
Chapter 1

Introduction: MAXCUT Via Semidefinite
Programming

Semidefinite programming is considered among the most powerful tools in the
theory and practice of approximation algorithms. We begin our exposition
with the Goemans–Williamson algorithm for the MaxCut problem (i.e., the
problem of computing an edge cut with the maximum possible number of
edges in a given graph). This is the first approximation algorithm (from 1995)
based on semidefinite programming and it still belongs among the simplest
and most impressive results in this area.

However, it should be said that semidefinite programming entered the field
of combinatorial optimization considerably earlier, through a fundamental
1979 paper of Lovász [Lov79], in which he introduced the theta function of a
graph. This is a somewhat more advanced concept, which we will encounter
later on.

In this chapter we focus on the Goemans–Williamson algorithm, while
semidefinite programming is used as a black box. In the next chapter we will
start discussing it in more detail.

1.1 The MAXCUT Problem

MaxCut is the following computational problem: We are given a graph G =
(V,E) as the input, and we want to find a partition of the vertex set into two
subsets, S and its complement V \ S, such that the number of edges going
between S and V \ S is maximized.

More formally, we define a cut in a graph G = (V,E) as a pair (S, V \ S),
where S ⊆ V . The edge set of the cut (S, V \ S) is

E(S, V \ S) = {e ∈ E : |e ∩ S| = |e ∩ (V \ S)| = 1}

(see Fig. 1.1), and the size of this cut is |E(S, V \ S)|, i.e., the number of
edges. We also say that the cut is induced by S.

3B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9 1,
© Springer-Verlag Berlin Heidelberg 2012

4 1 Introduction: MaxCut Via Semidefinite Programming

Fig. 1.1 The cut edges (bold) induced by a cut (S, V \ S)

The decision version of the MaxCut problem (given G and k ∈ N, is there
a cut of size at least k?) was shown to be NP-complete by Garey et al. [GJS76].
The above optimization version is consequently NP-hard.

1.2 Approximation Algorithms

Let us consider an optimization problem P (typically, but not necessarily,
we will consider NP-hard problems). An approximation algorithm for P is a
polynomial-time algorithm that computes a solution with some guaranteed
quality for every instance of the problem. Here is a reasonably formal defini-
tion, formulated for maximization problems.

A maximization problem consists of a set I of instances . Every instance
I ∈ I comes with a set F (I) of feasible solutions (sometimes also called
admissible solutions), and every s ∈ F (I) in turn has a nonnegative real
value ω(s) ≥ 0 associated with it. We also define

Opt(I) = sup
s∈F (I)

ω(s) ∈ R+ ∪ {−∞,∞}

to be the optimum value of the instance. Value −∞ occurs if F (I) = ∅, while
Opt(I) = ∞ means that there are feasible solutions of arbitrarily large value.
To simplify the presentation, let us restrict our attention to problems where
Opt(I) is finite for all I.

The MaxCut problem immediately fits into this setting. The instances
are graphs, feasible solutions are subsets of vertices, and the value of a subset
is the size of the cut induced by it.

1.2.1 Definition. Let P be a maximization problem with set of instances I,
and let A be an algorithm that returns, for every instance I ∈ I, a feasible
solution A(I) ∈ F (I). Furthermore, let δ:N → R+ be a function.

1.2 Approximation Algorithms 5

We say that A is a δ-approximation algorithm for P if the following two
conditions hold.

(i) There exists a polynomial p such that for all I ∈ I, the runtime of A
on the instance I is bounded by p(|I|), where |I| is the encoding size of
instance I.

(ii) For all instances I ∈ I, ω(A(I)) ≥ δ(|I|) ·Opt(I).

Encoding size is not a mathematically precise notion; what we mean is the
following: For any given problem, we fix a reasonable “file format” in which
we feed problem instances to the algorithm. For a graph problem such as
MaxCut, the format could be the number of vertices n, followed by a list
of pairs of the form (i, j) with 1 ≤ i < j ≤ n that describe the edges. The
encoding size of an instance can then be defined as the number of characters
that are needed to write down the instance in the chosen format. Due to the
fact that we allow runtime p(|I|), where p is any polynomial, the precise
format usually does not matter, and it is “reasonable” for every natural
number k to be written down with O(log k) characters.

An interesting special case occurs when δ is a constant function. For c ∈ R,
a c-approximation algorithm is a δ-approximation algorithm with δ ≡ c.
Clearly, c ≤ 1 must hold, and the closer c is to 1, the better the approximation.

We can smoothly extend the definition to randomized algorithms (algo-
rithms that may use internal coin flips to guide their decisions). A randomized
δ-approximation algorithm must have expected polynomial runtime and must
satisfy

E [ω(A(I))] ≥ δ(|I|) ·Opt(I) for all I ∈ I.
For randomized algorithms , ω(A(I)) is a random variable, and we require
that its expectation be a good approximation of the true optimum value.

For minimization problems, we replace sup by inf in the definition of
Opt(I) and we require that ω(A(I)) ≤ δ(|I|)Opt(I) for all I ∈ I. This leads
to c -approximation algorithms with c ≥ 1.

What Is Polynomial Time?

In the context of complexity theory, an algorithm is formally a Turing
machine, and its runtime is obtained by counting the elementary operations
(head movements), depending on the number of bits used to encode the
problem on the input tape. This model of computation is also called the bit
model.

The bit model is not very practical, and often the real RAM model, also
called the unit cost model, is used instead.

The real RAM is a hypothetical computer, each of its memory cells capable
of storing an arbitrary real number, including irrational ones like

√
2 or π.

6 1 Introduction: MaxCut Via Semidefinite Programming

Moreover, the model assumes that arithmetic operations on real numbers
(including computations of square roots, trigonometric functions, random
numbers, etc.) take constant time. The model is motivated by actual
computers that approximate the real numbers by floating-point numbers
with fixed precision.

The real RAM is a very convenient model, since it frees us from thinking
about how to encode a real number, and what the resulting encoding size
is. On the downside, the real RAM model is not always compatible with
the Turing machine model. It can happen that we have a polynomial-time
algorithm in the real RAM model, but when we translate it to a Turing
machine, it becomes exponential.

For example, Gaussian elimination, one of the simplest algorithms in linear
algebra, is not a polynomial-time algorithm in the Turing machine model if
a naive implementation is used [GLS88, Sect. 1.4]. The reason is that in the
naive implementation, intermediate results may require exponentially many
bits.

Vice versa, a polynomial-time Turing machine may not be transferable to
a polynomial-time real RAM algorithm. Indeed, the runtime of the Turing
machine may tend to infinity with the encoding size of the input numbers,
in which case there is no bound at all for the runtime that depends only on
the number of input numbers.

In many cases, however, it is possible to implement a polynomial-time real
RAM algorithm in such a way that all intermediate results have encoding
lengths that are polynomial in the encoding lengths of the input numbers.
In this case we also get a polynomial-time algorithm in the Turing machine
model. For example, in the real RAM model, Gaussian elimination is an
O(n3) algorithm for solving n×n linear equation systems. Using appropriate
representations, it can be guaranteed that all intermediate results have bit
lengths that are also polynomial in n [GLS88, Sect. 1.4], and we obtain that
Gaussian elimination is a polynomial-time method also in the Turing machine
model.

We will occasionally run into real RAM vs. Turing machine issues, and
whenever we do so, we will try to be careful in sorting them out.

1.3 A Randomized 0.5-Approximation Algorithm for
MAXCUT

To illustrate previous definitions, let us describe a concrete (randomized)
approximation algorithm RandomizedMaxCut for the MaxCut problem.

Given an instance G = (V,E), the algorithm picks S as a random sub-
set of V , where each vertex v ∈ V is included in S with probability 1/2,
independent of all other vertices.

1.4 The Goemans–Williamson Algorithm 7

In a way this algorithm is stupid, since it never even looks at the edges.
Still, we can prove the following result:

1.3.1 Theorem. Algorithm RandomizedMaxCut is a randomized 0.5-ap-
proximation algorithm for the MaxCut problem.

Proof. It is clear that the algorithm runs in polynomial time. The value
ω(RandomizedMaxCut(G)) is the size of the cut (number of cut edges) gener-
ated by the algorithm (a random variable). Now we compute

E [ω(RandomizedMaxCut(G))] = E [|E(S, V \ S)|]
=

∑

e∈E

Prob[e ∈ E(S, V \ S)]

=
∑

e∈E

1
2
= 1

2
|E| ≥ 1

2
Opt(G).

Indeed, e ∈ E(S, V \ S) if and only if exactly one of the two endpoints of e
ends up in S, and this has probability exactly 1

2 . �

The main trick in this simple proof is to split the complicated-looking
quantity |E(S, V \S)| into the contributions of individual edges; then we can
use the linearity of expectation and account for the expected contribution
of each edge separately. We will also see this trick in the analysis of the
Goemans–Williamson algorithm.

It is possible to “derandomize” this algorithm and come up with a deter-
ministic 0.5-approximation algorithm for MaxCut (see Exercise 1.1). Minor
improvements are possible. For example, there exists a 0.5(1+ 1/m) approx-
imation algorithm, where m = |E|; see Exercise 1.2.

But until 1994, no c-approximation algorithm was found for any factor
c > 0.5.

1.4 The Goemans–Williamson Algorithm

Here we describe the GWMaxCut algorithm, a 0.878-approximation algorithm
for the MaxCut problem, based on semidefinite programming. In a nutshell,
a semidefinite program (SDP) is the problem of maximizing a linear function
in n2 variables xij , i, j = 1, 2, . . . , n, subject to linear equality constraints
and the requirement that the variables form a positive semidefinite matrix
X . We write X 0 for “X is positive semidefinite.”

For this chapter we assume that a semidefinite program can be solved in
polynomial time, up to any desired accuracy ε, and under suitable conditions
that are satisfied in our case. We refrain from specifying this further here;
a detailed statement appears in Chap. 2. For now, let us continue with the

8 1 Introduction: MaxCut Via Semidefinite Programming

Goemans–Williamson approximation algorithm, using semidefinite program-
ming as a black box.

We start by formulating the MaxCut problem as a constrained optimiza-
tion problem (which we will then turn into a semidefinite program). For the
whole section, let us fix the graph G = (V,E), where we assume that V =
{1, 2, . . . , n} (this will be used often and in many places). Then we introduce
variables z1, z2, . . . , zn ∈ {−1, 1}. Any assignment of values from {−1, 1} to
these variables encodes a cut (S, V \ S), where S = {i ∈ V : zi = 1}. The
term

1− zizj
2

is exactly the contribution of the edge {i, j} to the size of the above cut.
Indeed, if {i, j} is not a cut edge, we have zizj = 1, and the contribution is 0.
If {i, j} is a cut edge, then zizj = −1, and the contribution is 1. It follows
that we can reformulate the MaxCut problem as follows.

Maximize
∑

{i,j}∈E
1−zizj

2

subject to zi ∈ {−1, 1}, i = 1, . . . , n.
(1.1)

The optimum value (or simply value) of this program is Opt(G), the size of a
maximum cut. Thus, in view of the NP-completeness of MaxCut, we cannot
expect to solve this optimization problem exactly in polynomial time.

Semidefinite Programming Relaxation

Here is the crucial step: We write down a semidefinite program whose value
is an upper bound for the value Opt(G) of (1.1). To get it, we first replace
each real variable zi with a vector variable ui ∈ Sn−1 = {x ∈ R

n : ‖x‖ = 1},
the (n− 1)-dimensional unit sphere:

Maximize
∑

{i,j}∈E
1−uT

i uj

2

subject to ui ∈ Sn−1, i = 1, 2, . . . , n.
(1.2)

This is called a vector program since the unknowns are vectors.1

From the fact that the set {−1, 1} can be embedded into Sn−1 via the
mapping x �→ (0, 0, . . . , 0, x), we derive the following important property: for
every solution of (1.1), there is a corresponding solution of (1.2) with the same
value. This means that the program (1.2) is a relaxation of (1.1), a program
with “more” solutions, and it therefore has value at least Opt(G). It is also

1 We consider vectors in R
n as column vectors, i.e., as n × 1 matrices. The super-

script T denotes matrix transposition, and thus uT
i uj is the standard scalar product

of ui and uj .

1.4 The Goemans–Williamson Algorithm 9

clear that this value is still finite, since uT
i uj is bounded from below by −1

for all i, j.
Vectors may look more complicated than real numbers, and so it is quite

counterintuitive that (1.2) should be any easier than (1.1). But semidefinite
programming will allow us to solve the vector program efficiently, to any
desired accuracy!

To see this, we perform yet another variable substitution, namely, xij =
uT
i uj . This brings (1.2) into the form of a semidefinite program:

Maximize
∑

{i,j}∈E
1−xij

2

subject to xii = 1, i = 1, 2, . . . , n,
X 0.

(1.3)

To see that (1.3) is equivalent to (1.2), we first note that if u1, . . . ,un

constitute a feasible solution to (1.2), i.e., they are unit vectors, then with
xij = uT

i uj , we have
X = UTU,

where the matrix U has the columns u1,u2, . . . ,un. Such a matrix X is
positive semidefinite, and xii = 1 follows from ui ∈ Sn−1 for all i. So X is a
feasible solution of (1.3) with the same value.

Slightly more interesting is the opposite direction, namely, that every fea-
sible solution X of (1.3) yields a solution of (1.2), with the same value. For
this, one needs to know that every positive semidefinite matrix X can be
written as the product X = UTU (see Sect. 2.2). Thus, if X is a feasible
solution of (1.3), the columns of such a matrix U provide a feasible solution
of (1.2); due to the constraints xii = 1, they are actually unit vectors.

Thus, the semidefinite program (1.3) has the same finite value SDP(G) ≥
Opt(G) as (1.2). So we can find in polynomial time a matrix X∗ 0 with
x∗
ii = 1 for all i and with

∑

{i,j}∈E

1− x∗
ij

2
≥ SDP(G)− ε,

for every ε > 0.
We can also compute in polynomial time a matrix U∗ such that X∗ =

(U∗)TU∗, up to a tiny error. This is a Cholesky factorization of X∗; see
Sect. 2.3. The tiny error can be dealt with at the cost of slightly adapting ε.
So let us assume that the factorization is exact.

Then the columns u∗
1,u

∗
2, . . . ,u

∗
n of U∗ are unit vectors that form an

almost-optimal solution of the vector program (1.2):

∑

{i,j}∈E

1− u∗
i
Tu∗

j

2
≥ SDP(G)− ε ≥ Opt(G) − ε. (1.4)

10 1 Introduction: MaxCut Via Semidefinite Programming

Rounding the Vector Solution

Let us recall that what we actually want to solve is program (1.1), where
the n variables zi are elements of S0 = {−1, 1} and thus determine a cut
(S, V \ S) via S := {i ∈ V : zi = 1}.

What we have is an almost optimal solution of the relaxed program (1.2)
where the n vector variables are elements of Sn−1. We therefore need a way
of mapping Sn−1 back to S0 in such a way that we do not “lose too much.”
Here is how we do it. Choose p ∈ Sn−1 and consider the mapping

u �→
{

1 if pTu ≥ 0,
−1 otherwise.

(1.5)

The geometric picture is the following: p partitions Sn−1 into a closed
hemisphere H = {u ∈ Sn−1 : pTu ≥ 0} and its complement. Vectors in H
are mapped to 1, while vectors in the complement map to −1; see Fig. 1.2.

+1

+1
+1

−1
−1

−1

−1

H

p

Fig. 1.2 Rounding vectors in Sn−1 to {−1, 1} through a vector p ∈ Sn−1

It remains to choose p, and we will do this randomly (we speak of random-
ized rounding). More precisely, we sample p uniformly at random from Sn−1.
To understand why this is a good thing, we need to do the computations,
but here is the intuition. We certainly want that a pair of vectors u∗

i and u∗
j

with large value
1− u∗

i
Tu∗

j

2

is more likely to yield a cut edge {i, j} than a pair with a small value. Since
the contribution grows with the angle between u∗

i and u∗
j , our mapping to

1.4 The Goemans–Williamson Algorithm 11

{−1,+1} should be such that pairs with large angles are more likely to be
mapped to different values than pairs with small angles.

As we will see, this is how the function (1.5) with randomly chosen p is
going to behave.

1.4.1 Lemma. Let u,u′ ∈ Sn−1. The probability that (1.5) maps u and u′

to different values is
1

π
arccosuTu′.

Proof. Let α ∈ [0, π] be the angle between the unit vectors u and u′. By
the law of cosines, we have

cos(α) = uTu′ ∈ [−1, 1],

or, in other words,
α = arccosuTu′ ∈ [0, π].

If α = 0 or α = π, meaning that u ∈ {u′,−u′}, the statement trivially holds.
Otherwise, let us consider the linear span L of u and u′, which is a two-
dimensional subspace of Rn. With r the projection of p to that subspace,
we have pTu = rTu and pTu′ = rTu′. This means that u and u′ map
to different values if and only if r lies in a “half-open double wedge” W of
opening angle α; see Fig. 1.3.

α

α
W

u
u′

r

Fig. 1.3 Randomly rounding vectors: u and u′ map to different values if and only
if the projection r of p to the linear span of u and u′ lies in the shaded region W
(“half-open double wedge”)

Since p is uniformly distributed in Sn−1, the direction of r is uniformly
distributed in [0, 2π]. Therefore, the probability of r falling into the double
wedge is the fraction of angles covered by the double wedge, and this is α/π.

�

12 1 Introduction: MaxCut Via Semidefinite Programming

Getting the Bound

Let us see what we have achieved. If we round as above, the expected number
of edges in the resulting cut equals

∑

{i,j}∈E

arccosu∗
i
Tu∗

j

π
.

Indeed, we are summing the probability that an edge {i, j} becomes a cut
edge, as in Lemma 1.4.1, over all edges {i, j}. The trouble is that we do not
know much about this sum. But we do know that

∑

{i,j}∈E

1− u∗
i
Tu∗

j

2
≥ Opt(G)− ε;

see (1.4). The following technical lemma allows us to compare the two sums
termwise.

1.4.2 Lemma. For all z ∈ [−1, 1],

arccos(z)

π
≥ 0.8785672

1− z

2
.

The constant appearing in this lemma is the solution to a problem that
seems to come from a crazy calculus teacher: what is the minimum of the
function

f(z) =
2 arccos(z)

π(1 − z)

over the interval [−1, 1]?

Proof. The plot in Fig. 1.4 below depicts the function f(z); the mini-
mum occurs at the (unique) value z∗ where the derivative vanishes. Using
a numeric solver, you can compute z∗ ≈ −0.68915773665, which yields
f(z∗) ≈ 0.87856720578> 0.8785672. �

Using this lemma, we can conclude that the expected number of cut edges
produced by our algorithm satisfies

∑

{i,j}∈E

arccosu∗
i
Tu∗

j

π
≥ 0.8785672

∑

{i,j}∈E

1− u∗
i
Tu∗

j

2

≥ 0.8785672(Opt(G)− ε)

≥ 0.878Opt(G),

provided we choose ε ≤ 5 · 10−4.

1.4 The Goemans–Williamson Algorithm 13

–0.74 –0.72 –0.70 –0.68 –0.66 –0.64 –0.62

0.8790

0.8795

0.8800

Fig. 1.4 The function f(z) = 2 arccos(z)/π(1 − z) and its minimum

Here is a summary of the Goemans–Williamson algorithm GWMaxCut for
approximating the maximum cut in a graph G = ({1, 2, . . . , n}, E).

1. Compute an almost optimal solution u∗
1,u

∗
2, . . . ,u

∗
n of the vector pro-

gram

maximize
∑

{i,j}∈E
1−uT

i uj

2

subject to ui ∈ Sn−1, i = 1, 2, . . . , n.

This is a solution that satisfies

∑

{i,j}∈E

1− u∗
i
Tu∗

j

2
≥ SDP(G) − 5 · 10−4 ≥ Opt(G)− 5 · 10−4,

and it can be found in polynomial time by semidefinite programming
and Cholesky factorization.

2. Choose p ∈ Sn−1 uniformly at random, and output the cut induced
by

S := {i ∈ {1, 2, . . . , n}:pTu∗
i ≥ 0}.

We have thus proved the following result.

1.4.3 Theorem. Algorithm GWMaxCut is a randomized 0.878-approximation
algorithm for the MaxCut problem.

Almost optimal vs. optimal solutions. It is customary in the literature
(and we will adopt this later) to simply call an almost optimal solution of a
semidefinite or a vector program an “optimal solution.” This is justified, since

14 1 Introduction: MaxCut Via Semidefinite Programming

for the purpose of approximation algorithms an almost optimal solution is
just as good as a truly optimal solution. Under this convention, an “optimal
solution” of a semidefinite or a vector program is a solution that is accurate
enough in the given context.

Exercises

1.1 Prove that there is also a deterministic 0.5-approximation algorithm for
the MaxCut problem.

1.2 Prove that there is a 0.5(1+1/m)-approximation algorithm (randomized
or deterministic) for the MaxCut problem, where m is the number of edges
of the given graph G.

