
Extended Abstract-Randomized Incremental Construction of Delaunay

Triangulation

Talk by Loreta Vrapi

Based the book ”Computational Geometry: Algorithms and Applications”, Chapter: ”Delaunay Triangulation” by
M. Berg, O. Cheong, M. Kreveld and M. Overmars

Supervised by Professor Stefan Felsner

Abstract

This talk focuses on the development and analysis of the randomized incremental algorithm for
Delaunay triangulation and its probabilistic behaviors. This algorithm efficiently constructs the
Delaunay triangulation by inserting points incrementally while maintaining the Delaunay property.
It leverages randomization techniques to achieve efficient average-case performance.

Keywords: Delaunay Triangulation, Randomized Incremental Construction (RIC), Flip.

1. Introduction

The randomized incremental algorithm is a method used in computational geometry
for constructing geometric structures, such as triangulations by incrementally adding points in a
random order. The random order, in which points are added, introduces an element of probabilistic
behavior to the algorithm. This randomization helps to distribute the points more evenly and
reduces the likelihood of worst-case scenarios.

Delaunay triangulation is defined as a geometric structure that partitions a set of points
into a set of non-overlapping triangles, satisfying the Delaunay criterion. The Delaunay criterion
states that no point lies inside the circumcircle of any triangle in the triangulation.

2. Computing the Delaunay Triangulation using the Randomized Incremental ap-
proach

The algorithm proceeds as follows:
1- Add two new points, p−1 and p−2, to the existing point set P . See Figure 1
2- Initialize a triangulation by forming the triangle p0p−1p−2, where p0 is the highest point of the
set P , ensuring that this triangle encompasses all the other points within its interior.
3- Incrementally add the remaining points to the existing triangle, maintaining a random order of
insertion.
4- Perform necessary flips, if required, to preserve the Delaunay condition after each iteration.
5- Discard the points p−1 and p−2, as they were solely introduced to create the initial enclosing
triangle and are no longer needed for the final Delaunay triangulation.

The points p−1 and p−2 are chosen ”far” away to ensure the preservation of the Delaunay
condition when they are removed.

Figure 1: The Initial Big Triangle: Encompassing All Points Within Its Bounds

3. The Analysis

3.1. Flip - Legalize edge:

An edge that violates the Delaunay criterion is referred to as ’illegal’. We can maintain the
Delaunay condition by legalizing/flipping all the edges of the new triangles. See Figure 2.

Figure 2: Legalizing the edges

3.2. Point-Location:

While building the triangulation we build a point location structure. See Figure 3.

4. Probabilistic behaviors

Lemma 1. The expected number of triangles created by the algorithm is at most 9n + 1.

Beweis 1. Idea: By inserting a new point pr at iteration r we split one or two triangles, which
create the same number of edges in the triangulation. For every edge we legalize (flip), we create
two new triangles. The flip creates an edge incident to pr
So: If after inserting pr there are k edges incident to pr, then we have at most 2(k−3)+3 = 2k−3
new triangles. The number k is also the degree of pr. We want to bound the expected degree of pr,
which is a random number of the inserted points. Delaunay has at most 3(r+3)−6 points (Euler’s
formula). So the total degree is less than 2(3(r + 3) − 9) = 6r. This means, the expected degree
of a randomly inserted point is at most 6. To summarize, we can bound the number of triangles
created in iteration r:

E[nr. of triangles in step r] ≤ E[2deg(pr)− 3] = 2E[deg(pr)]− 3 ≤ 2 ∗ 6− 3 = 9 (1)

In total, we have 9 triangles for each step and the big triangle p0p−1p–2. Using linearity of expec-
tation, we have at most 1 + 9n triangles.

Figure 3: Point-Location: Locate pr inserted at iteration r

Lemma 2. The Delaunay triangulation of a set P of n points in the plane can be computed in
O(n log n) expected time, using O(n) expected storage.

Beweis 2. We suppose that P is a point set in general position.
a- The time spent by the algorithm (without the Point-Location step) is proportional to the number
of triangles created. By Lemma 1 it is O(n).
b- The time to locate pr in the current triangulation is linear in the number of nodes to be visited.
Counting the triangles at current triangulation to locate pr is O(1) adding the linear time in the
number of the destroyed triangles that contain pr.
Let K(4) be the set of points lying in the circumcircle of 4. To locate pr, the visit is charged to
the triangle 4 with pr ∈ K(4). So is each 4 charged at most once for every point in K(4).
In total we have O(n +

∑
4 card(K(4))) for the location step.

For Tr, the set of triangles of the triangulation in the r iteration, rewrite:∑
4 card(K(4)) =

∑n
r=1(

∑
4∈Tr−Tr−1

card(K(4)))

Denote kq the number of triangles 4 ∈ Tr with q a point in K(4) and kq,pr the number of triangles
4 ∈ Tr, with q ∈ K(4) and pr incident to 4.

Then
∑
4∈Tr−Tr−1

card(K(4)) =
∑

q∈P−Pr
kq,pr .

Suppose we fix Pr for a moment. A triangle 4 ∈ Tr is incident to a random point p ∈ Pr with
probability at most 3/r and consequently E[kq,pr] ≤ (3× kq)/r. Now we try to find an upper-bound
for E[

∑
4∈Tr−Tr−1

card(K(4))], which depents on the number n and r. Then by summing over r
we will get the wanted result.

