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Foreword 

These notes had their origin in a postgraduate lecture series I gave at the Eid
genossiche Technische Hochschule (ETH) in Zurich in the Spring of 2000. I am 
very grateful to my hosts, the Forschungsinstitut fUr Mathematik at ETH, for 
providing the ideal opportunity to develop and present this material in what I 
hope is a reasonably coherent manner, and also for encouraging and assisting me 
to record the proceedings in these lecture notes. 

The subject of the lecture series was counting (of combinatorial structures) 
and related topics, viewed from a computational perspective. As we shall see, 
"related topics" include sampling combinatorial structures (being computationally 
equivalent to approximate counting via efficient reductions), evaluating partition 
functions (being weighted counting) and calculating the volume of bodies (being 
counting in the limit). 

We shall be inhabiting a different world to the one conjured up by books with 
titles like Combinatorial Enumeration or Graphical Enumeration. There, the prob
lems are usually parameterised on a single integer parameter n, and the required 
solutions are closed form or asymptotic estimates obtained using very refined and 
precise analytical tools. An example problem might be "how many distinct unla
belled graphs are there on n vertices?" 

Instead, we shall be working in a somewhat messier world of problems, ul
timately inspired by practical applications, in which an instance (say, an undi
rected graph) is presented and one is asked to count certain structures (say perfect 
matchings) within it. (The "practical application" in this instance might be in the 
domain of statistical physics, where perfect matchings are configurations of the 
"dimer model" .) A solution in this world is an efficient algorithm which takes as 
input the problem instance, and outputs the number of structures. As a first cut, 
"efficient" is taken to mean "having a running time that scales as a polynomial 
in some natural measure of the instance size". Later, particularly if the problem 
seems reasonably close to practical application, one might well be concerned to 
reduce the degree of the polynomial as far as possible. 

These notes open with a couple of examples of combinatorial structures that 
can be counted exactly polynomial time. Although the examples are classical, I 
decided to include them because (i) they perfectly demonstrate the ideal we are 
aiming for, and (ii) the ideas on which they are based are beautiful and worth re-
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flecting on. It transpires that these two examples are the exceptions that prove the 
empirical rule that exact counting is hard. The theory of #P-completeness, which 
we review briefly, provides evidence for the latter assertion. To make progress, we 
lower our sights by seeking solutions (i.e., algorithms) that are approximate only, 
but which nevertheless come with rigorously derived guarantees on the relative 
error of the results they produce. The notion of efficient approximation algorithm 
is formalised in the definition of "FPRAS". 

Of the various approaches to designing efficient approximation algorithms 
for counting problems, by far the most fruitful has been "Markov chain Monte 
Carlo" (MCMC). The idea is to accumulate information on a set of combinatorial 
structures by performing a random walk (i.e., simulating a Markov chain) on 
those structures. The running time of an MCMC algorithm depends on the rate 
of convergence to equilibrium of this Markov chain, as formalised in the notion of 
"mixing time" of the Markov chain. To my mind, the most exciting developments 
in the area in recent years have been the introduction and refinement of various 
analytical tools for bounding the mixing time of combinatorially-defined Markov 
chains. A survey of these tools forms the primary theme of these notes. Geometric, 
canonical path and coupling arguments are all covered, together with illustrating 
examples. 

Not every counting problem can be solved efficiently, even in the approximate 
FPRAS sense, and the notes close with some remarks on intractable problems. 

Despite the relative youthfulness of the topic, any treatment of this length 
must necessarily miss out more than it includes. In particular, with the intention of 
getting close to the coal-face of current research, I have concentrated on the MCMC 
approach to the exclusion of others. Among the sacrifices this decision entailed is 
Karp and Luby's proposal for estimating the size of a union of sets [40]. Moreover, I 
have said nothing at all about the sampling and counting of unlabelled structures, 
despite a reasonably extensive, if somewhat provisional body of work on the subject 
(see surveys by Jerrum [34] and Goldberg [31]). Even within the MCMC theme 
my coverage is certainly not exhaustive. Among several authors who have a right 
to be offended by the omission of their work are Feder and Mihail [27], with their 
surprising and elegent inductive approach to counting and sampling matroid bases. 
The comparison method of Diaconis and Saloff-Coste [19] also escapes mention, 
as does the decomposition approach of Madras and Randall [48]. 

So much for intention; now for the means. It is a pleasure to record my grat
itude to various research students and associates at the Institut fiir Theoretische 
Informatik at ETH for capturing so well the content of the lectures in written 
form, and ultimately as 'lEX source files. They are: Christoph Ambiihl, Alex Be
low, Bernd Gartner, Michael Hoffmann, Zsuzsanna Liptak, Samuele Pedroni and 
VIi Wagner. These files, together with fragments of earlier surveys, formed the raw 
material for this volume. I also gratefully acknowledge the contribution of Alistair 
Sinclair, who collaborated on a significant proportion of the work described in 
these pages. 



xi 

But as well as thanking the note takers, I must also apologise to them. For 
the raw material they provided has undergone a series of reworkings, accumulating 
layers of extra material until an archaeologist would be required to uncover the 
ur-text. First, I realised that extra explanation would be required to make the 
material comprehensible in the absence of the spoken and somewhat interactive 
presentations. Then there was the matter of imposing some overall consistency of 
notation and terminology where it had been lacking in the lectures, and attempting 
some limited moves in the direction of a uniform style. Then there were the things 
I wish I had done slightly differently, and where the temptation to rewrite history 
was simply too great. Finally, I abandoned any attempt to mirror the division of 
the course into lectures in the structure of this volume. Anyway, the fact is that 
without their efforts there would be no book (and certainly no fancy illustrations 
to enliven the text). 

Mark Jerrum, Edinburgh, April 2002. 



M. Jerrum 
© Birkhauser Verlag 2003

Counting, Sampling and Integrating: Algorithms and Complexity
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Graph G D-A (D - A)l1 

Figure 1.1: Example illustrating Theorem 1.1. 

Example 1.2. Figure 1.1 shows a graph G with its associated "Laplacian" D - A 
and principal minor (D - A)l1. Note that det(D - A)l1 = 3 in agreement with 
Theorem 1.1. 

Remark 1.3. The theorem holds for unconnected graphs G, as well, because then 
the matrix D - A associated with G is singular. To see this, observe that the rows 
and columns of a connected graph add up to 0 and, similarly, those of any sub
matrix corresponding to a connected component add up to O. Now choose vertex 
i and a connected component C such that i ~ C. Then, the columns of (D - A)ii 
that correspond to C are linearly dependent, and (D - A)ii is singular. 

Our proof of Theorem 1.1 follows closely the treatment of van Lint and 
Wilson [65], and relies on the following expansion for the determinant, the proof 
of which is deferred. 

Lemma 1.4 (Binet-Cauchy). Let A be an (r x m)- and B an (m x r)-matrix. Then 

detAB= L detA.sdetBs., 
S<;;[mJ, 
ISI=r 

where A.s is the square submatrix of A resulting from deleting all columns of A 
whose index is not in 5, while, similarly, Bs. is the square submatrix of B resulting 
from B by deleting those rows not in 5. 

Remark 1.5. Typically, r is smaller than m. However, the lemma is also true for 
r > m. Then the sum on the right is empty and thus O. But also AB is singular, 
since rank AB ::; rank A ::; m < r. 

Let H be a directed graph on n vertices with m edges. Then the incidence 
matrix of H is the (n x m)-matrix N = (vve ) where 

{ 
+ 1, ~f ve~tex v is. the head of edge e; 

Vve = -1, If v IS the taIl of e; 
0, otherwise. 

The weakly connected components of H are the connected components of the un
derlying undirected graph, i.e., the graph obtained from H by ignoring the orien
tations of edges. 
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Fact 1.6. 
rankN = IV(H)I-IC(H)I = n -IC(H)I, 

where V(H) is the vertex set of Hand C(H) <;:; 2V (H) is the set of {weakly} 
connected components of H. 

Proof. Consider the linear map represented by NT, the transpose of N. It is easy 
to see that, if h is a vector of length n, then 

NTh = ° {::} h is constant on connected components, 

i.e., i,j E C =} hi = hj, for all C E C(H). This implies that dimker NT = IC(H)I, 
proving the claim, since rank N = rank NT = n - dim ker NT. 0 

Fact 1.7. Let B be a square matrix with entries in {-1,0,+1} such that in each 
column there is at most one + 1 and at most one -1. Then, det B E {-I, 0, + I}. 

Proof. We use induction on the size n of B. For n = 1, the claim in trivial. Let 
n > 1. If B h&'l a column which equals 0, or if each column has exactly one + 1 
and one -1, then B is singular. Otherwise there is a column j with either one + 1 
or one -1, say in its i'th entry bij , and the rest O's. Developing det B by this entry 
yields det B = ±bij det B ij , where Bij is the minor of B obtained by deleting row i 
and column j. By the induction hypothesis, the latter expression equals -1, ° or 
+1. 0 

The ingredients for the proof of Kirchhoff's result are now in place. 

Proof of Theorem 1.1. Let G be an arbitrary orientation of G, N its incidence 

matrix, and S <;:; E be a set of edges of G with lSI = n - 1. Then, by Fact 1.6, 

rank(N. s ) = n - 1 {::} S is the edge set of a tree. (1.1 ) 

(The condition that S is the edge set of a tree again ignores the orientation of 
edges in S.) If N' results from N by deleting one row, then 

(1.2) 

This is because the deleted row is a linear combination of the others, since the 
rows of N add up to 0. Combining (1.1) and (1.2) with Fact 1.7 gives us 

d N ' _ {± 1, if S is a spanning tree; 
et s-

* 0, otherwise. 

Now observe that D - A = NNT , since 

{
-I if {i,j} E E; 

(NNT)ij = I: lIie llje = di ,' ifi=j; 
eEE 0, otherwise. 

(1.3) 
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Clearly, (D - A )ii = N' (N') T where N' results from N by deleting any row i. 
Thus, 

det(D - A)ii = det(N'(N')T) 

L det N;s det((N') T)S* 

ISI=n-1 

by Lemma 1.4 

L detN;s det(N~s)T 
ISI=n-1 

= # spanning trees of G by (1.3). 

It only remains to prove the key lemma on expanding determinants. 

Proof of Lemma 1.4. We prove a more general claim, namely 

det AL1B = L det A*s det Bs* II ei, 
SC::[mJ. iES 
ISI=r' 

D 

where L1 = diag(eo, ... , em-d. The lemma follows by setting all ei to 1. Ob
serve that entries of AL1B are linear forms in eo, ... , em-I. Thus, det AL1B is a 
homogeneous polynomial of degree r in eo, ... ,em-I, i.e., all monomials have de
gree r. Comparing coefficients will yield the desired result. First we observe that 
every monomial in det AL1B must have r distinct variables. For if not, consider 
a monomial with the fewest number of distinct variables, and suppose this num
ber is less than r. Setting all other variables to 0 will result in det AL1B = 0, 
since rank AL1B ::; rank L1 < rand AL1B is singular. But det AL1B = 0 im
plies that the coefficient of the monomial is O. Now look at a monomial with 
exactly r distinct variables, say DiES ei. Set these variables to 1 and all others 
to O. Then, AL1B evaluates to A*sBs*, and hence the coefficient of DiES ei is 
detA*sBs* = detA*s detBs*. D 

It is possible to generalise Theorem 1.1 to directed graphs G = (V, E), where a 
directed spanning tree (or arborescence) is understood to be a subgraph (V, Tr;E) 
where (i) (V, T) with the orientation of edges ignored forms a spanning tree of the 
unoriented version of G, and (ii) the orientations of edges in T are consistently 
directed towards some distinguished vertex or root r. Equivalently, it is an acyclic 
subgraph in which every vertex other than the distinguished root r has out degree 1, 
and the root itself has outdegree O. (There does not seem to be agreement on 
whether edges should be directed towards or away from the root; towards seems 
more natural - corresponding as it does to functions on [n] with a unique fixed 
point - and in any case better suits our immediate purpose.) 

An Eulerian circuit in a directed graph G is a closed path (i.e., one that 
returns to its starting point) that traverses every edge of G exactly once, respecting 
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the orientation of edges. (The path will not in general be simple, that is to say it 
will visit vertices more than once.) The number of Eulerian circuits in a directed 
graph is related in a simple way to the number of arborescences, so these structures 
also can be counted in polynomial time. For details see Tutte [60, §VI.3, §VI.4]. 

Open Problem. To the best of my knowledge, it is not known whether there exists 
a polynomial-time algorithm for counting Eulerian circuits in an undirected graph. 
Note that the usual strategy of viewing an undirected graph as a directed graph 
with paired anti-parallel edges does not work here. 

Exercise 1.8. Exhibit an explicit (constant) many-one relation between the Eu
lerian circuits in a directed graph G and the arborescences in G. Hint: use the 
arborescence to define an "escape route" or "edge of final exit" from each vertex. 

1.2 Perfect matchings in a planar graph 

Let G = (V, E) be an undirected graph on n vertices (V = [n], for convenience). 
A matching in G is a subset lvI <;;; E of pairwise vertex-disjoint edges. A matching 
!vI is called perfect if it covers V, i.e., U!vI = V. Note that n must be even for a 
perfect matching to exist. 

Around 1960, Kasteleyn discovered a beautiful method for counting perfect 
matchings in a certain class of "Pfaffian orientable" graphs, which includes all 
planar graphs as a strict subclass. Linear algebra is again the key. 

Fact 1.9. If lvI, lvI' are two perfect matchings in G, then lvI U lvI' is a collection of 
single edges and even (i.e., even length) cycles. 

Let G = (V, E) be an undirected graph, C an even cycle in G, and G an 

orientation of G. We say that C is oddly oriented by G if, when traversing C in 
either direction, the number of co-oriented edges (i.e., edges whose orientation 

in G and in the traversal is the same) is odd. (Observe that the direction in which 
we choose to traverse C is not significant, since the parity in the other direction 
is the same.) An orientation G of G is Pfaffian (also called admissible) if the the 
following condition holds: for any two perfect matchings lvI, lvI' in G, every cycle 
in lvI U lvI' is oddly oriented by C. Note that all cycles in lvI U lvI' are even. 

Remark 1.10. The definition of Pfaffian orientation given above is not equivalent 
to requiring that all even cycles in G be oddly oriented by G, since there may be 
even cycles that cannot be obtained as the union of two perfect matchings. 

Let G be any orientation of G. Define the skew adjacency matrix As(G) = 
(aij : ° ::; i, j ::; n - 1) of G by 

aij = {~:: 
0, 

if (i,j) E E(G); 

if (j, i) E E(G); 
otherwise. 
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The edge set of MUM' 

10 
Pairs of matchings (M, M') Even cycle covers of G 

I 
.--, , o e--e 

I r·····j 
.. _-----. 

Figure 1.2: Bijection between pairs of matchings in G and even cycle covers of C. 

Theorem 1.11 (Kasteleyn). For any Pfaffian orientation 0 of G, 

# perfect matchings in G = J det As (0) . 

Our proof of Theorem 1.11 borrows from Kasteleyn [41] and Lovasz and 
Plummer [45]. Denote by G the directed graph obtained from G by replacing each 
undirected edge {i,j} by the anti-parallel pair of directed edges (i,j),(j,i). An 

even cycle cover of C is a collection C of even directed cycles C ~ E(C) such that 
every vertex of G is contained in exactly one cycle in C. 

Le~a 1.12. There is a bijection between (ordered) pairs of perfect matchings in G 
and even cycle covers in C. 

Proof. Let (M, M') be a pair of perfect matchings in G. For each edge in M n M' 
(i.e, each edge in MUM' that does not lie in an even cycle) take both directed 

edges in C. Now orient each cycle C in MuM' (with length ~ 4) according to some 
convention fixed in advance. For example, take the vertex with lowest number in C 
and orient the incident M -edge away from it. The resulting collection C of directed 
cycles is an even cycle cover of C. 

The procedure may be reversed. First, each oriented 2-cycle in C must cor
respond to an edge that is in both M and M'. Then, each even cycle C E C of 
length at least four may be decomposed into alternating M -edges and M' -edges; 
the convention used to determine the orientation of C will indicate which of the 
two possible decompositions is the correct one. 0 
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Proof of Theorem 1.11. In view of the previous lemma, we just need to show that 
det As(G) counts even cycle covers in C. Now, 

n-l 

detA.(G):= L sgn7r II ai,7r(i) , (1.4) 
7rESn i=O 

where Sn is the set of all permutations of [n], and sgn 7r is the sign of permuta
tion 7r. 1 Consider a permutation 7r and its (unique) decomposition into disjoint 
cycles 7r = II ... Ik. Each Ij acts on a certain subset l;j <:;:; V. The corresponding 
product I1Evj ai,7r(i) is non-zero if and only if the edges {(i,7r(i)) : i E l;j} form 
a directed cycle in G, since otherwise one of the ai,7r(i) would be O. Thus, there 
is a one-to-one correspondence between permutations 7r with non-zero (i.e., ±1) 

contributions to (1.4) and cycle covers in C. 
We now claim that sum (1.4) is unchanged if we restrict it to permutations 

with only even length cycles. To see this, consider a permutation 7r and an odd 
length cycle Ij in 7r, say the first in some natural ordering on cycles. Let 7r' = 
II ... (rj )-1 ... Ik be identical to 7r except that Ij is reversed. Then, Ir:ol ai,7r(i) = 
- n~:ol ai,7r/(i)' Moreover, since both 7r and 7r' are products of cycles of the same 
lengths, sgn 7r = sgn 7r'. Thus, the contributions of 7r and 7r' cancel out in (1.4). 

(Note that for this part of the argument, we do not need that Gis Pfaffian.) Thus 
we may pair up permutations with odd cycles so that they cancel each other. 

Now consider a permutation 7r which consists only of even length cycles and 
does not vanish in (1.4). As remarked above, 7r corresponds to an even cycle cover 

of C, which, by Lemma 1.12, corresponds to a pair of perfect matchings in G. 
Because G is Pfaffian, each cycle Cj corresponding to a cycle Ij of 7r is oddly 

oriented by G. Thus, each Ij contributes a factor -1 to n~:ol ai,7r(i) while it 
also contributes a factor -1 to sgn 7r, being an even cycle. Therefore, overall, 7r 
contributes 1 to the sum (1.4). 0 

Theorem 1.11 provides a polynomial-time algorithm for counting perfect 
matchings in a graph G, provided G comes equipped with a Pfaffian orientation. 
But which graphs admit a Pfaffian orientation? 

Lemma 1.13. Let G be a connected planar digraph, embedded in the plane. Suppose 
every face, except the (outer) infinite face, has an odd number of edges that are 
oriented clockwise. Then, in any simple cycle C, the number of edges oriented 
clockwise is of opposite parity to the number of vertices of G inside C. In particular, 
G is Pfaffian. 

Proof. First, let's see why the condition on simple cycles implies G is Pfaffian. 
Consider a cycle C created by the union of a pair of perfect matchings in G. Then 

1 The sign of 7r is + 1 if the cycle decomposition of 7r has an even number of even length cycles, 
and -1 otherwise. 
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c 

Figure 1.3: Example graph illustrating various quantities in the proof. 

C has an even number of vertices inside it, since otherwise there would be a vertex 
inside C which is matched with a vertex outside C, contradicting planarity. Thus, 

the number of edges in C oriented clockwise is odd, implying that G is Pfaffian. 
We now prove the main part of the lemma. Take a cycle C. We need the 

following definitions: 

v = # vertices inside C, 

k = # edges on C = # vertices on C, 

c = # edges on C oriented clockwise, 

J = # faces inside C, 

e = # edges inside C, 

Ci = # clockwise edges on the boundary of face i for i = 0, ... , J - 1. 

In the example graph illustrated in Figure 1.3, the cycle C is denoted in bold face. 
Here, v = 1, k = 8, C = J = e = 4, and the various Ci are included in the figure. 

According to Euler's formula, 

which implies 

(v+k) +U+l)-(e+k)=2, 
~~~ 
# vertices # faces # edges 

e=v+J-1. (1.5) 

Now, for all i, by assumption, Ci == 1 (mod 2), and thus J == ~{:Ol Ci (mod 2). 
On the other hand, ~{:Ol Ci = C + e, since each interior edge borders two faces, 
and in exactly one of these it is oriented clockwise. So, 

J==c+e 

== C + v + J - 1 (mod 2) by (1.5), 

and hence C + v is odd. o 

Theorem 1.14. Every planar graph has a PJaffian orientation. 
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o 
G\e 

Figure 1.4: Orient e according to the condition of Lemma 1.13. 

Proof. Without loss of generality, we may assume G is connected, since we may 
otherwise treat each connected component separately. We prove the theorem by 
induction on m, the number of edges. As the base of our induction we take the case 
when G is a tree, and any orientation is Pfaffian. Now, look at a planar graph G 
with m 2: n edges, and fix an edge e on the exterior (i.e., e borders the infinite 
face of G). By the induction hypothesis, G \ e has a Pfaffian orientation. Adding 
e creates just one more face; orient e in such a way that this face has an odd 
number of edges oriented clockwise. (Figure 1.4 illustrates the situation.) Then, 
by Lemma 1.13, the orientation is Pfaffian. 0 

Open Problem. The computational complexity of deciding, for an arbitrary input 
graph G, whether G has a Pfaffian orientation is open. It is neither known to be in P 
nor to be NP-complete. The restriction of this decision problem to bipartite graphs 
was recently shown to be decidable by Robertson, Seymour and Thomas [55], and 
independently by rVIcCuaig. 

Note however, that the proof of Theorem 1.14 gives us a polynomial algorithm 
for finding a Pfaffian orientation of a planar graph G, and hence for counting the 
number of perfect matchings in G. 

Exercise 1.15. In the physics community, perfect matchings are sometimes known 
as "dimer covers." It is of some interest to know the number of dimer covers of a 
graph G when G has a regular structure that models, for example, a crystal lattice. 
Let A to be the L x L square lattice, with vertex set V(A) = {(i,j): 0 ~ i,j < L} 
and edge set E(A) = {{(i,j), (if,)')} : Ii - if I + Ij -)'1 = I}. Exhibit a (nicely 
structured!) Pfaffian orientation of A. 

Exercise 1.16. Exhibit a non-planar graph that admits a Pfaffian orientation. 

Exercise 1.17. Exhibit a (necessarily non-planar) graph that does not admit a 
Pfaffian orientation. 

Exercise 1.18. The dimer model is one model from statistical physics; another 
is the Ising model. Computing the "partition function" of an Ising system with 
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underlying graph G in the absence of an external field is essentially equivalent to 
counting "closed subgraphs" of G: subgraphs (V, A~E) such that the degree of 
every vertex i E V in (V, A) is even (possibly zero). Show that the problem of 
counting closed subgraphs in a planar graph is efficiently reducible to counting 
perfect matchings (or dimer covers) in a derived planar graph. The bottom line is 
that the Ising model for planar systems with no applied field is computationally 
feasible. 

Valiant observes that in the few instances where a counting problem is known 
to be tractable, it is generally on account of the problem being reducible to the 
determinant. All the examples presented in this chapter are of this form. This 
empirical observation remains largely a mystery, though a couple of results in 
computational complexity give special status to the determinant. For example, 
around 1991, various authors (Damm, Toda, Valiant, and Vinay) independently 
discovered that the determinant of an integer matrix is complete for the com
plexity class GapL under log-space reduction [49, §6].2 Although this is certainly 
an interesting result, it does beg the question: why do natural tractable counting 
problems tend to cluster together in the class GapL? For a further universality 
property of the determinant, see Valiant [61, §2]. 

In the other direction, Colbourn, Provan and Vertigan [16] have discovered 
an interesting, purely combinatorial approach to at least some of the tractable 
counting problems on planar graphs. In a sense, their result questions the centrality 
of the determinant. 

2 A function f : E* ---+ !If is in the class #L if there is a log-space non-deterministic 'lUring 
machine M such that the number of accepting computations of M on input x is exactly f(x), 
for all x E E*. A function 9 : E* ---+ !If is in GapL if it can be expressed as 9 = h - h with 
h,h E #L. 
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to define it. It is a thesis rather than a theorem, because we cannot expect to 
formalise the condition that the model be "reasonable". The upshot of all this is 
that the reader unfamiliar with the Turing machine model should mentally replace 
it by some more congenial model, e.g., that of C programs. (For a more expansive 
treatment of the fundamentals of machine-based computational complexity, refer 
to standard texts by Papadimitriou [54] or Garey and Johnson [30].) 

The important complexity class NP is usually defined in terms of non-deter
ministic Turing machines. Indeed, NP stands for "N[ondeterministic] P[olynomial 
time]". In the interests of accessibility, however, we take an alternative but equiva
lent approach. We say that a predicate i.p : E* ----+ {O, I} belongs to the class NP iff 
there exists a polynomial-time "witness-checking" predicate X : E* x E* ----+ {O, I} 
and a polynomial p such that, for all x E E*, 

i.p(x) {::=:> ::Jw E E*.X(x,w) 1\ Iwl::; p(lxl). (2.1) 

(Since the term "polynomial time" has been defined only for monadic predicates, 
it cannot strictly be applied to X. Formally, what we mean here is that there is a 
polynomial-time Turing machine T that takes an input of the form x$y - where 
x, y E E* and $ ~ E is a special separating symbol - and accepts iff X(x, y) is 
true. The machine T is required to halt in a number of steps polynomial in Ix$yl.) 

Example 2.1. Suppose x encodes an undirected graph G, y encodes a subgraph H 
of G, and X(x, y) is true iff y is a Hamilton cycle in G. The predicate X is easily 
seen to be polynomial time: one only needs to check that H is connected, that H 
spans G, and that every vertex of H has degree two. Since X is clearly a witness
checker for Hamiltonicity, we see immediately that the problem of deciding whether 
a graph is Hamiltonian is in the class NP. Many "natural" decision problems will 
be seen, on reflection, to belong to the class NP. 

As is quite widely known, it is possible to identify within NP a subset of 
"NP-complete" predicates which are computationally the "hardest" in NP. Since 
we shall shortly be revisiting the phenomenon of completeness in the context of the 
counting complexity class #P, just a rough sketch of how this is done will suffice. 
The idea is to define a notion of reducibility between predicates - polynomial
time many-one (or Karp) reducibility -- that allows us to compare their relative 
computational difficulty. A predicate i.p is NP-hard if every predicate in NP is 
reducible to i.p; it is NP-complete if, in addition, i.p E NP. 

Logically, there are two possible scenarios: either P = NP, in which case 
all predicates in NP are efficiently decidable, or P c NP, in which case no NP
complete predicate is decidable in polynomial time. Informally, this dichotomy 
arises because the complete problems are the hardest in NP; formally, it is because 
the complexity class P is closed under polynomial-time many-one reducibility. 
Since the former scenario is thought to be unlikely, NP-completeness provides 
strong circumstantial evidence for intractability. The celebrated theorem of Cook 
provides a natural example of an NP-complete predicate, namely deciding whether 
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a propositional formula <P in CNF has a model, i.e., whether <P is satisfiable. For 
convenience, this decision problem is referred to as "SAT". 

2.1 The class #P 
Now we are interested extending the above framework to counting problems ~
e.g., "How many Hamiltonian cycles does a given graph have?" - which can 
be viewed as functions f : E* -+ N mapping (encodings of) problem instances 
to natural numbers. The class P must be slightly amended to account for the 
fact we are dealing with functions with codomain N rather than predicates. A 
counting problem f : E* -+ N is said to belong to the complexity class4 FP if it 
is computable by a deterministic Turing machine transducer5 in time polynomial 
in the size of the input. As we saw in Chapter 1 (see Theorems 1.1 and 1.11), the 
following problems are in FP: 

Name. #SPANNINGTREES 

Instance. A graph G. 
Output. The number of spanning trees in G. 

Name. #PLANARPM 
Instance. A planar graph G. 
Output. The number of perfect matchings in G. 

The analogue of NP for counting problems was introduced by Valiant [62]. 
A counting problem f : E* -+ N is said to belong to the complexity class #P if 
there exist a polynomial-time predicate X : E* x E* -+ {O, I} and a polynomial p 
such that, for all x E E*, 

f(x) = I{w E E* : X(x,w) 1\ Iwl s p(lxl)}l· (2.2) 

The problem of counting Hamilton cycles in a graph is in #P by identical reasoning 
to that used in Example 2.1. The complexity class #P is very rich in natural 
counting problems. Note that elementary considerations entail FP s: #P. 

Now, how could we convince ourselves that a problem f is not efficiently 
solvable? Of course, one possibility would be to prove that f tJ. FP. Unfortunately, 
such absolute results are beyond the capabilities of the current mathematical the
ory. Still, as in the case of decision problems, it is possible to provide persuasive 
evidence for the intractability of a counting problem, based on the assumption that 
there is some problem in #P that is not computable in polynomial time, i.e., that 
FP i=- #P.6 With this in mind, we are going to define a class of "most difficult" 

4Standing for "F[unctionJ P[olynomial time]" or something similar. 
5That is, by a TM with a write-only output tape. 
6This is clearly the counting analogue of the notorious P oF NP conjecture. Note, however, 

that FP oF #P might hold even in the nnlikely event that P = NP! 
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problems in #P, the so-called #P-complete problems, which have the property 
that if they are in FP, then #P collapses to FP. In other words, if FP c #P 
then no #P-complete counting problem is polynomial-time solvable. For this pur
pose, we seem to need a notion of reducibility that is more general than the usual 
many-one reducibility. 

Given functions f, 9 : I.;* -; N, we say that 9 is polynomial-time Turing (or 
Cook) reducible to f, denoted 9 ::::T f, if there is a Turing machine with an oracle 7 

for f that computes 9 in time polynomial in the input size. The relation ::::T is 
transitive; moreover, 

f E FP A 9 ::::T f =} 9 E FP . (2.3) 

A function f is #P-hard if every function in #P is Turing reducible to f; it is #P
complete if, in addition, f E #P. Just as with the class NP, we have a dichotomy: 
either FP = #P or no #P-complete counting problem is polynomial-time solvable. 
Formally, this follows from (2.3), which expresses the fact that FP is closed under 
polynomial-time Turing reducibility. 

What are examples of #P-complete problems? For one thing, the usual 
generic reduction of a problem in NP to SAT used to prove Cook's theorem is 
"parsimonious", i.e., it preserves the number of witnesses (satisfying assignments 
in the case of SAT). It follows that #SAT is #P-complete: 

Name. #SAT 

Instance. A propositional formula tfJ in conjunctive normal form (CNF). 

Output. The number of models of (or satisfying assignments to) tfJ. 

More generally, it appears that NP-complete decision problems tend to give rise 
to #P-complete counting problems. To be a little more precise: any polynomial
time witness checking function X gives rise to an NP decision problem II via (2.1) 
and a corresponding counting problem #II via (2.2). Empirically, whenever the 
decision problem II is NP-complete, the corresponding counting problem #II is 
#P-complete. Simon [56] lists many examples of this phenomenon, and no coun
terexamples are known. What he observes is that the existing reductions used 
to establish NP-completeness of decision problems II are often parsimonious and 
hence establish also #P-completeness of the corresponding counting problem #II. 
When the existing reduction is not parsimonious it can be modified so that it be
comes so. 

7 An oracle for f is an addition to the Turing machine model, featuring a write-only query 
tape and a read-only response tape. A query q E E* is first written onto the query tape; when 
the machine goes into a special "query state" the query and response tapes are both cleared and 
the response f(x) written to the response tape. The oracle is deemed to produce the response 
in just one time step. In conventional programming language terms, an oracle is a subroutine or 
procedure, where we discount the time spent executing the body of the procedure. 
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Open Problem. Is it the case that for every polynomial-time witness-checking 
predicate X, the counting problem #II is #P-complete whenever the decision 
problem II is NP-complete? I conjecture the answer is "no", but resolving the 
question may be difficult. Note that a negative answer could only reasonably be 
established relative to some complexity theoretic assumption, since it would entail 
FP c #P. Indeed, if FP were to equal #P then every function in #P would be 
trivially #P-complete. 

2.2 A primal #P-complete problem 

What makes the theory of #P-completeness interesting is that the converse to the 
above conjecture is definitely false; that is, there are #P-complete counting prob
lems #II corresponding to easy decision problems II E P. A celebrated example 
[62] is #BIPARTITEPM, that has an alternative formulation as O,l-PERM: 

Name. #BIPARTITEPM 

Instance. A bipartite graph G. 

Output. The number of perfect matchings in G. 

Name. O,l-PERM 

Instance. A square 0, I-matrix A = (aij : 0 ~ i,j < n). 

Output. The permanent 

n-l 

per A = L II ai,a(i) 
aESn i=O 

of A. Here, Sn denotes the symmetric group, i.e., the sum is over 
all n! permutations of [n]. 

To see the correspondence, suppose, for convenience, that G has vertex set [nJ + [n], 
and interpret A as the adjacency matrix of G; thus aij = 1 if (i,j) is an edge of G 
and aij = 0 otherwise. Then per A is just the number of perfect matchings in G. In 
particular, the following theorem implies that planarity (or some slightly weaker 
assumption) is crucial for the Kasteleyn result (Theorem 1.11). 

Theorem 2.2 (Valiant). O,l-PERM (equivalently, #BIPARTITEPM) is #P-complete. 

It is clear that O,l-PERM is in #P: the obvious "witnesses" are permuta
tions a satisfying 11 ai,a(i) = 1. To prove #P-hardness, we use a sequence of 
reductions starting at #EXACT3CoVER and going via a couple of auxiliary prob
lems #WBIPARTITEMATCH and #WBIPARTITEPM. 
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Name. #EXACT3CoVER 

Instance. A set X together with a collection T ~ (~) of unordered 
triples8 of X. 

Output. The number of sub collections S ~ T that cover X without 
overlaps; that is every element of X should be contained in pre
cisely one triple in S. 

Name. #WBIPARTITEMATCH 

Instance. A bipartite graph G with edge weights w : E( G) -t {I, -1, - ~, g }. 
(Why exactly these weights are used will become clearer in the 
course of the proof.) 

Output. The "total weight" of matchings Pmatch(G) = EM w(M), 
where M ranges over all matchings in G and the weight of a 
matching is w(M) = DeEM w(e). 

Name. #WBIPARTITEPM 

Instance. As for #WBIPARTITEMATCH. 

Output. As for #WBIPARTITEMATCH, but with "perfect matchings" 
replacing "matchings". 

Remark 2.3. More generally, we might consider a graph G with edge weighting 
w : E( G) -t Z U C, where Z is a set of indeterminates. In this case the expression 
Pmatch(G) = EM w(M) appearing in the definition of #WBIPARTITEMATCH is a 
polynomial in Z. If every edge is assigned a distinct indeterminate, then Pmatch (G) 
is the matching polynomial of G, i.e., the generating function for matchings in G. 

Since #EXACT3CoVER is the counting version of an NP-complete problem, 
we expect it to be #P-complete via parsimonious reduction. 

Fact 2.4. #EXACT3CoVER is #P-complete. 

Exercise 2.5. (This exercise is mainly directed to readers with some exposure to 
computational complexity.) Garey and Johnson [30, §7.3] note Fact 2.4 without 
proof. Since I am not aware of any published proof, we should maybe pause to 
provide one. Garey and Johnson's reduction [30, §3.1.2] from 3SAT (the restric
tion of SAT to formulas with three literals per clause) to EXACT3CoVER (actu
ally a special case of EXACT3CoVER called "3-dimensional matching") is almost 
parsimonious. The "truth setting component" is fine (each truth assignment cor
responds to exactly one pattern of triples). The "garbage collection component" 
is also fine (it is not strictly parsimonious, but the number of patterns of triples 
is independent of the truth assignment, which is just as good). The "satisfaction 

Brm not sure if (~) is a standard notation for "the set of all unordered triples from X", but 
it seems natural enough, given the notation 2x. 
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testing component" needs some attention, as the number of patterns of triples 
depends on the truth assignment. However, with a slight modification, this defect 
may be corrected. Finally, to do a thorough job, we really ought to modify Garey 
and Johnson's reduction [30, §3.1.1] from SAT to 3SAT to make it parsimonious 
too. 

In the light of Fact 2.4, Theorem 2.2 will follow from the following series of 
lemmas: 

Lemma A. #EXACT3CovER:S;T #WBIPARTITEMATCH. 

Lemma B. #WBIPARTITEMATCH:S;T #WBIPARTITEPM. 

Lemma C. #WBIPARTITEPM:S;T #BIPARTITEPM (= O,l-PERM). 

Proof of Lemma A. Our construction is based on the weighted bipartite graph H 
(depicted in Figure 2.1), where the weights of the edges on the left are as indicated, 
and the edges labelled aI, a2 and a3 will presently all be assigned weight 1. Initially, 
however, to facilitate discussion, we assign to these edges distinct indeterminates 
ZI, Z2 and Z3, respectively. 

Figure 2.1: The graph H. 

By direct computation, the matching polynomial of H, with weights as spec
ified, is 

(2.4) 

Let us see how to verify (2.4) by calculating the coefficient of ZIZ2Z3; the other coef
ficients can be calculated similarly. (Note that there there are only four calculations 
since, by symmetry, only the degree of the monomial is significant.) So suppose we 
include all three edges aI, a2 and a3, as we must do in order to get a matching that 
contributes to the coefficient of ZlZ2Z3. Then we can either add no further edge at 
all, or add the lower left edge with weight 1, or the upper left edge with weight 
-~. Thus, the total weight of such matchings is (1 + 1 - ~)ZIZ2Z3 = tZIz2Z3' 

Equation (2.4) succinctly expresses the key properties of H that we use. 
Suppose that H is an (induced) subgraph of a larger graph G, and that H is 
connected to the rest of G only via the vertices VI, V2 and V3; more precisely, 
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there are no edges of G incident to vertices V (H) \ {VI, V2, V3} other than the 
ones depicted. Consider some matching M' ~ E(G) \ (E(H) \ {aI,a2,a3}) in G, 
i.e., one that does not use edges from H except perhaps aI, a2 and a3. We call a 
matching M :;2 M' in G an extension of M' if it agrees with M' on the edge set 
E( G) \ (E(H) \ {aI, a2, a3}). If M' includes all three edges ai, then the total weight 
of extensions of M' to a matching M on the whole of G is ~w(M'); a similar claim 
holds if M' excludes all three edges ai. In contrast, if M includes some edges ai 
and excludes others, then the total weight of extensions of M' is zero. Informally, 
H acts as a "coordinator" of the three edges ai. 

Using the facts encapsulated in (2.4), we proceed with the reduction of 
#EXACT3CoVER to #WBIPARTITEMATCH. An instance of #EXACT3CoVER 

consists of an underlying set X, and a collection T ~ (~) of triples; for con
venience set n := !X! and m := !T!. We construct a bipartite graph G as follows. 
Take a separate copy H t of H for each triple t = {a, (3, 'I} E T and label the 
three pendant edges of H t with a~, a~, and a;, respectively. Furthermore, for each 
a EX, introduce vertices Va and Ua , and connect them by an edge {va, U a } of 
weight -1. Finally, identify the right endpoint of the edge a~ with the vertex Va 

whenever a E t (see Figure 2.2). 

v, -1 U, • • 
a~ V8 -1 U8 

-1 
• • 
Va -1 U a 

vj3 -1 uj3 

v"( -1 u"( 
-1 

• • 

Figure 2.2: A sketch of the graph G. 

Recall that the matching polynomial of G is a sum over matchings M in G 
of the weight w(M) of M. We partition this sum according to the restriction 
A = M n I of M to I, where I := {a~ : t E T /\ a E t}. Computing the total 
weight of extensions of A to a matching in G is straightforward. For each of 
the subgraphs H t , equation (2.4) gives the total weight of extensions of A to 
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that subgraph. For each of the edges {vel:) uoJ, the total weight of extensions of A 
to that edge is simply 1 if Va is covered by A and (1-1) = 0 otherwise. Expressing 
these considerations symbolically yields the following expression for the matching 
polynomial of G: 

where 

and 

Pmatch(G) = L w(M) = L II 'Pt(A) II 1/Ja(A) , (2.5) 
M 

{

I 
3' 

'Pt(A) = ~, 
0, 

1/Ja(A) = {
I, 

0, 

A<:;I tET aEX 

if a~ E A for all a E t; 

if a~ ~ A for all a E t; 
otherwise, 

if a~ E A for some t :3 a 

otherwise. 

Each edge subset A contributing a non-zero term to the sum (2.5) corresponds 
to an exact 3-cover of X: no element a of X is covered twice (property of a 
matching), no element of X is uncovered (property of 1/Ja), and no triple t is 
subdivided (property of 'Pt). Since every exact 3-cover contributes (~)m to (2.5), 
we obtain 

Pmatch (G) = (~) m 1 { exact 3-covers of X by triples in T} I. (2.6) 

Thus, assuming we have an oracle for the left hand side of (2.6), we can compute 
the number of exact three covers in time polynomial in m and n, and hence 
polynomial in the size of the #EXACT3CoVER instance (X, T). 0 

Proof of Lemma B. Let G be an instance of #WBIPARTITEMATCH, that is, a 
bipartite graph with vertex set V = RuB and edge set E, where (~) n E = 
(~) n E = 0, and edge weights from {I, -1, i, -no Set r := IRI and b := IBI, so 
that r + b = n : = IV I. 

For 0::; k ::; min{r, b} (the maximal possible cardinality of a matching in G), 
we construct a bipartite graph graph Gk as follows. Take a set R' and a set B' of 
new vertices, IR'I = b - k and IB'I = r - k and connect each vertex in R with each 
vertex in B' and each vertex in R with each vertex in R' by new edges of weight 1 
(see Figure 2.3). 
In a similar vein to the proof of Lemma A, we observe that 

M' is a perfect 
matching in G k 

w(M') = (r - k)! (b - k)! w(M). 
M is a k-

matching in G 

Thus, we can compute the total weight of matchings in G by invoking our oracle 
for #WBIPARTITEPM on every Gk and summing over k. 0 
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Figure 2.3: The graph C k. 

Proof of Lemma C. Let C = (V, E) be an instance of #BIPARTITEPM, with !VI = 
n. We get rid of the weights one by one using interpolation. Consider a certain 
weight ( E a, -1, - ~ }. If we replace it by an indeterminate z, then 

p(z) := 

M is a perfect 
matching in G 

w(M) 

is a polynomial of degree d :s; ~n. If we can evaluate p at d + 1 distinct points, 
say at k = 1, ... , d + 1, we can interpolate to find p( (). (Refer to Valiant [64] for a 
discussion of efficient interpolation.) In order to find p( k) for fixed k, we construct 
a graph Ck from C by replacing each edge {u, v} of weight z by k disjoint paths 
of length 3 between u and v such that each edge on these paths has weight 1 (see 
Figure 2.4). 

z=k J • v ........ _ .............. _ .... ;;. 
v 

Figure 2.4: Substituting k disjoint paths for an edge. 

Then p(k) = I{perfect matchings in Cdl, and we can determine the right 
hand side by means of our oracle for #BIPARTITEPM. This completes the proof 
of the last lemma, and hence of the theorem. 0 

Remarks 2.6. (a) The intermediate problems in the above proof are not in #P; 
however, they are "#P-easy", i.e., Turing reducible to a function in #P. 
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(b) #P-hard counting problems are ubiquitous. In fact, the counting problems in 
FP are very much the exceptions. The ones we encountered in Chapter 1 -
counting trees in directed and undirected graphs (and the related Eulerian 
circuits in a directed graph), and perfect matchings in a graph (and the 
related partition function of a planar ferromagnetic Ising system) - are 
pretty much the only non-trivial examples. 

(c) Our reduction from #EXACT3CovER to #BIPARTITEPM used polynomial 
interpolation in an essential way. Indeed, interpolation features prominently 
in a majority of #P-completeness proofs. The decision to define #P-com
pleteness with respect to Turing reducibility rather than many-one reducibil
ity is largely motivated by the need to perform many polynomial evaluations 
(which equate to oracle calls) rather than just one. It is not clear whether 
the phenomenon of #P-completeness would be as ubiquitous if many-one 
reducibility were to be used in place of Turing. 

(d) Following from the previous observation: Polynomial interpolation is not nu
merically stable, and does not preserve closeness of approximation. Specifi
cally, we may need to evaluate a polynomial to very great accuracy in order 
to know some coefficient even approximately. Thus we cannot deduce from 
the reductions in Lemmas A-C above that approximating the permanent is 
computationally hard, even though approximating #EXACT3CoVER is. We 
exploit this loophole in Chapter 5. 

(e) Every problem in NP is trivially #P-easy. It is natural to ask how much 
bigger #P is than NP. The answer seems to be that it is much bigger. 
The complexity class PH (Polynomial Hierarchy) is defined similarly to NP, 
except that arbitrary quantification is allowed in equivalence (2.1), in place of 
simple existential quantification. PH seems intuitively to be "much bigger" 
than NP. Yet it is a consequence of Toda's theorem (see [59]) that every 
problem in PH is #P-easy! 

2.3 Computing the permanent is hard on average 

While many NP-complete problems are easy to decide on random instances, this 
does not seem to be the case for counting problems. For example, consider an 
(imperfect) algorithm A for computing the permanent of n x n matrices A over 
the field GF(p), for all n E N and all primes p, with the following specification: 

1. A has runtime polynomial in nand p; 

2. For each n and each p, A must give the correct result except on some fraction 
3(n~1) of all n x n matrices over GF(p). 
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Theorem 2. 7. No algorithm A with the above specification exists unless every prob
lem in #P admits a polynomial-time randomised algorithm with lou? error prob
ability. 10 

Proof. It suffices to show that some particular #P-complete problem, namely 0,1-
PERM, admits a polynomial-time randomised algorithm with low error probability. 
Given an n x n matrix A with entries from {O, 1}, if we know per A (mod Pi) 
for a sequence PI, P2, ... ,Pn of n distinct primes larger than n + 1, then we can 
use "Chinese remaindering" to evaluate per A. The method is as follows. If a 
and b are relatively coprime natural numbers, we can write 1 = ca + db with 
integer coefficients c, d, which can be found by means of the Euclidian algorithm. 
Now suppose we know the residues r = x mod a and s = x mod b of an integer 
x. If we set y := rdb + sca, we have x == y (mod a) and x == y (mod b), and 
hence x == y (mod ab), by relative primality. Thus, inductively, we can compute 
(per A) mod PIP2 ... Pn from the n values (per A) mod Pi. But since per A is a 
natural number not larger than n! < PIP2 ... Pn, it is uniquely determined by its 
residue modulo PIP2 ... Pn. Moreover, the Prime Number Theorem ensures that 
we may take the Pi's to be no larger than O( n In n); in particular, we can find 
them by brute force in time polynomial in n. 

Thus, it remains to show how, for a fixed prime n + 2 ~ P ~ O(nln n), 
we can employ A to compute (per A) mod P with low error probability. For this 
purpose, we select a matrix R u.a.r. from all n x n matrices over GF(p). Let z be 
an indeterminate and consider 

p(z) := per(A + zR), 

regarded as a polynomial of degree at most n with coefficients in GF(p). Using 
A, we evaluate (in time polynomial in nand p, hence in n) p(z) at n + 1 points 
z = 1,2, ... , n + 1. Observe that, since the numbers 1, ... , n + 1 are invertible 
modulo p, A+R, A+2R, ... ,A+(n+1)R are again random matrices (over GF(p)). 
Thus, with probability at least 1- (n+ 1) 3(nl+l) = ~,A will give the correct answer 
in all instances. Now we interpolate to find p(O) = (per A) mod p. 0 

Remarks 2.8. (a) Feige and Lund [28] have considerably sharpened Theorem 2.7 
using techniques from the theory of error-correcting codes. 

(b) The property (of a problem) of being as hard on average as in the worst case 
holds quite generally in high enough complexity classes. Refer to Feigenbaum 
and Fortnow [29] for a discussion of this phenomenon. 

9We can take "low" to mean ~, since this may be reduced to an arbitrarily small value by 
repeatedly running A and taking a majority vote. Note that the error probability decreases to 
zero exponentially as a function of the number of trials. 

laThe error probability is with respect to random choices made by the algorithm. The input 
is assumed non-random. 
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Open Problem. What is the complexity of computing the permanent of a random 
0, I-matrix? It is reasonable to conjecture that computing the permanent of a 
0, I-matrix exactly is as hard on average as it is in the worst case. However, this 
purely combinatorial version of the problem leaves no space for the interpolation 
that was at the heart of the proof of Theorem 2.7. 
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for a probabilistic Turing machine to decide a predicate or approximate a function 
(in each case, with high probability) are possible, leading to various randomised 
complexity classes. 

The probabilistic Turing machine is the usual basis for defining randomised 
complexity classes, but, more pragmatically, we can alternatively take as our model 
a random access machine (RAM) equipped with coin-tossing instructions, or a sim
ple programming language that incorporates a random choice statement with two 
outcomes (themselves statements) that are mutually exclusive and each executed 
with probability ~. All of these possible models are equivalent, modulo polynomial 
transformations in run-time. So when the phrase "randomised algorithm" is used 
in this and subsequent chapters, we are usually free to think in terms of any of the 
above models. However, when specific time bounds are presented (as opposed to 
general claims that some algorithm is polynomial time) we shall be taking a RAM 
or conventional programming language view. For a more expansive treatment of 
these issues, see Papadimitriou's textbook [54, Chaps 2 & 11]. 

A randomised approximation scheme for a counting problem f : 17* --> N 
(e.g., the number of matchings in a graph) is a randomised algorithm that takes 
as input an instance x E 17* (e.g., an encoding of a graph G) and an error tolerance 
E > 0, and outputs a number N E N (a random variable of the "coin tosses" made 
by the algorithm) such that, for every instance x, 

3 
Pr [e- o f(x) ::::; N ::::; eO f(x)] 2: 4. (3.1) 

We speak of a fully polynomial randomised approximation scheme, or FPRAS, if 
the algorithm runs in time bounded by a polynomial in Ixl and E- 1 . 

Remarks 3.1. (a) The number ~ appearing in (3.1) could be replaced by any 
number in the open interval (~, 1). 

(b) To first order in E, the event described in 3.1 is equivalent to (1 - E) f (x) ::::; 
N::::; (1 + E)f(x), and this is how the requirement of a "randomised approx
imation scheme" is more usually specified. However the current definition is 
equivalent, and has certain technical advantages; specifically, a sequence of 
approximations of the form e-o~i+l ::::; ~i ::::; eO~i+l compose gracefully. 

For two probability distributions 7r and 7r' on a countable set fl, define the 
total variation distance between 7r and 7r' to be 

117r - 7r'IITV := ~ '"' 17r(w) - 7r'(w)1 = max 17r(A) - 7r'(A)I· (3.2) 2 ~ Acn 
wEn -

A sampling problem is specified by a relation S <;;; 17* x E* between problem 
instances x and "solutions" wE S(X).2 For example, x might be the encoding of a 
graph G, and S(x) the set of encodings of all matchings in G. An almost uniform 

2We write Sex) for the set {w: xSw} to avoid awkwardness. 
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sampler for a solution set S <;;; I;* x I;* (e.g., the set of all matchings in a graph) is 
a randomised algorithm that takes as input an instance x E I;* (e.g., an encoding 
of a graph G) and an sampling tolerance 6 > 0, and outputs a solution W E S(x) 
(a random variable of the "coin tosses" made by the algorithm) such that the 
variation distance between the distribution of Wand the uniform distribution on 
S(x) is at most 6.:l An almost uniform sampler is fully polynomial if it runs in 
time bounded by a polynomial in x and log 6- 1 . We abbreviate "fully polynomial 
almost uniform sampler" to FPAUS. 

Remarks 3.2. (a) The definitions of FPRAS and FPAUS have obvious parallels. 
Note however that the dependence of the run-time on the "tolerance" (c: or 6, 
respectively) is very different: polynomial in c:- 1 versus log 6- 1 respectively. 
This difference is deliberate. As we shall see, the relative error in the estimate 
for f(x) can be improved only at great computational expense, whereas the 
sampling distribution on S(x) can be made very close to uniform relatively 
cheaply. 

(b) For simplicity, the definitions have be specialised to the case of a uniform 
distribution on the solution set S(x). However, one could easily generalise 
the notion of "almost uniform sampler" to general distributions. 

The "witness checking predicate" view of the classes NP and #P presented 
in Chapter 2 carries across smoothly to sampling problems. A witness checking 
predicate X <;;; I;* x I;* and polynomial p define a sampling problem S <;;; I;* x I;* 

VIa 

S(x) = {w E I;* : X(x, w) 1\ Iwl ::; p(lxl)}, (3.3) 

where particular attention focuses on polynomial-time predicates X (c.f. (2.1) 
and (2.2)). If X is the "Hamilton cycle" checker of Chapter 2, then the related 
sampling problem S(x) is that of sampling almost uniformly at random a Hamil
ton cycle in the graph G encoded by x. So we see that each combinatorial struc
ture gives rise to a trio of related problems: decision, counting and sampling. 
Furthermore, the second of these at least may be considered in exact (FP) and 
approximate (FPRAS) forms. 

Remark 3.3. The distinction between exactly and almost uniform sampling seems 
less crucial, and, in any case, technical complications arise when one attempts to 
define exactly uniform sampling: think of the problem that arises when IS(x)1 = 3 
and we are using the probabilistic Turing machine as our model of computation 
(or refer to Sinclair [58]). 

3If Sex) = 0 we allow the almost uniform sampler to return a special undefined symbol 1.., 
otherwise it cannot discharge its obligation. 
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3.2 Reducing approximate counting 
to almost uniform sampling 

Fix a witness-checking predicate X and consider the associated counting and sam
pling problems, f : E* -t Nand S ~ E* x E* defined by (2.2) and (3.3), re
spectively. It is known - under some quite mild condition on X termed "self
reducibility," which often holds in practice - that the computational complexity 
of approximating f(x) and sampling almost uniformly from S(x) are closely re
lated. In particular, f admits an FPRAS if and only if S admits an FPAUS. For 
full details, refer to Jerrum, Valiant and Vazirani [38]. Here we shall explore this 
relationship in only one direction (FPAUS implies FPRAS) and then only in the 
context of a specific combinatorial structure, namely matchings in a graph. This 
reduces the technical complications while retaining the main ideas. 

Let M (G) denote the set of matchings (of all sizes) in a graph G. 

Proposition 3.4. Let G be a graph with n vertices and m edges, where m :::: 1 
to avoid trivialities. If there is an almost uniform sampler for M (G) with run
time bounded by T( n, m, E), then there is a randomised approximation scheme for 
IM(G)I with run-time bounded bycm2E- 2 T(n,m,E/6m), for some constantc. In 
particular, if there is an FPAUS for M(G) then there is an FPRAS for IM(G)I. 

Proof. Denote the postulated almost uniform sampler by S. The approximation 
scheme proceeds as follows. Given G with E(G) = {el, ... ,em } (in any order), 
we consider the graphs Gi := (V(G),{el, ... ,ed) for 0::; i::; m. Thus, Gi- 1 is 
obtained from Gi by deleting the edge ei. The quantity IM(G)I which we would 
like to estimate can be expressed as a product 

(3.4) 

of ratios 
IM(Gi-dl 

{!i:= IM(Gi)1 . 

(Here we use the fact that IM(Go)1 = 1.) Observe that M(Gi-d ~ M(Gi ) and 
that M(Gi ) \ M(Gi- 1 ) can be mapped injectively into M(Gi-d by sending M 
to M \ {ed. Hence, 

1 -<n<l. 2 - Of' -
(3.5) 

We may assume 0 < E ::; 1 and m :::: 1. In order to estimate the e/s, we 
run our sampler S on Gi with c5 = E/6m and obtain a random matching Mi 
from M(Gi ). Let Zi be the indicator variable of the event that Mi is, in fact, in 
M(Gi- 1 ), and set JLi := EZi = Pr[Zi = 1]. By choice of c5 and the definition of 
the variation distance, 

E E 
n· - - < 1/.. < n· + -
Of' 6m - "" - Of' 6m' (3.6) 
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or, from (3.5), 

(1 - ~) n- < /I- < (1 + ~) n- . 3m oct - ,..., - 3m oct, (3.7) 

so the sample mean of a sufficiently large number 8 of independent copies4 Z; 1) , ... , 

Z;s) of the random variable Zi will provide a good estimate for [!i. Specifically, let 
8 ·= f74 c - 2ml < 75 c - 2m and Z .= 8- 1 ,",S Z(j) • Co _ C , , • uJ=l t . 

Note that Var Zi = E[(Zi - f.-ti)2] = Pr[Zi = 1](1 - f.-ti)2 + Pr[Zi = O]f.-tT = 
f.-ti(1- f.-ti) and that inequalities (3.5) and (3.7) imply f.-ti 2 1/3. Thus, f.-ti2 Var Zi = 
f.-ti1 - 1 :S 2, and hence 

Var Zi 2 c2 
--<-<--

f.-tT - 8 - 37m 
(3.8) 

As our estimator for \M(G)\, we use the random variable 

( 
m )-1 

N:= ITZt 
,=1 

Note that E[ZlZ2 ... Zml = f.-t1f.-t2··· f.-tm, and furthermore 

- - - -2-2-2 
Var[Zl Z 2 ••• Zm] E[Zl Z2··· Zml 

( ) 2 = 2 2 2 - 1 
f.-t1f.-t2 ... f.-tm f.-t1f.-t2 ... f.-tm 

m E[Zi2] 
= IT --2 - - 1 since r.v's Zi are independent 

i=l f.-ti 

= IT (1 + Var2Zi ) -1 
i=l f.-t t 

::; (1 + 3~~) m - 1 by (3.8) 

:S exp (;~) - 1 

c2 
<- 36' 

since ex /(k+1) ::; 1 + x/k for 0 ::; x :S 1 and k E N+. Thus, by Chebychev's 
Inequality, 

(3.9) 

with probability at least 1- (c/3)-2(c2/36) = ~. Since e- x / k :s 1- x/(k + 1) for 
o :s x :s 1 and k E N+, we have the following weakening of inequality (3.9): 

/2 - - - /2 e-'" f.-t1f.-t2 ... f.-tm:SZ1Z2 ... Zm:Se'" f.-t1f.-t2 ... f.-tm. 

40btained from s independent runs of S on Gi . 
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But from (3.7), using again the fact about the exponential function, we have 

-,,/2 < < c:/2 e {h(}2'" (}m _ J-liJ-l2'" J-lm _ e (}1(}2··· (}m, 

which combined with the previous inequality implies 

with probability at least ~. Since Z iZ2 ... Zm = N- i and (}1(}2 ... (}m = IM( G)I- i , 

our estimator N for IM(G)I satisfies requirement (3.1). Thus the algorithm that 
computes computes N as above is an FPRAS for IM(G)I. 

The run-time of the algorithm is dominated by the number of samples re
quired, which is 8m :::; 75c 2m 2 , multiplied by the time-per-sample, which is 
T(n, m, f); the claimed time-bound is immediate. 0 

Exercise 3.5. Prove a result analogous to Proposition 3.4 with (proper vertex) 
q-colourings of a graph replacing matchings. Assume that the number of colours q 
is strictly greater than the maximum degree Ll of G. There is no need to repeat all 
the calculation, which is in fact identical. The key thing is to obtain an inequality 
akin to (3.5), but for colourings in place of matchings. 

In light of the connection between approximate counting and almost uniform 
sampling, methods for sampling from complex combinatorially defined sets gain 
additional significance. The most powerful technique known to us is Markov chain 
simulation. 

3.3 Markov chains 

We deal exclusively in this section with discrete-time Markov chains on a finite 
state space D. Many of the definitions and claims extend to countable state spaces 
with only minor complication. In Chapter 6 we shall need to employ Markov chains 
with continuous state spaces, but the corresponding definitions and basic facts will 
be left until they are required. See Grimmett and Stirzaker's textbook [33] for a 
more comprehensive treatment. 

A sequence (Xt E D)~o of random variables (LV'S) is a Markov chain (MC), 
with state space D, if 

Pr[Xt+i = y I X t = Xt, X t - i = Xt-i,"" Xo = Xo] = Pr[Xt+i = y I X t = xtl, 
(3.10) 

for all tEN and all Xt, Xt-i, ... ,Xo E D. Equation (3.10) encapsulates the Marko
vian property whereby the history of the MC prior to time t is forgotten. We 
deal only with (time-) homogeneous MCs, i.e., ones for which the right-hand side 
of (3.10) is independent of t. In this case, we may write 

P(X, y) := Pr[Xt+l = y I X t = x], 
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where P is the transition matrix of the MC. The transition matrix P describes 
single-step transition probabilities; the t-step transition probabilities pt are given 
inductively by 

t( ) {I(X' y), if t = 0; 
P x, y:=" t 1 , , 

L..Jy'ED P - (x, y )P(y ,y), if t > 0, 

where I denotes the identity matrix I(x, y) := 8xy . Thus pt(x, y) = Pr[Xt = y I 
Xo =xJ. 

A stationary distribution of an MC with transition matrix P is a probability 
distribution 7f : D ---+ [0, 1] satisfying 

7f(Y) = L 7f(x)P(x, y). 
xED 

Thus if Xo is distributed as 7f then so is Xl (and hence so is X t for all tEN). 
A finite MC always has at least one stationary distribution. An MC is irreducible 
if, for all x, y E D, there exists atE N such that pt(x, y) > 0; it is aperiodic if 
gcd{t: pt(x,x) > O} = 1 for all x E D.5 A (finite-state) MC is ergodic ifit is both 
irreducible and aperiodic. 

Theorem 3.6. A n ergodic M G has a unique stationary distribution 7f; moreover the 
MG tends to 7f in the sense that pt(x, y) ---+ 7f(y), as t ---+ 00, for all xED. 

Informally, an ergodic MC eventually "forgets" its starting state. Computa
tion of the stationary distribution is facilitated by the following little lemma: 

Lemma 3.1. Suppose P is the transition matrix of an MG. If the function 7f' : 

D ---+ [0, 1] satisfies 

7f'(x)P(x,y) = 7f'(y)P(y,x), for all x,y ED, (3.11) 

and 

L 7f'(x) = 1, 
xED 

then 7f' is a stationary distribution of the MG. If the MG is ergodic, then clearly 
7f' = 7f is the unique stationary distribution. 

Proof. We just need to check that 7f' is invariant. Suppose Xo is distributed as 7f'. 

Then 

Pr[Xl = yJ = L 7f'(x)P(x,y) = L 7f'(y)P(y,x) = 7f'(y) . 
xED xED 

SIn the case of an irreducible Me, it is sufficient to verify the condition 
gcd{t: pt(x,x) > O} = 1 for just one state x E Q . 

o 
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Remark 3.8. Condition (3.11) is known as detailed balance. An MC for which 
it holds is said to be time reversible. Clearly, Lemma 3.7 cannot be applied to 
non-time-reversible MCs. This is not a problem in practice, since all the MCs 
we consider are time reversible. In fact, it is difficult in general to determine 
the stationary distribution of large non-time-reversible MCs, unless there is some 
special circumstance, for example symmetry, that can be taken into consideration. 
Furthermore, all the usual methods for constructing MCs with specified stationary 
distributions produce time-reversible MCs. 

Example 3.9. Here is a natural (time homogeneous) MC whose state space is 
the set M (G) of all matchings (of all sizes) in a specified graph G = (V, E). 
The transition matrix of the MC is defined implicitly, by an experimental trial. 
Suppose the initial state is Xo = M E M(G). The next state Xl is the result of 
the following trial: 

1. With probability ~ set Xl <- M and halt. 

2. Otherwise, select e E E( G) and set M' <- M EB {e }.6 

3. If M' E M(G) then Xl <- M' else Xl <- M. 

Since the MC is time homogeneous, it is enough to describe the first transition; 
subsequent transitions follow an identical trial. Step 1 may seem a little unnatural, 
but we shall often include such a looping transition to avoid a certain technical 
complication. Certainly its presence ensures that the MC is aperiodic. The MC is 
also irreducible, since it is possible to reach the empty matching from any state by 
removing edges (and reach any state from the empty matching by adding edges). 
Thus the MC is ergodic and has a unique stationary distribution. 

Exercise 3.10. Demonstrate, using Lemma 3.7, that the stationary distribution of 
the MC of Example 3.9 is uniform over M(G). 

Exercise 3.10 and Proposition 3.4, taken together, immediately suggest an 
approach to estimating the number of matchings in a graph. Simulate the MC on 
M( G) for T steps, starting at some fixed state Xo, say Xo = 0, and return the final 
state X T. If T is sufficiently large, this procedure will satisfy the requirements of an 
almost uniform sampler for matchings in G. Then the method of Proposition 3.4 
may be used to obtain a randomised approximation scheme for the number of 
matchings 1M (G) I. Whether this approach is feasible depends crucially on the 
rate of convergence of the MC to stationarity. We shall prove in Chapter 5 that 
a modification7 of the Me described in Example 3.9 does in fact come "close" to 
stationarity in a polynomial number of steps (in the size of the graph G), hence 
yielding an FPRAS for the number of matchings in a graph. 

6The symbol EEl denotes symmetric difference. 
7In fact, by comparing the original and modified MCs [19], one can show that the MC as 

presented in Example 3.9 also converges in polynomially many steps. 
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1. Select a vertex v E V, u.a.r. 

2. Select a colour CEQ \ Xo(r(v)), u.a.r. 

3. Xl(V) ;- C and Xl(U) ;- Xo(u) for all U f. v. 

Figure 4.1: Trial defining an MC on q-colourings. 

contain KL1+l as a connected component [7, 9J.2 The proof of Brooks' theorem is 
effective, and yields a polynomial-time algorithm for constructing a q-colouring. 
It is also best possible in the (slightly restricted) sense that there are pairs, for 
example q = 3, .1 = 4, which just fail the condition of the theorem, and for which 
the problem of deciding q-colourability is NP-complete, even when restricted to 
graphs of maximum degree .1. So if we are aiming at an efficient sampling proce
dure for q-colourings we should certainly assume q 2 .1. Moreover, to approximate 
the number of q-colourings using the reduction of Exercise 3.5 we need to assume 
further that q > .1. Before we complete the work of this section, we shall need to 
strengthen this condition still further. 

So let e = (V, E) be a graph of maximum degree .1 and let f2 denote the set 
of all q-colourings of e, for some q > .1. Denote by r( v) = {u : {u, v} E E( e)} 
the set of vertices in e that are adjacent to v. Consider the (time-homogeneous) 
MC (Xt ) on f2 whose transitions are defined by the experimental trial presented 
in Figure 4.1. Here we are considering a colouring as a function V ---) Q, so Xo (u) 
denotes the colour of vertex u in the initial state, and Xo(r(v)) = {Xo(u) : u E 
rev)} denotes the set of all colours applied to neighbours of v. Note that the 
assumption q > .1 makes it easy to construct a valid initial state Xo. 

Exercises 4.1. 1. Prove that the above MC is irreducible (and hence ergodic) 
under the (stronger) assumption q 2 .1+2. Further prove, using Lemma 3.7, 
that its (unique) stationary distribution is uniform over f2. 

2. [Alan Sokal.J Exhibit a sequence of connected graphs of increasing size, with 
.1 = 4, such that the above MC fails to be irreducible when q = 5. (Hint: 
as a starting point, construct a "frozen" 5-colouring of the infinite square 
lattice, i.e., the graph with vertex set Z x Z and edge set {(i,j),(i',/) : 
Ii - i'l + Ii - /1 = 1}. The adjective "frozen" applied to a state is intended 
to indicate that the only transition available from the state is a loop (with 
probability 1) to the same state.) 

3. Design an MC on q-colourings of an arbitrary graph e of maximum degree .1 
that is ergodic, provided only that q 2 .1 + 1. The MC should be easily 
implementable, otherwise there is no challenge! (Hint: use transitions based 
on edge updates rather than vertex updates.) 

2 Kr denotes the complete graph on T vertices. 
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We shall show that (Xt ) is rapidly mixing, provided q 2: 2.,1 + 1, which 
we assume from now on. (The reader may be assured that this is the very last 
time we shall strengthen the lower bound on the number of colours!) This result 
will provide us with a simple and efficient sampling procedure for q-colourings in 
low-degree graphs. 

Suppose (Xt ) is any ergodic MC on countable state space D, with transition 
matrix P and initial state Xo = xED. For tEN, the distribution of X t (the 
t step distribution) is naturally denoted pt (x, . ). Let K denote the the stationary 
distribution of the MC, i.e., the limit of pt(x, . ) as t ---+ 00. Recall the definition 
of total variation distance from (3.2). We measure the rate of convergence to 
stationarity of (Xt ) by its mixing time (from initial state x): 

TX(C) := min {t : Ilpt(x, . ) - KilTY::; C}. ( 4.1) 

Lemma 4.2. The total variation distance Ilpt(x, . ) -KilTY oj the t-step distribution 
Jrom stationarity is a non-increasing Junction oj t. 

Exercise 4.3. Prove Lemma 4.2. (A proof is given at the end of the chapter.) 

In the light of Lemma 4.2, the following definition of mixing time is equivalent 
to (4.1): 

Tx(c) := min {t: IIPS(x, .) -KilTY::; c, for all s 2: t}. 

In other words, once the total variation distance becomes smaller than c it stays 
smaller than c. 

Often we would like to make a statement about mixing time that is indepen
dent of the initial state, in which case we take a worst-case view and write 

T(C) = max Tx(c); 
xEn 

we shall refer to T(C) simply as the mixing time. 

Remark 4.4. Sometimes the further simplification of setting c to some constant, 
say c = ~, is made. The justification for this runs as follows. If T is the first time t 
at which Ilpt(x, . ) -KilTY ::; ~, then it can be shown [2, Chap. 2, Lemma 20] that 
IlpkT(x, . ) - KilTY::; 2- k for every kEN. 

Our aim in the next section is to show that the mixing time T(C) of the MC 
on colourings is bounded by a polynomial in n and log c 1. 

Proposition 4.5. Suppose G is a graph on n vertices oj maximum degree .,1. As
suming q 2: 2.,1+ 1, the mixing time T(c) oj the Me oj Figure 4.1 is bounded above 
by 

q-Ll (n) T(c) ::; --A nln - . 
q - 2L.l c 
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Taking the instance size n into account is a prominent feature of applications 
of MCs in computer science, especially as compared with classical Markov chain 
theory. Observe that Proposition 4.5, combined with Proposition 3.4, implies the 
existence of an FPRAS for q-colourings in graphs of low enough degree. 

Corollary 4.6. Suppose G is a connected graph of maximum degree L1, and q 2 
2L1 + 1. Then there is an FPRAS for counting q-colourings in G. Denote by n the 
number of vertices in G and by m the number of edges. Then the running time of 
this FPRAS as a function of n, m and the error tolerance c (regarding L1 and q 
as fixed) is bounded by cnm2C 2 max{ln(m/c), I} for some constant c. 

4.2 Bounding mixing time using coupling 

Coupling as a proof technique was discovered by Doeblin in the 1930s. However, its 
more recent popularity as a tool for bounding mixing time owes much to Aldous. 
Actually, we shall be using only a restricted form of coupling, namely Markovian 
coupling. 

We start with a ground (time homogeneous) MC (Zd with state space n 
and transition matrix P. A (Markovian) coupling for (Zt) is an MC (Xt, yt) on 
n x n, with transition probabilities defined by: 

Pr[X1 = x' I Xo = x, Yo = y] = P(x, x'), 
Pr[Y1 = y' I Xo = x, Yo = y] = P(y, y'). 

( 4.2) 

Equivalently, with P : n2 --> n2 denoting the transition matrix of the coupling, 

L P((x,y),(x',y')) = P(x,x'), 
y'En 

L P((x, y), (x', y')) = P(y, y'). 
x'En 

Thus, the sequence of LV. 's (Xt} viewed in isolation forms an MC with transition 
matrix P, as does the sequence (yt). 

The easy way to achieve (4.2) would be to assume independence of (X t ) and 
(yt), i.e., that 

P((x, y), (x', y')) = P(x, x')P(y, y'). 

But this is not necessary, and for our application not desirable. Instead, we are 
after some correlation that will tend to bring (X t ) and (yt) together (whatever 
their initial states) so that X t = yt for some quite small t. Note that once X t = yt, 
we can arrange quite easily for Xs to be equal to Ys, for all s 2 t, while continuing 
to satisfy (4.2): just choose a transition from Xs and let Y. copy it. 

The following simple lemma, which is the basis of the coupling method, 
was perhaps first made explicit by Aldous [1, Lemma 3.6]; see also Diaconis [18, 
Chap. 4, Lemma 5]. 
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Lemma 4.7 (Coupling Lemma). Let (Xt, yt) be any coupling, satisfying (4.2), based 
on a ground Me (Zd on fl. Suppose t : [0,1] -+ N is a function satisfying the 
condition: for all x, y E fl, and all E > ° 

Pr[Xt(c) i= yt(c) I Xo = x, Yo = y] ~ E. 

Then the mixing time T(E) of (Zt) is bounded above by t(E). 

Proof. Denote by P the transition matrix of (Zt). Let A ~ fl be arbitrary. Let 
Xo = x E fl be fixed, and Yo be chosen according to the stationary distribution 7r 
of (Zt). For any E E (0,1) and corresponding t = t(E), 

pt(x, A) = Pr[Xt E A] 

2 Pr[Xt = yt A yt E A] 
= 1 - Pr[Xt i= yt V yt ~ A] 
2 1 - (Pr[Xt i= yt] + Pr[yt ~ AD 
2 Pr(Yt E A) - E 

= 7r(A) - E. 

Hence, by the second part of definition (3.2), Ilpt(x, . ) - 7rIITV ~ e. 

Remark 4.8. Actually we established the stronger conclusion 

Ilpt(x, .) - pt(y, . )IITV ~ e, for all pairs x, y E fl. 

o 

This slightly different notion of It -convergence corresponds to a slightly different 
notion of mixing time. This new mixing time has certain advantages, notably 
submultiplicativity: see Aldous and Fill [2] for more detail. 

Let's now see how these ideas may be applied to the q-colouring MC of 
Figure 4.1. We need to define a coupling on fl2 such that the projections onto 
the first and second coordinates are faithful copies of the original MC in the sense 
of (4.2). Moreover, we wish the coupling to coalesce, i.e., reach a state where 
X t = yt, as soon as possible. Figure 4.2 presents what seems at first sight to 
be a reasonable proposal. Note that if you hide the random variable Y1 then 
the companion random variable Xl is distributed exactly as if we had used the 
trial presented in Figure 4.1. (By symmetry, a similar statement could be made 
about Yd Thus the coupling condition (4.2) is satisfied. 

We have argued that the coupling in Figure 4.2 is correct, but how efficient 
is it? Intuitively, provided we can arrange for Pr[cx = cy] in step 2 to be large, we 
ought to reach a state with X t = yt (i.e., coalescence) in not too many steps. The 
Coupling Lemma will then provide a good upper bound on mixing time. In order 
to understand what is involved in maximising Pr[cx = cy], the following exercise 
may be useful. 
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1. Select a vertex v E V u.a.r. 

2. Select a pair of colours (cx , cy) from some joint distribution on 

(Q \ Xo(r(v))) x (Q \ Yo(r(v))) 

that has the "correct" marginal distributions; specifically, the distribution 
of Cx (respectively cy ) should be uniform over Q \ Xo(r(v)) (respectively 
Q\ Yo(r( v)). This joint distribution will be chosen so as to maximise Pr[cx = 
cy]. 

3. Set X1(v) f- Cx and Y1(v) f- Cy' 

Figure 4.2: A coupling for the MC on colourings 

Exercise 4.9. Suppose that Q = {O, 1, ... , 6}, Xo(r(v)) = {3,6} and Yo(r(v)) = 
{ 4, 5, 6}. Thus the sets oflegal colours for v in Xl and Y1 are Cx E {O, 1, 2, 4, 5} and 
cy E {O, 1,2, 3}, respectively. Construct a joint distribution for (cx , cy) such that 
Cx is uniform on {O, 1,2,4, 5}, cy is uniform on {O, 1,2, 3}, and Pr[cx = cy] = ~. 
Show that your construction is optimal. 

The best that can be done in general is as follows. 

Lemma 4.10. Let U be a finite set, A, B be subsets of U, and Za, Zb be random 
variables, taking values in U. Then there is a joint distribution for Za and Zb 
such that Za (respectively Zb) is uniform and supported on A (respectively B) 
and, furthermore, 

IAnBI 
Pr[Za = Zb] = max{IAI, IBI} 

Exercise 4.11. Prove Lemma 4.10 and show that the result is best possible. (As
suming your construction in Exercise 4.9 is reasonably systematic, it should be 
possible to adapt it to the general situation.) 

Remark 4.12. The term "coupling" does not have a precise agreed meaning, but 
its general sense is the following. A pair or perhaps a larger collection of r.v's is 
given. A coupling is a joint distribution of the several variables that has the correct 
marginals - i.e., each r.v., when observed independently of the others, has the 
correct probability distribution - but, taken together, the variables are seen to 
be correlated. Usually the correlation aims to "bring the r.v's closer together" in 
some sense. Lemma 4.10 is a special example of an optimal coupling of two r.v's 
that Lindvall calls the ,-coupling [42, §I.5]. The coupling of MCs, as captured in 
condition (4.2), is another example of the concept. 

We are now well prepared for the main result of the chapter. 
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d'(u) 
u~=\===-_ 

d'(v) 

v 

Figure 4.3: Two ways to count the edges spanning the cut (At, Dt). 

Proof of Proposition 4.5. We analyse the coupling of Figure 4.2 using the joint 
distribution for the colour-pair (cx , cy) that is implicit in Lemma 4.10. Thus, letting 

~ := IQ \ Xo(T(v))1 
'f/ := IQ \ Yo(T(v))1 

and 

(= # legal colours for v in Xl)' 

(= # legal colours for v in Y1), 

(:= I(Q\Xo(T(v))) n (Q\ Yo(T(v))) I (= # common legal colours), 

the probability that the same colour is chosen for both Xl and Y1 in step 2 is just 

( 
Pr[cx = cy ] = {~} max ,7] 

(4.3) 

Consider the situation that obtains after the coupling has been run for t steps. 
Let At ~ V be the set of vertices on which the colourings X t and Yt agree, and 
D t = V \ At be the set on which they disagree. Let d' (v) denote the number of 
edges incident at vertex v that have one endpoint in At and one in D t . Clearly, 

L d'(v) = L d'(u) = m', 
vEA, uEDt 

where m' is the number of edges of G that span At and Dt . (The situation is 
visualised in Figure 4.3.) We want to prove that the disagreement set D t tends to 
get smaller and smaller. 

In one transition, the size of the disagreement set Dt changes by at most 
one. We therefore need to consider just three cases: increasing/decreasing by one 
or remaining constant. In fact, we just need to compute the probability of the first 
two, since the third can be got by complementation. 

Consider first the probability that 1 Dt+ 11 = 1 Dt 1 + 1. For this event to occur, 
the vertex v selected in step 1 must lie in At, and the new colours Cx and cy selected 
in step 2 must be different. Observing that the quantities ~, 7] and ( satisfy the 
linear inequalities 

~ - ( 5: d' ( v ) , 

'f/ - ( 5: d'(v), and 

~,7] 2:: q - 11, 
(4.4) 
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we deduce, from (4.3), that 

P [ _ 1 max { ~, 17} - d' ( v ) 
r Cx - cy ~ {C } max ",17 

> 1 _ d'(v) 
- q-Ll' 

conditional on v being selected in step (1). Thus 

1 
Pr [IDt+1 1 = IDtl + 1] = - L Pr [cx i=- cy I v selected] 

n 
vEAt 

1 d'(v) m' 
::::; ;, L q - Ll = (q - Ll)n' 

VEAt 

(4.5) 

Now consider the probability that IDt+ll = IDtl-l. For this event to occur, 
the vertex v selected in step 1 must lie in D t , and the new colours Cx and cy 
selected in step 2 must be the same. The analogues of inequalities (4.4) in this 
case are 

~-(::::;Ll-d'(v), 

17 - ( ::::; Ll- d'(v), and 

~,17 ~ q - Ll. 

Proceeding as in the previous case, 

P [ _ 1 max{~, 17} - Ll + d'(v) 
r Cx - cy ~ {} max ~,17 

= 1 _ Ll - d' ( v ) 
max{~, 17} 

> q - 2Ll + d' (v) 
- q-Ll ' 

conditional on v being selected in step (1). Hence 

Pr [IDt +1 1 = IDtl-1] ~ ~ " q - 2Ll + d'(v) 
n ~ q-Ll 

vED t 

q - 2Ll D m' 
~ (q - Ll) nit I + -:-( q---Ll-:-:)-n 

Define 
q - 2Ll m' 

a= (q-Ll)n and b=b(m') = (q-Ll)n' 

(4.6) 

so that Pr [IDt+1 1 = IDt l+1] ::::; band Pr [ID t+1 1 = IDt l-1] ~ a IDtl+b. Provided 
a > 0, i.e., q > 2Ll, the size of the set Dt tends to decrease with t, and hence, 
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intuitively at least, the event D t = 0 should occur with high probability for some 
t :::; T with T not too large. Since D t = 0 is precisely the event that coalescence 
has occurred, it only remains to confirm this intuition, and quantify the rate at 
which D t converges to the empty set. From equations (4.5) and (4.6), 

E [IDt+111 Dt ] :::; b(IDtl + 1) + (alDtl +b)(IDtl-1) 
+ (1 - alDtl - 2b)IDtl 

= (1 - a)IDtl. 

Thus E IDtl :::; (1- a)tlDol :::; (1- a)tn, and, because IDt I is a non-negative integer 
random variable, Pr[IDtl f 0] :::; n(l- a)t :::; ne-at . Note that Pr[Dt f 0] :::; E, 

provided t 2: a - 1ln(nc1), establishing the result. 0 

Remark 4.13. With a little care, the argument can be pushed to q = 2.1, though 
the bound on mixing time worsens by a factor of about n2 . (The r.v. D t behaves in 
the boundary case rather like an unbiased random walk, and therefore its expected 
time to reach the origin D t = 0 is longer; refer, e.g., to Dyer and Greenhill [24], 
in particular their Theorem 2.1.) 

The (direct) coupling technique described here has been used in a number 
of other applications, such as approximately counting independent sets in a low
degree graph (Luby and Vigoda [46])3 and estimating the volume of a convex body 
(Bubley, Dyer and Jerrum [15]).4 In practice, the versatility of the approach is 
limited by our ability to design couplings that work well in situations of algorithmic 
interest. The next section reports on a new technique that promises to extend the 
effective range of the coupling argument by providing us with a powerful design 
tool. 

4.3 Path coupling 

The coupling technique described and illustrated in the previous section is con
ceptually very simple and appealing. However, in applying the method to concrete 
situations we face a technical difficulty, which began to surface even in §4.2: how 
do we encourage (Xd and (Yi) to coalesce, while satisfying the demanding con
straints (4.2)7 Path coupling is an engineering solution to this problem, invented 
by Bubley and Dyer [ll, 12]. Their idea is to define the coupling only on pairs of 
"adjacent" states, for which the task of satisfying (4.2) is relatively easy, and then 
to extend the coupling to arbitrary pairs of states by composition of adjacent cou
plings along a path. The approach is not entirely distinct from classical coupling, 
and the Coupling Lemma still plays a vital role. 

3Though the subsequent journal article [47J uses the more sophisticated path coupling method, 
which will be described presently. 

4The latter application draws inspiration from Lindvall and Rodgers's [43J idea of coupling 
diffusions by refiection. 



42 Chapter 4: Coupling and colourings 

1. Select P E [n - 1] according to the distribution f, and r E {O, I} u.a.r. 

2. If r = 1 and Xo 0 (p,p + 1) E [l, then Xl := Xo 0 (p,p + 1); otherwise, 
Xl := Xo. 

Figure 4.4: Trial defining an MC on linear extensions of a partial order --<. 

We illustrate path coupling in the context of a Me on linear extensions of 
a partial order. We are given a partially ordered set (V, --<), where V = [n] = 
{O, 1, ... , n - I}. Denote by Sym V the symmetric group on V. We are interested 
in sampling, u.a.r., a member of the set 

[l = {g E Sym V: g(i) --< g(j) => i::::; j, for all i,j E V} 

oflinear extensions of --<. In forming a mental picture of the the set [l, the following 
characterisation may be helpful: 9 E [l iff the linear order 

g(O) L g(l) L ... L g(n - 1) (4.7) 

extends, or is consistent with, the partial order --<. 
As usual, we propose to sample from [l by constructing an ergodic Me 

on state space [l, whose stationary distribution is uniform. The transitions from 
one linear extension to another are obtained by pre-composing the current linear 
extension with a random transition (p, p + 1). Instead of selecting p E [n - 1] 
uniformly, we select p from a probability distribution f on [n - 1] that gives 
greater weight to values near the centre of the range. It is possible that this 
refinement actually reduces the mixing time; in any case, it leads to a simplification 
of the proof. Formally, the transition probabilities of the Me are defined by the 
experimental trial presented in Figure 4.4. Note that composition "0" is to be read 
right to left, so that (assuming r = 1): XI(p) = Xo(p+ 1), X1(p+ 1) = Xo(p) and 
XI(i) = Xo(i), for all i rJ- {p,p+ I}. 

Provided the probability distribution f is supported on the whole interval [n-
1], this Me is irreducible and aperiodic. It is easy to verify, for example using 
Lemma 3.7, that the stationary distribution of the Me is uniform. As in §3.3, the 
explicit loop probability of ~ is introduced mainly for convenience in the proof. 
However, some such mechanism for destroying periodicity is necessary in any case 
if we wish to treat the empty partial order consistently. 

Our analysis of the mixing time of the MC using path coupling will closely 
follow that of Bubley and Dyer [13]. To apply path coupling, we need first to decide 
on an adjacency structure for the state space [l. In this instance we decree that 
two states 9 and g' (linear extensions of --<) are adjacent iff g' = go (i,j) for some 
transposition (i, j) with 0 ::::; i < j ::::; n - 1; in this case, the distance d(g, g') from 
9 to g' is defined to be j - i. Note that the notions of adjacency and distance are 
symmetric with respect to interchanging 9 and g', so we can regard this imposed 
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1. Select p E [n - 1] according to the distribution f, and rx E {O, I} u.a.r. If 
j - i = 1 and p = i, set ry := 1 - rx; otherwise, set ry := r x . 

2. If rx = 1 and Xo 0 (p,p + 1) E n then set Xl := Xo 0 (p,p + 1); otherwise, 
set Xl := Xo· 

3. If ry = 1 and Yo 0 (p,p + 1) E n then set YI := Yo 0 (p,p + 1); otherwise, set 
YI := Yo· 

Figure 4.5: A possible coupling for the Me on linear extensions. 

adjacency structure as a weighted, undirected graph on vertex set n; let us refer 
to this structure as the adjacency graph. It is easily verified that the shortest path 
in the adjacency graph between two adjacent states is the direct one using a single 
edge. Thus d may be extended to a metric on n by defining d(g, h), for arbitrary 
states 9 and h, to be the length of a shortest path from 9 to h in the adjacency 
graph. 

Next we define the coupling. We need to do this just for adjacent states, as 
the extension of the coupling via shortest paths to arbitrary pairs of states will be 
automatic. Suppose that (Xo, yo) E n2 is a pair of states related by Yo = Xo 0 (i, j) 
for some transposition (i,j) with 0::; i < j ::; n-1. then the transition to (Xl, Yd 
in the coupling is defined by the experimental trial presented in Figure 4.5. We 
need to show: 

Lemma 4.14. For adjacent states Xo and Yo, 

(4.8) 

where {! < 1 is a constant depending on f. For a suitable choice for f, one has 
(! = 1 - 0, where 0 = 6/(n3 - n). 

Informally, Lemma 4.14 says that distance between pairs of states in the 
coupled process tends to decrease: exactly the situation we encountered earlier 
in the context of the Me on q-colourings. Before proceeding with the proof of 
Lemma 4.14, let us pause to consider why it is sufficient to establish (4.8) just for 
adjacent states. 

Lemma 4.15. Suppose a coupling (Xt , Yt) has been defined, as above, on adja
cent pairs of states, and suppose that the coupling satisfies the contraction con
dition (4.8) on adjacent pairs. Then the coupling can be extended to all pairs of 
states in such a way that (4.8) holds unconditionally. 

Proof. Suppose Xo = Xo E n and Yo = Yo E n are now arbitrary. Denote 
by P(. , .) the transition probabilities of the Me on linear extensions. Let Xo = 
z(O), z(1), ... , z(£) = Yo be a shortest path from Xo to Yo in the adjacency graph. 
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Figure 4.6: Extending a coupling along a shortest path 

(Assume a deterministic choice rule for resolving ties.) First select Z(O) E Q ac
cording to the probability distribution P(z(O), . ). Now select Z(l) according to the 
probability distribution induced by the transition (z(O), z(1)) f--+ (Z(O), Z(l)) in the 
coupled process, conditioned on the choice of Z(Ol; then select Z(2) according to 
the probability distribution induced by the transition (z(1) , z(2)) f--+ (Z(l), Z(2)), 
conditioned on the choice of Z(1); and so on, ending with Z(t). (The procedure is 
visualised in Figure 4.6.) 

Let Xl = Z(O) and Yl = Z(£). It is routine to verify, by induction on path 
length e, that Yl has been selected according to the (correct) distribution P(yo, . ). 
Moreover, by linearity of expectation and (4.8), 

£-1 

E [d(Xl' Yd I Xo = Xo, Yo = yo] ::; L Ed(Z(i), Z(i+l)) 
i=O 

£-1 
::; e L d(Z(i), z(Hl)) 

i=O 

o 

So we see that it is enough to establish the contraction property (4.8) for 
adjacent pairs of states. 

Proof of Lemma 4.14. If p ¢c {i - 1, i, j - 1, j} then the tests made in steps (2) 
and (3) either both succeed or both fail. Thus Yl = Xl 0 (i,j) and d(Xl' Yl ) = 
j - i = d(Xo, Yo). Summarising: 

d(Xl' Yl ) = d(Xo, Yo), if p ¢c {i - 1, i,j - 1,j}. (4.9) 

Next suppose p = i-lor p = j. These cases are symmetrical, so we consider 
only the former. With probability at least ~, the tests made in steps (2) and (3) 
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both fail, since Pr[rx = ry = 0] = 1. If this happens, clearly, d(XI' YI ) = j - i = 
d(Xo, Yo). Otherwise, with probability at most 1, one or other test succeeds. If 
they both succeed, then 

YI = Yo ° (i - 1, i) 
=Xoo(i,j)o(i-1,i) 

= Xl ° (i -l,i) ° (i,j) ° (i -l,i) 
=Xl o(i-1,j), 

and d(Xl' Yd = j - i + 1 = d(Xo, Yo) + 1; if only one (say the one in step 2) 
succeeds, then Y1 = Yo = X o ° (i,j) = Xl ° (i - 1, i) ° (i,j), and d(XI, YI ) < 
j - i + 1 = d(Xo, Yo) + 1. Summarising: 

1 
E [d(XI' YI ) I Xu, Yo,p = i-I V P = j] :::; d(Xo, Yo) + 2. (4.10) 

Finally suppose p = i or p = j -1. Again, by symmetry, we need only consider 
the former. There are two subcases, depending on the value of j - i. The easier 
subcase is j - i = 1. If r x = 1 then r y = ° and 

X I = X o 0 (i, i + 1) = Yo ° (i, i + 1) 0 (i, i + 1) = Yo = YI , 

with a similar conclusion when rx = 0. Thus d(Xl' Y1 ) = ° = d(X01 Yo) - 1. The 
slightly harder subcase is the complementary j - i ;::: 2. The crucial observation 
is that Xo ° (i, i + 1), Yo ° (i, i + 1) E [l and hence the tests in steps (2) and (3) 
either both succeed or both fail, depending only on the value of r x = r y. To see 
this, observe that 

Xo(i) 'I- Xo(i + 1) = Yo(i + 1) 'I- Yo(j) = Xo(i), 

from which we may read off the fact that Xo(i) and Xo(i + 1) are incomparable 
in -..;. The same argument applies equally to Yo(i) and Yo(i + 1). If rx = ° there is 
no change in state; otherwise, if r x = 1, 

Xl =Xo o(i,i+1) 

= Yo ° (i, j) 0 (i, i + 1) 

= YI ° (i, i + 1) 0 (i, j) 0 (i, i + 1) 

=Y1 o(i+1,j), 

and d(Xt, Yt} = j - i-I = d(Xo, Yo) - 1. Summarising both the j - i = 1 and 
j - i ;::: 2 subcases: 

E [d(XI' Y1 ) I Xo, Yo,p = i V P = j - 1] :::; e(Xo, Yo), (4.11) 

where 

(X Yr) _ {a, if d(Xo, Yo) = 1; 
e 0, ° - I . d(Xo, Yo) - 2' otherwIse. 
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Note that, in the case j - i = 1, inequality (4.11) covers just one value of p, namely 
p = i = j - 1, instead of two; however, this effect is exactly counterbalanced by 
an expected reduction in distance of 1 instead of just ~. Combining (4.9)-(4.11) 
we obtain 

E[d(X Y) IX Yi] <d(X Yi)- -f(i-l)+f(i)+f(j-l)-f(j) 
1, 1 0, 0 - 0, 0 2 . 

Specialising the probability distribution f(-) to be f(i) := a(i + 1)(n - i-I) -
where a := 6/(n3 -n) is the appropriate normalising constant - we have, by direct 
calculation, - f(i -1) + f(i) + f(j -1) - f(j) = 2a(j - i). Since d(Xo, Yo) = j - i, 
we obtain (4.8) with f] = 1 - a. 0 

From Lemmas 4.14 and 4.15 it is now a short step to: 

Proposition 4.16 (Bubley and Dyer). The mixing time of the MC on linear exten
sions (refer to Figure 4.4) is bounded by 

T(E) ::; (n3 - n)(2ln n + lnE- 1 )/6. 

Proof. By iteration, E [d(Xt, Yt) I X o, Yo] ::; f]td(Xo, Yo). For any pair of linear 
extensions g and h, there is a path in the adjacency graph using only adjacent 
transpositions (i.e., length one edges) that swaps each incomparable pair at most 
once. Thus d(Xo, Yo) ::; G) ::; n2 , and 

The latter quantity is less than 10, provided t ;::: (n3 - n)(2lnn + lnE- 1)/6. The 
result follows directly from Lemma 4.7. 0 

David Wilson has recently derived a similar O( n3 log n) bound on mixing 
time when f is uniform, i.e, when the transposition (p, p + 1) is selected u.a.r. 

Exercises 4.17. 1. Use Proposition 4.16 to construct an FPRAS for linear ex-
tensions of a partial order. 

2. Reprove Proposition 4.5 using path coupling. Note the significant simplifi
cation over the direct coupling proof. 

New applications of path coupling are regularly being discovered. Bubley, 
Dyer and Greenhill [14] have presented an FPRAS for q-colourings of a low de
gree graph that extends the range of applicability of the one described earlier. 
They were able, for example, to approximate in polynomial time the number of 
5-colourings of a graph of maximum degree 3, thus "beating the 2.1 bound" that 
appeared to exist following the result described in §4.1. Vigoda [66], in a path
coupling tour de force, was able to beat the 2.1 bound uniformly over all sufficiently 
large .1; specifically, he proved rapid mixing whenever q > ll.1. It is fair to say 
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that neither of these improvements would have been possible without the aid of 
path coupling. 

Dyer and Greenhill have also considered independent sets in a low degree 
graph [25J, and obtained a result similar to, but apparently incomparable with, 
that of Luby and Vigoda [47J. Bubley and Dyer (again) applied path coupling 
to establish rapid mixing of a natural Markov chain on sink-free orientations of 
an arbitrary graph [10J. McShine [50J presents a particularly elegant application 
of path coupling to sampling tournaments. One further example must suffice: 
Cooper and Frieze [17J have applied path coupling to analyse the "Swendsen
Wang process," which is commonly used to sample configurations of the "random 
cluster" or ferromagnetic Potts model in statistical physics. 

Finally, for those who skipped Exercise 4.3, here is the missing proof. 

Proof of Lemma 4.2. The claim is established by the following sequence of (in-) 
equalities: 

yEn 

= LILPt(X,Z)P(z,y)- Ln(z)p(z,y)1 
yEn zEn zEn 

::; L LIPt(x,z) -n(z)lp(z,y) (4.12) 
yEn zEn 

where (4.12) is the triangle inequality. o 
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1. Select e = {u, v} E E u.a.r. 

2. There are three mutually exclusive (but not exhaustive) possibilities: 

en If u and v are not covered by Xo, then M +-- Xo U {e}. 

(1) If e E Xo, then M +-- Xo \ {e}. 

( ...... ) If u is uncovered and v is covered by some edge e' E X 0 (or vice versa, 
with the roles of u and v reversed), then M' +-- M U { e} \ {e'}. 

If none of the above situations obtain, then M +-- Xo. 

3. With probability min{1, 7r(M)/7r(Xo)} set Xl +-- M; otherwise, set Xl +-

Xo. (This form of acceptance probability is known as the Metropolis filter.) 

Figure 5.1: An MC for sampling weighted matchings 

and then extract the coefficients of Z(A) by interpolating the computed values. 
(Observe that Z (A) is a polynomial in A.) But the highest-order coefficient is just 
the number of perfect matchings in G. It follows from Theorem 2.2 that evaluating 
Z(A) at (say) integer points A E N is #P-hard. Indeed, with a little more work, 
one can show that evaluating Z(A) at the particular point A = 1 (i.e., counting 
the number of matchings in G) is #P-complete. Although it is unlikely that Z can 
be computed efficiently, nothing stops us from having an efficient approximation 
scheme, in the FPRAS sense of §3.1. 

We construct an MC for sampling from distribution (5.1) as shown in Fig
ure 5.1. As usual, denote the state space of the MC by D, and its transition matrix 
by P. Consider two adjacent matchings M and M' with 7r(M) ::; 7r(M'). By adja
cent we just mean that P(M, M') > 0, which is equivalent to P(M', M) > O. The 
transition probabilities between M and M' may be written 

P(M,M') =~, and 
m 

P(M' M) = ~ 7r(M) 
, m 7r(M') , 

giving rise to the symmetric form 

7r(M)P(M, M') = 7r(M')P(M'M) = ~ min {7r(M), 7r(M')}. (5.2) 
m 

The above equality makes clear that the MC is time-reversible, and that its sta
tionary distribution (appealing Lemma 3.7) is 7r. 

Remarks 5.1. (a) The transition probabilities are easy to compute: since a tran
sition changes the number of edges in the current matching by at most one, 
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the acceptance probability in step 3 is either 1 or min {.A, .A -I}, and it is easy 
to determine which. 

(b) Broder [8] was the first to suggest sampling matching by simulating an ap
propriate MC. His proposal was to construct an :MC whose states are perfect 
matchings (i.e., covering all the vertices of G) and near-perfect matchings 
(i.e., leaving exactly two vertices uncovered). The MC on all matchings pre
sented in Figure 5.1 was introduced by Jerrum and Sinclair [36]. 

(c) Time reversibility is a property of MCs that is frequently useful to us; in 
particular, as we have seen on several occasions, it permits easy verification 
of the stationary distribution of the MC. However, we shall not make use of 
the property in the remainder of the chapter, and all the results will hold in 
the absence of time reversibility. 

5.2 Canonical paths 

The key to demonstrating rapid mixing using the "canonical paths" technique lies 
in setting up a suitable multicommodity flow problem. For any pair x, y E il, 
we imagine that we have to route 7r(x)7r(Y) units of distinguishable fluid from x 
to y, using the transitions of the MC as "pipes." To obtain a good upper bound on 
mixing time we must route the flow evenly, without creating particularly congested 
pipes. To formalise this, we need a measure for congestion. 

For any pair x,y E il, define a canonical path "fxy = (x = ZO,Zl,'" ,Z£ = y) 
from x to y through pairs (Zi, zHd of states adjacent in the MC, and let 

T := {"(xy I x, Y E il} 

be the set of all canonical paths. The congestion {! = {!(T) of the chain is defined 
by 

{!(T):= max { ()pl() L 7r(x)7r(Y) hxyl }. 
t=(u,v) 7r U U, V 

x,y: ,xy uses t 

(5.3) 

~ ''-----v,-----
(capacity of tj-l total flow through t 

where t runs over all transitions, i.e., all pairs of adjacent states of the chain, and 
l"Yxyl denotes the length £ of the path "Yxy. 

We want to show that if {! is small then so is the mixing time of the MC. 
Consider some arbitrary "test" function f : il ---t R The variance of f (with 
respect t07r) is 

where 
E11' f := L 7r(x)f(x). 

xED 
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It is often convenient to work with an alternative, possibly less familiar expression 
for variance, namely 

1 '" 2 Var7r f = 2 L.J 7r(X)7r(Y) (J(x) - f(y)) . 
x,yE[} 

(5.5) 

Equivalence of (5.4) and (5.5) follows from the following sequence of identities: 

1 '" 2 2 L.J 7r(X)7r(Y) (J(x) - f(y)) 
x,yE[} 

= L [7r(x)7r(y)f(x)2 - 7r(x)7r(y)f(x)f(y)] 
x,yE[} 

= L 7r(x)f(xf L 7r(y) - L 7r(x)f(x) L 7r(y)f(y) 
xE[} yE[} xE[} yE[} 

= L 7r(x)f(xf - (E7r ff 
xE[} 

The variance Var7r f measures the "global variation" of f over fl. By contrast, the 
Dirichlet form 

1 ~ 2 
£7r(/' f) :="2 L.J 7r(x)P(x,y)(J(x) - f(y)) 

x,yE[} 

(5.6) 

measures the "local variation" of f with respect to the transitions of the Me. The 
key result relating the congestion f] to local and global variation is the following. 

Theorem 5.2 (Diaconis and Stroockj Sinclair). For any function f : fl -> JR, 

(5.7) 

where f] = f](r) is the congestion, defined in (5.3), with respect to any set of 
canonical paths r. 

Remarks 5.3. (a) An inequality such as (5.7), which bounds the ratio ofthe local 
to the global variation of a function, is often termed a Poincare inequality. 

(b) If the congestion f] is small, then high global variation of a function entails 
high local variation. This in turn entails, as we shall see presently, short 
mixing time. 
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Proof of Theorem 5.2. We follow Sinclair [57, Thm. 5] whose proof in turn is in
spired by Diaconis and Stroock [20]. 

x,yEll 

= L 1f(x)1f(Y) ( L 1· (J(u) - f(V))) 2 (5.8) 
x,yEll (u,v)E'Yxy 

::; L 1f(x)1f(Y) i'Yxyi L (J(u) - f(V))2 (5.9) 
x,yEll (u,v)E'Yxy 

= L L 1f(x)1f(Y) i'Yxyi (J(u) - f(v))2 
u,lIEll x,y: 

(u,lI)E'Yxy 

= L (J(u) - f(v))2 
u,lIEll x,y: 

(u,lI)E'Yxy 

::; L (J(u) - f(v))2 1f(u)p(u, v) e 
u,vEll 

(5.10) 

Equality (5.8) is a "telescoping sum," inequality (5.9) is Cauchy-Schwarz, and 
inequality (5.10) is from the definition of e. 0 

For the following analysis, we modify the chain by making it "lazy." In each 
step, the lazy MC stays where it is with probability ~, and otherwise makes the 
transition specified in Figure 5.1. Formally, the transition matrix of the lazy MC 
is Pzz := ~(I + P), where I is the identity matrix. It is straightforward to show 
that the lazy MC is ergodic if the original MC is, in which case the stationary 
distribution of the two is identical. (In fact, irreducibility of the original MC is 
enough to guarantee ergodicity of the lazy MC.) 

Exercise 5.4. Verify these claims about the lazy MC. 

Remarks 5.5. (a) This laziness doubles the mixing time, but ensures that the 
eigenvalues of the transition matrix are all non-negative, and avoids possible 
parity conditions that would lead to the MC being periodic or nearly so. In 
an implementation, to simulate 2t steps of the lazy MC, one would generate 
a sample T from the binomial distribution Bin(2t, ~), and then simulate 
T steps of the original, non-lazy MC. Thus, in practice, efficiency would not 
be compromised by laziness. 

(b) The introduction of the lazy chain may seem a little unnatural. At the ex
pense of setting up a little machinery, it can be avoided by using a continuous
time MC rather than a discrete-time MC as we have done. Some other parts 
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of our development would also become smoother in the continuous-time set
ting. We shall return to -this point at the end of the chapter. 

Before picking up the argument, some extra notation will be useful. If f is 
any function f : [l -> JR. then Pzzf : [l -> JR. denotes the function defined by 

[PzzfJ(x) := L Pzz(x, y)f(y)· 
yEfl 

The function Pzzf is the "one-step averaging" of f. Similarly, P;zf, defined in 
an analogous way, is the "t-step averaging" of f: it specifies the averages of f 
over t-step evolutions of the MC, starting at each of the possible states. If the 
MC is ergodic (as here), then P;zf tends to the constant function En f as t -> 00. 

(Observe that En(Pzzf) = E7f f and hence E7f(P;zf) = E7f f; in other words, t-step 
averaging preserves expectations.) Thus we can investigate the mixing time of the 
MC by seeing how quickly Var7f (P;z!) tends to ° as t -> 00. This is the idea we 
shall now make rigorous. 

Theorem 5.6. For any function f : [l -> JR., 

(5.11) 

Proof. We follow closely Mihail's [51J derivation. Consider the one-step averaging 
of f with respect to the lazy chain: 

[Pzzf](x) = L Pzz(x, y)f(y) 
yEfl 

1 1 
= "2 f(x) + "2 L P(x, y)f(y) 

yEn 

1 ="2 L P(x,y) (j(x) + f(y)). 
yEfl 

(5.12) 

For convenience, assume1 E7f f = 0, and hence E7f(Pzzf) = 0. Then the left-hand 
side of (5.11) is bounded above as follows: 

= ~ L 7r(x) (L P(x, y) (j(x) + f(y))) 2 

xEfl yEfl 

(5.13) 

1 ""' 2 :::; 4: ~ 7r(x)P(x, y) (j(x) + f(y)) , 
x,yEfl 

(5.14) 

lOtherwise add or subtract a constant, an operation that leaves unchanged the quantities of 
interest, namely Var" j, Var", (Pzzl) and £"(/' I). 
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where step (5.13) uses (5.12), and step (5.14) relies on the fact that the square of 
the expectation of a r.v. is no greater than the expectation of its square. To get at 
the right-hand side of (5.11) we use yet another expression for the variance of f: 

1", 2 1", 2 
Var7r f = 2 ~ n(x)f(x) + 2 ~ n(y)f(y) 

xEn yEn 

= ~ L n(x)f(x)2 P(x, y) + ~ L n(x)P(x, y)f(y)2 
x,yEn x,yEn 

= ~ L n(x)P(x,y) (J(x)2 + f(y)2). 
x,yEn 

(5.15) 

Subtracting (5.14) from (5.15) yields 

Var7r f - Var7r (Pzzf) 2: ~ L n(x)P(x, y) (J(x) - f(y))2 
x,yEll 

as required. o 

Combining Theorem 5.2 and Theorem 5.6 gives: 

Corollary 5.7. For any function f : n ----+ JR., 

where {! = {!(r) is the congestion, defined in (5.3), with respect to any .set of 
canonical paths r. 
Remark 5.8. The algebraic manipulation in the proof of Theorem 5.6 seems mys
terious. The discussion of the continuous-time setting at the end of the chapter 
will hopefully clarify matters a little. 

We can now use Corollary 5.7 to bound the mixing time of the chain, by 
using a special function f. For a subset A ~ n of the state space, we consider its 
indicator function 

f(X):={l, 
0, 

Then we have Var7r f ::::; 1 and therefore 

if x E A; 
otherwise. 
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where p;J is the t-step averaging of f. Fix some starting state x E Q and set 

This gives 

On the other hand, 

which implies 

Var,,(p;J) ;:: 7r(x) ([P;zfl(x) - E"(P;zf))2 

= 7r(x) ([P;zfl(x) - E" f)2, 

c ;:: I [P;Jl(x) - E" fl = Ip;z(x, A) - 7r(A) I 
for all A. This in turn means that the total variation distance IIP;z(x, . ) - 7rliTv 
is bounded by c, and we obtain the following corollary: 

Corollary 5.9. The mixing time of the lazy MC is bounded by 

where (! = (!(r) is the congestion, defined in (5.3), with respect to any set of 
canonical paths r. 
Remark 5.10. The factor 2 in front of the bound on mixing time is an artifact of 
using the lazy MC. 

5.3 Back to matchings 

In the previous section, we saw how a general technique (canonical paths) can 
be used to bound the Poincare constant of an Me, and how that constant in 
turn bounds the mixing time. Let's apply this machinery to the matching chain 
presented in Figure 5.1. Our ultimate goal is to derive a polynomial upper bound 
on mixing time: 

Proposition 5.11. The mixing time r of the MC on matchings of a graph G (refer 
to Figure 5.1) is bounded by 

r(c) S nm~2(4Inc-l +2nlnn+nlln.\I), 

where nand m are the number of ver-tices and edges of G, respectively, and ~ = 
max{l,.\} . 

Remark 5.12. It is possible, with a little extra work, to improve the upper bound 
in Proposition 5.11 by a factor of~: see Exercise 5.17. 



Back to matchings 

......... 
I 

......... ......... 

I: I I I I I PHI I Pr Pi-I I Pi 

......... ......... ......... 

Start vertex of (closed) path Pi 
~. 

/". • ® ". 
......... 

I I I I M: 

"./ • 
• ......... ......... 

t 

/". • ® ". 
......... 

I I I I M': ". / ./ • ......... 

/". 
F: ". / 

• 

I 
• 

Figure 5.2: A step in a canonical path between matchings 

• 

Pr I 
• 

• 

I 
• 

• 

I 
• 

I 
I 

57 

The first step is to define the set r of canonical paths. Given two matchings 
I (initial) and F (final), we need to connect I and F by a canonical path ,IF in 
the adjacency graph of the matching Me. Along this path, we will have to lose 
or gain at least the edges in the symmetric difference I EB F; these edges define a 
graph of maximum degree two, which decomposes into a collection of paths and 
even-length cycles, each of them alternating between edges in I and edges in F. 
If we fix some ordering of the vertices in V, we obtain a unique ordering of the 
connected components of (V, I EB F), by smallest vertex. Within each connected 
component we may identify a unique "start vertex": in the case of a cycle this will 
be the smallest vertex, and the case of a path the smaller of the two endpoints. We 
imagine each path to be oriented away from its start vertex, and each cycle to be 
oriented so that the edge in I adjacent to the start vertex acquires an orientation 
away from the start vertex. In Figure 5.2 - which focuses on a particular transition 
t = (M, M') on the canonical path from I to F - the r connected components of 
I EB F are denoted PI, ... , Pr . 

To get from I to F, we now process the components of (V, I EB F) in the 
order PI, ... , Pr . In each cycle, we first remove the edge in I incident to the start 
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vertex using a l-transition; with a sequence of +-+-transitions following the cycle's 
orientation, we then replace I-by F -edges; finally, we perform ai-transitions to 
add the edge in F incident to the start vertex. In every path, if the start vertex 
is incident to an F-edge, we use +-+-transitions along the path and finish by a 
i -transition in case the path has odd length. If the start vertex is incident to 
an I-edge, we start with a l-transition, then use +-+-transitions along the path, 
and finish with an i-transition in case the path has even length. This concludes 
the description of the canonical path "I IF. Each transition t on a canonical path 
"I IF can be thought of as contributing to the processing of a certain connected 
component of I E9 F; we call this the current component (or cycle, or path, if we 
want to be more specific). 

Denote by 
cp(t) := {(1, F) I t E "IIF} 

the set of pairs (1, F) E fl whose canonical path "I IF uses transition t. To bound 
the mixing time of the MC, we need to bound from above the congestion 

(} = t= ~~1' {K(M)P~M M') L K(1)K(F) hIFI} 
( , ) '(I,F)Ecp(t) 

(5.16) 

(c.f. (5.3)), where the maximum is over all transitions t = (M, M'). It is not 
immediately clear how to do this, as the sum is over a set we don't have a ready 
handle on. Suppose, however, that were able to construct, for each transition t = 
(M, M'), an injective function Tit : cp(t) -+ fl such that 

(5.17) 

for all (1, F) E cp(t), where the relational symbol "~" indicates that the left
hand side is larger than the right-hand side by at most a polynomial factor in the 
"instance size," i.e., some measure of G and A. Then it would follow that 

(} ~ mrx { L K(Tlt(1, F)) hIFI} 
(I,F)Ecp(t) 

from (5.16) and (5.17) 

~mF{ L K(Tlt(1,F))} 
(I,F)Ecp(t) 

since hIFI :::; n 

since Tit is injective. 

In other words, the congestion (} (and hence the mixing time of the MC) is poly
nomial in the instance size, as we should like. 

We now complete the programme by defining an encoding Tit with the appro
priate properties, and making exact the calculation just performed. To this end, 
fix a transition t = (M, M'). If t is a +-+-transition, (1, F) E cp(t), and the current 
component (with respect to the canonical path "II F) is a cycle, then we say that t 
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I I 
I 

Pi-l I 

Figure 5.3: The corresponding encoding TIt (X , Y). 

is troublesome (with respect to the path II F). If t is troublesome, then we denote 
by eIFt E I the (unique) edge in I that is adjacent to the start vertex of the cycle 
being processed by t. For all (I, F) E cp(t), define 

( ) _ {(I EO F EO (M U M')) \ {eI Ft}, if t is troublesome; 
TIt I, F -

I EO F EO (M U M'), otherwise. 

Roughly speaking, the encoding C = TIt (I, F) agrees with I on the components 
that have been completely processed, and with F on the components that have 
not been touched yet. Moreover, C agrees with I and F on the edges common to 
both. (See Figure 5.3.) The crucial properties of TIt are described in the following 
sequence of claims. 

Claim 5.13. For all transitions t and all pairs (I, F) E cp(t), the encoding C = 
TIt (I, F) is a matching; thus TIt is a function with range [l, as required. 

Proof. Consider the set of edges A = I EO F EO (M U M'), and suppose that some 
vertex, u say, has degree two in A. (Since A ~ I U F, no vertex degree can exceed 
two.) Then A contains edges {u, vd, {u, V2} for distinct vertices VI, V2, and since 
A ~ I U F, one of these edges must belong to I and the other to F. Hence both 
edges belong to I EO F, which means that neither can belong to MUM'. Following 
the form of MUM' along the canonical path, however, it is clear that there 
can be at most one such vertex u; moreover, this happens precisely when t is a 
troublesome transition and u is the start vertex of the current cycle. Our definition 
of TIt removes one of the edges adjacent to u in this case, so all vertices in C have 
degree at most one, i.e., C is indeed a matching. 0 

Claim 5.14. For every transition t, the function TIt : cp(t) --+ [l is injective. 

Proof. Let t be a transition, and (I, F) E cp(t). We wish to show that the pair 
(I, F) can be uniquely reconstructed from a knowledge only of t and TIt (I, F). It 
is immediate from the definition of TIt that the symmetric difference I EO F can be 
recovered from C = TIt (I, F) using the relation 

I EO F = {(CEO (M U M')) U {eIFt}, if t is troublesome; 
CEO (M U M') , otherwise. 
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Of course, we don't know, a priori, the identity of the edge eIFt. However, once 
we have formed the set C EEl (M U M') we can see that e I Ft is the unique edge that 
forms a cycle when added to the current path. There is a slightly delicate issue 
here: how do we know whether we are in the troublesome case or not? In other 
words, how to we know whether the current component is a cycle or a path? The 
answer lies in the convention for choosing the start vertex. It can be checked that 
choosing the lowest vertex as start vertex leads to a path being oriented in the 
opposite sense to a cycle in this potentially ambiguous situation. 

Given I EEl F, we can at once infer the sequence of paths PI, P2 , ... , Pr that 
have to be processed along the canonical path from I to F, and the transition t 
tells us which of these, Pi say, is the current one. The partition of I EEl F into I 
and F is now straightforward: I agrees with C on paths PI, ... , Pi-I, and with lvI 
on paths PH I, ... , Pr . On the current path, Pi, the matching I agrees with C on 
the already processed part, and with M on the rest. (If t is troublesome, then the 
edge eIFt also belongs to I.) Finally, the reconstruction of I and F is completed 
by noting that I n F = M \ (I EEl F), which is immediate from the definition of 
the paths. Hence I and F can be uniquely recovered from C = T/t (I, F), so T/t is 
injective. 0 

Claim 5.15. For all transitions t = (M, M') and all pairs (I, F) E cp(t), 

1T(I)1T(F) ::; m5.21T(M)P(M, M') 1T(T/t(I, F)), 

where 5. := max{l, A}. 

Proof. Let C = T/t(I, F), and consider the expressions 

which are closely related to the quantities 

1T(I)1T(F) and 1T(M)P(M, M') 1T(T/t(I, F)) 

of interest. Each edge e E E contributes a factor 1, A or A2 to AlII AIFI, according 
to whether e is in neither, exactly one, or both of I and F. A similar observation 
can be made about AIMUM'IAIGI. If e tt I and e tt F then e tt MuM' and 
e tt C, and the contribution to both expressions is 1. If eEl and e E F then 
e EMu M' and e E C and the contribution to both expressions is A 2 • If eEl EEl F 
then e E (M U M') EEl C and the contribution to both expressions is A, with one 
possible exception: if t is troublesome and e = eIFt then there is a contribution A 
to AIIIAIFI and 1 to AIMUM'IAIGI. Thus, 

AlII AIFI ::; 5. AIMUM'I AlGI. 

Dividing by Z2, the square of the partition function, it follows that 
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where we have used the fact that IMI, IM'I 2': 1M U M'I- 1. Then 

n(I)n(F) ::; 5.2 min {n(M), n(M')} n(C) 

= m5.2n(M)P(M, M')n(C) 

yielding the required inequality. 

Now we are ready to evaluate the congestion (}. 

by (5.2), 

61 

o 

Proposition 5.16. With a set of canonical paths r defined as in this section, the 
congestion (} = (}(r) of the MC on matchings of a graph G (refer to Figure 5.1) is 
bounded by (} ::; nm5.2 , where nand m aTe the number of vertices and edges of G, 
respectively, and 5. = max{l,A}. 

Proof. We just need to make precise the rough calculation following (5.17). 

(} = t=W,~/) {n(M)p~M' M') L n(I)n(F) I'YIFI} 
(I ,F)Ecp(t) 

::; m5.2 L n(T)t(I, F)) !'YIFI 
(I,F)Ecp(t) 

::; nm5.2 L n(T)t(I, F)) 
(I,F)Ecp(t) 

by Claim 5.15 

since !'YI F I ::; n 

by Claim 5.14. 

The sought-for bound on mixing time follows immediately. 

o 

Proof of Proposition 5.11. Combine Corollary 5.9 and Proposition 5.16, noting the 
crude bound lnn(x)-l::; nlnn+ ~nllnAI, which holds uniformly over x E n. 0 

Exercise 5.17. Show how to tighten the upper bound in Proposition 5.11 by a 
factor 5.. Since Claim 5.15 is essentially tight when t is troublesome, it is necessary 
to improve somehow the inequality 

L n(T)t(I,F))::; 1, 
(I,F)Ecp(t) 

by studying carefully the range of T)t. See Jerrum and Sinclair [36], specifically the 
proof of their Proposition 12.4. 
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... ~ 
(k hexagons) 

Figure 5.4: A graph with many "near perfect" matchings. 

5.4 Extensions and further applications 

Let G be a graph with at least one perfect matching (Le., matching that covers 
all vertices of G). In the limit, as A -----4 00, the partition function Z(A) counts the 
number of perfect matchings in G. However, the bound on mixing time provided by 
Proposition 5.11 grows unboundedly with increasing>., so it is not clear whether 
the MC we have studied in this chapter provides us with a FPAUS for perfect 
matchings in G. At first we might hope that it is not necessary to set A very large; 
perhaps the distribution (5.1) already places sufficient probability on the totality 
of perfect matchings at some quite modest A. (According to Proposition 5.11, we 
need A to be bounded by a polynomial in n, the number of vertices in G, to achieve 
a FPAUS/FPRAS for perfect matchings.) 

Unfortunately, there are graphs (see Figure 5.4) for which the perfect match
ings make an insignificant contribution to distribution (5.1) unless A is exponen
tially large in n. This claim follows from the these easily verified properties of the 
illustrated graph: (i) it has a unique perfect matching, and (ii) it has 2k matchings 
that cover all vertices apart from u and v. The question of whether there exists an 
FPRAS (equivalently, by the observations of Chapter 3, an FPAUS) for perfect 
matchings in a general graph is still open at the time of writing. However, progress 
has been made in some special cases, that of bipartite graphs being perhaps the 
most interesting. 

The problem of counting perfect matchings in a bipartite graph is of particu
lar significance, since is is equivalent to evaluating the permanent of a 0, 1-matrix. 
(Refer to problems #BIPARTITEPM and O,l-PERM of Chapter 2.) Recently, Jer
rum, Sinclair and Vigoda [37J presented an FPRAS for the permanent of a 0,1-
matrix (in fact a general matrix with non-negative entries) using MC simulation. 
Noting that the counterexample of Figure 5.4 is bipartite, it is clear that we need 
to introduce a more sophisticated MC to achieve this result. In very rough terms, 
it is necessary to weight matchings according not just to the number of uncovered 
vertices but also their locations. In this way it is possible to access perfect match
ings from near-perfect ones via a "staircase" of relatively small steps. Full details 
may be found in [37J. 

The canonical paths technique has also been applied by Jerrum and Sinclair 
to the ferromagnetic Ising model [35J and by Morris and Sinclair to "knapsack so
lutions" [52J. The latter application is particularly interesting for its use of random 
canonical paths. 
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5.5 Continuous time 

It is possible to gain a better understanding of Theorem 5.6 and Corollary 5.7 by 
moving to continuous time. 

Associated with any discrete-time MC (Xt : tEN) is a "continuised" MC 
(Xt : t E JR+). (We use tilde to distinguish continuous-time notions from their 
discrete-time analogues.) The MC (Xd makes jumps at times (h, t2, t3, ... ) where 
the time increments ti+l -ti, for i E N, are independent r.v's that are exponentially 
distributed with mean 1. (Here we use the convention to = 0.) Between the jumps, 
i.e., in the intervals [ti, t i+1), for i E N, the value of X t is constant. The jumps, 
when they occur, are governed by the same transition matrix P as the original 
MC (Xd. Informally, we have replaced deterministic time-1 holds between jumps 
by random, exponential, mean-1 holds. See Norris [53] for a proper treatment of 
continuous-time MCs. 

The continuous-time MC has an "infinitesimal description" Pr(Xt+dt = y I 
X t = x) = P(x, y) dt for all x t=- y. As a consequence, the distribution of X t has a 
particularly pleasant form: 

pt(x,y) := Pr(Xt = y I Xo = x) = exp{(P - I)t}, 

where I is the identity matrix. 2 As in the discrete-time case, we aim to bound the 
rate of convergence of (Xt ) to stationarity by analysing the decay of the variance 

Varn(ptf):= L 1f(x){[pt f](x)}2, (5.18) 
xED 

where the function pt f : [l -> lR is defined by 

[pt f](x) := L pt(x, y)f(y), (5.19) 
yED 

and f : [l -> lR is any test function with En f = O. 
By calculus, starting with (5.18) and (5.19), we may derive (calculation left 

to the reader): 

! Varn(ptf) = 2 L 1f(x)(P(x,y) - I(x,y)) [ptf](x) [ptf](y). 
x,yED 

Hence, setting t = 0, we obtain 

! Varn(ptf) It=o = 2 X~D 1f(x)(P(x,y) - I(x,y))f(x)f(y) 

= 2 L 1f(x)P(x, y)f(x)f(y) - 2Varn f 
x,yED 

= -2 £nU, f), 

2The exponential function applied to matrices can be understood as a convergent sum 
exp Q := 1+ Q + Q2/2! + Q3/3! + .... 
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a continuous-time analogue of Theorem 5.6. 
Applying Theorem 5.2, we see that Var7r (pt f) is bounded by the solution of 

the differential equation iJ = -(2/ (!)v, and hence 

(5.20) 

a continuous-time analogue of Corollary 5.7. 

Exercise 5.18. Follow through in detail the calculations sketched above. 

Remarks 5.19. (a) The rate of decay of variance promised by (5.20) is faster 
than Corollary 5.7 by a factor 4. A factor 2 is explained by the avoidance 
of the lazy MC, but the remaining factor 2 is "real." This suggests that the 
calculation in Theorem 5.6 is not only a little mysterious, but also gives away 
a constant factor. 

(b) Simulating the continuised MC is unproblematic, and can be handled by a 
device similar to that employed in the case ofthe lazy MC (c.f. Remarks 5.5). 
To obtain a sample from the distribution of Xt: (i) generate a sample T from 
the Poisson distribution with mean t, and then (ii) simulate the discrete-time 
MC for T steps. 
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·x E K 

K 

Figure 6.1: Oracle for K. 

C 

Figure 6.2: Sampling by "direct" Monte Carlo. 

The first thing to be noticed in this endeavour is that some intuitively appeal
ing approaches do not work very well. Let us consider a conventional application 
of the Monte Carlo method to the problem. Say we shrink a box C around K as 
tightly as possible (see Figure 6.2), sample a point x uniformly at random from C, 
and return x if x E K; otherwise repeat the sampling if x rJ- K. This simple idea 
works well in low dimension, but not in high dimension, where the volume ratio 
voln K / voln C can be exponentially small. This phenomenon may be illustrated 
by a very simple example. Let K = Bn(O,l) be the unit ball, and C = [-l,lJn 
the smallest enclosing cube. In this instance the ratio in question may be calcu
lated exactly, and is voln K/ voln C = 27rn/2 /(2n n r(n/2)), which decays rapidly 
with n. 1 In the light of this observation, it seems that a random walk through K 
may provide a better alternative. 

Dyer, Frieze and Kannan [23J were the first to propose a suitable random 
walk for sampling random points in a convex body K and prove that its mixing 
time scales as a polynomial in the dimension n . As a consequence, they obtained 
the first FPRAS for the volume of a convex body. Needless to say, this result was 
a major breakthrough in the field of randomised algorithms. Their approach was 
to divide K into a n-dimensional grid of small cubes, with transitions available 
between cubes sharing a facet (i.e., an (n-1)-dimensional face) . This proposal im
poses a preferred coordinate system on K leading to some technical complications. 
Here, instead, we use the coordinate-free "ball walk" of Lovasz and Simonovits [44J. 

lThe Gamma function extends the factorial function to non-integer values. When n is even, 
r(n/2} = (n/2 - I)!, so it is easy to see that the ratio voln K/ voln C tends to 0 exponentially 
fast. 
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K 

Given a point X t E K, which is the position of the random walk at time t, we 
choose Xt+1 uniformly at random from B(Xt, 8)nK, where B(x, r) denotes the ball 
or radius r centred at x, and 8 is a small appropriately chosen constant. 2 We will 
show that this Markov chain has a stationary distribution that is nearly uniform 
over K, and that its mixing time is polynomial in the dimension n, provided the 
step size 8 is chosen judiciously, and that K satisfies certain reasonable conditions. 
The stochastic process (Xt ) is Markovian - the distribution of Xt+l depends only 
on X t and not on the prior history (Xo, ... , Xt-I) -- but unlike the Markov chains 
so far encountered has infinite, even uncountable state space. We therefore pause 
to look briefly into the basic theory of Markov chains on ~n. 

6.1 A few remarks on Markov chains 
with continuous state space 

Our object of study in this chapter is an Me whose state space, namely K, is a 
subset of ~n. We cannot usefully speak directly of the probability of making a 
transition from x E K to y E K, since this probability is generally O. The solution 
is to speak instead of the probability P(x, A) := Pr[Xl E A I Xo = xl of being in 
a (measurable) set A ~ K at time 1 conditioned on being at x at time O. The t 
step transition probabilities can then be defined inductively by pI := P and 

pt(x,A):= [pt-l(x,dY)P(y,A) 

for t > 1. In the case of the ball walk, 

P( A) = voln(B(x, 8) n A) 
x, voln(B(x, 8) n K)' 

for any (measurable) A ~ K, and 

dy 
P(x, dy) = voln(B(x, 8) n K)' 

(6.1) 

(6.2) 

2What is described here is a "heat-bath" version of the ball wall, which has been termed 
the "speedy walk" in the literature. There is also a slower "Metropolis" version that we shall 
encounter presently. 
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provided Y E B(x, 6) n K. 
A MC with continuous state space may have one or more invariant mea

sures J-l, which by analogy with the finite case means that J-l satisfies 

J-l(A) = L P(x, A) J-l(dx) , 

for all measurable sets A <;::: K. As in the finite case, the MC may converge to a 
unique invariant measure J-l in the sense that pt(x, A) -+ J-l(A) as t -+ 00 for all 
x E K and all measurable A <;::: K. 

For compactness, we shall sometimes drop explicit reference to the variable 
of integration in situations where no ambiguity arises, and write, e.g., J K f dJ-l in 
place of JK f(x) J-l(dx). 

6.2 Invariant measure of the ball walk 

If we were to choose 6, the step-size of the ball walk, to be greater than the diameter 
D := sup{llx - yll : x, y E K} of K, then the the ball walk would converge in one 
step to the uniform measure on K. (For convenience, we'll drop the subscript in 
the Euclidean norm II· 112.) There must be a catch! A moment's reflection reveals 
that the problem is one of implement ability: to perform one step of the ball walk 
when 6:2: D we must sample a point uniformly at random from K, which is exactly 
the problem we set ourselves at the outset. However, provided we choose 6 small 
enough, specifically so the ratio voln (B(Xt, 6)nK) / voln B(Xt, 6) is not too small, 
we may obtain a random sample from B(Xt, 6) n K by repeatedly sampling from 
B(Xt,6) until we obtain a point in B(Xt, 6) n K. This is the so-called "rejection 
sampling" method, which is efficient provided that the probability of a successful 
trial is not too small. 

This foregoing observation leads us to introduce a "Metropolis" version of 
the ball walk (which should be compared with the heat-bath version specified 
earlier): select a point y u.a.r. from B(Xt,6); if y E K then set X t +1 f- y, else 
set X t +1 f- Xt. The Metropolis version of the ball walk has the advantage of 
implement ability over the heat-bath version. However, it has the disadvantage 
that it can get stuck in sharp corners. Consider what would happen, for example, 
if the Metropolis walk ended up very close (in relation to the step size 6) to the 
corner of an n-dimensional cube. To make progress, the point y would have to 
move in the correct direction in each of the coordinate axes, an event that occurs 
with probability close to 2-n . So the Metropolis walk cannot be rapidly mixing in 
the usual sense. We could try to loosen the definition of mixing time by somehow 
excluding sharp corners as possible initial states, and excluding them also from 
the metric employed to measure distance from stationarity. But it is cleaner to 
argue about the mixing time of the heat-bath version of the ball walk, and then 
separately argue about the relationship of the heat-bath and Metropolis walks. 
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The primary aim of this chapter is to convey the key ideas underlying the 
analysis of the ball walk, and not to obtain the most general theorems. We therefore 
simplify our analysis by imposing a "curvature condition" on K that rules out 
sharp corners. This condition radically simplifies certain technical aspects of the 
proof, while leaving intact all the main insights. One immediate effect of this 
simplification is that the Metropolis walk becomes only a constant factor slower 
than the heat-bath walk, so we have an easy job relating the two. Towards the 
end of the section, we shall review the proof and see what extra work needs to be 
done to eliminate the curvature condition. Provided we are prepared to accept a 
bound on mixing time that is wrong by a factor of n, the curvature condition may 
be dropped with little effort. Obtaining the correct mixing time in the absence 
of the curvature condition requires an analysis of substantial additional technical 
complexity, but requiring no further significant insights. This improvement will 
therefore be sketched only. 

In the light of the preceeding discussion, we cannot expect the mixing time 
of the Metropolis version of the ball walk to be short if K is very long and thin. 
The small "width" of K would dictate a small J, but then very many steps would 
be required to get from one end of K to the other. In the full strength version of 
the bound on mixing time of the ball walk, this issue is resolved by expressing the 
mixing time in terms of some measure of the "aspect ratio" of K. More precisely, 
it is supposed that K contains the unit ball B(O, 1) centred at the origin, and then 
the mixing time is expressed as a function of the diameter of K. 3 In fact, as already 
indicated, we simplify our presentation by making a stronger assumption, namely 
that the curvature of K should not be too large. We embody this simplifying 
assumption in the curvature condition: 

For all points x E K there is some point y E K 

such that x E B(y, 1) and B(y, 1) ~ K. 
(6.3) 

By definition, all balls will be closed. Note that the curvature assumption is much 
stronger that the "official" one, which merely asserts that B(O, 1) ~ K and, in 
particular, rules out the interesting case of K a polytope. For the main body of 
this chapter, and until further notice, "ball walk" will implicitly mean the heat
bath version, and the curvature condition will be assumed. 

Remark 6.1. What if we are presented with a body that is "thin"? It turns out 
that it is always possible to apply a linear transformation to K to yield a new 
convex body which contains a unit ball and whose diameter is quite reasonable. 
But this is another long story, and we do not embark on it here. Refer to Kannan, 
Lovasz and Simonovits [39]. 

The stationary measure of the ball walk -- we shall see presently that the 
ball walk is ergodic - is not uniform over K, but is close to uniform provided the 

3Note, as a by-product, we know that K contains the origin, so we have a suitable starting 
point for the random walk. 



70 Chapter 6: Volume of a convex body 

step size 8 is not too large. To describe the stationary measure, we introduce a 
function £ : K ----+ lR. (called local conductance by Lovasz and Simonovits) defined 
as 

£(x) := voln(B(x, 8) n K) , 
voln B(x, 8) 

(6.4) 

which may be interpreted as the probability of staying in K when choosing a 
random point in a 8-ball around x. Note that £(X)-l is the expected number of 
repetitions of this trial in order produce a point lying in B(x, 8) nK using rejection 
sampling. We want to normalise £(x) in order to get a density which will turn out 
to be the density of the stationary measure of the ball walk: 

where L = [ £(x) dx. (6.5) 

Our first task is to verify that J.L is an invariant measure for the ball walk. 
That it is unique follows as a weak consequence of our rapid mixing proof. 

Lemma 6.2. If Xo has distribution J.L, then Xl does also. 

Proof Let J.Ll denote the distribution of Xl. Then 

J.Ll(A) = iJ.Ll(dY) = i[ P(x,dY)J.L(dx) 

_ j dy r J.L(dx) 
- A J B(y,o)nK voln(B(x, 8) n K) 

by (6.2) 

-~ldY r £(x)dx 
- L A JB(y,o)nKvoln(B(x,8)nK) 

by (6.5) 

_ ~ r dy r dx 
- L J A J B(y,o)nK voln B(x, 8) 

by (6.4) 

= ~ r £(y)dy = J.L(A) 
L JA by (6.4, 6.5). 

Hence J.L is an invariant measure for the ball walk. o 

Exercise 6.3. Show that the uniform distribution on K is an invariant measure for 
the Metropolis version of the ball walk. 

It is clear that the distribution J.L is not uniform over K, but for a suitable 
choice of 8 it is close to it. 

Lemma 6.4. Assume the curvature condition (6.3), and suppose that 8 ::; cd Vii 
(where Cl is a dimension-independent constant). Then 0.4 ::; £(x) ::::: 1 for all 
xE K. 
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Proof. The upper bound on e(x) is trivial from the definition of e. For the lower 
bound we need an argument. 

Recall that we assume that every x E K lies in a I-ball B(y, 1) ~ K. The 
inequality above will follow from 

voln(B(x, 0) n B(y, 1)) -----'-----'---'---:------,--'----'-'- > 0.4. 
voln B(x, 0) -

It is enough to show the relation for a point x on the boundary of B(y, 1). Consider 
the tangent plane HI to B(y, 1) through x and its parallel plane H2 through the 
intersection of the boundaries of the two balls. (Refer to Figure 6.3.) Orient them 
such that their positive side H: (i = 1,2) contains the point y. Notice that 

B(x, 0) n Hi c B(y, 1) 

(0 is assumed to be smaller than 1). Therefore it is enough to show that the set 
B(x,o) n Hi has volume at least 0.4 voln B(x, 0). We will do this by showing 
that B(x, 0) n H:; n Hi has very small volume, i.e., at most a 0.1 fraction of the 
volume of B(x, 0). The set in question is contained in the cylinder with ground face 
B(x, 0) n HI (which is an (n - I)-dimensional ball with radius 0) whose height is 
the distance apart of HI and H2. A simple computation reveals that this distance 
is exactly 02 /2. From the volume formula of balls of dimensions n - 1 and n, and 
Stirling's approximation for the r-function, we obtain the following relation 

VOln-1 (B(x, 0) n Hd < cyTi 
voln B(x, 0) - 0 ' 

for some universal constant c. Hence the volume of the cylinder is at most a ~coyTi 
fraction of the volume of B(x, 0). Setting CI = I/5e gives the desired bound. 0 
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What this lemma also says is that we can implement one transition of the ball 
walk efficiently: going from a point x E K to a random point in B(x,8) we have 
a probability of at least 0.4 of ending up in K immediately; in other words, the 
Metropolis version of the ball walk is only a factor 2.5 slower than the heat-bath 
version. 

6.3 Mixing rate of the ball walk 

We will show now that the ball walk mixes rapidly. The next lemma is a powerful 
weapon and forms the basis of one of our standard techniques. 

Lemma 6.5. Let f be a measurable function over a measurable set S. Partition S 
into measurable sets So, ... ,Sm-I' Then 

(6.6) 

where 
- 1 1 fi := -(So) f dJL. 

JL , Si 

Remark 6.6. Suppose that EJL f := J~ f dJL = O. Then on the l.h.s. of the equal
ity we have simply VarJL f. The two terms on the r.h.s. of the equality may be 
interpreted as (i) the sum of the variances of f within each of the regions Si, and 
(ii) the variance of f between the regions, respectively. 

Proof of Lemma 6.5. 

f (f - /;)2 dJL + JL(Si)l/ = 1 f2 dJL + 1. 1/ dJL - 21. ld dJL + JL(Si)/;2 
lSi Si S, S, 

1 2 -2 -2 -2 = f dJL + JL(Si)fi - 2JL(Si)fi + JL(Si)fi 
S, 

D 

As in the analysis of the matchings Me, our approach to bounding the mixing 
time involves taking a (measurable) test function f : K ~ Itt (with E f = 0 
for convenience) and examining how the variance of f decays as a result of the 
averaging effect of the ball-wall. To this end, introduce a function h : K ~ Itt given 
by 

h(x) := ~ f P(x,dy) (f(x) - f(y))2 
2 lK 

= (f(x) - f(y))2 dy, 1 1 
2voln(B(x,8)nK) B(x,8)nK 

(6.7) 
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and define 

Varp, f:= [f2 d/L and £/lU, f) := [ hd/Li 

these are the now-familiar variance (global variation of f over K) and Dirichlet 
form (local variation of f at the scale of the step size 15 of the ball walk). As with 
the matching MC, the key to the analysis of the ball walk lies in obtaining a sharp 
Poincare inequality linking Varp, f and £p,U, f). Our eventual goal is to show: 

Theorem 6.7 (Poincare inequality). Let K c JR.n be a convex body of diameter D 
satisfying the curvature condition (6.3), and suppose that 15 is as in Lemma 6.4. 
For any (measurable) function f : K -'t JR., 

(6.8) 

where 

for some universal constant C2. 

We apply the technique by Mihail (as we did with matchings in §5.2) and 
obtain from ). a bound on mixing time. As before, we deal with periodicity by 
considering either a continuised or lazy walk. 

Corollary 6.8. For any E > 0 let T( E) denote the time at which the ball walk (in 
either its continuised or lazy variants) reaches within total variation distance E of 
the stationary distribution /L. Then, under the curvature condition (6.3), 

where). is as in Theorem 6. 'l and i(/Lo) expresses the dependence on the initial 
distribution /Lo. 

Remark 6.9. The expression i(/Lo) is closely related to the term In 7r(xO)-l familiar 
from the discrete case. But if we now start from a fixed point (in other words our 
initial distribution /Lo is a single point mass at Xo E K) no meaning can be attached 
to In 7r( xo) -1. To escape from this, imagine that we start at time -1 from a point 
Xo such that B(xo, 0) <:;;: K, and consider the situation at time O. Thus the initial 
distribution /Lo is uniform over some ball of radius 15. In this case, we may take 
i(/Lo) = nln(D/20). 

Exercise 6.10. Verify Corollary 6.8. Doing this essentially involves translating The
orem 5.6 to the setting of continuous state space. In case you skip this exercise, a 
full derivation may be found in §6.8. 

At an intuitive level, Theorem 6.7 seems to be close to the truth. With a step 
size of 15, the distance travelled parallel to any axis fixed in advance (in particular, 
one parallel to a diameter of K) is of order 0/ Vii. The time taken for the walk to 
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"diffuse" along a diameter is the square of the ratio of D to the typical distance 
moved along the diameter in one step, namely (D,fii/b) 2 , which is of order A-I. 
To minimise mixing time we clearly wish to take 15 as small as possible consistent 
with implementability, which by Lemma 6.4 is of order n- lj2 . With that step size, 
the Poincare constant scales as (nD) - 2 . 

The next section is devoted to the proof of what is essentially the main result 
of this chapter. 

6.4 Proof of the Poincare inequality (Theorem 6.7) 

Assume the converse to (6.8), namely that there exists a function f : K ~ ]R with 

(6.9) 

informally, f sustains high global variation simultaneously with low local variation. 
We will define smaller and smaller violating sets S such that the ratio 

(6.10) 

is small, where J = Is f dfl· Our starting point is of course S K, where we 
know that this ratio is less than A. Eventually, S will be small even with respect 
to J. Then the function f will have to be almost constant in S since the local 
variation (as measured by the numerator) is small; however the global variation 
(as measured by the denominator) is large. Here we reach a contradiction. This in 
outline is our proof. 

First we will shrink the violating set to a set Kl which is very small in all but 
one dimension, a so-called "needle-like" body. It transpires that we can do this 
while keeping ratio (6.10) bounded throughout by A. It is only when we attempt 
to shrink along the final dimension that we have to give something away. Before 
embarking on the process of shrinking K to a needle-like body, we need a pair of 
geometrical lemmas, whose proofs we defer to §6.5. 

Lemma 6.11. Let R be a convex set in ]R2. There is a point x E R such that every 
line through x partitions R into pieces of area at least ~ of the area of R. 

Remark 6.12. The bound ~ can in fact be replaced by ~, which is tight as can been 
seen by considering an equilateral triangle; see Egglestone [26, §6.4]. However, any 
strictly positive bound is adequate for our purposes. 

The width of a convex set R in ]R2 is the minimum, over all pairs of parallel 
supporting lines sandwiching R, of the distance between those lines. 4 

4In some sense, width it is the opposite of diameter, which may be defined as the maxi
mum such distance. This was not how we defined diameter in §6.2, but the two definitions are 
equivalent. 
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H 

Figure 6.4: The expectation of f is zero on both K j n H+ and K j n H- . 

Lemma 6.13. Let R be a convex set in ]R2 of area A. Then the width of R is at 
most J2A. 
Remark 6.14. Again, the bound is not the best possible, but is adequate for our 
purposes. The extremal set (i.e., the one of given area that maximises width) is 
again an equilateral triangle. 

To resume: With the aim of establishing a contradiction we are assuming 
the existence of a function f : K -+ ]R satisfying (6.9). We may further assume 
(by adding an appropriate constant function to f) that Eft f = 0. This additional 
assumption will be convenient on the first leg of our journey towards the contra
diction. 

Claim 6.15. Assume f : K -+]R satisfies inequality (6.9), and Eft f = 0. Then, for 
every f > 0, there is a convex subset Kl ~ K satisfying 

r h dJ.L < A r f2 dJ.L as well as 
J K, J K, 

r f dJ.L = 0, JK1 

and such that Kl lies in the box [O,Dl x [0,fl n - 1 in some Cartesian coordinate 
system. 

Proof. Suppose, for some j ~ 2, that K j is a violating set which lies in [0, D]1 x 
[0, fl n - j , and that J K. f dJ.L = 0; i.e., we have already shrunk our violating set down 

J 

on n - j coordinates. (The base case Kn = K is of course covered by (6.9).) To 
shrink along a further coordinate we use a beautiful divide-and-conquer argument 
due to Payne and Weinberger: see Bandle [4, Thm 3.24]. 

Let R be the projection of K j onto the first two (i.e., "fat") axes. Let x be 
a point satisfying the conditions of Lemma 6.11. Consider all (n - 1 )-dimensional 
planes through x whose normals lie in the 2-dimensional plane spanned by the 
first two axes. These planes project to lines through x in the plane of R. Among 
these planes there is at least one, say H, such that 
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To see this, choose any (n - 1 )-dimensional plane G through x whose normal lies 
within the plane of R. If G does not already have the desired property, then, since 
JKnc+ f dj.l + JKnc- f dj.l = 0, one integral or the other has to be positive. By 

J J 

rotating G about x by an angle of Jr, the signs exchange. So by continuity and the 
mean value theorem we have to have hit the sought-for H at some point. 

It is easy to convince oneself that K j intersected with one side of H (i.e., 
either KjnH+ or KjnH-) is also a violating set, in the sense that the ratio (6.10) 
is bounded by >. when S = K j nH+ (or S = K j nH-, as appropriate). Now iterate 
this procedure. By Lemma 6.11, the area of the projection R of the convex body 
drops by a constant factor at each iteration, and must eventually drop below ~E2. 
At this point the width of R, by Lemma 6.13, is at most E. Then, rotating the fat 
axes as appropriate, the projection of the convex body onto (say) the first of these 
axes is a line segment of length at most E. The convex set now has exactly the 
properties we require of the set K j -1, i.e., the same properties as K j , but with 
j - 1 replacing j. Hence by induction we can find our set K 1. D 

The above line of argument requires at least two fat dimensions in order to 
provide enough freedom in selecting the plane H. We need a new approach in 
order to shrink the needle-line set along the remaining fat dimension. 

Claim 6.16. Let K1 and f be as in the conclusion of Claim 6.15, 0 be as in 
Lemma 6.4, and let "l := C30/ Vn where C3 > ° is any constant. Then, under 
the curvature condition (6.3), there is a convex subset Ko ~ K1 satisfying 

(6.11) 

where 
- 1 1 f= -(K) fdj.l, 

j.l 0 Ko 
(6.12) 

and such that Ko lies in the box [-"l, "ll x [0, El n - 1 in some Cartesian coordinate 
system. 

Remark 6.17. We will choose the constant C3 later; in order to obtain an eventual 
contradiction, it will need to be small enough. The choice of C3 will then determine 
the universal constant C2 of Theorem 6.7: the smaller C3, the smaller C2. 

Our strategy for proving Claim 6.16 is to chop K1 into short sections and 
show that at least one of these sections (or perhaps the union of two adjacent 
ones) satisfies the inequality (6.11). (Refer to Figure 6.5.) Before embarking on 
the proof proper, we need another geometric lemma, which is a consequence of the 
Brunn-Minkowski Theorem; the proof is again deferred to §6.5. 

Lemma 6.18. Let convex body K1 be partitioned into m pieces So··· Sm-1 of equal 
width by planes orthogonal to a fixed axis. Then the sequence 

1 1 1 

vaIn So' voin Sl ' ... , voin Sm-1 
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is convex. 

1------11 1 1 1-1 -----I 

Uo U2 

1------11 1-1 -----I 

U1 U3 

Figure 6.5: Partitioning of Kl 

We are ready to resume the chopping argument. 
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Proof of Claim 6.16. Let convex body Kl be partitioned into m pieces by planes 
orthogonal to the fat axis, as specified in Lemma 6.18, so that each piece Si has 
width T) = C38/,fii. Additionally, define Vi := Si U Si+1 for i = 0, 1, ... ,m - 2. 
Note that m = O(D,fii/8). Using Lemma 6.5, we find 

m-l m-l 

[/2 d/L = ~ hiU-Ji)2d/L+ ~/L(Si)Ji2, (6.13) 

'-----.,v ~ 
A B 

where for convenience we define 

- 1 1 fi := -(S) f d/L. 
/L , Si 

In the case that sum A is greater or equal to sum B, we readily find a piece Si 
that serves as a violating set. We start with 

m-l 

L 1 h d/L = 1 h d/L 
i=O S, K, 

< >. { f2 d/L 
iK1 

m-l 

:::; 2>' L 1U - Ji) 2d/L 
i=O S, 

by assumption 

by (6.13) and A 2: B. 

Comparing sums (6.14) and (6.15) we see there must be an Si such that 

(6.14) 

(6.15) 
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Setting Ko = Si satisfies the conclusion of the claim with plenty to spare. (Note 
in this context that .A = O(n- 2 ).) 

The case B > A is a little more difficult. Using the alternative expression for 
variance which we have seen before, and recalling that the expectation of f with 
respect to 11 on K1 is 0, we have 

m-1 

Il(Kd 1 f2 dll < 21l(Kd L Il(Si)fi2 
Kl i=O 

since B > A 

= 2 L Il(Si)Il(Sj)(fi - fj)2 using (5.5). (6.16) 
O::;i<j<m 

Our aim is to replace the r.h.s. of (6.16) by a sum with similar terms, but restricted 
to adjacent pairs i, j. This will enable us to finish with an argument similar to the 
A 2 B case. 

For convenience, we introduce the abbreviation Wi = Il(Si), and set 

j-1 j 

"Wk +Wk+1 " 1 
ai,j := WiWj L.J W W :::; 2WiWj L.J :;-. 

k=i k k+1 k=i k 
(6.17) 

Inequality (6.16) may be massaged as follows: 

Il(Kd 1 f 2dll < 2LWiWj(h - /y)2 
Kl i<j 

(6.18) 

where the final inequality is Cauchy-Schwarz combined with (6.17). Define ik to 
be the expectation of f over Uk = Sk U Sk+1: 

ik := _1_ r f dll = Wdk + wk+1fk+1 . 
Il(Uk) iUk Wk + Wk+l 

Then, by Lemma 6.5, 

WkWk+l - - 2 -, 2 - , 2 
----'--(fk - fk+d = wdfk - fd + Wk+l(fk+1 - fk) 
Wk + Wk+1 

:::; r (f - ik)2dll 
iUk 

(6.19) 
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(The first line may be viewed as the special case lill = 2 of (5.5), or may be verified 
by elementary algebraic manipulation. Inequality (6.19) comes from Lemma 6.5, 
noting that the first sum on the r.h.s. of (6.6) is clearly positive.) Applying bound 
(6.19) to the terms in (6.18) yields 

(6.20) 

Taking stock momentarily: inequality (6.20) appears to be telling us that if the 
variance of f is large on Kl then it must be large on some Uk; but there is still 
some work to be done on the way to quantifying this effect. 

Recall that 

where L = iK R(x) dx. Thus, by Lemma 6.4, 

(6.21) 

leading to the following upper bound on ai,j: 

j L 
ai,j~2wiWjL04 1 S by (6.17) and (6.21) 

k=i . VO n k 

~ 2.5wi W j L(j - i + 1)(-11 S. + -11 S.) by Lemma 6.18 
vo n t VO n J 

~ 2.5(j - i + 1)(wi + Wj) by (6.21). (6.22) 

Since j - i + 1 never exceeds m, we have the following crude bound on the sum of 
the ai,j: 

i<j i<j 

i<j 

(6.23) 

(6.24) 

To see (6.23), fix attention on a particular index k and note that Wk occurs exactly 
m - 1 times in the double sum. 
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Returning now to (6.20), 

j-l 

{l(Kt) [I f2 dJi. < 2 t; ai,j t;!uk (f - ik)2 d{l 

rn-2 

::; 2 L ai,j L 1 (f - A)2 d{l 
i<j k=O Uk 

rn-2 

::; 5m2{l(Kd t;!uk (f - A)2 d{l by (6.24), 

from which 

(6.25) 

Inequality (6.25) is the one we sought, expressing the fact that if the variance 
of f is large on the whole of Kl then it must be fairly large on some piece Uk. 
Proceeding now by analogy with the A ::; B case, using (6.25) and the conclusion 
of Claim 6.15, 

Therefore there must exist a k such that 

(6.26) 

By setting C2 sufficiently small, specifically C2 < c5/100, we obtain 

2 (DvIn)2 c282 1 
10m A = 10 C38 D2n < 10' 

Setting Ko := Uk, we recognise (6.26) as the inequality promised in the statement 
of the claim. This concludes the case B > A and hence the proof. 0 

We pick up the proof of Theorem 6.7. At the outset we assumed, with a view 
to obtaining a contradiction, the converse of (6.8). Now, from Claims 6.15 and 6.16, 
we deduce the existence of a convex set Ko C K satisfying inequality (6.11) such 
that Ko is contained in a prism of height 2", whose cross section is an (n - 1)
dimensional cube of side c. We are close to obtaining the desired contradiction. 

Let C be the centre axis of the prism, and let Zl and Z2 be the points at which 
C intersects the end facets of the prism. (Refer to Figure 6.6.) Let 8' := 8 - cvln, 
and choose c sufficiently small that 

voln B(O, 8') :::: 0.9 voln B(O, 8). (6.27) 
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J(o 

e<C:::-----='----=" Z2 

21] 

Figure 6.6: "Needle like" body Ko 

Boundary of J( 

Figure 6.7: Construction of the set I (shown shaded) 

(Recall that we are free to choose c as small as we like.) Set I := B( Zl, 0') n 
B(Z2,8')nK. (Refer to Figure 6.7.) We shall argue that by choosing C3 (and hence 
'f]) sufficiently small we can ensure 

(6.28) 

and hence 

The calculation supporting (6.28) proceeds exactly as in the proof of Lem
ma 6.4. Divide B( Zl, 8') n B( Z2, 15') into two congruent pieces by the plane bisecting 
the line (Zl) Z2) and orthogonal to it. Each piece can be viewed as a half-ball 
less a segment that can be contained in a cylinder of height 'f] (= C3J / Vn) and 
radius 8' ~ o. By setting C3 small enough - - refer to the calculation in the proof 
of Lemma 6.4 - we may ensure that the volume of this cylinder is less than 
0.05 voln B(O, 8). Now, by (6.27), the combined volume of the two half balls is at 
least 0.9voln B(O, 8), so after removing the two segments we are still left with a set 
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of volume 0.8 voln B(O, 8), as claimed in (6.28). Inequality (6.29) is now immediate: 
just observe that the piece of B(Zl' 8') n B(Z2' 8') that we loose when we intersect 
with K is contained in B(Zl,8) \ K, which by Lemma 6.4 has volume at most 
0.6 voln B(O, 8). 

Inequality (6.29) expresses one key property of J, namely that its volume is 
not too small. The other key property is that every point in J may be reached 
from any point in Ko in one step of the ball walk. For by construction, 

sup {llx - yll : x E C and y E I} :::; 8', 

from which, by the triangle inequality, 

sup {llx - yll : x E Ko and y E I} :::; 8' + E:Vn = 8. 

Since J s:;; K, we may conveniently reformulate this fact as 

J s:;; B(x, 8) n K, for all x E Ko. (6.30) 

So, 

by (6.7, 6.30) 

(Fubini) 

(6.31) 

by (6.29), 

where I, as in (6.12), is the It-expectation of f over Ko. Inequality (6.31) uses a 
simple fact about variance, namely that J Ko (f - c)2 dlt is minimised by setting 
c = f. But the combined inequality contradicts (6.11). This completes the proof 
of Theorem 6.7. 

6.5 Proofs of the geometric lemmas 

In this section we tie up the loose ends by providing proofs for the three geometric 
lemmas used in the proof of Theorem 6.7. 

Proof of Lemma 6.11. The following proof is due to Alan Riddell; I thank him 
and also Toby Bailey for communicating it to me. 
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R gion R 

Figure 6.8: A paradoxical subset of R. 

Consider all possible partitions of R into three regions of equal area by a 
pair of parallel lines. (There is one partition corresponding to each orientation for 
the lines.) Let {Co : 0 ::; e < 7r} be an indexing of the central bands in these 
partitions, considered as closed sets. Suppose there exist bands COl' CO2 and C03 

with no point in common. The set ]R2 \ (COl U CO2 U C(3 ) consists of six unbounded 
regions and one triangle. Consider the partition of R into seven pieces obtained 
by extending the edges of the triangle to the boundary of R, and in particular the 
four pieces shown shaded in Figure 6.8. Each of the shaded pieces other than the 
central triangle has area at least ~ voh R, since it is the intersection of two regions 
of R of area ~ voh R. The central triangle itself has positive area. Thus the total 
shaded area exceeds voh R, a contradiction. 

Hence every triple from {Co} has a common point and, by Helly's theorem 
(see Egglestone [26, Thm 17]), the intersection no Co of all central bands is non
empty. Any point in this intersection will do as our choice for x. 0 

Proof of Lemma 6.13. Suppose R is a convex region in ]R2 of area A. Let fi1 and 
fi~ be parallel supporting lines of R, touching R at the points 0: and 0:'. We may 
arrange for lines fi1 and fi~ to be perpendicular to the line segment [0:,0:'], e.g., 
by choosing [0:,0:'] to be a diameter of R. Now let fi2 and fi~ be supporting lines 
of R perpendicular to fi 1 and fi~, touching R at the points [3 and [3'. The rectangle 
formed by these supporting lines has area at least w2 , where w is the width of R. 
It is easy to see that the convex hull of {o:, 0:', [3, [3'} has area !w2 . (The fact that 
[0:,0:'] is parallel with an edge of the rectangle is crucial here.) But the convex hull 
of {o:, 0:', [3, [3'} is contained within R. It follows that A 2: !w2 . 0 

Proof of Lemma 6.18. For what follows, we abbreviate voln Si by Vi. In order to 
prove the lemma, the notation of Minkowski sums is useful: Let A and B be sets 
of points and A a real number. A point p is represented by the vector pointing 
from 0 to p. Then we define the set A + B as the set of points a + b with a E A 
and bE B. Furthermore, for a scalar A, AA is the set of points Aa with a E A. 
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1] 

Figure 6.9: Slab S sweeping over KI 

We prove the lemma by showing properties of the function voln (( xel + S) n 
KI) for x E [0, Dl, where S is a "slab" of width 'T], and el is a unit vector parallel to 
the fat axis. (The slab is defined as the intersection of two halfspaces orthogonal to 
the fat axis and distant 'T] apart; assume that the origin is placed at the leftmost 
point of Kd Thus we move the slab S from left to right and observe how the 
volume of the intersection KI n S behaves. Note that Vi := voln Si = voln ((i'T]el + 
S) n KI). (Refer to Figure 6.9.) 

The proof of the lemma relies on a theorem of Brunn and Minkowski (see 
Egglestone [26, Thm 46]). 

Theorem 6.19 (Brunn-Minkowski). Let K' and K" be two convex bodies in ~n. 
Then 

To continue with the proof of Lemma 6.18, observe that 

(AX + (1 - A)Y + S) n KI ;2 A((X + S) n KI) + (1 - A)((Y + S) n Kd. (6.32) 

To verify this, assume z is in the set on the right hand side. This means that we 
can write z = z' + z" with z' E A((X + S) n Kd and z" E (1 - A)((Y + S) n Kd. 
Therefore, z' E AKI and z" E (1 - A)KI. Thus Z E K I . On the other hand, we 
have z' E A(X + S) and z" E (1 - A)(Y + S) which leads to z E AX + (1 - A)Y + S. 

Using the Brunn-Minkowski Theorem in conjunction with (6.32), we find 

voln [(AX + (1 - A)Y + S) n K I ] lin 

[ ] lin 2: voln A((X + S) n Kd + (1 - A)((Y + Kd n Kd 

2: voln[A((x + S) n Kdl l /n + voln[(l - A)((Y + S) n Kdl l /n 

= A voln[(x + S) n KIF/n + (1 - A) voln[(y + S) n KIF/n. 
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In the last step, we used voln ()"K) = ).. n voln K. As a special case of this inequality, 

we find that the sequence (v;/n) is concave: 

(6.33) 

Now it is easily checked that if (ai) is any concave sequence, and 9 any 
monotone non-increasing convex function, then the sequence (g(ai)) is convex. 

The lemma then follows from (6.33) by setting ai = v;/n and g(x) = x-no D 

6.6 Relaxing the curvature condition 

What happens if we do not have the curvature condition (6.3)? As we shall see, 
the question is of some importance, not least because the standard reduction from 
volume estimation to sampling introduces sharp corners, even if these are absent 
in the given convex body K. The most obvious consequence of dropping (6.3) is 
that the expected number of Metropolis steps to simulate a single heat-bath step is 
no longer bounded by a constant. Worse, as we have argued, the expected number 
steps may be exponential in n for a worst-case choice for the current point X t = x. 
The most we can hope for is that, in a typical evolution of the ball walk, we are 
very unlikely to visit this bad region of K. This turns out indeed to be the case, 
provided 15 = O(l/v'n), the body K contains the unit ball B(O, 1), and we make 
a reasonable choice of initial state. See Kannan, Lovasz and Simonovits [39]. 

Remark 6.20. To get a feel for what is going on, imagine the Metropolis ball walk 
in some n-dimensional polytope K. In order to mix, the walk needs potentially 
to "see all the boundary" of K, otherwise it cannot gain information about the 
body. In the case of a polytope this means that we would have to treat the case of 
coming close to facets (Le., (n - 1)-dimensional faces) of the polytope. There the 
random walk can "learn" a lot about the shape of K. But it does not necessarily 
have to come close to smaller-dimensional faces, where the walk might get stuck 
for long periods. Not surprisingly, the main technical difficulties then arise from 
showing that close encounters with low-dimensional faces are rare. 

A problem arises, however, before we ever reach the comparison of the heat
bath and Metropolis versions of the ball walks. Specifically, our derivation of 
the key Poincare inequality contained in Theorem 6.7 made use of the curva
ture condition at two points: at inequalities (6.21) and (6.29), both of which rely 
on Lemma 6.4, and both of which fail in the absence of (6.3). 

We may avoid the first of these inequalities entirely, thus removing the cur
vature condition (6.3) from the statement of Claim 6.16. First we make some 
observations concerning the local conductance C. 

Lemma 6.21. The local conductance C defined in (6.4) satisfies: 

(i) C(x)l/n is concave over K; 
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n 
(ii) In £ is Lipschitz; specifically lIn C(x) - In £(y) I ::; J Ilx - yli, for all x, y E K. 

Proof (sketch). We are in a similar situation to that already encountered in the 
proof of Lemma 6.18: a convex body - there a slab defined by parallel (n - 1)
dimensional planes, here a ball of radius 5 - is translated in a straight line and 
its intersection with K studied with the aid of the Brunn-Minkowski Theorem 
(Theorem 6.19). The proof of part (i) here is analogous. 

For part (ii), observe that the definition of the function C, presented in (6.4), 
makes sense outside its official domain, namely K. Observe also that part (i) 
continues to hold over the larger region K + B(O, 5), the Minkowski sum of K and 
the ball of radius 5. Given x, y E K, letz be the point colinear with x and y, at 
distance 5 from y, and on the opposite side of y to x. Note that z E K + B(O, 5). 
Thus, by part (i), 

5C(x)l/n + IIx - YIIC(z)l/n::; (5 + Ilx - yll)C(y)l/n, 

and hence 
C(x) < (5+IIX-YII)n 
C(y) - 5 

Taking the logarithm of both sides, 

Since the argument is symmetric in x and y, part (ii) of the lemma follows. 0 

We may now avoid inequality (6.21) by taking a more direct route, which is 
opened up by replacing Lemma 6.18 by: 

Lemma 6.22. With So) S1,"" Sm-l as in Lemma 6.18, the sequence 

is concave. Consequently, the sequence 

1 1 1 
JL(So) , JL(Sl) , ... , JL(Sm-I) 

is convex. 

This lemma follows from a functional version of the Brunn-Minkowski The
orem due to Dinghas [21, Satz 1]. We state this theorem in a slightly less general 
form than it appears in [21J. 

Theorem 6.23 (Dinghas). Suppose Al and A2 are non-empty, bounded, measurable 
sets in ]Rn, and let Ao = Al + A2 be the Minkowski sum of Al and A2. Suppose 
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further that hand h are measurable functions defined on Al and A 2, respectively, 
and form the function go defined by 

go(x) = sup {((h(x')l/r + h(x")l/rf : x' E A1,x" E A2 and x' + x" = x}, 

for all x E Ao· If fo is any measurable function on Ao satisfying fo(x) 2: go(x) for 
all x E A o, then 

[ ] 
1/(r+n) [j ] l/(r+n) [j ] 1/(r+n) Lo fo(x) dx 2: Al h (x) dx + A2 h(x) dx 

Proof of Lemma 6.22. In Theorem 6.23 make the following identifications: r = 
n, Al = 8i~l' A2 = 8;+1, h = h = e and fo(x) = 2re(x/2). By part (i) of 
Lemma 6.21, we then have fo 2: go, as required; also observe that 28; :;2 8i~1 + 
8i+ 1 = Ao. The first claim in Lemma 6.22 may then be read off from the concluding 
inequality of Theorem 6.23. The second claim uses the same reasoning as in the 
final step of the proof of Lemma 6.18. See also [44, Lemma 2.1]. D 

Armed with Lemma 6.22, the upper bound on a;,j derived in the sequence 
of inequalities ending at (6.22) - with improved constant 1 in place of 2.5 -
follows directly from the definition (6.17) of a;,j' This establishes Claim 6.16 in 
the absence of the curvature condition (6.3). 

The other place at which the curvature condition is used, namely in estab
lishing (6.29), is trickier to handle. (Note that we used it in going from (6.28) 
to (6.29).) Our use of curvature is more substantial here, and we need to modify 
the partitioning of the needle-like body Kl used in the proof of Claim 6.16 (see 
Figure 6.5) to recover the proof. If we are prepared to settle for a Poincare con
stant .\ smaller by a factor n (i.e., .\ = c282 / D 2n 2) then it is not too difficult to 
establish Theorem 6.7 in the absence of (6.3), and we shall see presently how this 
is done. Getting the correct (up to a constant factor) .\ in the absence of (6.3) 
requires a more complicated analysis, which we only sketch here. 

What is it we were trying to achieve with inequality (6.29)? Well, the fi
nal contradiction required us to find a set I S;;; K with the properties that: 
(i) every point of Ko is within distance 8 of every point of I; and (ii) the ra
tio voln 1/ voln(B(x, 8) n K) is bounded below by a universal constant for every 
x E Ko. Without (6.3) there is currently no guarantee that such a set I exists. 
However, if we chop Kl more finely, into slabs of width T] = C38/n (instead of 
T] = C3 8/ /Ti ), then we are assured to find the required set I. This finer partition 
increases the number of slabs m by a factor /Ti, and hence reduces the Poincare 
constant by a factor n. We borrow the following lemma from Kannan, Lovasz and 
Simonovits [39, Lemma 3.5]. 
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Lemma 6.24. Suppose J' > 0, and x, y E K with Ilx - yll ::; J' / y'n. Then 

voln(B(x, J') n B(y, 8') n K) 

2 1 ~ e min { voln(B(x, 8') n K) , voln(B(y, J') n K)}. 

Recall that voln(B(x, J') n K) is proportional to C(x). (This is by defini
tion (6.4) of local conductance C.) Now, with 'f} smaller than before, part (ii) of 
Lemma 6.21 (the Lipschitz inequality for C) ensures that voln(B(x, J') n K) varies 
by at most a constant factor as x ranges over Ko. So, choosing J' a little less than 
J, as before, we see that the set I := B(ZI ' J') n B(Z2 ' J') n K has the proper
ties we desire: property (i) is by the triangle inequality, and property (ii) is by 
Lemma 6.24. This establishes Theorem 6.7 without assumption (6.3) but with A 
smaller by a factor n . 

Exercise 6.25. Flesh out the details of the above proof sketch. 

Finally, some inadequate pointers on how to drop assumption (6.3) without 
losing the factor n in A. Let's step back and consider what we need to have in order 
to be able to construct the contradictory set I , using Lemma 6.24. Certainly we 
need the slabs in the decomposition to have width O(J/ y'n); but we also require 
that the local conductance C varies by at most a constant factor over each slab. As 
we have seen, these two requirements can be met by using slabs of width O(8/n), 
but then the number of slabs increases, and our estimate of the Poincare constant 
worsens. 

So it seems that we need to partition Kl into slabs of unequal thickness , using 
thinner slabs where C is rapidly varying. We might as well use the coarsest possible 
partition that will allow us to draw the final contradiction. Starting at the leftmost 
point of K 1 , partition Kl into slabs So, SI,"" Sm-l as in Figure 6.5, finishing 
with slab Sm-l at the rightmost point of K 1. Having created So, SI ... , Si-l , 

choose the plane defining Si to be the rightmost plane subject to the conditions: 

(i) the distance from the previous plane (Le., the thickness of slab Si) is at most 
C3J/y'n; and 

(ii) the local conductance C(x) varies by at most a factor 2 as x ranges over Si. 

Thus the partition of Kl into slabs Si is the coarsest possible, subject to conditions 
(i) and (ii). 

Note that conditions (i) and (ii) together allow us to construct, using Lem
ma 6.24, the set I that leads to the final contradiction. We need of course to fix 
up the proof of Claim 6.16, which was conducted under the assumption that Kl 
is partitioned into slabs of constant width O( J / y'n). Specifically, we need work 
harder to prove the key inequality (6.24). 

Exercise 6.26. Complete the Proof of Theorem 6.7 (the Poincare inequality) in 
the absence of the curvature condition (6.3), using the programme outlined above. 
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The main technical challenge lies in reproving Claim 6.16 in the absence of (6.3), 
specifically in re-establishing (6.24), taking due account of the amended partition 
of K1 into slabs. You will find that the partition of Figure 6.5 (using the amended 
construction just presented) can be divided into three sections: So, ... ,Se-1, then 
Se, ... ,Sr-1 and Sr ... , Sm-1, where the slabs in the middle section are all of full 
width 7], and the others are all of strictly smaller width. (Either or both of the outer 
sections may be empty.) The existence of such a division relies on log-concavity 
of the local conductance €, which is a consequence of Lemma 6.21(i). The middle 
section is dealt with exactly as before, since the number of slabs contained within it 
is r-€:::; D/7] = O(Dyn/J). In the left (right) sections it can be shown that Wi = 

/-L(Si) is increasing (decreasing) geometrically; thus the sum (6.17) is determined, 
up to a constant factor, by its first (last) term. (This step uses log-concavity of € 
and Brunn-Minkowski.) Thus it doesn't matter so much that the number of terms 
in the sum (i.e., slabs in the partition) may grow faster than O(Dyn/J). Note 
that this is a challenging, verging on speculative, exercise. To keep the technical 
complexities within bounds, you may want to assume 15 = O(D/yn). This is 
not a restriction in the volume application, where is = 8(1/yn) and D = 0(1). 
However, the assumption is a definite blemish, in that Theorem 6.7 should hold 
even when 15 is of the same order as D. 

Remark 6.27. Kannan, Lovasz and Simonovits [39J restrict the function j to be 
an indicator function j : K ---> {O, I}. The parameter cP corresponding to A in the 
inequality 

[,,(j, 1) 2 cP Var" j, for all (measurable) j : K ---> {O, I} 

is called the conductance of the ball walk. Since the class of functions j is restricted, 
the conductance cP is potentially larger than A. However it is known - a version of 
Cheeger's inequality - that A 2 iCP2. (See Sinclair [57J or Aldous and Fill [2J for 
relationships between various MC parameters, including these two.) The approach 
to the ball walk in [39J is to show that the conductance cP is of order is / Dyn, which 
leads by Cheeger to the required bound on A. However, the restriction of j to the 
class of indicator functions unfortunately does not seem to lead to any significant 
technical simplification in the proof. 

6. 7 Using samples to estimate volume 

In order to estimate the volume of a convex body using our sampling procedure, 
we follow the basic "product of ratios" approach used in earlier examples. Briefly, 
the procedure is as follows. 

Given our convex body K, we define a series of concentric balls Bo C B1 C 

... C Bk such that Bo <;;; K and K <;;; B k. (Refer to Figure 6.10.) Additionally, we 
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Figure 6.10: convex body K and the concentric balls 

require that the volume of these balls does not grow too quickly, say voln B i+ 1 ::; 

2 voln B i . We can estimate the ratios 

by repeatedly sampling points from Bi+l nK and determining the fraction of these 
points which lie also in B; n K. Let Zi be an estimate for (Ji obtained by taking 
the sample mean. We then get the desired estimate of voln K from 

k-l 1 
voln K ~ voln Bo' II Z.· 

;=0 ' 

Of course, we may calculate voln Bo from an explicit formula. 

We have glossed over important issues here, not least the obvious fact that k 
must not be too large if we are to control the variance of our product estimator 
for voln K. If K is "well rounded" then, indeed, k need not be very large. But 
if K is very elongated it will be necessary to apply a linear transformation to K 
to render it well rounded. For details of this step, and many further refinements, 
refer to [39]. 
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6.8 Appendix: a proof of Corollary 6.8 

We work with the lazy version of the ball walk, which stays put with probability ~. 
For the first leg, we follow closely the proof of Theorem 5.6, but replacing sums 
by integrals. Because of the close similarity of the arguments we record only the 
main steps here: 

and 

[Pzz/l(x) = ~ i P(x,dy) (J(x) + f(y)), 

VarJL(Pzzf) :::; ~ iJ.L(dX) i P(x,dy)(J(x) + f(y))2, 

VarJL f = ~ r J.L(dx) r P(x,dy) (J(x)2 + f(y)2). 
2 iK iK 

It follows that 

VarJL f - VarJL(Pzzf) 2': ~ i J.L(dx) i P(x, dy)(J(x) - f(y))2 

1 
= 2eJLU, f) 

1 
2': /. VarJLf, 

and hence 

Iterating the above, we obtain 

(6.34) 

Now suppose A is measurable subset of K, and let f : K ---.lR be the function 
that is 1 on A and 0 outside A. Assume that we start our walk from a point Xo 
selected uniformly at random from the ball B = B(x, 6) ~ K. (This is, of course, 
equivalent to starting the walk at point x at time -1.) For E: > 0 we want to find a 
time t such that the variation distance of the t-step distribution from stationarity 
is at most E:; equivalently, we require 

I Pr(Xt E A) - J.L(A) I = I vOl~ B L {[P;zf](y) - J.L(A)} dyl :::; E:, (6.35) 

uniformly over the choice of A. (In this context, recall the definition of total 
variation distance (3.2), and the fact that [P;zf](y) may be interpreted as Pr(Xt E 
A I Xo = y).) 
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Noting E,,(P;zf) = fL(A), we find 

Var,,(p;zf) :::: l {[P;zfl(y) - fL(A)} 2 fL(dy) 

:::: °1.4K r {[P;zfl(Y)-fL(A)}2 dy (6.36) 
vo n iB 

:::: O'~o~:l~ B [vo~ B l {[P;zfl (y) - fL( A) } dy r ' (6.37) 

where inequality (6.36) follows from the definition (6.5) of fL and Lemma 6.4; and 
(6.37) from the fact that the expectation of the square of a r.v. is at least as large 
as the square of its expectation. Thus, to achieve the desired bound (6.35) on 
variation distance, we require 

V (pt f) < 0.4 E2 voln B 
ar" zz - I . vonK 

Now, the volume of K is maximised, for specified diameter D, when K is a ball 
of radius D /2. Thus it is enough that we achieve 

According to (6.34), this inequality will hold, provided 

This is the mixing time claimed in Corollary 6.8, with i(fLo) specialised to an initial 
distribution that is uniform and supported on a ball of radius 8. 
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Remarks 7.2. (a) There is no significance in the exact thresholds !, ~ and ~ 
appearing in the above definitions. By designing appropriate simulations, 
one can show that ! can be replaced by any constant strictly between 0 
and 1, and ~ and ~ by any constants Cll C2 with 0 < Cl < C2 < 1. 

(b) It is immediate from the definition ofRP that RP c:;;; NP. No similar inclusion 
is known for BPP. 

Now, comparing the definition of BPP with that of FPRAS, we see that the 
existence of an FPRAS for the number of Hamilton cycles in a graph G would 
immediately imply that the decision problem - is G Hamiltonian? - is in BPP. 
Since the decision problem is NP-complete, it would follow that NP c:;;; BPP. The 
apparently stronger conclusion RP = NP follows from the complexity-theoretic 
fact: 

Fact 7.3. If NP c:;;; BPP then NP c:;;; RP (and hence RP = NP). 

See, e.g., Papadimitriou's textbook [54, Problem 11.5.18]. 

Remark 7.4. The converse to Fact 7.1 is also true: if RP = NP then there is 
an FPRAS for the number of Hamilton cycles in a graph. Whereas Fact 7.1 is 
trivial, its converse is not, relying as it does on the bisection method of Valiant 
and Vazirani [63]. See Chapter 10 of Goldreich's lecture notes [32]. 

Of course, Hamiltonicity is not a distinguished NP-complete problem. More 
generally we have: 

Fact 7.5. (Informal statement.) If the decision version of a counting problem is 
NP-complete, then the counting problem itself does not admit an FPRAS unless 
RP=NP. 

Exercise 7.6. Provide a formal statement of Fact 7.5 using the notion of witness
checking predicates. 

Fact 7.5 instantly yields a large number of counting problems that, for a 
rather trivial reason, do not admit an FPRAS (under a reasonable complexity
theoretic assumption). We now turn to an example that does not admit an FPRAS 
for some non-trivial (though only slightly non-trivial) reason. 

Let us consider the independent sets counting problem: 

Name. #IS. 

Instance. A graph G. 

Output. The number of independent sets2 of all sizes in G. 

2 An independent set in graph G is a subset U s;; V (G) of the vertex set of G such that no 
edge of G has both endpoints in U. 
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Figure 7.1: The construction. 
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The decision version of #IS is trivial, since every graph has the empty set of 
vertices as an independent set. Nevertheless, we shall see that #IS is hard to 
approximate under some reasonable complexity-theoretic assumption. We shall 
make use of the optimisation version of #IS: 

Name. MAXIS. 

Instance. A graph G. 

Output. The size of a maximum independent set in G. 

MAXIS is a classical NP-complete3 problem: see, e.g., Garey and Johnson [30, 
GT20j. 

Proposition 7.7. There is no FPRAS for #IS unless RP = NP. 

Proof. We use a reduction from MAXIS. Let G = (V, E) be an instance of MAXIS. 
We want to construct a graph G' = (V',E'), being an instance of #IS, in such a 
way that typical independent sets in G' reveal maximum independent sets in G. 

The construction replaces vertices by blocks of r vertices and edges by com
plete bipartite graphs between blocks; formally, 

V' = V x {O, ... ,r -I}, 
and 

E' = {{(u,i),(v,j)}: {u,v} E E and i,j E {O, ... ,r -I}}. 

(See Figure 7.1.) 

3To make formal sense of this claim, one would need to make MAXIS into a decision problem. 
This could be done, in the usual way, by specifying a bound kEN as part of the problem instance 
and asking whether G has an independent set of size at least k. 
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Each independent set I' in G' projects to an independent set 

1= {v E V : there exists i E {O, ... ,r - I} such that (v, i) El'} 

in G. (Since each edge of G corresponds to a complete bipartite subgraph in G' , 
the set I is indeed independent in G.) Suppose III = k; then there are (2T - l)k 
independent sets I' in G' that project to the specific independent set I in G. We 
consider the two complementary situations: 

(a) An independent set of size k exists in G. Then there are at least (2T - l)k 
independent sets in G' . 

(b) The maximum independent set in G has size less than k. Then there are at 
most 2n(2T - l)k-l independent sets in G' , where n = IVI. 

Setting r = n + 2, we have 

in other words, the minimum possible number of independent sets in case (a) 
exceeds the maximum possible number in case (b) by a factor 2. An FPRAS 
for #IS would be able to distinguish cases (a) and (b) with high probability, 
providing us with a polynomial-time randomised algorithm (with two-sided error) 
for MAXIS. As we have seen, this would imply RP = NP. 0 

Remark 7.8. Note that the reduction proves something much stronger than the 
non-existence of an FPRAS for #IS. It shows (under the assumption RP 1= NP) 
that there in no polynomial time randomised algorithm that approximates the 
number of independent sets even to within any fixed exponential factor. To see 
this, simply set r = en with c > 1. The statement can be strengthened even 
further: see Dyer, Frieze and Jerrum [22]. 

7.1 Independent sets in a low degree graph 

Proposition 7.7 is evidence that the number of independent sets in a graph is hard 
to approximate in general, so we need to restrict the class of problem instances to 
make progress. One interesting way to do this is to place a bound Ll on the max
imum degree of the instance G. Then we can investigate how the computational 
difficulty of of #IS varies as Ll does. On the positive side we have the following 
result. 

Theorem 7.9 (Luby and Vigoda). There is an FPRAS for #IS when Ll = 4. 

Proof (sketch). As usual, it is enough to be able to sample independent sets almost 
uniformly at random in polynomial time. 

Independent sets are sampled using an Me based on edge updates. View an 
independent set I in graph G = (V, E) as a function I : V -> {O, I}, where I ( v) = 1 
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has the interpretation that v is in the independent set. The state space of the MC 
is the set of all independent sets in G. Transition probabilities are specified by the 
following trial, where Xo : V --+ {O, I} is the initial independent set. 

1. Choose an edge {u, w} E E, u.a.r. 

2. Begin to construct a new independent set I as follows: with equal probability 
(~ in each case) set (a) I(u) := 0 and I(w) := 0; (b) I(u) := 0 and I(w) := 1; 
or (c) I(u) := 1 and I(w) := O. (Note that these three cases correspond to 
the three possible restrictions of an independent set in G to the edge {u, w}.) 

3. For all v E V \ {u,w} set I(v) := Xo(v). 

4. If I is an independent set then Xl := I, otherwise Xl := Xo. 

Informally, we are using edge-updates with Metropolis acceptance probabilities. 
This MC can be shown to be rapidly mixing using the path-coupling method. 

Two independent sets are considered to be adjacent if they differ at exactly one 
vertex. If adjacent independent sets are considered to be at distance 1, the derived 
path-metric is just Hamming distance. Suppose Xo and Yo are adjacent; on the 
basis of a case analysis of moderate complexity it is possible to conclude that the 
expected Hamming distance between X I and YI is at most 1. (For a regular graph 
with no small cycles there are four "good edges" {u, w} whose selection may cause 
the distance to decrease, and twelve "bad edges" which may cause the distance 
to increase. In the worst case, these two effects are exactly in balance.) It follows 
that the mixing time of the Me scales quadratically with n. 0 

Exercise 7.10. Complete the proof of Theorem 7.9. To keep technical complexity 
to a minimum, assume the graph G is triangle-free, i.e., contains no cycles of 
length 3. In case you need to refer to it, a complete analysis (in a more general 
setting where vertices in the independent set are given weight or "fugacity" A) is 
given by Luby and Vigoda [47]. Theorem 7.9 corresponds to the case A = 1 of 
their result. Dyer and Greenhill [25] also obtain a generalisation of Theorem 7.9, 
using a slightly different MC. Their proof has the advantage of dispensing with 
triangle-freeness. 

According to Theorem 7.9, approximately counting independent sets in a 
graph G is tractable provided the maximum degree Ll is small enough. We know 
that Ll = 4 is small enough, so what about Ll = 5,6, ... ? The reduction described 
in Proposition 7.7 constructs graphs of arbitrarily large degree, so it apparently 
leaves open the possibility that there is an FPRAS for #IS for any fixed degree 
bound Ll. However, if we look afresh at the construction of Theorem 7.9 in the light 
of inapproximability results for the optimisation problem MAXIS, we discover that 
there is a definite upper bound on Ll. This idea is due to Luby and Vigoda [47J. 

Proposition 7.11. There is no FPRAS for #IS when Ll = 1188, unless RP = NP. 
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Proof. We know that MAXIS is NP-hard when restricted to graphs of maximum 
degree 4. A result of Berman and Karpinski [6, Thm l(iv)] tells us more: for any E > 
0, it is NP-hard to determine the size of a maximum independent set in a graph G 
to within ratio of ~~ + E, even when G is restricted to have maximum degree 4. 

(By "determining the size ... within ratio (/' we mean computing a number k such 
that [!k ::::: k ::::: k, where k is the size of a maximum independent set in G.) In 
other words, the problem MAXIS is polynomial-time (Turing) reducible to the 
approximate version of MAXIS, in which we ask for a result within ratio ~~ + E. 

This result, like many other inapproximability results for optimisation problems, 
rests on the powerful theory of probabilistically checkable proofs (PCP). 

So let G be a graph of maximum degree 4. Using our construction from the 
proof of Theorem 7.7 with r = 297, we obtain a graph G' of maximum degree 
1188. We shall see that even a rough approximation to the number of independent 
sets in G' will provide a close (within ratio ~~ + E) approximation to the size of 
the largest independent set in G. Thus the existence of an FPRAS for #IS in 
graphs of maximum degree 1188 would imply the existence of a polynomial-time 
randomised algorithm (with two-sided error) for MAXIS. As before, this would in 
turn imply RP = NP. 

We define J' to be the collection of all independent sets in G'. Let k be the 
size of a maximum independent set in G. We have 

or, taking the natural logarithm, 

kln(2r -1):::; InIJ'I:::; nln2+kln(2r -1). 

Consider the following estimate for k: 

k = In IJ'I- nln2. 
In(2r - 1) , 

it is clear that 
nln2 ' 

k - In(2r _ 1) ::::: k ::::: k. 

Recall that Brooks's theorem [7, 9] asserts that any graph of maximum de
gree L1 ~ 3 that does not contain K.::1+1 as a connected component is L1-colourable. 
Assuming, as we may, that G is connected, it follows that Gis 4-colourable. Since 
any (and hence in particular the largest) of the four colour classes is an indepen
dent set, k ~ n/4. Thus 

Note that, when r = 297, 
4ln2 1 

::--:-::---:-:- < -. 
In(2r - 1) 74 
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If we had an FPRAS for #IS restricted to graphs of maximum degree 1188 then we 
would be able to approximate IJ'I (with high probability) within arbitrarily small 
constant relative error, and In IJ'I (and hence k) within arbitrarily small constant 
additive error. But this in turn would provide an approximation to the size of the 
largest independent set in G (with high probability) within ratio ~~ + E. D 

One might suspect that the degree bound ,1 = 1188 in Proposition 7.11 is 
quite a bit larger than necessary, and this is indeed the case. Indeed, simply by 
tightening the analysis of the construction used in the proof of Proposition 7.11, 
one can reduce the degree ,1 in its statement by 10-20%. 

Exercise 7.12. Using the same reduction, but improved estimates, show that 
Proposition 7.11 holds for some ,1 less than 1100. (I think ,1 = 964 is achiev
able.) 

Using a technically more involved reduction, Dyer, Frieze and Jerrum have 
shown that ,1 = 1188 may be replaced by ,1 = 25. That still leaves a large gap 
between what is known to be tractable (,1 = 4) and intractable (,1 = 25); no 
doubt the upper bound could be reduced slightly at the expense of additional 
technical complexity, but a substantial gap would still remain. 

To explore further the boundary between tractable and intractable requires 
us, at present, to accept more circumstantial evidence. Consider any MC on in
dependent sets of a graph on n vertices. Let b( n) :::; n be any function of nand 
suppose the Hamming distance between successive states X t and X t - 1 of the MC is 
uniformly bounded by b(n). We will say that the MC is b(n)-cautious. (Recall that 
we are viewing independent sets as functions V ---t {O, I}.) Thus a b( n )-cautious 
MC is not permitted to change the status of more than b(n) vertices in G at any 
step. Ideally, for ease of implementation, we would wish to have b( n) a constant (as 
in the proposals of Luby and Vigoda [47], and Dyer and Greenhill [25]). However, 
we are able show that no b( n )-cautious chain on independent sets can mix rapidly 
unless b(n) = n(n), even when ,1 = 6. Thus any chain that does mix rapidly on 
graphs of maximum degree 6 must change the status of a sizeable proportion of 
the vertices at each step. 

Theorem 7.13 (Dyer, Frieze and Jerrum). There exists an infinite family of regular 
bipartite graphs of degree 6, together with constants 6, I > 0, such that the following 
is true: any 6n-cautious Me on independent sets of these graphs has exponential 
mixing time, in the sense that T(1) = n(exp(!n)). 

Dyer, Frieze and Jerrum's proof of Theorem 7.13 provides an explicit value 
for 6, namely 6 = 0.35. We present a simplified version of the proof here that does 
not attempt to estimate 6. The idea underlying the proof is very simple: if the 
state space of an MC has a tight "constriction" then its mixing time will be long. 
This intuition may be formalised as follows. 
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Claim 7.14. Consider an MC with state space il, transition matrix P, and sta
tionary distribution 7r. Let A c il be a set of states such that 7r(A) :::; ~, and 
M c il be a set of states that forms a "barrier" in the sense that P( i, j) = 0 
whenever i E A \ M and j E A \ M. Then the mixing time T of the Me satisfies 
TG) :::: 7r(A)/47r(M). 

We defer the proof of the claim to the end of the chapter. 

Proof of Theorem 7.13. Our counterexample to rapid mixing (or, more precisely, 
family of counterexamples indexed by n) is a random regular bipartite graph G of 
degree .1 = 6, with n vertices on the left and n on the right. Denote the left and 
right vertex sets by VI and V2 respectively. The random graph model is simple. A 
pairing is one of the n! possible bijections between left and right vertices viewed as 
a regular bipartite graph of degree 1. Select .1 pairings, independently and u.a.r., 
and form the union: the result is a bipartite graph G of maximum degree .1. Since 
the pairings may not be disjoint, the graph G may not be regular; we return to 
this point later. 

Let J(a, (3) be the collection of all independent sets in G having an vertices 
on the left and {3n on the right. For a given set of an vertices UI ~ VI and {3n 
vertices U2 ~ V2 , what is the probability that a random pairing will avoid joining 
some element in UI to some element in U2? Well, the "image" of UI under the 
pairing is a random an-subset of V2 , so the answer is the same as the probability 
that a random an-subset of V2 is disjoint from U2 ; but the latter probability is 
just 

Thus the expected size of J (a, (3) for a random G chosen according to our model 
is just 

(By linearity of expectation, the required quantity is simply the number of possible 
candidates (UI , U2 ), times the probability that all .1 pairings avoid connecting UI 

and U2 .) By Stirling's approximation we have 

E IJ(a,,8)1 = exp (<p(a,{3) n(l + 0(1))) 

where 

<p(a, (3) = -a Ina - (3ln{3 - £1(1 - a - (3) In(l - a - (3) 

+ (£1-1)((1- a)ln(l- a) + (1- (3)ln(l- (3)). (7.1) 

We treat <p as a function of real arguments a and {3, even though a combinatorial 
interpretation is possible only when an and {3n are integers. Then <p is defined on 
the triangle 

T= {(a,{3): a,{3:::: 0 and a+{3:::; I}, 
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and is clearly symmetrical in a, 13. (The function rp is defined by equation (7.1) 
on the interior of T, and can be extended to the boundary by taking limits.) 

Now set .1 = 6. By calculus, rp( a, a) has a unique maximum in the range 
[0, ~); numerically rp( a, a) is uniformly less than 0.704 in this range. Consider the 
region V = { (a, 13) E T : 1 a - 131 ::; b}, where b is a small positive constant. (This 
is the b in the statement of the theorem.) For sufficiently small b > 0, 

rp(a,f3) ::; 0.705, for all (a,f3) E V. 

For, if not, there would be an infinite sequence (ai, (3d of points in T, all satis
fying rp(a,f3) > 0.705, which approach the diagonal a = 13 arbitrarily closely. By 
compactness, there would be a subsequence of (ai,f3i) converging to some point 
on the diagonal, contradicting continuity of rp. So, by Markov's inequality, with 
very high probapility,4 

U .l (a, 13) ::; eO. 706n , 

( Ct,(3)ED 

where the union is over a,f3 which are multiples of lin. 

(7.2) 

Denote by C and n the two connected regions of T \ V. We need a lower 
bound on the number of independent sets in these regions which exceeds the upper 
bound (7.2). With this in mind, define 

O(a) = -alna - (1- a)ln(l- a) + (1n2)(1- .1a). 

for a < .1-1 . Then, for any graph G in the space of random graphs, the total 
number of independent sets I with II n VII = an is ( crudely) at least 

I.l(a, *)1:2: ( n )2(1-LlCt)n = exp (O(a) n(l- 0(1»). 
om 

(Choose an vertices from V1 ; then choose any subset of vertices from the at least 
(1 - .1a)n unblocked vertices in V2 .) Set .1 = 6 as before and a* = 0.015. Then, 
by numerical computation, O(a*) is greater than 0.708. In other words, 

U J(a,f3)l:2: eO.708n, 

(CtJ3)E.c 

(7.3) 

for all sufficiently large n, with a similar bound for n. Comparing (7.2) and (7.3), 
we see that, with very high probability, the number of approximately balanced 
independent sets is smaller, by an exponential factor, than the number with a 
sizeable imbalance in either direction. Specifically, the former is smaller than the 
latter by a factor e"Yn, where "( = 0.002. 

4 "With very high probability" may be taken to mean "with probability differing from 1 by 
an amount decaying exponentially fast with n." 
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The (n + n)-vertex graph whose existence is guaranteed by Theorem 7.13 
(ignoring for a moment the regularity requirement) is any graph from the space 
of random graphs under consideration that exhibits the exponential gap just de
scribed. (A randomly chosen graph will do with high probability.) The remainder 
of our argument concerns such a graph. 

Now consider a on-cautious MC. Let A = Ua2:,13 J(a, (3) denote the set of 
leftward leaning independent sets, and assume, without loss of generality, that A 
is no larger than its complement it = Q\A. Denote by M the set of approximately 
balanced independent sets M = U(a,,13)E'DJ(a,{3). 

Since the MC is on-cautious, it cannot make a transition from A to A directly, 
but only by using intermediate states in M. Now, we know from inequalities (7.2) 
and (7.3) that 

IAI 2 e'Yn IMI. (7.4) 

If we are prepared to weaken the theorem slightly by dropping the condition that 
the graphs be regular, we can immediately complete the proof by appealing to 
Claim 7.14. 

We may address the regularity issue by reference to a standard result about 
the union-of-pairings model for random bipartite graphs. Provided .1 is taken as 
constant, Bender [5] has shown that .1-regular graphs occur in our random graph 
model with probability bounded away from O. Since we prove that random graphs 
of maximum degree 6, with very high probability, have the property we seek, it 
follows that random .1-regular graphs (in the induced probability space), with 
very high probability, have the property too. 0 

It only remains to present the missing proof. 

Proof of Claim 7.14. Denote by 7rt the t-step distribution of the MC. First note 
that 

1 
II 7rt+l - 7rtIITV = II 7rtP - 7rt-IPIITV = -2 max (7rt - 7rt-dPz 

Ilzlloo::;! 
1 

:::; - max (7rt - 7rt-l)W 
2 Ilwll oo ::;! 

= II7rt - 7rt-lIlTV, 

since IIPzll oo :::; Ilzlloo. Hence, by induction, II7rtH - 7rtIITV :::; II7rl - 7roIITV and, 
further, using the triangle inequality, II7rt - 7roIITV :::; t II7rl - 7roIITV. Now, for 
o eSc Q, define 

1 
t:P(S) = 7r(S) L ~ 7r(i)P(i,j). 

iES jES 

The quantity t:P = min {t:P( S) : SeQ and 0 < 7r( S) :::; n is sometimes called the 
"conductance" of the MC. (Conductance is normally considered in the context 
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of time-reversible Markov chains. However, both the definition and the line of 
argument employed here apply to non-time-reversible chains.) Now 

I: I: 1r(i)P(i,j) ::; I: I: 1r(i)P(i,j) + I: I: 1r(i)P(i,j) 
iEA JEA iEA jEAnM 

::; 1r(A n M) + 1r(A n M) 

= 1r(M). 

iEAnM JEA 

In short, p(A) 1r(A) ::; 1r(M). So setting 

1ro(i) = {1r(i)/1r(A), if i E A; 
0, otherwise, 

we have 

1 
111r1 - 1roIITv = 2" I: I: 1ro(i)P(i,j) - 1ro(j) 

jEf? iEf? 

= I: I: 1ro(i)P(i,j) 
JEA iEA 

= p(A). 

(7.5) 

(7.6) 

(To see equality (7.6), observe that the terms in (7.5) with j E A make a contribu
tion to the sum that is equal to that made by the terms with j EA. Now simply 
restrict the sum to terms with j E A.) But II1ro - 1rIITV 2: 1, since 1r(A) ::; 1, and 
hence 

1 
II 1rt - 1rIITV 2: II 1ro - 1rIITV - II 1rt - 1rollTv 2: 2" - tP(A). 

Thus we cannot achieve II1rt - 1rIITV ::; i until 

1 1r(A) t>-->-
- 4P(A) - 41r(M)" 

By an averaging argument there must exist some initial state Xo E A for which 
Txo a) 2: 1r(A)/41r(M). 0 
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