
1

Delaunay triangulations

The four sections in this chapter focus on Delaunay triangulations for finite

point sets in the plane. Section 1.1 introduces the Delaunay triangulation as

the dual of the Voronoi diagram. Section 1.2 describes an algorithm that con-

structs the Delaunay triangulation as a sequence of edge flips. Although the

running time of the algorithm is not the best possible, the fact that it halts and

is correct allows us to deduce nontrivial structural properties about Delaunay

triangulations in the plane. Section 1.3 gives an incremental algorithm whose

randomized running time is the best possible. The implementation of a geomet-

ric algorithm is generally a challenging task, and the algorithms in Sections 1.2

and 1.3 are no exceptions. Section 1.4 discusses the use of exact arithmetic and

symbolic perturbation to implement the numerical aspects with algebraic tools.

1.1 Voronoi and Delaunay

This section introduces Delaunay triangulations as duals of Voronoi diagrams.

It discusses the role of general position in the definition and explains some of

the basic properties of Delaunay triangulations.

Voronoi diagrams

Given a finite set of points in the plane, the idea is to assign to each point a

region of influence in such a way that the regions decompose the plane. To

describe a specific way to do that, let S ⊆ R
2 be a set of n points and define the

Voronoi region of p ∈ S as the set of points x ∈ R
2 that are at least as close to

p as to any other point in S; that is,

Vp = {x ∈ R
2 | ‖x − p‖ ≤ ‖x − q‖, ∀q ∈ S}.

1

2 1. Delaunay triangulations

Figure 1.1. Seven points define the same number of Voronoi regions. One of the regions
is bounded because the defining point is completely surrounded by the others.

This definition is illustrated in Figure 1.1. Consider the half-plane of points

at least as close to p as to q: Hpq = {x ∈ R
2 | ‖x − p‖ ≤ ‖x − q‖}. The

Voronoi region of p is the intersection of half-planes Hpq , for all q ∈ S − {p}.

It follows that Vp is a convex polygonal region, possibly unbounded, with at

most n − 1 edges.

Each point x ∈ R
2 has at least one nearest point in S, so it lies in at least one

Voronoi region. It follows that the Voronoi regions cover the entire plane. Two

Voronoi regions lie on opposite sides of the perpendicular bisector separating

the two generating points. It follows that Voronoi regions do not share interior

points, and if a point x belongs to two Voronoi regions, then it lies on the

bisector of the two generators. The Voronoi regions together with their shared

edges and vertices form the Voronoi diagram of S.

Delaunay triangulation

We get a dual diagram if we draw a straight Delaunay edge connecting points

p, q ∈ S if and only if their Voronoi regions intersect along a common line

segment; see Figure 1.2. In general, the Delaunay edges decompose the convex

hull of S into triangular regions, which are referred to as Delaunay triangles.

To count the Delaunay edges we use some results on planar graphs, defined

by the property that their edges can be drawn in the plane without crossing. It

is true that no two Delaunay edges cross each other, but to avoid an argument,

we draw each Delaunay edge from one endpoint straight to the midpoint of the

shared Voronoi edge and then straight to the other endpoint. Now it is obvious

that no two of these edges cross. With the use of Euler’s relation, it can be

shown that a planar graph with n ≥ 3 vertices has at most 3n − 6 edges and at

most 2n − 4 faces. The same bounds hold for the number of Delaunay edges

1.1. Voronoi and Delaunay 3

Figure 1.2. The Voronoi edges are dotted and the dual Delaunay edges are solid.

and triangles. There is a bijection between the Voronoi edges and the Delaunay

edges, so 3n − 6 is also an upper bound on the number of Voronoi edges.

Similarly, 2n − 4 is an upper bound on the number of Voronoi vertices.

Degeneracy

There is an ambiguity in the definition of Delaunay triangulation if four or

more Voronoi regions meet at a common point u. One such case is shown in

Figure 1.3. The points generating the four or more regions all have the same

distance from u: they lie on a common circle around u. Probabilistically, the

chance of picking even just four points on a circle is zero because the circle

defined by the first three points has zero measure in R
2. A common way to say

the same thing is that four points on a common circle form a degeneracy or a

special case. An arbitrarily small perturbation suffices to remove the degeneracy

and to reduce the special case to the general case.

Figure 1.3. To the left, four dotted Voronoi edges meet at a common vertex and the dual
Delaunay edges bound a quadrilateral. To the right, we have the general case, where
only three Voronoi edges meet at a common vertex and the Delaunay edges bound a
triangle.

4 1. Delaunay triangulations

We will often assume general position, which is the absence of any degen-

eracy. This really means that we delay the treatment of degenerate cases to

later. The treatment is eventually done by perturbation, which can be actual or

conceptual, or by exhaustive case analysis.

Circles and power

For now we assume general position. For a Delaunay triangle, abc, consider

the circumcircle, which is the unique circle passing through a, b, and c. Its

center is the corresponding Voronoi vertex, u = Va ∩ Vb ∩ Vc, and its radius is

̺ = ‖u − a‖ = ‖u − b‖ = ‖u − c‖; see Figure 1.3. We call the circle empty

because it encloses no point of S. It turns out that empty circles characterize

Delaunay triangles.

Circumcircle Claim. Let S ⊂ R
2 be finite and in general position, and let

a, b, c ∈ S be three points. Then abc is a Delaunay triangle if and only if

the circumcircle of abc is empty.

It is not entirely straightforward to see that this is true, at least not at the moment.

Instead of proving the Circumcircle Claim, we focus our attention on a new

concept of distance from a circle. The power of a point x ∈ R
2 from a circle U

with center u and radius ̺ is

πU (x) = ‖x − u‖2 − ̺2.

If x lies outside the circle, then πU (x) is the square length of a tangent line

segment connecting x with U . In any case, the power is positive outside the

circle, zero on the circle, and negative inside the circle. We sometimes think

of a circle as a weighted point and of the power as a weighted distance to that

point. Given two circles, the set of points with equal power from both is a line.

Figure 1.4 illustrates three different arrangements of two circles and their bi-

sectors of points with equal power from both.

Acyclicity

We use the notion of power to prove an acyclicity result for Delaunay triangles.

Let x ∈ R
2 be an arbitrary but fixed viewpoint. We say a triangle abc lies in front

of another triangle def if there is a half-line starting at x that first passes through

abc and then through def ; see Figure 1.6. We write abc ≺ def if abc lies in

front of def . The set of Delaunay triangles together with ≺ forms a relation.

1.1. Voronoi and Delaunay 5

Figure 1.4. Three times two circles with bisector. From left to right: two disjoint and
nonnested circles; two intersecting circles; and two nested circles.

General relations have cycles, which are sequences τ0 ≺ τ1 ≺ · · · ≺ τk ≺ τ0.

Such cycles can also occur in general triangulations, as illustrated in Figure 1.5,

but they cannot occur if the triangles are defined by empty circumcircles.

Acyclicity Lemma. The in-front relation for the set of Delaunay triangles defined

by a finite set S ⊆ R
2 is acyclic.

Proof. We show that abc ≺ def implies that the power of x from the circumcir-

cle of abc is less than the power from the circumcircle of def . Define abc = τ0

and write π0(x) for the power of x from the circumcircle of abc. Similarly

define def = τk and πk(x). Because S is finite, we can choose a half-line that

starts at x , passes through abc and def , and contains no point of S. It intersects

a sequence of Delaunay triangles:

abc = τ0 ≺ τ1 ≺ · · · ≺ τk = def .

For any two consecutive triangles, the bisector of the two circumcircles contains

the common edge. Because the third point of τi+1 lies outside the circumcircle

of τi , we have πi (x) < πi+1(x) for 0 ≤ i ≤ k − 1. Hence π0(x) < πk(x). The

Figure 1.5. From the viewpoint in the middle, the three skinny triangles form a cycle in
the in-front relation.

6 1. Delaunay triangulations

d
c

b

a

x

f

e

Figure 1.6. Triangle abc lies in front of triangle def . If abc and def belong to a Delaunay
triangulation, then there is a sequence of triangles between them that all intersect the
half-line.

acyclicity of the relation follows because real numbers cannot increase along a

cycle. ⊓⊔

Bibliographic notes

Voronoi diagrams are named after the Ukrainian mathematician Georges

Voronoi, who published two seminal papers at the beginning of the twenti-

eth century [5]. The same concept was discussed about half a century earlier

by P. G. L. Dirichlet, and there are unpublished notes by René Descartes sug-

gesting that he was using Voronoi diagrams in the first half of the seventeenth

century. Delaunay triangulations are named after the Russian mathematician

Boris Delaunay (also Delone), who dedicated his paper on empty spheres [2] to

Georges Voronoi. The article by Franz Aurenhammer [1] offers a nice survey of

Voronoi diagrams and their algorithmic applications. The acyclicity of Delau-

nay triangulations in arbitrary dimensions was proved by Edelsbrunner [3] and

subsequently applied in computer graphics. In particular, the three-dimensional

case has been exploited for the visualization of diffuse volumes [4, 6].

[1] F. Aurenhammer. Voronoi diagrams – a study of a fundamental geometric data
structure. ACM Comput. Surveys 23 (1991), 345–405.

[2] B. Delaunay. Sur la sphère vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii
i Estestvennyka Nauk 7 (1934), 793–800.

[3] H. Edelsbrunner. An acyclicity theorem for cell complexes in d dimensions.
Combinatorica 10 (1990), 251–260.

[4] N. Max, P. Hanrahan, and R. Crawfis. Area and volume coherence for efficient
visualization of 3D scalar functions. Comput. Graphics 24 (1990), 27–33.

[5] G. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes
quadratiques. J. Reine Angew. Math. 133 (1907), 97–178, and 134 (1908),
198–287.

[6] P. L. Williams. Visibility ordering meshed polyhedra. ACM Trans. Graphics 11
(1992), 103–126.

1.2. Edge flipping 7

b

a

Figure 1.7. The Voronoi edge is the dashed line segment of centers of circles passing
through the endpoints of ab.

1.2 Edge flipping

This section introduces a local condition for edges, shows it implies that a

triangulation is Delaunay, and derives an algorithm based on edge flipping. The

correctness of the algorithm implies that, among all triangulations of a given

point set, the Delaunay triangulation maximizes the smallest angle.

Empty circles

Recall the Circumcircle Claim, which says that three points a, b, c ∈ S are

vertices of a Delaunay triangle if and only if the circle that passes through

a, b, c is empty. A Delaunay edge, ab, belongs to one or two Delaunay triangles.

In either case, there is a pencil of empty circles passing through a and b.

The centers of these circles are the points on the Voronoi edge Va ∩ Vb; see

Figure 1.7. What the Circumcircle Claim is for triangles, the Supporting Circle

Claim is for edges.

Supporting Circle Claim. Let S ⊆ R
2 be finite and in general position and let

a, b ∈ S. Then ab is a Delaunay edge if and only if there is an empty circle that

passes through a and b.

Delaunay lemma

By a triangulation we mean a collection of triangles together with their edges

and vertices. A triangulation K triangulates S if the triangles decompose the

convex hull of S and the set of vertices is S. An edge ab ∈ K is locally Delaunay

if

(i) it belongs to only one triangle and therefore bounds the convex hull, or

(ii) it belongs to two triangles, abc and abd, and d lies outside the circumcircle

of abc.

8 1. Delaunay triangulations

a a

d

d

cc

bb

Figure 1.8. To the left ab is locally Delaunay and to the right it is not.

The definition is illustrated in Figure 1.8. A locally Delaunay edge is not nec-

essarily an edge of the Delaunay triangulation, and it is fairly easy to construct

such an example. However, if every edge is locally Delaunay, then we can show

that all are Delaunay edges.

Delaunay Lemma. If every edge of K is locally Delaunay, then K is the De-

launay triangulation of S.

Proof. Consider a triangle abc ∈ K and a vertex p ∈ K different from a, b, c.

We show that p lies outside the circumcircle of abc. Because this is then true

for every p, the circumcircle of abc is empty, and because this is then true

for every triangle abc, K is the Delaunay triangulation of S. Choose a point x

inside abc such that the line segment from x to p contains no vertex other

than p. Let abc = τ0, τ1, . . . , τk be the sequence of triangles that intersect

xp, as in Figure 1.9. We write πi (p) for the power of p to the circumcircle

of τi , as before. Since the edges along xp are all locally Delaunay, we have

π0(p) > π1(p) > · · · > πk(p). Since p is one of the vertices of the last triangle,

we have πk(p) = 0. Therefore π0(p) > 0, which is equivalent to p’s lying

outside the circumcircle of abc. ⊓⊔

a
c

b

p

x

Figure 1.9. Sequence of triangles in K that intersect xp.

1.2. Edge flipping 9

Edge-flip algorithm

If ab belongs to two triangles, abc and abd , whose union is a convex quadran-

gle, then we can flip ab to cd . Formally, this means we remove ab, abc, abd

from the triangulation and we add cd, acd, bcd to the triangulation, as in

Figure 1.10. The picture of a flip looks like a tetrahedron with the front and

back superimposed. We can use edge flips as elementary operations to convert

an arbitrary triangulation K to the Delaunay triangulation. The algorithm uses

a stack and maintains the invariant that unless an edge is locally Delaunay, it

resides on the stack. To avoid duplicates, we mark edges stored on the stack.

Initially, all edges are marked and pushed on the stack.

while stack is non-empty do

pop ab from stack and unmark it;

if ab not locally Delaunay then

flip ab to cd;

for xy ∈ {ac, cb, bd, da} do

if xy not marked then

mark xy and push it on stack

endif

endfor

endif

endwhile.

Let n be the number of points. The amount of memory used by the algorithm

is O(n) because there are at most 3n − 6 edges, and the stack contains at most

one copy of each edge. At the time the algorithm terminates, every edge is

locally Delaunay. By the Delaunay Lemma, the triangulation is therefore the

Delaunay triangulation of the point set.

b

a

c

d

α1α

2γ

1γ

2

1β

2δ

δ1

β2

Figure 1.10. Flipping ab to cd. If ab is not locally Delaunay, then the union of the two
triangles is convex and cd is locally Delaunay.

10 1. Delaunay triangulations

a b

c

d

Figure 1.11. Points a, b, c lie on the dashed circle in the x1x2-plane and d lies inside
that circle. The dotted curve is the intersection of the paraboloid with the plane that
passes through â, b̂, ĉ. It is an ellipse whose projection is the dashed circle.

Circle and plane

Before proving the algorithm terminates, we interpret a flip as a tetrahedron

in three-dimensional space. Let â, b̂, ĉ, d̂ be the vertical projections of points

a, b, c, d in the x1x2-plane onto the paraboloid defined as the graph of �:

x3 = x2
1 + x2

2 ; see Figure 1.11.

Lifted Circle Claim. Point d lies inside the circumcircle of abc if and only if

point d̂ lies vertically below the plane passing through â, b̂, ĉ.

Proof. Let U be the circumcircle of abc and H the plane passing through

â, b̂, ĉ. We first show that U is the vertical projection of H ∩ gf �. Transform

the entire space by mapping every point (x1, x2, x3) to (x1, x2, x3 − x2
1 − x2

2).

Points â, b̂, ĉ, d̂ are mapped back to a, b, c, d , and the paraboloid � becomes

the x1x2-plane. The plane H becomes a paraboloid that passes through a, b, c.

It intersects the x1x2-plane in the circumcircle of abc. Plane H partitions gf �

into a patch below H , a curve in H , and a patch above H . The curve in H is

projected onto the circumcircle of abc, and the patch below H is projected onto

the open disk inside the circle. It follows that d̂ belongs to the patch below H

if and only if d lies inside the circumcircle of abc. ⊓⊔

Running time

Flipping ab to cd is like gluing the tetrahedron â b̂ĉd̂ from below to â b̂ĉ and

â b̂d̂ . The algorithm can be understood as gluing a sequence of tetrahedra.

Once we glue â b̂ĉd̂, we cannot glue another tetrahedron right below â b̂. In

other words, once we flip ab we cannot introduce ab again by some other

flip. This implies there are at most as many flips as there are edges connecting

1.2. Edge flipping 11

Figure 1.12. To the left we see about one third of the edges in the initial triangulation,
and to the right we see the same number of edges in the final Delaunay triangulation.

n points, namely
(

n

2

)

. Each flip takes constant time; hence the total running time

is O(n2).

There are cases in which the algorithm takes �(n2) flips to change an initial

triangulation to the Delaunay triangulation, and one such case is illustrated

in Figure 1.12. Take a convex upper and a concave lower curve and place m

points on each, such that the upper points lie to the left of the lower points. The

edges connecting the two curves in the initial and the Delaunay triangulation

are shown in Figure 1.12. For each point, count the positions it is away from the

middle, and for each edge charge the minimum of the two numbers obtained for

its endpoints. In the initial triangulation, the total charge is about m2, and in the

Delaunay triangulation, the total charge is zero. Each flip moves an endpoint

by at most one position and therefore decreases the charge by at most one. A

lower bound of about m2 for the number of flips follows.

MaxMin angle property

A flip substitutes two new triangles for two old triangles. It therefore changes

six of the angles. In Figure 1.10, the new angles are γ1, δ1, β1 + β2, γ2, δ2, and

α1 + α2, and the old angles are α1, β1, γ1 + γ2, α2, β2, and δ1 + δ2. We claim

that for each of the six new angles there is an old angle that is at least as small.

Indeed, γ1 ≥ α2 because both angles are opposite the same edge, namely bd ,

and a lies outside the circle passing through b, c, d. Similarly, δ1 ≥ α1, γ2 ≥ β2,

and δ2 ≥ β1, and for trivial reasons β1 + β2 ≥ β1 and α1 + α2 ≥ α1. It follows

that a flip does not decrease the smallest angle in a triangulation. Since we can

go from any triangulation K of S to the Delaunay triangulation, this implies

that the smallest angle in K is no larger than the smallest angle in the Delaunay

triangulation.

MaxMin Angle Lemma. Among all triangulations of a finite set S ⊆ R
2, the

Delaunay triangulation maximizes the minimum angle.

Figure 1.13 illustrates the above proof of the MaxMin Angle Lemma by sketch-

ing what we call the flip graph of S. Each triangulation is a node, and there is a

12 1. Delaunay triangulations

Figure 1.13. Sketch of flip graph. The sink is the Delaunay triangulation. There is a
directed path from every node to the Delaunay triangulation.

directed arc from node µ to node ν if there is a flip that changes the triangula-

tion µ to ν. The direction of the arc corresponds to our requirement that the flip

substitutes a locally Delaunay edge for one that is not locally Delaunay. The

running time analysis implies that the flip graph is acyclic and that its undirected

version is connected. If we allow flips in either direction, we can go from any

triangulation of S to any other triangulation in less than n2 flips.

Bibliographic notes

A proof of the Delaunay Lemma and its generalization to arbitrary finite dimen-

sions is contained in the original paper by Boris Delaunay [1]. The edge-flip

algorithm is from Charles Lawson [3]. The algorithm does not generalize to

three or higher dimensions. For planar triangulations, the edge-flip operation is

widely used to improve local quality measures; see, for example, Schumaker

[4]. Unfortunately, the algorithms get caught in local optima for almost all

interesting measures. The observation that the Delaunay triangulation maxi-

mizes the smallest angle was first made by Robin Sibson [5]. Minimizing the

largest angle seems more difficult, and the only known polynomial time al-

gorithm uses edge insertions, which are somewhat more powerful than edge

flips [2].

[1] B. Delaunay. Sur la sphère vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii
i Estestvennyka Nauk 7 (1934), 793–800.

[2] H. Edelsbrunner, T. S. Tan, and R. Waupotitsch. An O(n2 log n) time algorithm for
the minmax angle triangulation. SIAM J. Sci. Stat. Comput. 13 (1992), 994–1008.

[3] C. L. Lawson. Software for C1 surface interpolation. In Mathematical Software III,
Academic Press, New York, 1977, 161–194.

[4] L. L. Schumaker. Triangulation methods. In Topics in Multivariate Approximation,
C. K. Choi, L. L. Schumaker, and F. I. Utreras (eds.), Academic Press, New York,
1987, 219–232.

[5] R. Sibson. Locally equiangular triangulations. Comput. J. 21 (1978), 243–245.

1.3. Randomized construction 13

1.3 Randomized construction

The algorithm in this section constructs Delaunay triangulations incrementally,

using edge flips and randomization. After explaining the algorithm, we present

a detailed analysis of the expected amount of resources it requires.

Incremental algorithm

We obtain a fast algorithm for constructing Delaunay triangulations if we in-

terleave flipping edges with adding points. Denote the points in S ⊆ R
2 as

p1, p2, . . . , pn and assume general position. When we add a point to the tri-

angulation, it can either lie inside or outside the convex hull of the preceding

points. To reduce the outside case to the inside case, we start with a triangu-

lation D0 that consists of a single and sufficiently large triangle xyz. Define

Si = {x, y, z, p1, p2, . . . , pi }, and let Di be the Delaunay triangulation of Si .

The algorithm is a for-loop adding the points in sequence. After adding a

point, it uses edge flips to satisfy the Delaunay Lemma before the next point is

added.

for i = 1 to n do

find τi−1 ∈ Di−1 containing pi ;

add pi by splitting τi−1 into three;

while ∃ab not locally Delaunay do

flip ab to other diagonal cd

endwhile

endfor.

The two elementary operations used by the algorithm are shown in Figure 1.14.

Both pictures can be interpreted as the projection of a tetrahedron, though from

different angles. For this reason, the addition of a point inside a triangle is

sometimes called a 1-to-3 flip, while an edge flip is sometimes also called a

2-to-2 flip.

Figure 1.14. To the left, the hollow vertex splits the triangle into three. To the right, the
dashed diagonal replaces the solid diagonal.

14 1. Delaunay triangulations

Figure 1.15. The star of the solid vertex is shown on the left and the link of the same
vertex is shown on the right.

Growing star

Note that every new triangle in Di has pi as one of its vertices. Indeed, abc

is a triangle in Di if and only if a, b, c ∈ Si and the circumcircle is empty of

points in Si . But if pi is not one of the vertices, then a, b, c ∈ Si−1, and if the

circumcircle is empty of points in Si , then it is also empty of points in Si−1. So

abc is also a triangle in Di−1. This implies that all flips during the insertion of

pi occur right around pi .

We need some definitions. The star of pi consists of all triangles that contain

pi . The link of pi consists of all edges of triangles in the star that are disjoint

from pi . Both concepts are illustrated in Figure 1.15. Right after pi is added,

the link consists of three edges, namely the edges of the triangle that contains

pi . These edges are marked and pushed on the stack to start the edge-flipping

while-loop. Each flip replaces a link edge by an edge with endpoint pi . At

the same time, it removes one triangle in the star and one outside the star and it

adds the two triangles that cover the same quadrangle to the star. The net effect

is one more triangle in the star. The number of edge flips is therefore three less

than the number of edges in the final link, which is the same as three less than

the degree of pi in Di .

Number of flips

We temporarily ignore the time needed to find the triangles τi−1. The rest of the

time is proportional to the number of flips needed to add p1 to pn . We assume

p1, p2, . . . , pn is a randomly chosen input sequence. Random does not mean

arbitrary but rather that every permutation of n points is equally likely. The

expected number of flips is the total number of flips needed to construct the

Delaunay triangulation for all n! input permutations divided by n!.

Consider inserting the last point, pn . The sum of degrees of all possible last

points is the same as the sum of degrees of all points pi in Dn . The latter is

1.3. Randomized construction 15

equal to twice the number of edges and therefore

n
∑

i=1

deg pi ≤ 6n.

The number of flips needed to add all last points is therefore at most 6n − 3n =

3n. Each last point is added (n − 1)! times. The total number of flips is therefore

F(n) ≤ n · F(n − 1) + 3n!

≤ 3n · n!.

Indeed, if we assume F(n − 1) ≤ 3(n − 1) · (n − 1)! , we get n · F(n − 1) +

3n! ≤ 3(n − 1) · n! + 3n! = 3n · n!. The expected number of edge flips needed

for n points is therefore at most 3n.

There is a simple way to say the same thing. The expected number of flips

for the last point is at most three, and therefore the expected number of flips to

add any point is at most three.

The history

We use the evolution of the Delaunay triangulation to find the triangle τi−1

that contains point pi . Instead of deleting a triangle when it is split or flipped

away, we just make it the parent of the new triangles. Figure 1.16 shows the

two operations to the left and the corresponding parent–child relations to the

right. Each time we split or flip, we add triangles or nodes to the growing data

c

d

aa bb

c

a

abc

abd

abc

bcd cad

adb

adc bcd

bc

d
a

bc

d

Figure 1.16. Splitting a triangle generates a parent with three children. Flipping an edge
generates two parents sharing the same two children.

16 1. Delaunay triangulations

structure that records the history of the construction. The evolution from D0 to

Dn consists of n splits and an expected number of at most 3n flips. The resulting

directed acyclic graph, or DAG for short, therefore has an expected size of at

most 1 + 3n + 2 · 3n = 9n + 1 nodes. It has a unique source, the triangle xyz,

and its sinks are the triangles in Dn .

Searching and charging

Consider adding the point pi . To find the triangle τi−1 ∈ Di−1, we search a

path of triangles in the history DAG that all contain pi . The path begins as

xyz and ends at τi−1. The history DAG of Di−1 consists of i layers. Layers

0 to j represent the DAG of D j . Its sinks are the triangles in D j , and we let

σ j ∈ D j be the triangle that contains pi . Triangles σ0 to σ j form a not necessarily

contiguous subsequence of nodes along the search path. It is quite possible that

some of the triangles σ are the same. Let G j be the set of triangles removed

from D j during the insertion of p j+1, and let H j be the set of triangles removed

from D j during the hypothetical and independent insertion of pi into D j . The

two sets are schematically sketched as intervals along the real line representing

the Delaunay triangulation in Figure 1.17. We have σ j = σ j+1 if G j and H j are

disjoint. Suppose σ j = σ j+1. Then X j = G j ∩ H j = ∅, and all triangles on the

portion of the path from σ j to σ j+1 are generated by flips that remove triangles

in X j . The cost for searching with pi is therefore at most proportional to the

sum of card X j , for j from 0 to i − 2.

We write X j in terms of other sets. These sets represent what happens if

we again hypothetically first insert pi into D j and then insert p j+1 into the

Delaunay triangulation of S j ∪ {pi }. Let Y j be the set of triangles removed

during the insertion of p j+1, and let Z j ⊆ Y j be the subset of triangles that do

not belong to D j . Each triangle in Z j is created during the insertion of pi , so

pi must be one of its vertices. We have

X j = G j − (Y j − Z j).

jD j

i

H
jX

jG

jY Z

p+1jp

j

Figure 1.17. The intervals represent sets of triangles removed or added when we insert
p j+1 and/or pi to D j .

1.3. Randomized construction 17

Expectations

We bound the expected search time by bounding the expected total size of

the X j . Write cardinalities by using corresponding lower-case letters. Because

Z j ⊆ Y j and Y j − Z j ⊆ G j , we have

x j = g j − y j + z j .

The expected values of g j and y j−1 are the same, because both count triangles

removed by inserting a random j th point. Because the expectation of a sum is

the sum of expectations, we have

E

[

i−2
∑

j=0

x j

]

=

i−2
∑

j=0

E[g j] − E[y j] + E[z j]

= E[g0 − gi−1] +

i−2
∑

j=0

E[z j].

To compute the expected value of z j , we use the fact that among j + 2 points,

every pair is equally likely to be p j+1 and pi . For example, if p j+1 and pi are

not connected by an edge in the Delaunay triangulation of S j ∪ {p j+1, pi }, then

Z j = ∅. In general, a triangle in the Delaunay triangulation of S j ∪ {pi } has

probability at most 3/(j + 1) of being in the star of pi . The expected number

of triangles removed by inserting p j+1 is at most four. Because the expectation

of a product is the product of expectations, we have E[z j] ≤ (4 · 3)/(j + 1).

The expected length of the search path for pi is

i−2
∑

j=0

E[x j] ≤

i−2
∑

j=0

12

j + 1
≤ 1 + 12 ln(i − 1).

The expected total time spent on searching in the history DAG is
∑

i

∑

j E[x j] ≤ c · n log n.

To summarize, the randomized incremental algorithm constructs the

Delaunay triangulation of n points in R
2 in the expected time O(n log n) and

with the expected amount of memory O(n).

Bibliographic notes

The randomized incremental algorithm of this section is from Guibas, Knuth,

and Sharir [3]. It has been generalized to three and higher dimensions by

Edelsbrunner and Shah [2]. All this is based on earlier work on randomized algo-

rithms and in particular on the methods developed by Clarkson and Shor [1]. The

arguments used to bound the expected number of flips and the expected search

time are examples of the backwards analysis introduced by Raimund Seidel [4].

18 1. Delaunay triangulations

[1] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational
geometry. Discrete Comput. Geom. 4 (1989), 387–421.

[2] H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for
regular triangulations. Algorithmica 15 (1996), 223–241.

[3] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of
Delaunay and Voronoi diagrams. Algorithmica 7 (1992), 381–413.

[4] R. Seidel. Backwards analysis of randomized geometric algorithms. In New Trends
in Discrete and Computational Geometry, J. Pach (ed.), Springer-Verlag, Berlin,
1993, 37–67.

1.4 Symbolic perturbation

The computational technique of symbolically perturbing a geometric input justi-

fies the mathematically convenient assumption of general position. This section

describes a particular perturbation known as SoS, or Simulation of Simplicity.

Orientation test

Let a = (α1, α2), b = (β1, β2), and c = (γ1, γ2) be three points in the plane.

We consider a, b, c degenerate if they lie on a common line. This includes the

case in which two or all three points are the same. In the degenerate case, point

c is an affine combination of a and b; that is, c = λ1a + λ2b with λ1 + λ2 = 1.

Such λ1, λ2 exist if and only if the determinant of

 =

1 α1 α2

1 β1 β2

1 γ1 γ2

vanishes. In the nondegenerate case, the sequence a, b, c either forms a left or

a right turn. We can again use the determinant of to decide which it is.

Orientation Claim. The sequence a, b, c forms a left turn if and only if det >

0, and it forms a right turn if and only if det < 0.

Proof. We first check the claim for a0 = (0, 0), b0 = (1, 0), and c0 = (0, 1). It

is geometrically obvious that a0, b0, c0 form a left turn, and indeed

det

1 0 0

1 1 0

1 0 1

 = 1.

We can continuously move a0, b0, c0 to any other left-turn a, b, c without

ever having three collinear points. Since the determinant changes continu-

ously with the coordinates, it remains positive during the entire motion and is

therefore positive at a, b, c. Symmetry implies that all right turns have negative

determinants. ⊓⊔

1.4. Symbolic perturbation 19

In-circle test

The in-circle test is formulated for four points a, b, c, d in the plane. We con-

sider a, b, c, d degenerate if a, b, c lie on a common line or a, b, c, d lie on

a common circle. We already know how to test for points on a common line.

To test for points on a common circle, we recall the definition of lifted points,

â = (α1, α2, α3) with α3 = α2
1 + α2

2 , and so on. Points a, b, c, d lie on a com-

mon circle if and only if â, b̂, ĉ, d̂ lie on a common plane in R
3; see Figure 1.11.

In other words, d̂ is an affine combination of â, b̂, ĉ, which is equivalent to

Ŵ =

1 α1 α2 α3

1 β1 β2 β3

1 γ1 γ2 γ3

1 δ1 δ2 δ3

having zero determinant. In the nondegenerate case, d either lies inside or out-

side the circle defined by a, b, c. We can use the determinants of and Ŵ to

decide which it is. Note that permuting a, b, c can change the sign of det Ŵ with-

out changing the geometric configuration. Since the signs of det Ŵ and det

change simultaneously, we can counteract by multiplying the two.

In-circle Claim. Point d lies inside the circle passing through a, b, c if and only

if det · det Ŵ < 0, and d lies outside the circle if and only if det · det Ŵ > 0.

Proof. We first check the claim for d0 = (1/2,
1/2) and a0 = (0, 0), b0 = (1, 0),

and c0 = (0, 1) as before. Point d0 lies at the center and therefore inside the

circle passing through a0, b0, c0. The determinant of is 1, and that of Ŵ is

det

1 0 0 0

1 1 0 1

1 0 1 1

1 1
2

1
2

1
2

= −
1

2
,

so their product is negative. As in the proof of the Orientation Claim, we derive

the general result from the special one by continuity. Specifically, every config-

uration a, b, c, d , where d lies inside the circle of a, b, c, can be obtained from

a0, b0, c0, d0 by continuous motion, avoiding all degeneracies. The signs of the

two determinants remain the same throughout the motion, and so does their

product. This implies the claim for negative products, and symmetry implies

the claim for positive products. ⊓⊔

20 1. Delaunay triangulations

Figure 1.18. Schematic picture of the union of (2n − 1)-dimensional manifolds in 2n-
dimensional space. The marked point lies on two manifolds and thus has two degenerate
subconfigurations. The dotted circle bounds a neighbourhood, and most points in that
neighbourhood are non-degenerate.

Algebraic framework

Let us now take a more abstract and algebraic view of degeneracy as a geometric

phenomenon. For expository reasons, we restrict ourselves to orientation tests

in the plane. Let S be a collection of n points, denoted as pi = (φi,1, φi,2), for

1 ≤ i ≤ n. By listing the 2n coordinates in a single sequence, we think of S

as a single point in 2n-dimensional space. Specifically, S is mapped to Z =

(ζ1, ζ2, ζ3, . . . , ζ2n) ∈ R
2n , where ζ2i−1 = φi,1 and ζ2i = φi,2, for 1 ≤ i ≤ n.

Point Z is degenerate if and only if

det

1 ζ2i−1 ζ2i

1 ζ2 j−1 ζ2 j

1 ζ2k−1 ζ2k

= 0

for some 1 ≤ i < j < k ≤ n. The equation identifies a differentiable (2n − 1)-

dimensional manifold in R
2n . There are

(

n

3

)

such manifolds, Mℓ, and Z is

degenerate if and only if Z ∈
⋃

ℓ Mℓ, as sketched in Figure 1.18. Each manifold

has dimension one less than the ambient space and hence measure zero in R
2n .

We have a finite union of measure zero sets, which still has measure zero.

In other words, most points in an open neighborhood of Z ∈ R
2n are non-

degenerate. A point nearby Z is often called a perturbation of Z or S. The result

on neighborhoods thus implies that there are arbitrarily close nondegenerate

perturbations of S.

Perturbation

We construct a nondegenerate perturbation of S by using positive parameters

ε1, ε2, . . . , ε2n . These parameters will be chosen anywhere between arbitrarily

and sufficiently small, and we may think of them as infinitesimals. They will

1.4. Symbolic perturbation 21

also be chosen sufficiently different, and we will see shortly what this means.

Let Z ∈ R
2n , and for every ε > 0 define

Z(ε) = (ζ1 + ε1, ζ2 + ε2, . . . , ζ2n + ε2n),

where εi = fi (ε) with fi : R → R continuous and fi (0) = 0. If the εi are suf-

ficiently different, we get the following three properties provided ε > 0 is suf-

ficiently small.

I. Z(ε) is nondegenerate.

II. Z(ε) retains all nondegenerate properties of Z .

III. The computational overhead for simulating Z(ε) is negligible.

For example, if εi = ε2i

then ε1 ≫ ε2 ≫ · · · ≫ ε2n and we can do all compu-

tations simply by comparing indices without ever computing a feasible ε. We

demonstrate this by explicitly computing the orientation of the points pi , p j , pk

after perturbation. By definition, that orientation is the sign of the determinant of

(ε) =

1 ζ2i−1 + ε2i−1 ζ2i + ε2i

1 ζ2 j−1 + ε2 j−1 ζ2 j + ε2 j

1 ζ2k−1 + ε2k−1 ζ2k + ε2k

 .

Note that (ε) is a polynomial in ε. The terms with smaller power are more

significant than those with larger power. We assume i < j < k and list the terms

of (ε) in the order of decreasing significance; that is,

det (ε) = det − det 1 · ε22i−1

+ det 2 · ε22i

+ det 3 · ε22 j−1

− 1 · ε22 j−1

ε22i

± . . . ,

where

 =

1 ζ2i−1 ζ2i

1 ζ2 j−1 ζ2 j

1 ζ2k−1 ζ2k

,

1 =

[

1 ζ2 j

1 ζ2k

]

,

2 =

[

1 ζ2 j−1

1 ζ2k−1

]

,

3 =

[

1 ζ2i

1 ζ2k

]

.

22 1. Delaunay triangulations

Property I is satisfied because the fifth term is nonzero, and its influence on the

sign of the determinant cannot be canceled by subsequent terms. Property II is

satisfied because the sign of the perturbed determinant is the same as that of

the unperturbed one, unless the latter vanishes.

Implementation

In order to show Property III, we give an implementation of the test for Z(ε).

First we sort the indices such that i < j < k, and we count the number of trans-

positions. Then we determine whether the three perturbed points form a left or

a right turn by computing determinants of the four submatrices listed above.

boolean LEFTTURN(integer i, j, k):

assert i < j < k;

case det = 0: return det > 0;

case det 1 = 0: return det 1 < 0;

case det 2 = 0: return det 2 > 0;

case det 3 = 0: return det 3 > 0;

otherwise: return FALSE.

If the number of transpositions needed to sort i, j, k is odd, then the sorting

reverses the sign, and we correct the reversal by reversing the result of the

Function LEFTTURN.

As an important detail, we note that signs of determinants have to be com-

puted exactly. With normal floating point arithmetic, this is generally not possi-

ble. We must therefore resort to exact arithmetic methods using long integer or

other representations of coordinates. These methods are typically more costly

than floating point arithmetic, but differences vary widely among different com-

puter hardware. A pragmatic compromise uses floating point arithmetic together

with error analysis. After computing the determinant with floating point arith-

metic, we check whether the absolute value is large enough for its sign to be

guaranteed. Only if that guarantee cannot be obtained do we repeat the compu-

tation in exact arithmetic.

Bibliographic notes

The idea of using symbolic perturbation for computational reasons is already

present in the work of George Danzig on linear programming [1]. It reappeared

in computational geometry with the work of four independent groups of authors.

Edelsbrunner and Mücke [2] develop SoS, which is the method described in

Exercise collection 23

this section. Yap [7] studies the class of perturbations obtained with different

orderings of infinitesimals. Emiris and Canny [3] introduce perturbations along

straight lines. Michelucci [5] exploits randomness in the design of perturbations.

Symbolic perturbations as a general computational technique within com-

putational geometry remains a controversial subject. It succeeds in extending

partially to completely correct software for some but not all geometric problems.

Seidel [6] addresses this issue, offers a unified view of symbolic perturbation,

and discusses limitations of the method. Fortune and Van Wyk [4] describe a

floating point filter that reduces the overhead needed for exact computation.

[1] G. B. Danzig. Linear Programming and Extensions. Princeton Univ. Press,
Princeton, New Jersey, 1963.

[2] H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique to cope
with degenerate cases in geometric algorithms. ACM Trans. Graphics 9 (1990),
66–104.

[3] I. Emiris and J. Canny. A general approach to removing geometric degeneracies.
SIAM J. Comput. 24 (1995), 650–664.

[4] S. Fortune and C. J. Van Wyk. Static analysis yields efficient exact integer
arithmetic for computational geometry. ACM Trans. Graphics 15 (1996), 223–248.

[5] D. Michelucci. An ε-arithmetic for removing degeneracies. In “Proc. IEEE
Sympos. Comput. Arithmetic,” 1995.

[6] R. Seidel. The nature and meaning of perturbations in geometric computing.
Discrete Comput. Geom. 19 (1998), 1–18.

[7] C. K. Yap. Symbolic treatment of geometric degeneracies. J. Symbolic Comput. 10
(1990), 349–370.

Exercise collection

The credit assignment reflects a subjective assessment of difficulty. A typical

question can be answered by using knowledge of the material combined with

some thought and analysis.

1. Section of triangulation (two credits). Let K be a triangulation of a set

of n points in the plane. Let ℓ be a line that avoids all points. Prove that ℓ

intersects at most 2n − 4 edges of K and that this upper bound is tight for

every n ≥ 3.

2. Minimum spanning tree (one credit). The notion of a minimum spanning

tree can be extended from weighted graphs to a geometric setting in which the

nodes are points in the plane. Take the complete graph of the set of nodes and

define the length of an edge as the Euclidean distance between its endpoints.

A minimum spanning tree of that graph is a Euclidean minimum spanning

tree of the point set. Prove that all edges of every Euclidean minimum

spanning tree belong to the Delaunay triangulation of the same point set.

24 1. Delaunay triangulations

3. Sorted angle vector (one credit). Let K be a triangulation of a finite set in

the plane. Let t be the number of triangles and consider the sorted vector of

angles,

v(K) = (α1 ≤ α2 ≤ · · · ≤ α3t).

Prove that v(K) = v(D) or v(K) is lexicographically smaller than v(D),

where D is the Delaunay triangulation of the points.

4. Minmax circumcircle (two credits). Let K be a triangulation of a finite set

in the plane and let ̺(K) be the radius of the largest circumcircle of any

triangle in K . Prove ̺(K) ≥ ̺(D), where D is the Delaunay triangulation

of the set.

5. Random permutation (one credit). Show that the following algorithm con-

structs a random permutation of the integers 1 to n.

for i = 1 to n do

Z [i] = i ; choose random index 1 ≤ j ≤ i ;

swap Z [i] and Z [j]

endfor.

6. Furthest-point Voronoi diagram (one credit). Let S ⊆ R
2 be finite. The

furthest-point Voronoi region of a point p ∈ S consists of all points at least

as far from p as from any other point in S,

Fp = {x ∈ R
2 | ‖x − p‖ ≥ ‖x − q‖, ∀q ∈ S}.

(i) Prove Fp = ∅ if and only if p lies on the boundary of the convex hull

of S.

(ii) Draw the furthest-point Voronoi regions of about ten points in the plane,

together with the dual furthest-point Delaunay triangulation.

7. Line segment intersection (two credits). Let a, b, x, y be points in R
2. They

are in general position if no three are collinear.

(i) Assume general position and write a boolean function that decides

whether the line segments ab and xy cross or are disjoint.

(ii) What are the degenerate cases, and how does your function deal with

them?

8. Enumerating degeneracies (one credit). Let a, b, c, d be points in R
3. The

orientation of the sequence is the sign of

det

1 α1 α2 α3

1 β1 β2 β3

1 γ1 γ2 γ3

1 δ1 δ2 δ3

.

Exercise collection 25

Simulation of simplicity expands the determinant into a polynomial P(ε),

and the orientation is decided by finding the sign of P for sufficiently small

ε > 0.

(i) List the terms of the polynomial in the order of decreasing significance.

(ii) The perturbation classifies and disambiguates the various degenerate

cases that occur. Each class corresponds to a prefix of the polynomial

that is identically zero. Describe each class in words or figures.

