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Abstract

The talk will explore the expected behaviour of several different crossing numbers on random
graphs. Crossing numbers generally describe the minimal number of crossings between edges in
any given drawing of a graph. This definition can be extended with some extra conditions to
get different types of crossing numbers with various properties.
Keywords: drawing of a graph, crossing number, rectilinear crossing number, pairwise crossing
number, random graph.

1 Introduction and Definitions

In this section we will introduce some key definitions, as well as note some trivial properties
that follow instantaneously from the definitions.

A drawing of a Graph is an embedding of a graph G = (V,E) with set of vertices V
and set of edges E into the R2 plane. Every vertex is mapped to a unique point in the plane.
All edges need to be mapped as continuous curves starting at one vertex and ending at the
corresponding other vertex. We also assume no three edges cross in the same point, otherwise
all statements are trivial.

The crossing number of a given graph G, denoted by CR(G), is the minimal number of
crossings for any drawings of G.
For example we can consider the complete graphs on different numbers of vertices:

G K1 K4 K5 K8

CR(G) 0 0 1 18

There are many different optimal arrangements for the minimal number of crossings in a given
graph, for example Figure 1 depicts optimal drawings for K4 and K5.

Figure 1: optimal rectilinear drawings of K4 and K5

The rectilinear crossing number of a given graph G, denoted by LIN-CR(G), is the mini-
mal number of crossings for any drawings of G with the added condition, that edges must be
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drawn as straight lines.
For example:

G K1 K4 K5 K8

LIN-CR(G) 0 0 1 19

The pairwise crossing number of a given graph G, denoted by PAIR-CR(G), is the mini-
mal number of pairs of edges that cross for any drawings of G. As of now it is unknown if this
number is different from the crossing number CR(G).
For example:

G K1 K4 K5 K8

PAIR-CR(G) 0 0 1 18

We can now state some trivial properties, that follow instantaneously from the definitions:
For any given graph G, we can always state that

PAIR-CR(G) ≤ CR(G) ≤ LIN-CR(G),

since every pair of edges with at least one crossing increases the crossing number by at least one.
Of course one can imagine that an optimal drawing of a graph has a pair of edges with more
than one crossing, though such a case has not been discovered as of the writing of this paper.
We can obviously also only get less or equally many crossings when removing the condition
that edges have to be straight line segments.

For any number n ∈ N and p ∈ [0, 1] we define the random graph G(n, p) as the graph
with n vertices and each of the

(
n
2

)
possible edges exists with the probability of p. We also

denote the number of expected edges as e := p
(
n
2

)
.

So for example G(n, 1) = Kn.

The crossing numbers of arbitrary complete graphs are not known, though we have fairly good
estimates. We are also interested in the ratio of crossings to the maximal number of crossings
given by

γPAIR-CR := lim
n→∞

PAIR-CR(Kn)(
n
2

)2 , γCR := lim
n→∞

CR(Kn)(
n
2

)2 , γLIN-CR := lim
n→∞

LIN-CR(Kn)(
n
2

)2 ,

which are constants that are known to exist.

We want to now formulate similar statements for random graphs, but as the graphs are random
we cannot define constants as before. Thus we define the following functions using the expected
values for the given crossing numbers:

κPAIR-CR(n, p) =
E[PAIR-CR(G(n, p))]

(p
(
n
2

)
)2

, κCR(n, p) =
E[CR(G(n, p))]

(p
(
n
2

)
)2

,

κLIN-CR(n, p) =
E[LIN-CR(G(n, p))]

(p
(
n
2

)
)2

.

For these functions we can always state the obvious inequality;

∀n ∈ N∀p ∈ [0, 1] : κPAIR-CR(n, p) ≤ κCR(n, p) ≤ κLIN-CR(n, p) .
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This inequality follows from the previous one, which of course also holds when we consider the
expected values on random graphs. We will use this inequality to simplify the proofs, since we
can show lower and upper bounds to exist for just one of the functions and have them apply
to the rest automatically.

2 Main Statements

The paper mainly covers the following five theorems. The first theorem will state some general
facts about the behaviour of our functions.

THEOREM 1:

For any fixed n, κPAIR-CR, κCR and κLIN-CR are increasing continuous functions in p.

The following theorem consists of three upper bound statements which apply to all three
crossing numbers, giving us a total of nine statements. We only prove the three statements
for the rectilinear crossing number and use the previous inequality to obtain all four other
results.

THEOREM 2:

Let κcrossing represent any one of the three functions κPAIR-CR, κCR or κLIN-CR and let γcrossing
be the respective constant defined earlier. Then we can state
1. lim supn→∞ κcrossing(n, c/n) = 0 for c ≤ 1

2. limc→1 lim supn→∞ κcrossing(n, c/n) = 0

3. lim supn→∞ κcrossing(n, c/n) < γcrossing for all c
The next set of three theorems will provide some statements about lower bounds for each
crossing number.

THEOREM 3:

For any ε > 0, p = p(n) = nε−1,
lim inf
n→∞

κPAIR-CR(n, p) > 0.

THEOREM 4:

For any c > 1, p = p(n) = c/n,
lim inf
n→∞

κCR(n, p) > 0.

The last theorem even states exact convergence of κLIN-CR to the γLIN-CR which could be
considered a suprising result, though it requires strong conditions for our edge probability p.

THEOREM 5:

If p = p(n) ≫ lnn
n

, then
lim
n→∞

κLIN-CR(n, p) = γLIN-CR.
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