
Improved Incremental Randomized Delaunay Triangulation.“’

Olivier Devillerst

1 Introduction

The computation of the Delaunay triangulation of a set of n
points in the plane is one of the classical problems in com-
putational geometry and plenty of algorithms have been pro-
posed to solve it.

These Delaunay algorithms can have different character-
istics:

l Optimal on worst case data, i.e. O(n log n) time.

l Good complexity on random data only

l Randomized

0 On-line vs off-line

In the current trade-off between algorithmic simplicity,
practical efficiency and theoretical optimality, practitioners
often choose the simplicity and practical efficiency taking
the risk of having bad performance on some special kind of
data.

Our aim is to conciliate many of the above aspects,
namely to obtain an incremental algorithm using simple data
structure having good practical performance on realistic in-
put and still provable O(nlogn) computation time on any
data set.

Previous related work

“This work was pxtially supported by ESPFST LTR21957 (CGAL)
h?.L% BP33. 06902 Sophia Antipolis.

Olidcs.Drvill~~sophiainriafr.

Fkxmkion to make digital or hard copies of a11 or part of this work for
pcmonal or clssroom use is granted without fee provided that copies
arc not made or dbtibutcd for profit or commercial advantage and that
copies bear thii notice and the fi111 citation on the tirst page. To copy
othcwisc, to republish, to post on stem or to rediibute to Iii
rquircs prior .q&ic permission and/or a fee.
SCG 98 Minneqolis hhnesota USA
Cop>tigbtAChf 1998 0-S979b97349816...%5.00

Our work is strongly related to some previous algorithms
for Delaunay triangulation. All these algorithms arc incrc-
mental and their complexity is randomized, they use some
location structure to find where the new point is inserted, and
then update the triangulation.

The first idea of a randomized incremental construction
for the Delaunay triangulation [BTS6] uses a location struc-
ture based on the history of the Delaunay triangulation: the
Delaunay tree. Point pi is inserted at time.i, and to find where
point p, fell, p, is located in all the triangulations at times
1 to n - 1; the location at time i + 1 is deduced from the
location at time i. This idea yields an expected O(n log n)
complexity [BT93, GKS92] if the points are inserted in a
random order. The drawbacks of this approach are the fol-
lowing: the location structure consists of the history of the
construction and thus strongly depends on the insertion or-
der, and the additional memory needed cannot be controlled.
(The expected memory is proved to be O(n) and is esperi-
mentally about twice the size of the final triangulation.1

Mulmuley [Mul91] proposed a location structure inde-
pendent of the insertion order. The structure has O(logn)
levels, each level being a random sample of the level be-
low. At each level, the Delaunay triangulation of the points
is computed, and the overlapping triangles at different levels
are linked to enable location of new points. This structure
has the advantage of being independent of the order of inscr-
tion, of ensuring an O(log2 n) location time for any point,
and of allowing deletions in an easier way than the Delau-
nay tree [DMT92]. However, the additional memory is still
important and the location structure is not especially simple.

In 1996, Miicke, Saias and Zhu [MSZ96] proposed a very
simple structure to handle triangulation of random points,
The structure reduces to a random subset of Q’% points, and
pointers from these points to an incident triangle in the Du-
launay triangulation. A new point is located by finding the
nearest neighbor in the sample by brute force, and walking

106

http://crossmark.crossref.org/dialog/?doi=10.1145%2F276884.276896&domain=pdf&date_stamp=1998-06-07

in the triangulation. For evenly distributed points, the ex-
pectcd complexity of the algorithm is O(n$) with a small
constant, which makes it competitive with many O(n log n)
algorithms. But for some data (for example points on apara-
bola) the complexity increases to O(&).

Ovcrvicw

Our approach uses a structure with levels similar to Mul-
muley, but with simple relations between levels. This allows
better control of the memory overhead. The transition be-
tween two levels is not direct as in Mulmuley, but uses a
march similar Mucke, Saias and Zhu to locate point in trian-
gulations,

In Section 2 we present the algorithm, in Section 3 we
prove that the expected complexity of constructing the De-
launay triangulation is O(nlogn). The parameters of the
data structure are then tuned to minimize the constant in the
case of random points and are shown to yield an excellent
behavior in Section 4, we pay special attention to the com-
parison with the method of Mticke, Saias and Zhu. Finally
we give some implementation remarks and practical results
in Section 5.

2 Algorithm

Let 5 be a set of n sites in the plane. The aim is to com-
pute the Delaunay triangulation 2X-s of S and to maintain
it efticiently under insertions and deletions.

2.1 Tke location structure

The algorithm uses a data structure composed of different
levels, Level i contains the Delaunay triangulation 2X-i of a
set of sites Si.

The sets Sf forms a decreasing sequence of random sub-
sets of S based on a Bernoulli sampling technique &lR95,
Mu1341:

Probb E Si+l 1 p E Si) = i E]O, l[.

The data structure is fairly simple: it contains the points
of S and the triangles of all the triangulations ZXi. A point
pESsuchthatp~Si~...~Seandp$Si+rissaid
to be a VW&X of level i and has a link to a Delaunay triangle
of PTj incident to p for all j for 0 2 j < i. A triangle of
ZJD’pi has links to its three neighbors in Dri and to its three
vertices.The number L of levels is not fixed; for each point

random trials decide its level, and the point with highest level
determines L.

2.2 Location of a query

For the location of a query q, we start at a known vertex vk.+r
of the highest level k. Then we search for ZJ~, the vertex of
2X-k nearest to q. Since vk is also a vertex of ZXr+r, we
search for ~k-1, the nearest neighbor of q in ‘Dlk-1, start-
ing at vk. The search is continued descending the different
levels. At each level i, the nearest vertex vi of q in ZXi is
determined.

At level i the search of Vi is carried out in three phases:

First phase: from vi+l, we have a link to a triangle of
2X-i having vi+1 as vertex. All triangles incident to
vi+1 are explored to find the triangle containing the seg-
ment Vi+lq.

Second phase: all the triangles of IMi intersected by
Vi+rq are visited, walking along the segment v++lq up
to the triangle ti that contains q.

Third phase: using neighborhood relationships between
triangles, we will traverse few triangles Of V7i from td
to find vi. If W’V” are the three vertices of ti, and,
without loss of generality, v is closer to q than V’ and
v”, then Vi is either v or it lies in the disk of center
q and passing through v (shaded on Figure la); thus
the search for vi has to be done only in the direction of
the neighbors of ti through the edges OZJ’ and vv” and
the neighbor through the edge v’v” can be ignored (the
portion of the shaded disk in that direction is inside the
disk through V&J” which is empty) . For each such
triangle, the distance to the new vertex is computed and
the algorithm maintains the closest visited vertex. For
a visited triangle ww’w” such that w is the nearest to q
among ww’w” the neighbor triangle through edge ww’
(resp ww”) will be visited if angle qw’ is smaller than
f (Figure lb).

Figure lc show the triangles visited by the different phases
of the search.

2.3 Updates

Because of its simplicity, the data structure is fairly easy to
update. Maintaining it dynamically provides a fully dynamic
triangulation algorithm. The links behveen the different lev-
els do not use any complicated data structure simply vertices
know a triangle at all levels in which they appear.

107

a) b)

Figure 1: Search for q.

To delete a point from S, just delete the corresponding
vertes at all the levels where it appears, which can be done
in time sensitive to d the degree of that vertex. On average
I.? = 8 and thus some of the following algorithms can be used.
A complicated algorithm [AGSSSS)] of deterministic com-
plexity O(d), a simple randomized O(d) algorithm [CheS6]
can be used or simpler solutions of complexity O(dlog d) or
even O(n”) may be good in practice.

Inserting a point in S reduces to locating the new point at
all levels, computing its level i and inserting the new vertex
at all levels j, 0 < j 5 i (which is sensitive to the degree
of the new vertex once the location is done). The insertion
using the standard algorithm [Law77].

3 Worst-case randomized analysis

The analysis will rely on the randomization in the construc-
tion of the random subsets & and the points of S are as-
sumed to be inserted in a random order. In this section, no
assumption applies to the data distribution, which can be in
the moat case. As usual in theoretical computational geom-
etry, we make only an asymptotic analysis and give rough
upper bounds for the constants. In the next section, parame-
ter 0: will be tuned to get a tight constant in the special case
of evenly-distributed points.

Let S be a set of ,n points organized in the structure de-
scribed in Section 2 and q a point to be inserted in S. Since
we have assumed a random insertion order, q is a random
point of S U {q}.

We denote n 2 = ISi] and?& = Si U {q}.

Notice that, thanks to the random insertion order, Ri is
a random subset of size ni + 1 of R-1 and q is a random
element of &.

The cost of exploring all the triangles incident to q+l at
the first phase of the march of level i is the degree of 2),+1 in

Dli. The cost of the second phase is the number of triangles
intersected by segment vi+lq. The cost of the third phase is
the number of candidate vertices visited during the search of
vi from ti.

Lemma 1 The expected degree of vi in ‘VTi-l is O(1).

Proof Let NJV be the nearest neighbor graph of ‘lZi:
that is, the vertices of J!.A! are the points of 7&, and
q, v E V& deline an edge of tiN if and only if w is the
nearest neighbor of q (denoted by ,u = NN(q)) or g is
the nearest neighbor of v in 7??. NN is well known to
be a subgraph of 2)1~,, the Delaunay triangulation of
‘l&, and to have maximum degree 6 [pY92].

We denote by Gliwl (w) the degree of w in V’Ti-1, and
by E,E~ic{qI the expectation when v is chosen uni-
formly in I?+ c {q}. Then we have

EVE?&C{q) d&T,-, ((4)

= EVE7?4-lC{~} (d&7.-1 (v,> ’ 6

notice that G!&~-~ (w) is a random variable; result holds
since %& and R-1 c {q) are random subsets of Ri-1
and that the average degree of a vertex in a triangulation
is less than 6.

But even if q is a random point in %$, the vertex Vi, the
nearest neighbor of q in 7&, is not uniformly random.

= E j$J q$ 4YTi-*(NN(Q)) (i
=+JEC c (d&r,-, @‘I NRi qE{p;v=NrqP)}

5 36

I

Lemma 2 Given w E I?+, the expected nunrber of verlices q
of ?& such that w belongs to the disk of center q and passing
through the nearest neighbor of q in 7??+1 is less than 605

10s

Proof Let w E I& and let w = qc, ql, q2.. . qk be the
points of ‘& lying in a section of angle 3 having apex
w sorted by increasing distance to 20. Clearly, a disk
of center ql passing through qj (j < 1) cannot contain
w and thus, if q = ql, a necessary condition for w to
be in the disk having as diameter the segment defined
by Q and the nearest neighbor of q in ‘F&+1 is that no
point of {qo,. . . qi-1) is in the sample Y&+.1 which has
probability (1 - i)‘,

Using six sections around w to cover the whole plane,
and summing over the choice of q E I& we get the
claimed result. Notice that the disk of center q and pass-
ing through the nearest neighbor of q contain the disk of
diameter the line segment defined by these two points,
and thus the bound apply also to that circle. n

Lemma 3 The expected number of edges of VTi intersect-
In8 segment qvi+l is O(Q).

Proof’ Let e be an edge of DTi intersecting segment
qvwl. If e does not exist in D’Tzi, it means that e is
an internal edge of the region retriangulated when q is
inserted in DDli. Since q is a random point in I&, the
expected number of such edges is 3 since it equals the
average degree of q in I& minus 3.

If c exists in ZVR,, one end-point w of e must belong
to the disk of diameter qv+l, denoted disk[qv+.l], (oth-
erwise any disk through the end-points of e must contain
q or vi.+1 and e cannot belong to DTR~).
The expected number of edges of VZ-zi intersecting
disk[qvi+l] is bounded by the sum of the degrees of the
vertices in disk[qvi+l]

fl(#j{c E ‘DTnr having an end-point E R I-I disk [qui+l]})

2 30a using the bound of 6 on the average degree of w

Notice that Lemma 2 was established for a fixed w and
a random q which allows to use it inside the sum over w.
Thus WC get a total expected cost for the march bounded
by 3Ga + 3, w

Lemma 4 The expected number of triangles of ‘D,li visited
during the search for vi from ti is O(Q).

Proof All the triangles t examined in phase 3 have
a vertex in the disk of center q passing through vi+l.
Thus we can argue similarly as in Lemma 3, denoting
disk Icqvi.+l] the disk of center q through vi+1 :
E(#{t E DIQaving an end-point E disk Icqq+l]})

dJ$qRi (w> I(q E ailw E ni n~kIc~+lI)I

using Jd3nmil2

< 36a using the bound on the avenge degree of w

q

Theorem 5 The expected cost of inserting nth point in the
structure is O(Q: log, n)

Proof By linearity of expectation, Lemmas 1,3 and 4
prove that the expected cost at one level is O(a). Since
the expected height of the structure is log, n, we get the
claimed result. (The analysis is similar to the ananlysis
for skip lists m5].) H

Theorem 6 The construction of the Delaunay triangulation
of a set of n points is done in expected time O(an log, n)
andO(sn) space. The expectation is on the randomized
sampling and the order of insertion, with no assumption on
the point distribution.

Proof Easy corollary of Theorem 5.

4 Tuning parameters

We have proved that our structure is worst case optimal in
the expected sense for any set of points. In this section, we
will focus on more practical cases, and tune the algorithm to
be optimal on random distribution. In that case, many events
such as that a point has high degree and that it is the nearest
neighbor of a random point can be considered as indepen-
dent.

4.1 Phase 1

We can assume that, GTi (+I) = 6 (and not only 5 36
as proved in Lemma 1). And thus if the turn around vi.+1 is
done in clockwise or counterclockwise direction depending
on the position of segment vi+lq with respect to the starting

109

Figure 2: Number of orientation tests in phase 1

triangle, and assuming that this position is random around
ul+r the espected number of orientation tests is 3. Figure 2
shows the different cases to average, the edges zli+lw such
that an orientation test v+rwq is performed are indicated,
for a typical degree 6 vertex in the triangulation.

4.2 Phase 2

Bose and Devroye [BD95] proved that the expected num-
ber of edges of a Delaunay triangulation of random points
crossed by a line segment of length 1 is O(Z& where *I is
the point density. Our experiments shows that the constant is
2.

The expected number of points in the disk of center 4
passing through vi+1 is Q’ - 1. Indeed, if the points of I&
are sorted by increasing distance from Q, oi+l is the tirst
point in K++i, thus the number of points in the disk is k
with probability (1 - $)” $, and the expected number is
$X(1 - 6)” = a - 1. Thus if I is the length of Qui+r
the density of points in 2YTi is 5.

Thus we conclude that the expected number of edges of
2Xi intersecting segment ~ui+l is 2Z&$ = y.

For each edge ww’ crossed, two orientation tests are per-
formed: if ‘w is the newly esamined vertex, orientations of
triangles 1o~u,+r and qww’ are computed.

We have to point out, that in the orientation tests of kind
wqu+l, the edge qui+l remains constant, and thus some
computations do not need to be done for each test.

4.3 Phase 3

Phase 3 is more difficult to analyze precisely, but a rough
bound is that the number of candidate vertices examined
(with shortest distance) is less than hvo and that we exam-
ine less than S triangles in total.

In fact, we modified phase 3, instead of really searching
for vi, the nearest neighbor of q in &, we just define ,ui as
the nearest among the three vertices of ti. Thus this modi-
fied phase 3 reduced to three distance computations and two
comparisons.

4.4 Tuning Q

We will count more precisely the number of operation
needed to evaluate our primitives. More exactly, we count
the number of floating point operations (f.p.0.) without mak-
ing diistinctions between additions, subtractions or multipli-
cations.

The total evaluation at a given level is 3 + J$$ orienta-

tion tests involving qvi+l, 6 fi other orientation tests and 3
distance computations.

Orientation tests always using points q and ~i+t can be
done using 5 f.p.0. to initialize plus 4 f.p.0. for each test.
Other orientation tests need 7 f.p.0. each, and square distance
computations need 5 f.p.0. each.

Thus the total cost in terms of number of f.p.0. at level i
is

5+4(3+$)+‘7$+5.3=32+6.2\6.

Since the number of level is log, n = z we get a

cost of co(n) = (32 + 6.2&) [el which is close to its
minimum (E [13.3 logs n, 14loga 721) for Q E [lS, 90], with
the minimum occuring for Q N 40.

4.5 Comparison with [MSZSS]

Similar counting of f.p.0. in Mticke et al. algorithm, using a
random sample of /3@i points, produces a cost of

n n
cAfsz(n) = 5 + 4(3 -I- ++7&$+5/3Z/iE

which is close to its minimal value for 0.5 < /3 < 1.

As shown by the comparison of the two curves in Fig-
ure 3, our method is potentially much better than [MSZ96],
even for a small number of points, However, this method
to analyze our approach hides the discontinuity of the cost,
since the effective number of levels is necessarily an integer.

110

Figure 3: Comparison of number of floating point operations
between cc(n) and c~sz(n) for a = 40 and p = 1.

To have a better comprehension of what happens for a small
number of points, we can draw the cost of inserting a point
in a structure having a fixed number of levels.

The classical walk from a random point in the structure
COStS

c,,lr;(n) = 5 + 4(3 + $)+7$=17+62Jii

which is also the cost of inserting in our structure up to the
time a second level is created.

When k levels have been created, the cost is

We can alternatively mix this multilevel approach with
MUckc ct al’s, sampling at the first level of the structure. In
that case, the cost is

C;(n) = CMSZ

This comparison (see Figure 4) shows that [MSZ96]
@f(n)) becomes better than the simple march (cl(n)) for
n > 40. The two level structure @a(n)) becomes better than
the single level structure (cl(n)) for n > 180 and better than
[MSZ96] (c:(n)) for n > 600. The main information is that
the structure presented in that paper should be significantly
better than [MSZ96] for 10000 < n.

1
TY fp Cl (4 (-Ed

Figure 4: Comparison of number of floating point operations
between ck(n) and c:(n) for Q = 40.

5 Implementation

5.1 Deletion

The above structure supports insertions and queries as ex-
plained above, but also deletions. Since there is no compli-
cated data structure to maintain, deletions can be handled by
just deleting the removed point at each level where it appears.

This can be done in output-sensitive time [Che87,
AGSS89], and thus the deletion of a random point is done in
expected constant time since a point appears at an expected
constant number of levels and its expected degree k is also
constant.

From a practical point of view, and to keep the simplicity
of the algorithm, a simpler suboptimal algorithm should be
preferred. It can be done in 0(k2) time, for example by flip-
ping to reduce the degree of the deleted vertex to 3, and flip-
ping again to restore the Delaunay property. Another simple
algorithm consists in finding the Delaunay triangle incident
to an edge of the hole in O(k) time which also yields an
O(k2) time algorithm. Both algorithms are efficient in prac-
tice and needs only few micro-seconds (about 30 in a random
triangulation) to delete a point once it had been localized.

5.2 Arithmetic degree

The algorithm above is designed to make a parsimonious use
of high degree tests [TLP96]. More precisely, the location
phase uses only orientation tests on three points in phases

111

1 and 2, and distance computation and angle comparisons
with 5 in phase 3. All these tests are degree 2 tests. Clearly,
updates need to use in-circle tests which are of degree 4.

An alternative to phase 3 should have to use in-circle tests
to limit the esplored triangles in DTi to those whose circum-
circle contains q. Such variant may esplore fewer triangles
and be easier to analyze, but may use more degree 4 tests.

5.3 Robustness issues and degeneracies

Degeneracies are solved by handling special cases: if two
points have the same coordinates, then the insertion is not
done, if four points are cocircular, then the last point inserted
is considered as inside the disk defined by the others.

We use exact arithmetic for 24 bits integers, and
thus coordinates of our points are integers in range
[-16777216,16777216] (up to a multiplication by a power
of 2). Using this restricted hind of data, double precision
computation is esact on degree 2 tests and almost never leads
to precision problems on degree 4 predicates. Nevertheless,
the esxtness of all computations are verified by an arith-
metic filter and exact computation is performed if needed.

5.4 Code parameters

The following parameters can be specified:

l maximal number of levels

l a the ratio between two levels

l the minimal number of points to use the higher level for
point location

l the minimal number of points to use AISZ sampling at
one of the higher levels

l ,I3 the constant for the size of AiISZ sample.

Our default parameters are

l number of levels unlimited

l a = 30.

l minimal size to use hierarchy is 20.

0 minimal size to use MSZ is 20.

l p=1.

Figure 5: Data sets.

We found that the code is relatively insensitive to the param-
eters. For reasonable changes of these parameters, (up to a
factor 2) the computation time is not greatly affected. Using
these configuration parameters, our code can be used to run

l

l

l

l

5.5

the usual walk algorithm (only one level and minimal
size for MSZ=KJ),

the Mticke et al. algorithm [MSZ96] (only one level),

the hierarchical algorithm described in this paper (min-
imal size for MSZ=w),

the mixed method suggested in Section 4.5 (default pa-
rameters above).

Experimental results

5.5.1 Data sets

We claim that our algorithm performs well on random point
sets, and has acceptable worse case complexity. To illustrate
this fact, we will test it with the realistic and degencratc data
sets. For each hind of data, we used sets of size 5,000,50,000
and 500,000 points. The coordinates are random on 24 bits
and the constraints such that the points are on a parabola are
verified, up to the rounding arithmetic errors.

l random: points evenly distributed in a square.

l ellipse: points evenly distributed on an ellipse.

l ellipse2: 95% points evenly distributed on an ellipse
plus 5% points evenly distributed in a square.

l circle: points evenly distributed on a circle.

l parabola: points evenly distributed on a parabola,

112

distribution size walk lJvlSZ96] hikrchy hierarchy +MSZ-
random 5000 0.3 0.17 0.15 0.14
random 50000 12 3.8 2.7 2.3
random 1 500000 II 460 I 72 t 36 1 31 I

ellipse2 5000 0.53 0.34 0.21 0.20
ellipse2 50000 49 21 3.9 3.5
ellipse2 500000 930 760 57 49

ellipse 5000 2.2 0.46 0.31 0.21 .
ellipse 50000 187 21 3.9 3.7
elliose 500000 lone 270 54 55 . ~~
pambola 5000 2.5 0.31 0.21 0.16
parabola 50000 87 5.9 3.2 3.0
parabola 500000 long 74 69 45

circle 5000 0.15 0.13 0.13 1 0.14
circle 50000 2.4 I 2.6 2.4 1 2.4
circle 1 500000 11 39 1 441 36 1 36

Figure 6: Running times

If the circle and parabola examples can be considered
as pathological inputs, the eZlipse and ellipse2 examples are
more realistic, Delaunay triangulation of points distributed
on a curve occurs in practical applications, for example in
shape reconstruction (see Figure 5).

6.62 Results

Following results are obtained on a Sun-Ultra1 200 MHz.
The code is written in C++ and compiled with ATTcompiler
with optimizing options. Time has been obtained with the
clock command and is given in seconds. The time which
is measured is just the Delaunay computation; it does not
take into account the time for input or output.

Figure 6 gives the computation times for execution of the
code with the different parameters described in Section 5.4.
Since it is the same code, the low level primitives such as in-
circle tests or the walk in the triangulation are identical and
it provides a fair comparison between the different methods.

The last column is always the fastest method. It is signifi-
cantly better than MSZ for very large sets of random points,
and the difference is even more important on data set elZipse2
which is representative of real applications.

6.63 Comparison with other software

WC have compared with some Delaunay softwares available
0ntheWWWz

l ghull by Bradford Barber and Hannu Huhdanpaa, du-
ality with 3D convex hull [BDH93] (available at
http://www.geom,umn.edu/locate/qhull).

div-conquer by Jonathan Shewchuk, divide and
conquer [She961

sweep by Jonathan Shewchuk, plane sweep

incremental by Jonathan Shewchuk, incremental
with Miicke et al. localization.
These three codes supports exact arithmetic on dou-
ble (available at
http://~w~~.cs.cmu.edu/~quake/triangle.research.html).

Dtree Delaunay tree structure[BT93] (time includes
input)
(available at http://www.inria.fr/prisme/logicieVdel-
tree.html).

hierarchy this paper, mixed with MSZ.

The execution times in seconds are in Figure 7. Our
method is significantly faster than the other incremental
method, especially in the ellipse cases. Our method is about
50% slower than the divide and conquer algorithm.

6 Conclusion

We proposed a new hierarchical data structure to compute
the Delaunay triangulation of a set of points in the plane. It
combines good worst case randomized complexity, fast be-
havior on real data, small memory occupation and dynamic
updates (insertion and deletion of points).

Referring to Su and Drysdale [SD971 study of sev-
eral techniques and our comparisons with Shewchuk imple-
mentation [She961 of some of these techniques, we have

113

distribution size qhull sweep div-eonq incr Dtree hier.
random 5000 0.65 0.21 0.11 0.29 1.4 0.14
mudom 50000 S.0 3.6 1.6 6.6 17 2.3
random 500000 101 53 22 150 swap 31
ellinse2 5000 0.54 0.21 0.13 0.75 1.3 0.20
ellipse2 50000 7.5 3.2 2.16 42 16 3.5
ellipse2 500000 420 46 29 2100 swap 49
ellipse 5000 0.83 0.1s 0.14 2.1 1.3 0.21
ellipse 50000 57 2.5 2.4 110 14 3.7
ellipse 500000 swap 39 33 1400 swap 55
03rabola 5000 3.9 0.16 0.11 2.0 1.2 0.16
r--~~---~~ 1

~~~~ 

,, I narabola I 50000 II 730 1 2.7 I 2.0 I 110 I 14 I 3.0 1 c----- 1 

-- parabola 500000 swap 39 2s IS00 swap 45 
circle 5000 93 0.17 0.17 0.52 1.4 0.14 
circle 50000 220 3.1 1.S 11 15 2.4 
circle 500000 swap 22 43 240 swap 36 

Figure 7: Comparisons with other softwares 

shown that our implementation is competitive with other ap- 
proaches on random data. Furthermore, we can prove that 
the performances remains good on pathological inputs. Fi- 
nally, one of the main advantage of this algorithm is to allow 
a dynamic setting. 

The main idea of our structure is to perform point location 
using several levels. The lowest level just consists of the 
triangulation, then each level contains the triangulation of a 
small sample of the levels below. Point location is done by 
marching in a triangulation to determine the nearest neighbor 
of the query at that level, then the march restart from that 
neighbor at the level below. Location at highest level is done 
using lMSZ96] which is efficient for small set of points. 

One characteristics of the structure is that best time per- 
formance is obtained with a ratio of about three per cent be- 
tween two levels, which yields to few levels (three or four 
typically) and a small memory occupation. The structure is 
simple and does not need additional features such as buckets. 

Such structure can be generalized to other problems. The 
two main ingredients of the proofs are bounds on the max- 
imal degree of the nearest neighbor graph and the expected 
degree of a random vertex in the Delaunay triangulation. The 
first generalizes well in higher dimension, while the second 
becomes an data sensitive parameter (constant for random 
points, nr(d-11f21 in the worst case). A generalization for 
computing the trapezoidal map can also be done. 

Code 

A demo version compiled for Sun Solaris and SGI is avail- 
able at 

http://www.inria.fr/prisme/logiciels/del-hierarchy/. 

Acknowledgement 

The author would like to thank Her& Bronnimann, Jonathan 
Shewchuk, Jack Snoeyink and Mariette Yvinec for helpful 
discussions and careful reading of this paper. 

References 

[AGSSSS)] 

[BD95] 

[BDH93] 

[BTS6] 

wl-931 

[CheS6] 

[CheSfl 

A. Agganval, L. J. Guibas, J. S&se, and P. W. Shor. A 
linear-time algorithm for computing the Voronoi dia- 
gram of a conves polygon. Discrete Comput. Geom., 
4(6):591-604, 19S9. 
P. Bose and L. Devroye. Intersections with random gc- 
ometric objects. Technical report, School of Computer 
Science, McGill University, 1995. Manuscript. 
C. B. Barber, D. P Dobkin, and H. Huhdanpaa, The 
Quickhull algorithm for convex hull. Technical Report 
GCG53, Geometry Center, Univ. of Minnesota, July 
1993. 
J.-D. Boissonnat and M. Teillaud. A hierarchical repre- 
sentation of objects: The Delaunay tree. In hc. 2nd 
Annu. ACM Sympos. Comput. Geom., pages 260-268, 
19S6. 
J.-D. Boissonnat and M. Teillaud. On the mndomized 
construction of the Delaunay tree. Theoret. Cwtpttt. 
Sci., 112:339-354, 1993. 
L. P. Chew. Building Voronoi diagrams for conves 
polygons in linear expected time. Technical Report 
PCS-TR90-147, Dept. Math. Comput. Sci., Dartmouth 
College, Hanover, NH, 1986. 
L. P. Chew. Constrained Delaunay triangulations. In 
Proc. 3rd Annu. ACM Sympos. Comput. GEOI~I., pages 
215-222,1957. 

114 



[GKS92] 

[Law771 

[MR95] 

[MSZ96] 

[Mu1911 

[DMT92] 0. Devillcrs, S. Meiser, and M. Teillaud. Fully dynamic 
Delaunay triangulation in logarithmic exp&t& time 
per operation. Comput. Geom. Theory Appl., 2(2):55- 
80,1992. 
L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized 
incremental construction of Delaunay and Voronoi dia- 
grams. Algorithmica, 7z381-413, 1992. 
C. L, Lawson. Software for C’ surface interpolation. 
In J. R. Rice, editor, Math, Software ZZI, pages 161-194. 
Academic Press, New York, NY, 1977. 
R, Motwani and R Raghavan. RandomizedAlgorithms. 
Cambridge University Press, New York, NY, 1995. 
Ernst R MUcke, Isaac Saias, and Binhai Zhu. Fast 
randomized point location without preprocessing in 
two- and three-dimensional Delaunay triangulations. In 
Proc. 12th Annu ACM Sympos. Comput. Geom, pages 
274-283,199G. 
K. Mulmuley. Randomized multidimensional search 
trees: Dynamic sampling. In Proc. 7th Annu. ACM 
Sympos. Comput. Geom., pages 121-131, 1991. 
K. Mulmulcy. Computational Geometry: An Introduc- 
tion Through Randomized Algorithms. Prentice Hall, 
Englewood Cliffs, NJ, 1994. ’ 
M. S, Paterson and F. F. Yao. On nearest-neighbor 
graphs. In Proc. 19th Internat. Colloq. Automata Lung. 
Program., volume 623 of Lecture Notes Comput. Sci., 
pages 4X-426. Springer-Verlag, 1992. 
P. Su and R. Drysdale. A comparison of sequential De- 
launay triangulation algorithms. Comput. Geom. The- 
ory Appl., 7:361-386, 1997. 
J. R. Shewchuk. Triangle: engineering a 2d quality 
mesh generator and Delaunay triangulator. In First 
‘1Vorkshop on Applied Computational Geometry. Asso- 
ciation for Computing Machinery, May 1996. 
R. Tamassia, G. Liotta, and F. P. Preparata. Robust 
proximity queries in implicit Voronoi diagrams. In 
Proc. 8th Canad Con& Comput. Geom., page 1.1996. 

[Mu1941 

[PY92] 

[SD971 

[She9Gl 

[TLP9G] 

115 


