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Abstract. The Szemerédi Regularity Lemma (SzRL) was first introduced to prove the Erdős-

Turán Conjecture regarding upper densities. This work introduces the concept of regularity in

graphs and SzRL, then provides a proof for the Triangle Removal Lemma with the SzRL, and

eventually concludes with a proof for Roth’s theorem, which states that all subsets of N with

positive natural density contains an arithmetic progression of length three.

The introduction of the Szemerédi Regularity Lemma (SzRL) is motivated by the study

of number theory. The density of certain subsets of natural numbers N has always been

an interesting subject for studying. The conjecture of Erdős and Turán asserts the relation

between upper density d(A) = lim supn→∞
A∩[n]

n
of a set A ⊂ N and arbitrarily long arithmetic

progression.

Conjecture 0.1 (Erdős & Turán). If d(A) > 0, then A contains arbitrarily long arithmetic

progression.

This conjecture was proved true by Endre Szemerédi in 1975; now it is commonly known

as Szemerédi’s Theorem. A key part of his proof is the Szemerédi Regularity Lemma (SzRL).

For the setup of the SzRL, we start by defining the density of a pair of subsets of vertices

for some graph G as well as the concept of ε-regularity.

Definition 0.2. For a graph G and two disjoint subsets A,B ⊂ V (G) of the vertices, denote

the number of edges between A and B as

e(A,B) := |{(a, b) ∈ A×B : ab ∈ E(G)}|.

Define the density of the pair {A,B} as

d(A,B) :=
e(A,B)

|A||B|
.

Further, the pair (A,B) is said to be ε-regular for some ε > 0 if

|d(A,B)− d(A′, B′)| =
∣∣∣∣e(A,B)

|A||B|
− e(A′, B′)

|A′||B′|

∣∣∣∣ ≤ ε

for every A′ ⊂ A and B′ ⊂ B with |A′| ≥ ε|A| and |B′| ≥ ε|B|.
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In other words, For all pairs of sufficiently large (A′, B′), the induced bipartite graph

G[A,B] can be well approximated if (A,B) is ε-regular. The density of pairs can be seen as

the probability of hitting an edge between a pair of subsets, and regularity can be seen as a

description on the distribution. With this concept, we are ready to state the SzRL.

Theorem 0.3 (The Szemerédi Regularity Lemma). Let ε > 0 and m ∈ N. There exists a

constant M dependent on m and ε such that for any graph G, there exists a partition V (G) =

A0 ∪ · · · ∪ Ak of the vertex set with m ≤ k ≤M such that

(1) |A1| = · · · = |Ak|
(2) |A0| ≤ ε|V (G)|,
(3) all but εk2 of the pairs (Ai, Aj) are ε-regular.

The SzRL can be proved by starting with a random equipartition and defining an index

that keeps track of the total regularity. Upon refining the partition the index is improved by a

constant at each step and eventually hits the upper bound within finite steps of refinement.

Notice that the SzRL only gives information regarding ‘most’ of the edges in G. It does

not provide anything regarding The edges with parts of the partition and the edges between

irregular parts. However, one can ensure that there are only small amounts of edges within

each Ai by choosing a large m such as d1/εe. Furthermore, the SzRL is only useful for large

and relatively dense graphs since for small/sparse graphs, the regularity requirement is rather

trivial with too few edges between parts.

Another lemma that concerns regularity is the Embedding Lemma, which attempts to find

copies of some graph H in another graph G. Given a graph H and an integer m, replace each

vertex ui of H by a set Ui of m vertices and define edge set {rs : r ∈ Ui, s ∈ Uj, uiuj ∈ E(H)}.
Essentially, we ’blow up’ each vertex of H to size m along with the edge set.

For δ > ε > 0, let G(H,m, ε, δ) denote the family of graphs G such that V (G) = V (H(m)),

G ⊂ H(m), and the induced bipartite graph G[Ui, Uj] is ε-regular and has density at least δ

whenever uiuj ∈ E(H). With the above settings, we can state the lemma.

Lemma 0.4 (The Embedding Lemma). Let n ∈ N, δ > 0, ε0 = δn/(n+ 2). Let R be a graph,

let m, t ∈ N with t ≤ ε0m, and let H ⊂ R(t) with maximum degree at most n. If ε0 > ε > 0

and G ∈ G(H,m, ε, δ + ε), then G contains at least (ε0m)|V (H)| copies of H.

One can prove the lemma by choosing the vertices one by one. With the SzRL and the

Embedding Lemma, we can proved the Triangle Removal Lemma.
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Theorem 0.5 (The Triangle Removal Lemma). For every γ > 0, there exists a δ > 0 such

that if G is a graph with at most δn3 triangles, then all the triangles in G can be destroyed by

removing γn2 edges.

To prove the theorem, we start with choosing a sufficiently small ε to apply SzRL and

obtain a regular partition P = {A0, . . . , Ak}. Then remove all edges inside parts, between

irregular pairs, and between sparse pairs. The choice of ε ensures that there are no more than

γn2 of such edges. Then consider the reduced graph RG′ of G′ with the vertex set [k] and edge

set

{ij : the pair (Ai, Aj) is dense and ε-regular}

. Notice that if G′ is not triangle-free, all triangles in G′ corresponds to triangles in RG′ .

Applying the Embedding Lemma by setting H = K3, we obtain that G has more than γn3

triangles.

With the Triangle Removal Lemma, we can prove a simple version of the Erdős-Turán

Conjecture.

Theorem 0.6. (Roth) If A ∈ N has positive upper density, then A contains an arithmetic

progression of length three, i.e. there exists a ∈ A and b ∈ N such that {a, a+ b, a+ 2b} ∈ A.

To prove it, choose 0 < ε < d(A) and n sufficiently large such that |A∩[n]| > εn. Construct

a graph G by defining V (G) as disjoint copies X = Y = Z = [n] and E(G) = EXY ∪EY Z ∪EXZ

where

EXY = {xy : x ∈ X, y ∈ Y, y = x+ a for some a ∈ A}

EY Z = {yz : y ∈ Y, z ∈ Z, z = y + a for some a ∈ A}

EXZ = {xz : x ∈ X, y ∈ Y, z = x+ 2a for some a ∈ A}

Assume A contains no arithmetic progression of length 3 (3-AP). Then the only triangles are

{x, x+ a, x+ 2a}. Notice there are exactly n|A∩ [n]| such triangles and they are edge-disjoint.

Then we can remove at most εn2 edges to destroy all of the triangles. This is a contradiction

to our choice of ε.

Until now, this work has shown that SzRL offers an graph theoretic approach to problems in

number theory with clever construction of graphs. The SzRL has other applications in different

areas such as the Erdős-Stone Theorem or compactification of the space of graphs. More details

of Szemeŕedi’s Theorem and other applications of SzRL can be found in the references.
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