 3)-tree of size at least ~log m then there is one 
of size exactly r ~ log m l ' and so this completes our proof. 0 

25.1.2 Further Details 

If k grows with m, or if we want a running time which is near linear, rather 
than merely polynomial, then we simply perform another iteration of Phase I 

I 

on each of the components of H , taking advantage of the fact that these com-
ponents are all small. This time, an edge becomes bad if we colour at least half 
of its at least k/2 vertices, and every edge in the resulting hypergraph, H', 
will have size at least k /4. Again, the Local Lemma will show that H", has 
a proper 2-coloring, since d x 21-k/4 < ~· 

Recall that every component of H 1 has at most 5( d + 1) log m vertices, 
and thus has at most m' = 5(d + 1)2 logm hyperedges, since every vertex 
lies in at most d + 1 edges. Mimicking the analysis from Lemma 25.2, we can 
show that with probability at least ~, every component of H" has at most 
16( d+ 1) log( m') < 40d(log log m+ log d) vertices and at most 40d2 (log log m+ 
log d) hyperedges (for m sufficiently large). This time, the analysis uses the 
fact that m'(4d3 x 21-k/4 )( 16/k)logm' < .! which holds since d < 2k/16- 2 . We 

2 II 

can ensure that these bounds on the size of the components of H hold, by 
restarting Phase II if they fail. The expected number of times we run Phase II 
is less than 2. 

If d is small in terms of m, then we can again apply exhaustive search 
to find a successful completion of our partial colouring. For example, if d ::; 

• • II log log m then the number of possible 2-colourmgs for any component of H 
is less than 2{loglogm)3 which is less than O(m') for any f > 0. Thus we 
can perform an exhaustive search for each component in a total of at most 
O(ml+') time. 

However, if k, and hence d, grows too quickly with m, then we won't be 
able to carry out the exhaustive search in polytime. But if d > log log m, then 



300 25. Algorithmic Aspects of the Local Lemma 

there at most 40d2 (log log m + log d) < 80d3 hyperedges in each component 
of H" and so the expected number of monochromatic edges in a uniformly 
random 2-colouring of a component of H" is less than 80d3 x 21-k/4 < 1. 
Therefore, we can simply apply the Erdos-Selfridge procedure from Chap
ter 24 to find a proper 2-colouring of each component. 

This completes the proof that our randomized algorithm runs in near 
linear expected time. Now we will see that we can derandomize this algorithm 
using the techniques of the previous chapter. 

When we come to a vertex in Phase I, instead of assigning it a uniformly 
random colour, we give it the colour that minimizes the expected number 
of bad (2, 3)-trees with exactly ~log m edges that would arise if we were to 
complete Phase I by using uniformly random choices to colour the vertices. 

To show that this is a polytime algorithm, we only need to show that we 
can compute this expected value quickly. As we saw in the proof of Claim 25.6, 
the total number of (2, 3)-trees in H of size r = ~ logm is at most mx(4d3Y :S 
m x ( 4 x 23k/16- 6Y < m2 . Furthermore, for any such (2, 3)-tree, it is very 
easy to compute the probability that if we continue Phase I using random 
choices, the tree would become bad. Therefore, we can compute the required 
expected values very quickly. 

I 

The same procedure will work again on H , allowing us to find an appro-
" priate H in polytime, thus yielding a deterministic polytime algorithm to 

find a proper 2-colouring of H. 

25.2 A Different Approach 

Several people (including, possibly, you reader) have suggested the follow
ing very simple approach for finding a 2-colouring of H. Give every vertex 
a random colour, then uncolour all vertices which lie in monochromatic edges. 
Repeat until there are no monochromatic edges. 

One's intuition might suggest that this approach ought to work. The 
expected number of monochromatic edges after the first iteration is 21-km 
which is fairly small. Furthermore, it seems reasonable to believe that this 
expected number would decrease quickly with each iteration, and so we 
would rapidly converge to a proper 2-colouring. However, thus far no one 
has succeeded in proving this latter statement. 

It would be very interesting to determine whether this procedure works to 
find a 2-colouring guaranteed by Theorem 4.2 with any non-trivial lowering 
of d. In fact, possibly it works without lowering d at all, at least when k is 
large. 

It is important to note that it is not enough to show that the probability 
of an edge remaining uncoloured for several iterations is small; this is quite 
easy to prove. The main issue is dealing with edges which are 2-coloured for 
several iterations, but then become monochromatic. For example, 'consider 
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an edge e which has k- 1 red vertices and 1 blue vertex which lies in an all 
blue edge. With probability ~, e will become monochromatic during the next 
iteration. 

In [2], Alon provides a somewhat simpler proof of Theorem 25.1 (with 16 
replaced by 500), using an algorithm which is somewhere between the one 
just described and Beck's algorithm. In Alon's algorithm, we assign a random 
colour to each vertex, and then we uncolour every hyperedge which is close 
to being monochromatic in the sense that it has fewer than ~ vertices of one 
colour. Virtually the same analysis as in the last section applies here. Note 
how this overcomes the issue raised in the previous paragraph. An edge such 
as e which is 2-coloured, but perilously close to becoming monochromatic 
will be completely recoloured along with the monochromatic edges. 

Alon's approach, while simpler than Beck's, is not nearly as widely appli
cable. We discuss the robustness of Beck's approach in the next section. 

25.3 Applicability of the Technique 

Beck's technique does not work just for the particular problem of 2-colouring 
hypergraphs. Rather, it can be used on a wide range of applications of the 
Local Lemma. In this section, we present a theorem of Molloy and Reed [120] 
which roughly describes the type of application for which Beck's technique 
works well. 

In what follows, T = {h, ... , tm} is a set of independent random trials. 
A = {A 1, ... , An} is a set of events such that each Ai is determined by the 
outcome of the trials in Ti s:::; T. Using a 2-phase process similar to Beck's, 
we can prove: 

Theorem 25.7 If the following holds: 

1. for each 1 :::; i:::; n, Pr(Ai) :::; p; 
2. each Ti intersects at most d other T1 's; 
3. pd9 < 1/512; 
4· for each 1:::; i:::; n,ITil:::; w; 
5. for each 1 :::; j :::; m, the size of the domain ofti is at most/, and we can 

carry out the random trial in time r 1 ; 

6. for each 1 :::; i :::; n, t11, ... , t1k E Ti and w11, ... , Wjk in the domains of 
t11, ... , t1k respectively, we can compute, in time r2, the probability of Ai 
conditional of the outcomes of t11, ... , tik being w11, ... , Wjk, 

then there is a randomized O(mxdx (r1 +r2 )+mxrwdloglogm)-time algorithm 
which will find outcomes of h, ... , tm such that none of the events in A hold. 

So, for example, if d, w, 'Y = O(log113 m), Tl = poly(r), and 72 = o(rw X 

poly(w)), then the running time of our algorithm is nearly linear in m. 
Note that the first three conditions are essentially the conditions of the 

Local Lemma, with a constant bound on pd replaced by a constant bound 
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on pd9 . The remaining ones are just technical conditions which bound the 
running time of our algorithm. Condition 6 of Theorem 25.7 says that we can 
compute the conditional probabilities quickly, which we need to do in order to 
determine which trials to pass over in the first phase. Condition 5 says that we 
can carry out the random trials efficiently. The bounds in Conditions 4, 5 are 
used to bound the time required to use exhaustive search to find satisfactory 
outcomes of the trials, in the final phase. 

The exponent "9" in Condition 3 can probably be decreased somewhat, 
but to get it to 1 would require a significantly different proof. The requirement 
that pdl+x be bounded for some constant x > 0 is the crucial restriction here, 
and it captures the nature of the applications that are amenable to Beck's 
technique. 

It is worth noting that for many applications of the Local Lemma, a minor 
adjustment in a parameter ( eg. Llo) will cause p~ to be small enough for 
Theorem 25.7 to apply. For example, in the vast majority of applications 
encountered in this book, d is a polynomial in some parameter, usually Ll, 
and p is exponentially small in that parameter; so for large Ll, pdx is bounded 
for any constant x. 

To prove Theorem 25.7, we use essentially the same algorithm that Beck 
did. We consider the hypergraph H which has vertex set 7 and where for 
each event Ai, we have a hyperedge ei with vertex set Ti. We carry out the 
random trials one-at-a-time. We say that a hyperedge ei becomes bad if the 
conditional probability of Ai ever exceeds p213 j we do not carry out any more 
trials in Ti after ei becomes bad. We define H in a similar manner as before 
and show that with probability at least ! , all components of H' are small. We 
repeat the process; this time a hyperedge is bad if the conditional probability 
of the corresponding event increases from p213 to p113 . The Local Lemma 
guarantees that there is a way to complete the remaining random trials so 
that none of the Ai hold. All components of H" will be sufficiently small that 
we can find this guaranteed completion via exhaustive search. 

The reader should note that, in the case of 2-colouring hypergraphs, this 
is the algorithm described earlier in the chapter, except that we say an edge 
is bad in the first phase if we colour k/3 vertices, all the same colour; and in 
the second phase if we colour another k/3 vertices, all the same colour. 

The crucial Condition 3 comes in to play twice. First, at the end of 
the second phase, no event has conditional probability greater than p113 . 

Condition 3 yields a bound on p113 x d which, along with the Local Lemma, 
implies that with positive probability, a random completion of the trials will 
result in no event in A occurring. Second, the term m(4d3 x 21-iky from the 
proof of Claim 25.6 becomes m(4d3 x p113Y here. Our bound on p~ yields 
a bound on this quantity. 

There is one detail that we have glossed over. In our analysis of Phase II, 
we assume that at the end of Phase I, no conditional probability exceeds p213 • 

However, we have to be careful about this, since we do not freeze an event 
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until after its conditional probability exceeds p213 . It is possible that the 
outcome of a single trial can cause the conditional probability of an event 
to increase significantly. Thus, possibly an event Ai whose conditional prob
ability is below p213 (and hence ei is not bad) could have its conditional 
probability jump far higher than p213 • To handle this difficulty, we undo any 
trial which causes an event to become bad. Thus, we use the following freezing 
rule. If the outcome of a trial t causes the conditional probability of any Ai 
to increase above p213 , then we undo t and freeze it along with all other trials 
in Ai, and we say that A is bad. This way we ensure that at the end of 
Phase I, no conditional probability exceeds p213 , and at the same time, the 
probability of an edge becoming bad is at most p1/ 3 . 

It is important to note that our running time depends crucially on w, /, 
the bounds on the number of trials per event, and the size of the domains 
of the trials. This is because we are bounding the time to do an exhaustive 
search using the most naive approach. So, a blind application of this theorem 
only provides a polynomial running time when both of these quantities are 
bounded. 

For example, in most of the applications in this book, Theorem 25.7 
implies a polytime algorithm if the maximum degree .:1 is bounded by a con
stant, or by a very slowly increasing function of the size of the graph. But it 
does not yield a polytime algorithm if .:1 can be arbitrarily large. To obtain 
a polytime algorithm for general .:1, one must be less naive about the final 
exhaustive search. For example, one might treat events corresponding to 
vertices of high degree in a different manner, mimicking our treatment of 
the cased> loglogm in Sect. 25.1.2. 

Furthermore, Theorem 25.7 gives no guarantees that the algorithm can 
be derandomized. But this is something that can indeed be done for many 
individual applications. 

Thus, in many cases, it is advisable to use Theorem 25.7 as just a guideline 
as to when the technique should work. Namely, if pd9 is bounded, then there 
is a good chance that the argument can be fine-tuned to provide an algorithm 
that works well for the problem at hand. 

25.3.1 Further Extensions 

In his original paper [19], Beck provided an algorithmic analogue to Exer
cise 5.1. More recently, Czumaj and Scheideler [34] obtained an algorithmic 
analogue to an extension of Theorem 19.2: 

Theorem 25.8 There is a polytime algorithm which will find a proper 2-
colouring of any hypergraph H which satisfies for each hyperedge e E H: 
lei~ 2 and 

L Tlfl/50 < lel/100. 
jne# 
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Remark Czumaj and Scheideler actually stated their main theorem in a dif
ferent, but essentially equivalent form. Their statement is designed to evoke 
the General Local Lemma rather than the Weighted Local Lemma. 

The Weighted Local Lemma implies the existence of a 2-colouring even 
if the exponent "-lfl/50" is replaced by "-lfl/2", using the same proof as 
that used for Theorem 19.2. A more careful application of the General Local 
Lemma allows the exponent to be replaced by "-(1- E) lei" for any E > 0 so 
long as the constant "100" is increased as a function of 1/E. 

Czumaj and Scheideler's algorithmic result requires the extra multiplica
tive term "1/50" for the same reasons that Beck required the similar "1/16" 
in the conditions for Theorem 25.1. In other words, this stronger condition 
is analogous to Condition 3 of Theorem 25. 7. 

Czumaj and Scheideler had to modify Beck's technique a bit, in that their 
algorithm is somewhat different and the analysis is much more difficult. Note 
that Theorem 25.7 implies their result for the case where the edge sizes are 
all small enough to satisfy Condition 4, for some suitably small w. Dealing 
with very large edges, and in particular with the way that they interact with 
small edges, was the main difficulty in proving Theorem 25.8. See [34] for the 
details; see also [35] for further extensions. 

In [139], Salavatipour strengthened the arguments in [35] to prove the 
following discrepancy version of Theorem 25.8: 

Theorem 25.9 For any 0 < o: < 1, there exists 1 > (3, 'Y > 0 and a polytime 
algorithm which does the following. Suppose that H is a hypergraph and that 
for each e E H we have: 

L T/31!1 < 'Yiei-
jne-:/=0 

Then the polytime algorithm will find a 2-colouring of H such that for every 
edge e, the difference between the number of red vertices and the number of 
blue vertices in e is at most aiel. 

A somewhat weaker result was provided in [35]. 

25.4 Extending the Approach 

All the results described thus far in this chapter require something analogous 
to Condition 3 of Theorem 25.7. In this section we present another approach, 
introduced by Molloy and Reed in [120]. It often applies in situations where 
pd is bounded by a constant, but pdl+x is not for any fixed x > 0. 

To begin, we study the problem of colouring a k-uniform hypergraph of 
maximum degree Ll. As usual, our goal is that no edge is monochromatic. 
Typically, k can be small and Ll will be large, so we will require many more 
than two colours. 
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25.4.1 3-Uniform Hypergraphs 

We begin by considering the case k = 3. It is trivial to use our standard 
greedy algorithm to (Ll + 1)-colour any hypergraph with at least 2 vertices 
per edge, so that no edge is monochromatic. The Local Lemma implies that 
if every edge has at least 3 vertices, then we can do substantially better - we 
only need 0( .JL:l) colours. To see this, suppose that we assign to each vertex 
a uniformly random colour from a list of C colours, where as usual, each 
choice is independent of that for other vertices. For each edge e, we let Ae be 
the event that e is monochromatic. Clearly, Pr(Ae) ::=:; p = b· Furthermore, 
each event is mutually independent of all but at most d = 3(Ll- 1) other 
events. Thus, so long as C :2: 2\1'3 x .JL:l, we have pd < ~ and so with 
positive probability no edge is monochromatic. In this section, we will prove 
an algorithmic analogue of this simple result: 

Theorem 25.10 There is a polytime algorithm which properly colours any 
hypergraph with maximum degree Ll and minimum edge-size at least 3, using 
0( .JL:l) colours. 

We will only present the randomized version of the algorithm here, leaving 
it to the reader to verify that it can be derandomized (see Exercise 25.1). 
We can assume that the hypergraph is 3-uniform, since if it is not, then by 
deleting lei- 3 vertices from each edge e of size greater than 3 we obtain a 3-
uniform hypergraph any proper colouring of which yields a proper colouring 
of the original hypergraph. 

Note that in our proof of the existence of such a colouring, if C = 0( .JL:l) 
then pd9 is of order Ll7 and so we cannot apply Theorem 25.7. If we wish to 
bound pd? by a constant then we need C :2: Ll4·5 which results in a very unin
teresting theorem since we have already noted that a trivial algorithm colours 
the hypergraph with Ll + 1 colours. So in order to prove Theorem 25.10, we 
need to deviate somewhat from the procedure of the earlier sections, using 
a variation developed in [120]. 

The intuition behind the modification is straightforward. Consider any 
particular vertex v. When we assign random colours to V(H)- v, the proba
bility that a particular edge containing v has two vertices of the same colour 
is of order !?(1/ .JL:l) and hence the expected number of such edges is!?( .JL:l). 
Thus, if we were to freeze each v as soon as it lies in such an edge, then we 
would expect to freeze the majority of the vertices. So we cannot mimic the 
arguments used to prove Theorem 25.1. Instead we only freeze v if it lies in 
many such edges. As a result, we freeze far fewer vertices - few enough for 
the analysis to work. However, this requires significant modifications in the 
procedure. Forthwith the details. 

As usual, we can assume that Ll :2: Ll0 for some large constant Ll0 since 
for Ll < Llo the trivial greedy algorithm will use only Llo = 0(1) colours. 
For Ll sufficiently large, our algorithm will use C = 10.JL:l colours. 
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As before, the first phase of our algorithm will entail colouring the vertices 
one-at-a-time. The difference is that this time, if at least half, i.e. two, of the 
vertices on a hyperedge receive the same colour, c, then rather than leaving 
the remaining vertex until the next phase, we instead forbid that vertex 
from receiving the colour c. More specifically, for each vertex v, we maintain 
a list Lv of permissible colours for v. When we come to a vertex v, we assign 
it a uniformly random colour from Lv. Initially, Lv = {1, ... , C} for each v, 
and for every hyperedge { u, v, w}, if u, v both get the same colour c then c 
is removed from Lw. This ensures that no edge will become monochromatic. 

We have to take care to ensure that no Lv loses too many colours. For 
example, since C = 0( -vf3) and v lies in up to .:::1 edges, it is possible that 
every colour will get deleted from Lv. We prevent this as follows. If ILv I ever 
decreases to g-yl3 for some uncoloured v, then we say that v is bad and we 
freeze v and all uncoloured vertices in those hyperedges containing v. When 
we reach a frozen vertex, we pass over it without colouring it. This ensures 
that at the end of the phase, every Lv contains at least 9-vf3 colours. More 
formally, our procedure runs as follows: 

First Phase: 
The input is a hyper graph H with vertices v1, ... , Vn. 

0. We initialize Lv = {1, ... , 10-vf3} for each v. 
1. For i = 1 to n, if Vi is not frozen then: 

a) Assign to vi a random colour c chosen uniformly from Lv;. 
b) For each edge {vi, u, w} where u has colour c and w is uncoloured: 

i. Remove c from Lw. 
ii. If ILw I = 9-vf3 then w is bad and we freeze w and all uncoloured 

vertices in those hyperedges containing w. 

H 1 is the hypergraph induced by all edges containing at least one un
coloured vertex at the end of the First Phase. 

The Local Lemma implies that the partial colouring produced by the 
First Phase can be completed to a colouring of H, as follows. Consider 
assigning to each uncoloured v a uniformly random colour from Lv. If an 
edge e has either 2 or 3 coloured vertices, then the probability that e becomes 
monochromatic is 0, because of the removal of colours from the lists in the 
first phase. If e has either 0 or 1 uncoloured vertices, then this probability is 
at most 1/(9-vf3)2 . Thus, the proof follows as in the argument preceding the 
statement of Theorem 25.10. 

I 

As in the earlier sections, we will show that the components of H are so 
small that we can find this completion quickly. 

Lemma 25.11 With probability at least ~' every component of H' has at 
most 8.:::13 log n vertices. 
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This lemma, proven below, allows us to complete the proof of Theo
rem 25.10 in the same way that we proved Theorem 25.1. We repeat essen-

' tially the same procedure on each component of H . This time, if v is assigned 
colour c then we remove c from Lu for every edge { v, u, w} E H where w was 
previously assigned c in either the First or Second Phase. We freeze v and its 
neighbours if Lv ever drops to size 8VLl. The same analysis as that used to 
prove Lemma 25.11 will show that this reduces the maximum component size 
to 8..:13 log(8..:13 log n) < 9..:13 log log n. Once again, the Local Lemma proves 
that the partial colouring can be completed, and we can quickly find the 
completion on each individual component. Before describing exactly how to 
find these colourings, we prove our main lemma. The proof is very similar to 
that of Lemma 25.2. 

Proof of Lemma 25.11 Again, we focus on (a, b)-trees. This time, it is vertices 
that go bad, rather than edges, so it is more convenient to define these trees 
in terms of H itself, rather than the line graph of H. H(3,5) is the graph with 
vertex set V(H) in which two vertices are adjacent iff they are at distance 
exactly 3, 4 or 5 in H. A (3, 5)-tree is a connected induced subgraph of H(3,5) 

containing no two vertices of distance less than 3 in H. A (3, 5)-tree is bad if 
it contains only bad vertices. 

A proof nearly identical to that of Lemma 25.3 yields that every com
ponent of H' with at least l vertices must contain a bad (3, 5)-tree with 
at least l/(8..:13 ) vertices. The maximum degree in H(3,5) is at most (2..:1)5 , 

and so it follows as in the proof of Claim 25.6 that every vertex lies in at 
most (4 x 32..:15t different (3, 5)-trees. Thus, Lemma 25.11 follows from the 
following: 

Claim 25.12 The probability that a particular (3, 5)-tree of size r becomes 

bad is at most ( e/9)rv'Ll. 

It is not hard to show that the probability of a particular vertex becoming 
bad is at most (e/9)v'Ll. It is tempting to say that Claim 25.12 follows since 
two vertices at distance at least 3 in H have different neighbourhoods and so 
the events that they become bad are independent. However, this is not true. 
The colour choice for a vertex v can affect the list Lu for any neighbour u 
of v, and so the colours assigned to u and v are not independent. Similarly, 
the colours assigned to v and to a neighbour w of u are not independent, and 
so on. This chain of dependency spreads throughout the graph so that for 
two vertices of arbitrary distance, the choice of colours assigned to them are 
not independent, let alone the events that they become bad. So instead, we 
proceed as follows. 

Consider r vertices which form a (3, 5)-tree, T. For T to become bad, 
there must be, for each v E T, a set of VLl edges containing v such that 
the two other vertices in each edge get the same colour. This gives a set of 
rVLl disjoint monochromatic pairs of vertices. There are (~) r choices for 
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these pairs. When we come to the second vertex of a pair, regardless of what 
colours were assigned to earlier vertices in the procedure, the probability that 
it gets the same colour as its partner is at most 1/(9v'3). So the probability 
that the tree becomes bad is at most: 

Therefore, the expected number of bad (3, 5)-trees of size r is at most n x (4 x 
32L15 Y x (e/9Yv'3" < n x (~Y for L1 sufficiently large, and so the expected 
number of components in H' with R vertices is at most n x ( ~ )(£/S)Ll3 . This 
establishes Lemma 25.11. D 

As we said earlier), the same analysis yields the following bound on the 
component sizes of H : 

1 u Lemma 25.13 With probability at least 2 , every component of H has at 
most 9L13 log log n vertices. 

u 
It only remains to show how to complete the colouring on H . First, we 

consider the case L1 2': (log log n )3 . Claim 25.12 with r = 1 implies that for 
II 

any component X of H , the expected number of bad vertices in X after 
the Second Phase is at most O(L13 logn(e/9)v'3") = o(1). So for any such 
component, by repeating the Second Phase a constant expected number of 
times, we obtain H" = 0. 

Thus, we can assume that L1 < (log log n )3 , and so the number of ver
tices in any component X of H" is at most O((loglogn) 10 ), and C = 
0 ((loglogn)312 ). Using exhaustive search through all the colourings of X 
takes O(CIXI) time which is o(nE) for any E > 0. 

25.4.2 k-Uniform Hypergraphs with k ~ 4 

For any k 2': 2, if His a k-uniform hypergraph with maximum degree L1, then 
the Local Lemma implies that H can be coloured with 0 ( L1 k~l) colours. 
The general proof is the same as for the 3-uniform case - this time if there 
are C colours, then the probability that an edge becomes monochromatic is 
1/Ck-1 . Theorem 25.10 extends to such hypergraphs as follows: 

Theorem 25.14 For each fixed k 2': 2, there is a polytime algorithm which 
properly colours any k-uniform hypergraph with maximum degree L1 using 

0 ( L\k~l) colours. 

Note that this is trivial for k = 2. 
The proof is along the same lines as that of Theorem 25.10, except for 

one complication. As before, we remove a colour c from Lv if cis assigned to 
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every other vertex in an edge containing v. Again, we want to apply the Local 
Lemma to show that the partial colouring produced by the First Phase can be 
extended to a colouring of H. However, if an edge e has exactly two coloured 
vertices and they both get the same colour, then the probability that the 
edge becomes monochromatic in a random completion is 1/Ck-2 rather than 

1/Ck-1 . If there are more than 0 ( ..:1 Ef) such edges intersecting a particular 

edge e, then the Local Lemma will not apply. 
There are two ways to deal with this complication. The simplest is to 

use a fresh set of colours for the Second Phase. This ensures that any edge 
for which even one vertex was coloured in the First Phase cannot become 
monochromatic in the Second Phase, thus overcoming our complication. Sim
ilarly, we use a third set of colours in the Third Phase. This has an effect of 

tripling the total number of colours used, which is absorbed by the 0 ( ..:16) 
notation. 

For the case where H is linear, there is an alternate, more difficult, way 
to deal with this complication. We describe it here because it generalizes to 
other situations where the first method does not work. Consider, for example, 
the case k = 4, and set C = 10..:1113 to be the number of colours used. At 
any stage of the procedure, for each vertex v we denote by Tv, the number of 
edges e containing v in which two vertices other than v have the same colour. 
If Tv ever reaches ..:1213 then we say that v is bad and we freeze v along with 
all the uncoloured vertices in the edges containing v. Of course, we do the 
same if Lv ever drops to size 9..:1113 . 

It is easy to see that the Asymmetric Local Lemma now ensures that the 
partial colouring produced in the First Phase can be completed. Furthermore, 
the expected size of Tv at the end of the first iteration is at most ..:1 x 3 x 

94
1113 = ..:1213 /3. So to bound the probability of v becoming bad, it is enough 

to show that Tv is concentrated. 
If H is linear, then it is not difficult to show that Tv is concentrated since 

the choice of colour assigned to any vertex other than v can affect Tv by at 
most 1. Furthermore, a proof along the lines of that of Lemma 25.11 proves 
that with probability at least ~, all the components of H' are small. 

As usual, we repeat the phase, this time freezing if some Tv reaches 2..:1213 

or if some JLvl drops to 8..:1113 . The Asymmetric Local Lemma guarantees 
that the partial colouring we obtain can be completed, as follows. We consider 
assigning to each v a uniform colour from Lv, and we use Ae to denote the 
event that e becomes monochromatic. For each edge e, the sum over all f 
intersecting e of Pr(A1) is at most 4..:1 x (1/8..:1113 ) 3 + I:vEe Tv x (1/8..:1113 ) 2 

< 112 , since each Tv :::; 2..:1213 . Furthermore, with sufficiently high probability, 
all the components of the remaining hypergraph are very small. We omit the 
details which should, by now, be straightforward. 

This technique extends easily for general fixed k. For each v and 2 :::; 
i :::; k- 2, one keeps track of the number of edges intersecting v which have 
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exactly i coloured vertices, all with the same colour, and by freezing when 
k-2 

necessary, ensures that this number never exceeds 2.<1 k-1. 

25.4.3 The General Technique 

The algorithm for colouring k-uniform hypergraphs discussed above is an ex
ample intended to illustrate an approach which handles problems for which pd 
is bounded by a constant but pd9 is not. We close this chapter, and the main 
body of the book, by elucidating the main ideas behind this new approach, 
which was introduced in [120]. 

Suppose that we have a set of independent random trials 'T = { t1 , ... , tm} 
and a set of events A = {A 1 , ... , An} where each Ai is determined by the 
outcome of the trials in Ti S::: T Suppose further that we have Pr(Ai) :::; p 
for all i and that each Ti intersects at most d other Tj. As before, this defines 
a hypergraph whose vertices are the trials and whose edges are the Ti. 

In both the new and the old approach, we carry out a sequence of itera
tions. In each iteration we have a probability distribution on the remaining 
trials and we carry out a trial using the corresponding distribution. 

In both approaches, when choosing the outcome of a trial, we ensure that 
we will still be able to apply the Local Lemma to show that we can choose 
outcomes for the remaining trials in such a way that none of the Ai hold. If 
there is a local danger which might lead to this condition failing in the future 
then we freeze all the trials near this danger. 

We need to ensure that we freeze so few vertices that with high probability 
the components of the frozen hypergraph are very small. This allows us to 
use exhaustive search to choose outcomes for the frozen trials so that none 
of the Ai hold. 

Recall that when pd9 is bounded by, say 5 ~ 2 , we define local danger in 
a straightforward manner. Namely, we freeze the trials in Ti if the probability 
of Ai conditional on the outcomes of the trials already carried out becomes too 
high (above p213 in the first iteration, p 113 in the second), and then we undo 
the trial which caused this probability to be too high. Now, our bound on pd9 

ensures that p 113 is less than 4
1d. So, since at the end of the second iteration 

we have that the conditional probability of any event becoming bad is at 
most pk, the Local Lemma does indeed imply that we can choose outcomes 
for the frozen trials in such a way that none of the Ai hold. Furthermore, the 
probability that Ti is frozen in, e.g., the first iteration is at most l 13 = p113 

which is very small by our bound on pd9 • So, we expect to freeze very few 
trials and it is true that with high probability the components of the frozen 
hypergraph are all small. 

The weakness of this approach is that it requires freezing the trials in Ti 
before the conditional probability of Ai rises above 4~ (or more precisely e~). 
If p = D( ~), this could force us to freeze many trials. So many, in fact, that 
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the components of the frozen hypergraph would be too large. To avoid this 
difficulty, we use the following new idea: 

Idea 1: We take advantage of the fact that the degrees in the hypergraph tend 

to decrease. 

At any point in the process, for each event Ai, we define H(Ai) to be the 
sum over all j such that Ti n Tj f. 0 of the conditional probability of Aj. 
We note that if at the end of a phase, each H(Ai) is at most i then the 
Asymmetric Local Lemma implies that we can still successfully complete the 
trials. 

When we had pd9 < 5i2 , by preventing any conditional probabilities 

from exceeding p113 , we implicitly bounded each H(Ai) by p113d which was 
much less than i· This is a very loose bound, however, since the conditional 
probabilities of the A tend to vary widely, and most of these probabilities 
go to zero, thus causing the degrees in H' to also vary. When pd = D(1), we 
must focus more closely on H(Ai), and by freezing trials if necessary, keep it 
from becoming too large. 

For example, in Sect. 25.4.2 for the case k = 4, we initially had for each 
edge e, H(Ae) :S 4L1 x (1/C)3 = 2~0 • To obtain a strong bound on H(Ae) as 
the procedure progressed we considered Tv the number of edges containing 
v and a pair of vertices disjoint from v which have been assigned the same 
colour. Throughout the procedure, H(Ae) was bounded by 4Ll x (1/9.1113 ) 3 + 
l:vEe Tv x (1/9.1113 ) 2 . Thus, the key to keeping H(Ae) small was to keep 

Tv small. By freezing before Tv exceeded .1213 , in the first phase, we kept 
H(Ae) :S 9~ + 4 x tz < /9 . During the second phase, we kept H(Ae) < 
/ 2 , which is more than small enough to guarantee the existence of a good 
completion. 

Note that by focusing on an overall bound on H(Ai), we no longer need to 
enforce an overall bound of 41d on the conditional probabilities of the events. 
I.e., we can allow some of these probabilities to become quite high, so long 
as each H(Ai) remains small. 

Of course, we have to avoid freezing too many trials. In the proof of 
Theorem 25.7 we required the probability of an event becoming bad to be 
at most ~ (which implies that the probability that we freeze a trial is 

8~3 = o( ~)). In order to mimic this proof in the general situation, we need 
to obtain, for each i, a bound of the same order on the probability that the 
trials in Ti are frozen because H(Ai) becomes too large. 

However, if pd = D(l) and we make no other modifications to the pro
cedure then the probability of H(Ai) becoming too large is much higher 
than ~- To see this note that if Ai occurs during our process, then H(Ai) 
will become at least 1, which is too large. and so we will freeze the trials 
inTi (and undo the trial which caused Ai to go bad). Now, intuitively, the 
probability that Ai will occur during our process is roughly p = D(~), which 
is much larger than ~. So, we need to introduce another new idea: 
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Idea 2: We modify the distributions of the trials. 

For example, in Subsections 25.4.1 and 25.4.2, for each vertex v we had 
a trial tv which initially consisted of assigning v a colour from {1, ... , C} 
chosen from the uniform distribution. As the procedure progressed, we oc
casionally modified that distribution, setting Pr(c) = 0 for certain colours c 
by removing c from Lv, and thereby increasing Pr(c') for each colour c' 
remaining in Lv. Note that the colours deleted were chosen so as to decrease 
the probability that any event "containing" v occurred, and hence lowered 
the values of the corresponding H ( Ai). Modifying the lists in this way allowed 
us to keep the H(Ai) low without freezing too many trials. 

Idea 2 is not just a necessary technical modification which is needed in 
the implementation of Idea 1. It is a powerful tool in its own right. For 
example, in Sect. 25.4.1, by modifying the distributions we ensured that all 
the conditional probabilities remained so low that Idea 1 was not needed at 
all! 

The main difficulty encountered when we try to apply this technique is 
the following, which, though obvious, is worth stressing. 

Complication: The Ti intersect. 

Thus, if we modify the distribution for some trial to ensure that some Ai 
does not occur, this may increase H(Aj) for some i-/=- j. We need to avoid 
situations in which we skew our distributions so much that other H(Aj) 
become too high. One way to do this is to set limits on the amount by which 
a trial's probability distribution can change, and resort to freezing when some 
trial's distribution approaches its limits. For example, in Sect. 25.4.1 our limit 
was that we would only set Pr(c) = 0 for at most v'L1 colours c, i.e. we kept 
ILvl 2: 9vLl. Generally, the amount of freezing required to enforce the limits 
is much less than the amount of freezing that would take place if we did not 
modify the distributions. This is what makes the approach so powerful. 

Of course, we need to bound the amount of freezing which occurs because 
of these limits. In Sect. 25.4.2 this amounted to proving that Tv was highly 
concentrated. 

Clearly, the precise manner in which we implement these ideas depends 
on the specific application. Thus, we have provided here only an illustrative 
example and a roadmap for this technique. 

In the same way, this book presents some elucidating examples of and 
a roadmap to the probabilistic method. We hope that they will guide readers 
to new and interesting applications of this powerful technique. 

Exercises 

Exercise 25.1 Show how to derandomize the algorithm from Sect. 25.4.1. 
Start by being more precise in the proof of Lemma 25.11 and showing that 
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in fact the expected number of bad (3, 5)-trees of size r is less than ~ for 

r = logn/VLl. 

Exercise 25.2 Find an algorithm corresponding to Theorem 19.3. Specifi
cally, for every constant (3, show that there is a polytime algorithm which will 
find a /3-frugal colouring of any graph G with maximum degree L1 sufficiently 
large, using O(L1l+l/i3) colours. 
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