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1. Paper

The first part of the talk is about a textbook chapter by Michael Molloy and Bruce Reed where they introduce Lovász
local lemma and its power in showing upper bounds on colourability. It states:

Theorem 1 (Lovász Local Lemma). Given a set of (bad) events A1, ..., An such that for each 1 ≤ i ≤ n:

1. Pr(Ai) ≤ p < 1

2. Ai is mutually independent of a set of all but at most d other events

If 4pd ≤ 1, then Pr(
⋂
Ai) > 0.

Theorem 2. If H is a hypergraph such that each hyperedge has size at least k and intersects at most 2k−3 other
hyperedges, then H is 2-colourable.

The idea of the proof is to independently randomly assign each vertex a colour and look at the events

Ae := all vertices of e have the same colour

with which we get p =
(
1
2

)k
and d = 2k−3 since each Ae only depends on Af with e∩ f ̸= ø by the following principle:

Mutual Independence Principle Suppose that X = X1, · · · , Xm is a sequence of independent random experiments.
Suppose further that A1, · · · , An is a set of events, where each Ai is determined by Fi ⊂ X. If Fi ∩ (F1, · · · , Fk) = ø
then Ai is mutually independent of A1, · · · , Ak.

This applies since our random experiments are the colourings of each vertex, so Ae only depends on the set of events
e.
Now all LLL tells us that the probability that we have a proper colouring is non-zero implying that there must exist one.

The second application is about list colourings which are defined as follows:

Definition 3. Given a graph G = (V,E), a set of colours C and some list L(v) ⊂ C for all v ∈ V .
A colouring of G is called list-colouring if every vertex v is assigned a colour in L(v).

Theorem 4. If L(v) ≥ l for each vertex v ∈ V , and each colour is acceptable for at most l
8 of the neighbours of any

one vertex, then there exists a list-colouring.

Now we’re randomly assigning each vertex a colour from their list (after first reducing all lists to exactly size l)
but in this case the event Ae as defined in the previous theorem won’t do the trick. However we may look at the event

Ai,e = both vertices of e have the colour i

for each colour i and edge e = (x, y) ∈ E with i ∈ L(x) ∩ L(y).

Now we can choose p =
(
1
l

)2
and d = l2

4 since by the mutual independence principle Ai,(x,y) only depends on Aj,(y,z)

with j ∈ L(y) ∩ L(z) (by assumption for each j ∈ L(y) (l choices), there are at most l
8 such z) and Aj,(x,z) with

j ∈ L(x) ∩ L(z) (analogously limited by l2

8 ).

2. Paper

The second part is about a paper by Louis Esperet and Aline Parreau which in turn is about Entropy Compression.
This is a tool to show that a given probabilistic algorithm with a potential endless loop terminates. If the algorithm
at every step is determined by a random input, the idea is to keep track of these with a smaller record (containing less
information), so that at any point we can reversely determine the previous random inputs from the current state of
the algorithm together with the record. Due to information conservation this would imply that some random inputs
must actually lead to the algorithm terminating before this point.
With this tool they developed an algorithm finding an acyclic-edge colouring (defined below) using 4(∆ − 1) colours
for any graph with maximum degree ∆.
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Definition 5. An edge-colouring of a graph G is called acyclic if it is a proper colouring and every circle in G contains
at least 3 colours.

On page 4 figure 1 the reader can find an illustration of this definition.

Theorem 6. Every graph has an acyclic edge-colouring using at most 4∆− 4 colours.

The algorithm used will be pretty straight forward and just randomly start colouring (using colours not used by
neighbours) until a 2-coloured cycle is created. If that happens we’re uncolouring the edge last coloured (and thereby
deleting all potentially created 2-coloured cycles) and uncolouring all but 2 edges (See figure 2 on page 4 for an
illustration).
Since this will maintain an acyclic colouring throughout every step all we need to show is that this algorithm terminates.
Here Entropy Compression will come into play.
Further to limit the size of the record we will also make sure no 2-coloured 4-cycles are created any point. Additionally
for us to be able to recreate this algorithm from a record, we need to be a bit more deterministic, leading us to put an
order on the edges and always pick the smallest uncoloured edge. This leads to the following algorithm:

Given uncoloured graph
while graph not fully coloured do

e← min uncoloured edge
Choose random F ∈ [2∆− 2]
Assign e F -th colour, that is not:

� used by neighbour

� forming 2-coloured 4-cycle

if 2-coloured cycle ex2x3...x2k is formed then
Uncolour e as well as x4, ..., x2k

end if
end while

A key observation is that the numbers of colours that are involved in a conflict (used by a neighbour of e or forming a
4-cycle) is limited by 2(∆− 1) implying that there actually is an F -th colour. To see this, observe that there are only
at most 2(∆− 1) neighbours and a colour creating a 4-cycle would look like in the picture above. Thus it corresponds
to a colour used by exactly 2 neighbours (every colour can only appear once per vertex of e) and thereby we have
bijection between colours double counted (by counting neighbours) and colours creating 4-cycles and thus maintaining
the bound of 2(∆− 1).

Now it is time to define the record. We want to keep track of which cycle was created but to keep it as informa-
tion compact as possible, we’re doing it the following way:
Let et be the edge coloured at step t.
We’re going to define an order on all the cycles of the same length that contain et and then our record will be:
Rt = (k, l) if the cycle created is the l-th 2k-cycle containing et (on a given ordering)
Rt = ø otherwise
Now the following two lemmas show that our record is enough to retrace the algorithm and find the random inputs.
Letting Xt set of uncoloured edges at step t we get the following result:

Lemma 7. At each step t, Xt is completely determined by the record (Ri)i≤t.

This is shown by induction. The idea is that given Xt−1, we can easily tell from the record Rt which edges were
coloured and which uncoloured. For this it is important to note that we know et since et = minXt−1.

Now with this we can already prove that we can recreate the random inputs from the record, where Φt denotes
the partial colouring after step t and Ft the random input at step t:

Lemma 8. Given Φt and (Ri)i≤t, we can determine (Fi)i≤t.

Here the idea is to determine Φt−1 so that we can use induction and only need to find Ft.
Again the record Rt will tell us the necessary information. Since if a cycle was created and deleted, the two remaining
colours give us the full colouring C previously had.

Now this lemma gives us a surjection from the possible records and partial colourings at the end (There is at most
(4(∆ − 1) + 1)|E| since every edge can be coloured in 4(∆ − 1) ways or still be uncoloured) to the possible random
inputs that are not yet terminated. So this implies that there is less of the latter, i.e.:
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Corollary 9. #inputs not terminated at step t ≤ (4(∆− 1) + 1)m#possible records(Ri)i≤t

Knowing this the goal now is to limit the right hand side such that we get #inputs not terminated at step t <
(2(∆ − 1))t for some t. Meaning at least one combination of inputs must have terminated (since in total there are
(2(∆− 1))t combinations of inputs) and have given us the existence of an acyclic colouring.

To do this we’re going to relate the record to Dyck words:

Definition 10. A partial Dyck word is a word on the alphabet {0, 1} such that any prefix contains at least as
many 0s as 1s.
A Dyck word is a partial Dyck word that has exactly as many 0s as 1s.

A descent of a (partial) Dyck word is a maximal sequence of 1s.

Lemma 11. #possible records(Ri)i≤t ≤ (∆−1)t#partial Dyck words with t 0s and all descends of size at least 4 and even

The idea is that if Ri = (k, l), then l ≤ (∆ − 1)2k−2 (since this is a limit of 2k-cycles containing et). Implying
that if we store Ri as the word 11....1 of length 2k − 2 there is at most (∆ − 1)#1s possibilities of what l was (and
thereby this is bound for the information we’ve lost). Now we can put a zero in front of each of these words for Ri and
put them together which will be a partial Dyck word since every 0 corresponds to an edge coloured and 1 to an edge
uncoloured, thereby in any prefix #0s −#1s is just the number of coloured edges at that point i.e. #0s ≥ #1s and
each descends is of length 2k − 2 for some entry Rt(k, l) (See figure 3).

Now with some very technical work the right hand side was bounded in the paper and lead to the result:

Corollary 12. #possible records(Ri)i≤t ≤ (∆− 1)tC2tt−
3
2 for some constant C > 0.

With which we can prove the main result:

Corollary 13. The algorithm must terminate and give a proper acyclic edge-colouring if the number of available
colours is ≥ 4(∆− 1)

Further using an additional colour this algorithm finds a colouring in O(m∆ log∆) expected steps

The first part just follows from

Pr(algorithm not terminated) =
#inputs not terminated at step t

#total possible at step t
≤ constant t−

3
2

since each combination of inputs has equal probability. The second part works similar but is a bit more technical.

The interesting thing of the algorithm is that its application are not only limited to acyclic colourings but with
some minor adjustments can be applied for all sorts of colourings. For example another possible application are star-
colourings:

Definition 14. A Star Colouring is a proper colouring such that the vertices of any two colours induce a forest of
stars.

Here ’star’ is just another name for graphs of the form K1,k, k ≥ 0
since it looks like a star with one cell at the center (see drawing).

Lemma 15. A proper colouring is a star-colouring iff every path on 4 vertices has at least 3 colours.

This alternative definition leads to the following definition:

Definition 16. A k-Star Colouring is a proper colouring such that any path on 2k vertices uses at least 3 colours.

Theorem 17. Every Graph with maximum degree ∆ has a k-star-colouring using C2k−2k
1

2k−2∆
2k−1
2k−2 +∆ colours, where

Cl = l(l − 1)
1
l −1

In particular for k = 2, this means that there exists a star-colourings using 2
√
2∆2k−1 colours.

Here we are just going to use the same algorithm but instead of disallowing 2-coloured cycles we’re disallowing
2k-paths (and are colouring vertices instead of edges) and using K colours:
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Given uncoloured graph
while graph not fully coloured do

v ← min uncoloured vertex
Choose random F ∈ K −∆
Assign v F -th colour, that is not used by neighbour
if 2-coloured 2k-path is formed then

Uncolour v as well as all but two consecutive vertices on the path
end if

end while

The analysis will be the same as before.
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