
Explicit and Implicit Enforcing –
Randomized Optimization

Bernd Gärtner and Emo Welzl

Theoretical Computer Science, ETH Zürich, CH-8092 Zürich, Switzerland

1 Introduction

This tutorial is aiming at some randomized approaches for geometric optimiza-
tion that have been developed over the last ten to fifteen years. The methods
are simple, sometimes even the analysis is. The simplicity of the methods entails
that they use very little of the underlying structure of the problems to tackle,
and, as a consequence, they are applicable to a whole range of problems. Most
prominently, they have led to new bounds for combinatorial solutions to linear
programming. But with little adaption necessary – basically few problem specific
primitive operations have to be supplied – the methods can be used for comput-
ing smallest enclosing balls of point sets, smallest volume enclosing ellipsoids,
the distance between polytopes (given either as convex hulls or as intersection
of halfspaces), and for several other problems. If the dimension of the input in-
stance is constant, then several linear time methods are available, and some of
them even behave ‘well’ when the dimension grows; at least, no better provable
behavior is known. Many of the methods can be interpreted as variants of the
simplex algorithm, with appropriately chosen randomized pivot rules.

After the good news, the even better news. It seems that there is ample
space for improvement. The fact that the methods are so general is nice, but we
would be more than happy to use more of the structure, if we only knew how.
The ultimate goal is to derive a polynomial combinatorial linear programming
algorithm.

Disclaimer. We are not aiming at the most succinct presentation of the most
efficient procedures (let it be theoretically or practically). Instead, we take a
stroll around the topic with emphasis on the methods, which we believe to be
of interest in its own right. And we enjoy how binomial coefficients and cycle
numbers enter the picture. Usefulness is definitely not our primary concern!

Now that we got rid of the utilitarian fanatic, let us disclose that some of the
ideas discussed here have found their way into efficient implementations (see,
e.g., [6]).

For the rest of this section we briefly discuss two processes similar in structure
to what we will later use for computing smallest enclosing balls, the problem of
reference for this presentation. This algorithmic problem was posed by James
Joseph Sylvester [18] in 1857. In Sect. 2 we settle basic terminology and properties
needed for the algorithmic treatment of that problem, and we analyze a first
process that computes a smallest enclosing ball of a finite point set. Next, in
Sect. 3, we present the first two efficient procedures: One is linear in n, the
number of points, but has exponential behavior in terms of the dimension d; the
other one is exponential in n, but it is faster than the first one when the dimension
is large (d ≈ n). Assuming a fast solution for n = 2(d + 1), Sect. 4 presents a
subexponential process. Discussion and bibliographical remarks conclude the
paper.

We are interested in the processes, emphasizing their common and their
distinguished features. We omit a presentation of the best known method for
solving the problem when n ≈ d, which is quite technical, as it stands now. The
best known bounds are summarized in the discussion.

Minimum Finding Procedures. Let us start with two simple procedures for com-
puting the minimum of a set of real numbers. These procedures may seem some-
what stupid, and, in fact, they were, if we were really interested in comput-
ing minima. However, we are interested in the processes they define, and in
their analyses, not in the output they produce. They already provide schemes
which are able to solve more difficult problems. Here is a first try. We assume
that we are given a set A of n real numbers. The procedure AlwaysCheck-

A ⊆ R, finite.

Precondition:

None.

Postcondition:

x = min A.

function AlwaysCheckMin(A)

if A = ∅ then

x←∞;

else

a←random A;

x← AlwaysCheckMin(A \ {a});

if a < x then

x← a;

for all b ∈ A do

if b < x then

output “Something wrong!”;

return x;

Min performs the normal scan through A in random order, always substitut-
ing a current minimum if a smaller number is encountered. However, when-
ever a new minimum is encountered, we check it against all previous num-
bers (not trusting the transitivity of the ≤-relation1). We use here and fur-
ther on the statement ‘s ←random S;’ for assigning to s an element uniformly
at random from set S. The expected number, t(n), of comparisons (‘a < x’
or ‘b < x’) of the procedure when A has cardinality n obeys the recursion

AlwaysCheckMin-recursion, comparisons

t(n) =

{
0, if n = 0,
t(n− 1) + 1 + 1

n
· n, if n ≥ 1,

since the randomly chosen element a is the minimum of A with probability2 1
n
.

Hence, t(n) = 2n. If some of the numbers are equal, the expected number of
comparisons decreases.

Here is a second procedure, called TryAndTryMin, that computes the mini-
mum of a nonempty set A of real numbers. Note that the function invokes a

A ⊆ R, finite.

Precondition:

A 6= ∅.

Postcondition:

x = min A.

function TryAndTryMin(A)

a←random A;

if A = {a} then

x← a;

else

x← TryAndTryMin(A \ {a});

if a < x then

x← TryAndTryMin(A);

return x;

recursive call with the same arguments – something that is prohibited in a de-
terministic procedure that we wish to eventually terminate. The strange feature
of the procedure is, of course, that it ignores the fact

a < min(A \ {a}) =⇒ a = min A .

It will be our task to find corresponding facts in some of the higher-dimensional
counterparts, when they are not as self-evident as here.

1 Perhaps its not so ridiculous at all. Just imagine the numbers are given implicitly, as
x-coordinates of intersections of lines, say. Then numerical problems in calculations
and comparisons may quite easily lead you into contradictions. But, again, that’s
not the point here!

2 If not all numbers are distinct (i.e. A is a multiset), the probability is at most 1

n
.

For n ∈ N, the expected number, t(n), of comparisons of the procedure when
applied to a set of n elements satisfies the recursion

TryAndTryMin-recursion, comparisons

t(n) =

{
0, if n = 1,
t(n− 1) + 1 + 1

n
· t(n), otherwise,

since the second recursive call happens iff a = min A, which happens with prob-
ability 1

n
. For n > 1, this can be rewritten as (by moving the t(n)-term from the

right to the left side, and dividing by (n− 1))

t(n)

n
=

t(n− 1)

n− 1
+

1

n− 1
=

1

n− 1
+

1

n− 2
+ · · ·+ 1

1
+

t(1)

1

which yields
t(n)

n
= Hn−1 =⇒ t(n) = nHn−1 ,

where Hm, m ∈ N0, is the mth Harmonic number Hm :=
∑m

i=1
1
i
; ln(m + 1) ≤

Hm = 1 + ln m for m ∈ N.
If A is a multiset, the recursion still holds, but now with inequality (the

second recursive call happens iff a is the unique minimum in A); the expected
number of steps can only decrease.

Notation. N denotes the positive integers, N0 the nonnegative integers, R the
real numbers, R

+

the positive reals, and R
+

0 the nonnegative reals.
k ∈ N0; A a finite set. #A denotes the cardinality of A, and

(
A
k

)
the set of

all k-element subsets of A.
n, k ∈ N0. nk denotes the falling power

∏k−1
i=0 (n − i),

(
n
k

)
the binomial co-

efficient nk

k! , and
[

n
k

]
the cycle number (Stirling number of the first kind). It

counts the number of permutations of n elements with k cycles. Equivalently, it
is defined by

[
0
0

]
= 1, and for n, k ∈ N,

[
n
0

]
=
[

0
k

]
= 0 and

[n

k

]

= (n− 1)

[
n− 1

k

]

+

[
n− 1

k − 1

]

.

For properties of falling powers, binomial coefficients and cycle numbers the
reader is invited to consult the exposition [11].

d ∈ N; x, y ∈ Rd. ‖x − y‖ denotes the length of the vector from y to x
(2-norm); that is, the Euclidean distance between x and y.

P ⊆ Rd. affP denotes the affine hull of P and convP the convex hull of P .
A ⊆ R. We use max A, supA, min A, and inf A to denote the maximum,

supremum, minimum, and infimum, resp., of A. As usual, min ∅ = inf ∅ = ∞
and max ∅ = sup ∅ = −∞.

Convention. Throughout this text, d is a positive integer (the dimension of the
ambient space), and B,C, E, F, P, S ⊆ Rd are finite without further explicit
mention.

2 Smallest Enclosing Ball

Here is our reference problem for this presentation. We are given a set P of points
in Rd and we are to compute a closed ball of smallest radius containing P . The
nice feature of this optimization problem (as opposed to linear programming,
say) is that a solution always exists, and it is always unique.

z ∈ Rd; r ∈ R. We use bz,r for the closed ball with center z and radius
r, bz,r := {p ∈ Rd | ‖p − z‖ ≤ r}. Given such a ball b, we let ∂b denote the
boundary of b. If b = bz,r 6= ∅, we let zb := z and rb := r; r∅ := −∞.

Note that bz,r degenerates to a point iff r = 0, and to the empty set iff r < 0.

Definition 1 (smallest enclosing radius). P ⊆ Rd.

ρP := inf
closed ball b⊇P

rb .

In particular, ρ∅ = −∞; ρP = 0 iff #P = 1; and ρP > 0, otherwise.
We omit the proof for the geometric lemma below. The reader may wish to

read (2-4) as ‘axioms’ that are necessary for the later conclusions. In this way
the generality of the results becomes evident.

Lemma 1. P ⊆ Rd.

(1) There is a unique closed ball of radius ρP that contains P .

(2) If P ′ ⊆ P then ρP ′ ≤ ρP .

(3) Let P ′ ⊆ P . Then ρP ′ = ρP iff ρ(P ′ ∪ {p}) = ρP ′ for all p ∈ P \ P ′.

(4) If ρP ′ 6= ρP for all proper subsets P ′ of P , then #P ≤ d + 1.

While (1) and (4) require some geometric reasoning, (2) is immediate from the
definition of ρ, and (3) is immediate from (1) and (2). In order to properly
appreciate3 (3), note that it is possible4 for P ′ ⊆ P that ρP ′ 6= ρP while
ρP = ρ(P \ {p}) for all p ∈ P \ P ′.

Definition 2 (smallest enclosing ball, basis, basis of, extreme).
P ⊆ Rd.

(1) minBP denotes the ball of radius ρP covering P .

(2) P is called a basis if minBP ′ 6= minBP for all proper subsets P ′ of P .

(3) A basis B ⊆ P is called basis of P if minBB = minBP .

(4) A point p ∈ P is called extreme in P if minB(P \ {p}) 6= minBP .

As it can be easily seen, there is always a basis of P . But, in general, the basis of
a set P is not unique5. (Take, for example, the four vertices of a square. Observe
also, that this set has no extreme points at all.) Moreover, note that

minBP ′ = minBP ⇐⇒ ρP ′ = ρP , if P ′ ⊆ P .

3 Another exercise for appreciation is to define σP as the smallest volume of a simplex
containing P , and then to see how a statement analogous to Lemma 1(3) fails.

4 This can, however, be excluded by certain general position assumptions.
5 It is unique under appropriate general position assumptions.

Lemma 2. P ⊆ Rd.

(1) A point p ∈ P is extreme in P iff p is contained in every basis of P .

(2) The number of extreme elements in P is at most d + 1.

Proof. (1) Let p be an extreme point in P and let B be a basis of P which does
not contain p. Then ρB ≤ ρ(P \ {p}) < ρP = ρB; a contradiction.

On the other hand, if minBP = minB(P \ {p}) – that is, p is not extreme – then
any basis of P \ {p} is a basis of P that does not contain p.

(2) Follows from (1) and Lemma 1(4).

Basic (Primitive) Operations. Throughout the presentation we will measure
algorithms in terms of some basic operations. The fact that we do not elaborate
much on them does not imply that they are trivial to solve efficiently – definitely
not so, when it comes to actual implementations. Two such basic operations for
points in Rd are:

• (d, k)-Basis computation ‘basisd
k S’, for d, k ∈ N: Given a set S ⊆ Rd with

#S ≤ k, it returns a basis of S.
• Inclusion predicate ‘p 6∈ ©B ’: Given a basis B and a point p, it decides

whether p is not in minBB.

The algorithms to be described will deliver a basis B of the given point set P .
It is easy to determine minBB = minBP from a basis B of P : compute center
and radius of the unique ball in affB with B on its boundary6.

If basisdk were available for all k, then, of course, there is little to do. However,
we will assume that this operation is at disposal only for certain k’s dependent
on d, (k = d + 1 and k = 2(d + 1)). Again, we do not claim that these are easy
to solve – in fact, they are at the core of the problem, and no polynomial time
solutions are known.

What is an obvious bound for obtaining a basis of a set P of n ≥ d+1 points
in Rd? We can go through all (d + 1)-element subsets, apply basisd

d+1 to each
of them, and check the obtained basis against all remaining n − (d + 1) points
with inclusion tests. This requires

(
n

d+1

)
calls to basisdd+1 and

(
n

d+1

)
(n − d − 1)

inclusion tests. Instead of checking each basis against all remaining points, we
could simply search for a basis B that maximizes ρB among all bases. The reader
is encouraged to verify that this will indeed deliver a basis of P .

Trial and Error. In the spirit of the procedures in the previous section, and
equipped with the basic operation basisd

d+1 and the predicate p 6∈ ©B , we can
easily provide a first randomized procedure called TryAndTry for our problem.
It takes a set S ⊆ Rd and returns a basis of S. Correctness of the procedure is
obvious, provided it eventually terminates.

6 In time O(d3). Similarly, the inclusion tests can be implemented efficiently: If center
and radius of minBB have been precomputed, in time O(d); if not, in O(d3).

S ⊆ Rd.

Precondition:

None.

Postcondition:

B basis of S.

function TryAndTry(S)

if #S ≤ d + 1 then

B ← basis
d

d+1 S;

else

p←random S;

B ← TryAndTry(S \ {p});

if p 6∈©B then

B ← TryAndTry(S);

return B;

Fix d ∈ N and let t(n) denote the maximum7 expected number of ‘p 6∈©B ’-
tests performed by the algorithm for an n-point set in Rd. Then

TryAndTry-recursion, inclusion tests

t(n)

{
= 0, if n ≤ d + 1,
≤ t(n− 1) + 1 + d+1

n
· t(n), otherwise,

since there are at most d + 1 extreme points in S whose removal entails the
second recursive call. Division of the inequality by (n − 1)d+1 and carrying the
t(n)-term to the left side gives8

t(n)

nd+1
≤ t(n− 1)

(n− 1)d+1
+

1

(n− 1)d+1

≤ 1

(n− 1)d+1
+

1

(n− 2)d+1
+ · · ·+ 1

(d + 1)d+1
+

t(d + 1)

(d + 1)d+1

=
1

d

(
1

dd
− 1

(n− 1)d

)

=
1

(d + 1)!

(

1 +
1

d

)

− 1

d(n− 1)d

for n > d + 1. The recursion for the maximum expected number, b(n), of basis
computations is

TryAndTry-recursion, basisd

d+1-computations

b(n)

{
= 1, if n ≤ d + 1,
≤ b(n− 1) + d+1

n
· b(n), otherwise.

For n ≥ d + 1, this matches exactly the recursion
(

n

d + 1

)

=

{
1, if n = d + 1
(
n−1
d+1

)
+ d+1

n

(
n

d+1

)
, if n > d + 1,

7 By ‘maximum expected’ we mean the following: Let T (S) be the expected number
of tests for S ⊆ Rd, and t(n) := sup#S=n

T (S).
8 For the identity for sums of reciprocals of falling powers consult [11, page 53, equation

(2.53)].

for binomial coefficients.

Theorem 1. n ∈ N0; P ⊆ Rd, #P = n ≥ d + 1.

Procedure TryAndTry computes a basis of P with an expected number of at most

(
n

d + 1

)(

1 +
1

d

)

− n

d
inclusion-tests

and with an expected number of at most

(
n

d + 1

)

employments of basisdd+1-computations.

3 Boundary (Explicit) Enforcing

What is wrong with TryAndTry? Recall why we thought that TryAndTryMin from
the previous section was so ridiculous: It ignored the useful information that
a < min(A \ {a}) implies that a is already the minimum. Here things are not as
immediate, but we know that p 6∈ minB(P \ {p}) implies that p is in every basis
of P . Moreover, it can be shown that

p 6∈ minB(P \ {p}) =⇒ p lies on the boundary of minBP

We should transfer this useful information to the second recursive call, and we
will do so by explicitly forcing p on the boundary. If this extra information would
suffice to allow a linear time solution, then the whole procedure would be linear,
for reasons similar to the fact that function AlwaysCheckMin was linear.

Procedure Explicit (to be described shortly) computes the smallest enclosing
ball of a given set S, with a given subset E ⊆ S of points prescribed to lie on
the boundary of the ball. We have to lay the basics for description and analysis
first.

Definition 3 (prescribed boundary: smallest enclosing radius).
E ⊆ P ⊆ Rd.

ρ(P,E) := inf
closed ball b⊇P, ∂b⊇E

rb .

In particular, if there is no ball that covers P and has E on its boundary then
ρ(P,E) =∞.

Lemma 3. E ⊆ P ⊆ Rd.

(1) If ρ(P,E) 6=∞, there is a unique ball of radius ρ(P,E) that contains P and
has E on its boundary.

(2) If E′ ⊆ E and E′ ⊆ P ′ ⊆ P then ρ(P ′, E′) ≤ ρ(P,E).

(3) Let E′ ⊆ E and E′ ⊆ P ′ ⊆ P . Then ρ(P ′, E′) = ρ(P,E) iff

ρ(P ′ ∪ {p}, E′) = ρ(P ′, E′) for all p ∈ P \ P ′,

and

ρ(P ′, E′ ∪ {p}) = ρ(P ′, E′) for all p ∈ E \ E′.

(4) If ρ(P ′, E′) 6= ρ(P,E) < ∞ for all (P ′, E′) 6= (P,E) with E′ ⊆ E and
E′ ⊆ P ′ ⊆ P , then #P ′ ≤ d + 1.

Similar to Lemma 1, (2) is obvious from the definition, and (3) is an immediate
consequence of (1) and (2).

Definition 4 (prescribed boundary: smallest enclosing ball, extreme).
E ⊂ P ⊆ Rd.

(1) If ρ(P,E) <∞, minB(P,E) denotes the ball of radius ρ(P,E) that contains P
and has E on its boundary. If ρ(P,E) =∞, we set minB(P,E) = Rd (indicating
infeasibility).

(2) A point p ∈ P \ E is called extreme in (P,E) if minB(P \ {p}, E) 6=
minB(P,E).

Lemma 4. E ⊆ P ⊆ Rd.

(1) If p ∈ P \ E is extreme in (P,E), then

minB(P,E) = minB(P,E ∪ {p})
and

minB(P,E) = Rd or p is affinely independent from the points in E.

(2) If E is affinely independent and minB(P,E) 6= Rd, then the number of ex-
treme points in (P,E) is at most d + 1−#E.

It is instructive to display the implication of assertion (1) of the lemma in the
following form.

minB(P,E) =

{
minB(P \ {p}, E), if p ∈ minB(P \ {p}, E),
minB(P,E ∪ {p}), if p 6∈ minB(P \ {p}, E),

(1)

for all p ∈ P \ E.

We will also need a new predicate9

• (Boundary) inclusion predicate ‘p 6∈©©F ’: Given a set F of affinely indepen-
dent points and a point p, it decides whether p is not in minB(F, F).

Forcing Points on the Boundary. Here is the procedure Explicit that computes
the smallest enclosing ball of a set S of points, with a set E ⊆ S of points that
are prescribed to lie on the boundary of the ball.

9 The implementation of this predicate is in fact identical to that of the inclusion
predicate for bases: We compute the unique ball in affF that has F on its boundary.
Its center and radius are also center and radius of minB(F, F). Now the predicate
can be evaluated by a simple distance calculation.

E, S ⊆ Rd.

Precondition:

E ⊆ S; E affinely independent;
minB(S, E) 6= Rd.

Postcondition:

E ⊆ F ⊆ S; F affinely
independent;
minB(F, F) = minB(S, E).

function Explicit(S, E)

if S = E then

F ← E;

else

p←random S \ E;

F ← Explicit(S \ {p}, E);

if p 6∈©©F then

F ← Explicit(S, E ∪ {p});

return F ;

From the precondition and (1) it follows that the precondition is satisfied for
the recursive calls and that the function returns a set F ⊇ E of affinely inde-
pendent points with minB(F, F) = minB(S,E). Our original problem is solved
by the call Explicit(P, ∅) – the arguments obviously satisfy the precondition.

For k, n ∈ N0, tk(n) counts the maximum expected number of inclusion tests
when #(S\E) = n and d+1−#E = k. The parameter k expresses the degrees of
freedom10. Since there are at most k extreme points in S\E, we get the following
recursion. Note that k = 0 means that #E = d + 1. Hence, any other point is
affinely dependent on E, and so a recursive call with parameters (S,E ∪ {p})
would lead to a contradiction. Therefore, t0(n) = t0(n− 1) + 1 for n ∈ N.

Explicit-recursion, inclusion tests

tk(n)







= 0, if n = 0,
= t0(n− 1) + 1, if k = 0 and n > 0,
≤ tk(n− 1) + 1 + k

n
· tk−1(n− 1), if n ≥ 1 and k ≥ 1.

From t0(n) = n we get t1(n) ≤ 2n, and that yields t2(n) ≤ 5n, etc. Hence, we
might guess that there is a bound of the form tk(n) ≤ ckn for constants ck,
k ∈ N0. These constants satisfy

ck =

{
1, if k = 0,
1 + kck−1, if k ≥ 1.

Division by k! lets us rewrite this in the form

ck

k!
=

1

k!
+

ck−1

(k − 1)!
=

1

k!
+

1

(k − 1)!
+ · · ·+ 1

1!
+

c0

0!
,

and we conclude that

ck = k!

k∑

i=0

1

i!
=

{
1, if k = 0,
bek!c, if k ≥ 1.

10 And note: Less freedom is better!

The inequality tk(n) ≤ ckn for all k, n ∈ N0 is now easy to prove by induction.
Let us also estimate the maximum expected number bk(n) of assignments

‘F ← E;’ (when S = E). We call these the base cases11, and we obtain the
recursion

Explicit-recursion, base cases

bk(n)

{
= 1, if n = 0 or k = 0,
≤ bk(n− 1) + k

n
· bk−1(n− 1), if n ≥ 1 and k ≥ 1.

We multiply both sides by n!
k! to obtain

Bk+1(n+1):=
︷ ︸︸ ︷

n! bk(n)

k!
≤ n · (n− 1)! bk(n− 1)

k!
︸ ︷︷ ︸

=Bk+1(n)

+
(n− 1)! bk−1(n− 1)

(k − 1)!
︸ ︷︷ ︸

=Bk(n)

which reminds us of the recursion for the cycle numbers. In fact, we also have

B1(n + 1) = n! =
[

n+1
1

]
for n ∈ N0, but for k ∈ N, Bk+1(1) = 1

k! 6=
[

1
k+1

]

= 0.

It can be shown that if ‘≤’ is replaced by ‘=’ then the solution to the recur-
rence for bk(n) equals

1

n!

k∑

i=0

(
k

i

)

i!

[
n + 1

i + 1

]

≤ 1

n!

k∑

i=0

(
k

i

)

i!

(
n!

i!
(Hn)i

)

see Appendix, Lemma 10

=

k∑

i=0

(
k

i

)

(Hn)i = (1 + Hn)k

Unless n is small compared to d, the number of base cases is much smaller than
the number of inclusion tests, so precomputation pays off.

Theorem 2. n ∈ N0; P ⊆ Rd, #P = n.

A call Explicit(P, ∅) computes a subset F of P with minB(F, F) = minBP with
an expected number of at most

be(d + 1)!cn inclusion tests

and an expected number of at most

1

n!

d+1∑

i=0

(
d + 1

i

)
1

i!

[
n + 1

i + 1

]

≤ (1 + Hn)d+1 base cases.

11 If you think about an actual implementation, then this is a relevant quantity, since
it is (perhaps) advisable to precompute center and radius of minB(F, F) in O(d3),
and return F with this information, so that further inclusion tests can be performed
more efficiently in O(d).

To Force or not to Force. After choosing point p, procedure Explicit has two
options, either (i) to omit the point p from consideration, or (ii) to assume that
p is extreme and to force it on the boundary. And it decides to bet on (i) first,
and look at (ii) only if (i) failed. This is a reasonable thing to do, since – most
likely – a random point will not be extreme. But this is not true if the number
of points is small compared to the dimension (or, more precisely, if the number
of points available in S \ E is small compared to the number d + 1 − #E of
empty slots available). Actually, as you think about it, the recursion for tk(n)
becomes somewhat strange when n < k: We account a ‘probability’ larger than
1 for proceeding to the second call (the recursion is still correct, but obviously
not tight in that case).

So we design a new procedure ForceOrNot12 which will perform favorably for
n small compared to k. This procedure chooses an arbitrary point p in S \ E,
and then tosses a coin to decide whether option (i) or (ii) as described above is
pursued.

E, S ⊆ Rd.

Precondition:

E ⊆ S;
S affinely independent.

Postcondition:

E ⊆ F ⊆ S;
minB(F, F) = minB(S, E).

function ForceOrNot(S, E)

if S = E then

F ← E;

else

p←some S \ E;

x←random {0, 1};

if x = 1 then

F ← ForceOrNot(S \ {p}, E);

if p 6∈©©F then

F ← ForceOrNot(S, E ∪ {p});

else

F ← ForceOrNot(S, E ∪ {p});

if p loose in F then

F ← ForceOrNot(S \ {p}, E);

return F ;

New features appear. First, if we force some point on the boundary we have
no guarantee that a ball with the prescribed properties exists. We circumvent
this problem by requiring that the points in S are affinely independent. Hence,
there exists a ball with S on its boundary and so minB(S ′, E′) 6= Rd for all
E′ ⊆ S′ ⊆ S. This implies that #S ≤ d + 1, which is not so much of a problem,
since we wanted a procedure for small sets to begin with. Moreover, we make

12 ‘s←some S;’ assigns to s an arbitrary element in S.

the following

General Position Assumption. (2)

For all ∅ 6= F ⊆ S, no point in S \ F lies on the boundary of minB(F, F).

Both assumptions, affine independence and general position, can be attained
via symbolic perturbation techniques as long as the number of points does not
exceed13 d + 1.

Second, how do we know now that a call ForceOrNot(S,E ∪{p}) delivers the
smallest ball enclosing S and with E on its boundary? We were not concerned
about that before in procedure Explicit, since there we made such a call only if
we knew that p has to lie on the boundary of such a ball.

Definition 5 (loose). F ⊆ Rd.

A point p ∈ F is called loose in F if minB(F, F \ {p}) 6= minB(F, F).

The following lemma show that we can check minB(F, F) = minB(P,E) by local
inclusion and looseness tests.

Lemma 5. E ⊆ F ⊆ P ⊆ Rd, P affinely independent and in general position
according to (2).

minB(F, F) = minB(P,E) iff

minB(F ∪ {p}, F) = minB(F, F) for all p ∈ P \ F

and
minB(F, F \ {p}) = minB(F, F) for all p ∈ F \ E.

We also need the corresponding predicate14

• Looseness predicate ‘p loose in F ’: Given a set F of affinely independent
points and a point p, it decides whether p is loose in F .

Now that the correctness of the procedure is established, let us consider effi-
ciency. For a point p in S \ E we have that minB(S,E) = minB(S,E ∪ {p}) or
minB(S,E) = minB(S \ {p}, E). Our general position assumption excludes that
both are true. Hence, if we toss a coin to guess which one is true, then we are
mistaken with probability 1

2 .
We let t(n) denote the maximum expected number of inclusion and looseness

tests when #(S \ E) = n. We have

ForceOrNot-recursion, inclusion and looseness tests

t(n) =

{
0, if n = 0,
t(n− 1) + 1 + 1

2 · t(n− 1), otherwise.

13 And if the number n of points exceeds d + 1, then embed Rd in Rn−1, and perturb!
14 An implementation of this predicate has to decide whether p is in minB(F \ {p}, F \
{p}), and, if so, whether the radius of this ball is smaller than that of minB(F, F).
All of this can be done in time O(d3).

That is,

t(n) = 1 +
3

2
· t(n− 1) = 1 +

3

2
+

(
3

2

)2

+ · · ·+
(

3

2

)n−1

+

(
3

2

)n

t(0)

and so t(n) = 2
((

3
2

)n − 1
)
. For example, t(10) ≈ 113, t(20) ≈ 6,684, t(30) ≈

383,500, and t(40) ≈ 22,114,662. Here is the recursion for the number of base
cases.

ForceOrNot-recursion, base cases

b(n) =

{
1, if n = 0,
b(n− 1) + 1

2 · b(n− 1), otherwise,

which solves to
(

3
2

)n
. We learnt that on the average roughly two inclusion tests

are performed for each F appearing in the procedure.

Theorem 3. n ∈ N0; P ⊆ Rd, #P = n, P affinely independent and in general
position according to (2).

A call ForceOrNot(P, ∅) computes a subset F of P with minB(F, F) = minBP
with an expected number of

2

((
3

2

)n

− 1

)

inclusion and looseness tests

and an expected number of

(
3

2

)n

base cases.

4 Implicit Enforcing

Throughout this section we will use δ short for d + 1.
The procedure of the section, Implicit, has a very similar look and feel as

Explicit and TryAndTry. Besides the set S under consideration, it has as second
argument some basis B ⊆ S (not necessarily a basis of S), which has no influence
on the postcondition. However, it carries the essential information responsible
for the efficiency of the algorithm.

A new basic operation is required15

• Pivot step ‘pivot(B, p)’: Given a basis B and a point p 6∈ minBB, it returns
a basis B′ ⊆ B ∪ {p} with ρB′ > ρB.

Correctness of the procedure is obvious, provided it terminates. The fact that
the procedure always terminates follows from the fact, that in the first recursive
call the size of the first argument decreases by 1, while in the second call we know

15 It allows an O(d3) implementation, although that needs some thinking, cf. [8, 7].

B, S ⊆ Rd.

Precondition:

B ⊆ S; B basis.

Postcondition:

C basis of S.

function Implicit(S, B)

if #S ≤ 2δ then

C ← basis
d

2δ S;

else

p←random S \B;

C ← Implicit(S \ {p}, B);

if p 6∈©C then

C ← Implicit(S, pivot(C, p));

return C;

that ρpivot(C, p) > ρB, and there are only a finite number of radii attained by
bases.

As we will see, the efficiency of Implicit stems from the fact that the second
argument, the basis B, implicitly enforces some of the extreme points by exclud-
ing them as possible random choices for p in this and all recursive calls entailed
by the call with (S,B). In fact, we will see that in the second call (if it happens
at all) the number of ‘available’ (i.e. not enforced) extreme points roughly halves
on the average. Here are the crucial notions.

Definition 6 (enforced, hidden dimension). B ⊆ P ⊆ Rd, and B basis.

(1) A point p ∈ P is called enforced in (P,B), if p is contained in all bases
C ⊆ P with ρC ≥ ρB.

(2) The hidden dimension hdim(P,B) of (P,B) is δ − i where i is the number
of enforced elements in (P,B).

In particular, if p is enforced in (P,B), then p ∈ B.
Next we list a number of simple facts. The reader should confirm their ob-

viousness for her- or himself, so that we have them handy in the proof of the
recursion for the number of basis computations.

Lemma 6. B ⊆ P ⊆ Rd, and B basis.

(1) A point p ∈ P is enforced in (P,B) iff ρ(P \ {p}) < ρB.

(2) Every enforced element in (P,B) is extreme in P . There are at most δ
enforced elements in (P,B) and hdim(P,B) ≥ 0.

(3) If hdim(P,B) = 0, then B is a basis of P .

(4) If B ⊆ P ′ ⊆ P , then every enforced element in (P,B) is also enforced in
(P ′, B) and hdim(P ′, B) ≤ hdim(P,B).

(5) If B′ ⊆ P is a basis with ρB′ ≥ ρB then every enforced element in (P,B) is
also enforced in (P,B′) and hdim(P,B′) ≤ hdim(P,B).

Proof. (1) (⇒) If ρ(P \ {p}) ≥ ρB, then any basis C of P \ {p} is a basis with
ρC ≥ ρB and p 6∈ C, and so p is not enforced.

(⇐) If ρ(P \ {p}) < ρB and C is any basis that does not include p then ρC ≤
ρ(P \ {p}). Hence, ρC < ρB. Therefore, ρC ≥ ρB implies p ∈ C.

(2-5) are immediate consequences of (1).

For k, n ∈ N0, let tk(n), and bk(n) denote the maximum expected number of
inclusion tests, and basisd2δ -computations, respectively, for a call Implicit(S,B)
with #S = n and hdim(S,B) ≤ k. The number of pivot steps is always one
less than the number of basis computations. This follows easily from a proof by
induction over recursive calls.

We claim the following recursions (to be proven below).

Implicit-recursion, inclusion tests

tk(n)

{
= 0, if n ≤ 2δ,

≤ tk(n− 1) + 1 + 1
n−δ
·∑k−1

i=0 ti(n) otherwise.

In particular, t0(n) = n − 2δ. A proof by induction verifies tk(m + 2δ) ≤ 2km
for k,m ∈ N0. However, we will see that for m small, a better bound in terms of
k can be derived.

Implicit-recursion, basisd

2δ -computations

bk(n)

{
= 1, if n ≤ 2δ,

≤ bk(n− 1) + 1
n−δ
·∑k−1

i=0 bi(n) otherwise.
(3)

In particular, b0(n) = 1.

Proof of recursion (3) (number of basis computations). Clearly, bk(n) = 1 for
n ≤ 2δ. Let B ⊆ S ⊆ Rd, #S = n > 2δ, B a basis, hdim(S,B) ≤ k ∈ N0.

(i) The first recursive call solves a problem of size n − 1 and hidden dimension
at most k.

(ii) There are at most k elements in S \B which trigger a second recursive call:
They all have to be extreme elements; there are at most δ extreme elements,
and at least δ − k of them are enforced in (S,B) (and thus included in B).

Let us denote these elements by p1, p2, . . . , pr, r ≤ k, enumerated in a way
that

ρ(S \ {p1}) ≤ ρ(S \ {p2}) ≤ · · · ≤ ρ(S \ {pr}) .

If p = p` is chosen for the first recursive call (which happens with probability
1

#(S\B) ≤ 1
n−δ

), then we receive C, a basis of S \ {p`}. But then,

ρ(S \ {p1}) ≤ ρ(S \ {p2}) ≤ · · · ≤ ρ(S \ {p`}) = ρC < ρ(pivot(C, p)) .

It follows that p1, p2, . . . , p` are enforced in (S, pivot(C, p)), in addition to the
previously enforced elements. That is, the hidden dimension of (S, pivot(C, p)) is
at most k − `.

Summing up, the expected number of basis computations entailed by the
second recursive call is bounded by

1

n− δ
·

r∑

`=1

bk−`(n) ≤ 1

n− δ
·

k−1∑

i=0

bi(n) .

For the analysis of bk(n) we employ a function N2
0 → R defined by

Ck(m) =







1, if k = 0,
0, if k > 0 and m = 0,

Ck(m− 1) + 1
m
·∑k−1

i=0 Ci(m− 1), otherwise.

This function will allow us an estimate for the expected number of basis com-
putations via the following two steps.

Lemma 7. k, n ∈ N0; n ≥ 2δ.

bk(n) ≤ Ck(n− 2δ + k).

Lemma 8.

Ck(m) =
1

m!

m∑

i=0

(
k − 1

i− 1

)[
m + 1

i + 1

]

≤ e2
√

kHm , for k,m ∈ N0.

Here we adopt the convention that, for j ∈ N,
(
j−1
−1

)
= 0 and

(−1
−1

)
= 1.

Proof by induction of Lemma 7. For k = 0,

b0(n) = 1 ≤ C0(n− 2δ)

holds as required, since C0(n− 2δ) = 1.

For k ≥ 1 and n = 2δ, the assertion claims

bk(2δ) = 1 ≤ Ck(k) ,

which holds since Ck(k) ≥ Ck(k − 1) ≥ · · · ≥ Ck(1) = Ck(0) + C0(0) = 1.

For n > 2δ, k > 0

bk(n) ≤ bk(n− 1) +
1

n− δ

k−1∑

i=0

bi(n)

≤ Ck(n− 1− 2δ + k) +
1

n− δ

k−1∑

i=0

Ci(n− 2δ + i)

≤ Ck(n− 2δ + k − 1) +
1

n− 2δ + k

k−1∑

i=0

Ci(n− 2δ + k − 1)

= Ck(n− 2δ + k) .

We have used induction, the inequality 1
n−δ
≤ 1

n−2δ+k
(since k ≤ δ), and mono-

tonicity of Ci(·): Ci(`) ≤ Ci(` + 1).

Combinatorial Interpretation of Ck(m). It turns out that Ck(m) has a combina-
torial interpretation, leading to the closed form in Lemma 8. For n ∈ N, k ∈ N0,

we consider the set of permutations Sn, and we define the set S(k)
n of k-decorated

permutations. A k-decorated permutation is a pair (π, (j1, j2, . . . , jh−1)), where
π ∈ Sn, h is the number of cycles of π, and j1, j2, . . . , jh−1 are positive integers
summing up to k.

Assume some canonical ordering16 of the cycles of a permutation in Sn,
where the last cycle is the one containing n. Then we can view a k-decorated

permutation in S(k)
n as a permutation whose ith cycle is labeled by a positive

integer ji, except for the last one, which gets 0, and the sum of all the labels is
k. Here comes the combinatorial interpretation.

Lemma 9.
m!Ck(m) = #S(k)

m+1 , for k,m ∈ N0.

Proof. We argue that ck(m) := #S(k)
m+1 satisfies the same recurrence relation as

m!Ck(m).
c0(m) = m! = m!C0(m) , for m ∈ N0,

because we can 0-decorate a permutation in Sm+1 only if there is exactly one
cycle; there are m! such permutations in Sm+1.

ck(0) = 0 = 0!Ck(0) , for k ∈ N,

because the unique permutation in S1 has one cycle, and therefore cannot be
k-decorated with positive k.

For m, k ∈ N, we split S(k)
m+1 into two sets. The first set contains the k-

decorated permutations with m + 1 appearing in a cycle of its own. For each

i-decorated permutation in S(i)
m , i = 0, 1, . . . , k − 1, there is exactly one cor-

responding k-decorated permutation in Sm+1 with m + 1 appearing in a cycle
(labeled 0) of its own, and the cycle containing m labeled k − i. Consequently,
the first set contains

k−1∑

i=0

ci(m− 1) (4)

k-decorated permutations.
The second set contains the k-decorated permutations where m + 1 appears

in some nontrivial cycle. There are m ways to integrate m+1 into existing cycles

of some permutation in S(k)
m . We let the cycles containing m and m + 1, resp.

switch their labels (unless m and m + 1 appear in the same cycle). Hence, this
second set has size

m · ck(m− 1) . (5)

Combining (4) and (5) we obtain

ck(m) = m · ck(m− 1) +
k−1∑

i=0

ci(m− 1) ,

16 For example, order the cycles in increasing order according to their largest element.

the recurrence relation for m!Ck(m).

i ∈ N0. A permutation with i+1 cycles gives rise to exactly
(
k−1
i−1

)
k-decorated

permutations, since k can be written in that number of ways as an ordered sum
of i positive integers17. Thus,

Ck(m) =
1

m!

m∑

i=0

(
k − 1

i− 1

)[
m + 1

i + 1

]

, for k,m ∈ N0,

and the identity in Lemma 8 is proven.

An Upper Bound for Ck(m). For the upper estimate we start using Lemma 10.

Ck(m) =
1

m!

k∑

i=0

(
k − 1

i− 1

)[
m + 1

i + 1

]

≤ 1

m!

k∑

i=0

(
k − 1

i− 1

)
m!

i!
(Hm)i

=

k∑

i=0

(
k − 1

i− 1

)
(Hm)i

i!
≤

k∑

i=0

(
k

i

)
(Hm)i

i!

≤
k∑

i=0

(kHm)i

(i!)2
since

(
k

i

)
≤ ki/i!

=

k∑

i=0

(
(
√

kHm)i

i!

)2

≤
(∞∑

i=0

(
√

kHm)i

i!

)2

= e2
√

kHm .

This establishes the upper bound claimed in Lemma 8.

Theorem 4. n ∈ N; P ⊆ Rd, #P = n ≥ 2(d + 1).

A call Implicit(P, ∅) computes a basis of P with an expected number of at most

e2
√

(d+1)Hn−d−1 basisd2(d+1)-computations (pivot steps, resp.)

and an expected number of at most

(n− 2(d + 1)) min{e2
√

(d+1)Hn−d−1 , 2d+1} inclusion tests.

The bound for inclusion tests follows directly from the fact that no basis is
involved in more than n−2(d+1) inclusion tests, and the simple bound concluded
right after setting up the recursion for tk(n).

17 Note that, indeed, 0 can be written in 1 =
(
−1

−1

)
ways as the sum of 0 positive

integers.

5 Bibliographical Remarks and Discussion

We have already indicated (and the reader might have suspected) that the meth-
ods described in this tutorial apply to problems beyond smallest enclosing balls.
In fact, there is a host of other problems for which we have a ‘Lemma 1’, the
most prominent one being linear programming.

In the general framework of LP-type problems (which is actually motivated
by the linear programming case), we rank subsets of some ground set P by an
objective function w : 2P → R (wP = ρP in case of smallest enclosing balls),
and we simply require (P,w) to satisfy the conditions of Lemma 1 (2)–(4).

Definition 7. P a finite set, w : 2P 7→ R, δ ∈ N0; (P,w) is an LP-type problem
of combinatorial dimension at most δ if the following three axioms are satisfied.
(1) If P ′ ⊆ P then wP ′ ≤ wP .

(2) Let P ′ ⊆ P . Then wP ′ = wP iff w(P ′ ∪ {p}) = wP ′ for all p ∈ P \ P ′.

(3) If wP ′ 6= wP for all proper subsets P ′ of P , then #P ≤ δ.

There are other abstractions of linear programming along these lines. Kalai has
introduced so-called abstract objective functions, which are special LP-type prob-
lems [12]. There is also the framework of abstract optimization problems which
is still more general than that of LP-type problems [8].

By Lemma 1, the smallest enclosing ball problem gives rise to an LP-type
problem. In linear programming, P is a set of inequality constraints (halfspaces in
Rd), and wP is defined as the lexicographically smallest point in the intersection
of all halfspaces in P , where w-values are to be compared lexicographically [14].

Another interesting (nonlinear) LP-type problem is obtained from a set of
points in Rd, by letting wP be the negative length of the shortest vector in convP
[14, 8]. Many more geometric optimization problems fit into the framework [9].

The significance of the abstract framework stems from the fact that the
algorithm Implicit we have described above for smallest enclosing balls actually
works (with the same analysis) for arbitrary LP-type problems, provided the
problem-specific primitives are supplied:

• violation test : ‘w(C ∪ {p}) > w(C)?’, and
• pivot step: ‘pivot(B, p)’: Given a basis B and an element p with w(B ∪ {p}) >

w(B), it returns a basis B′ ⊆ B ∪ {p} with wB′ > wB.

In addition, the call to basisd2δ S needs to be replaced by some method for finding
a basis of a set with at most 2δ elements. Even if this is done by brute force,
Implicit is an expected O(n) algorithm for solving an LP-type problem of con-
stant combinatorial dimension over an n-element ground set. This is remarkable,
because even for concrete LP-type problems like linear programming, linear-time
algorithms have only been found in the eighties. Most notably, Megiddo pub-
lished the first (deterministic) O(n) algorithm for linear programming in fixed

dimension in 1984 [15], with a 22d

dependence on the dimension d. A general-
ization of the O(n) bound to certain convex programming problems, including
the smallest enclosing ball problem, is due to Dyer [4].

By using randomization, simple O(n) algorithms for linear programming have
then been found by Clarkson [2] and Seidel [17]. Subsequent developments mainly
consisted of attempts to reduce the dependence of the runtime on the dimension
d. For linear programming, the first subexponential bounds have independently
been found by Kalai [13] as well as Matoušek, Sharir and Welzl[14]. The notion
of k-decorated permutations we have used in the analysis of the subexponential
algorithm Implicit is also due to Kalai [12].

Combining these algorithms with the ones by Clarkson, one obtains the
fastest known combinatorial algorithm for linear programming, of runtime (i.e.
number of arithmetic operations)

O(d2n) + exp(O(
√

d log d)),

see [9]. The currently best deterministic bound is O(dO(d)n) [1].

As far as other LP-type problems (in particular the smallest enclosing ball
problem) are concerned, the situation is similar, although there are additional
technical obstacles.

Exactly these obstacles made us formulate the procedure Implicit(S,B) in
such a way that the recursion bottoms out when #S ≤ 2δ. The reader might
have noticed that as long as there are elements in S \ B, we could continue
with the recursive call Implicit(S \ {p}, B), for p randomly chosen in S \ B. In
fact, we can, but then a subexponential bound for the expected number of basis
computations does no longer hold. For linear programming, it still works out:
because every basis has size d in the above formulation of the problem, the
recursion bottoms out when #S = d, in which case the basis computation is
trivial; this ‘saves’ the subexponential bound, and the algorithm described in
[14] is actually this variant of the algorithm Implicit.

In the general case, a problem of size δ is not necessarily trivial, on the
contrary: in case of smallest enclosing balls, we have made quite some effort to
solve a problem involving δ = d+1 points with an expected number of O((3/2)d)
steps.

The subexponential bound can be saved in general, though, because there is
an algorithm to solve an LP-type problem over O(δ) elements with an expected
number of exp(O(

√
δ)) primitive operations [8]. This algorithm is more com-

plicated than the ones discussed here, but it lets us obtain essentially the same
bounds for arbitrary LP-type problems as we have them for linear programming.

The procedures Explicit as well as ForceOrNot are interesting in the sense that
they do not work for general LP-type problems. Explicit has first been described
in [19], and it is actually modeled after Seidel’s linear programming algorithm
[17]. In order for these algorithms to work, we need a notion of explicitly ‘forcing’
elements on the ‘boundary’. Such a notion does not exist for general LP-type
problems. However, the framework can be specialized to include problems for
which this forcing makes sense, in which case the algorithms (that can then be
interpreted as primal-dual methods) apply [10].

References

1. Bernard Chazelle, Jǐŕı Matoušek: On linear-time deterministic algorithms for op-
timization problems in fixed dimensions, J. Algorithms 21 (1996), 579–597.

2. Kenneth L. Clarkson: A Las Vegas algorithm for linear and integer programming
when the dimension is small, J. Assoc. Comput. Mach. 42(2) (1995), 488–499.

3. Martin E. Dyer: Linear algorithms for two and three-variable linear programs,
SIAM J. Comput. 13 (1984), 31–45.

4. Martin E. Dyer: On a multidimensional search technique and its application to the
Euclidean one-center problem, SIAM J. Comput. 15 (1986), 725–738.

5. Jürgen Eckhoff: Helly, Radon, and Carathéodory Type Theorems, in Handbook of

Convex Geometry (P.M.Gruber, J.M.Wills, eds.), Vol. A (1993), 389-448, North
Holland.

6. Bernd Gärtner, Michael Hoffmann, Sven Schönherr, Geometric Optimization, Ref-
erence Manual of the Computational Geometry Algorithms Library (CGAL), Re-
lease 2.2 (www.cgal.org)

7. Bernd Gärtner, Sven Schönherr, An efficient, exact, and generic quadratic pro-
gramming solver for geometric optimization, Proc. 16th Ann. ACM Symp. Com-
putational Geometry (2000), 110–118.

8. Bernd Gärtner: A subexponential algorithm for abstract optimization problems,
SIAM J. Comput. 24 (1995), 1018–1035.

9. Bernd Gärtner, Emo Welzl: Linear Programming – Randomization and abstract
frameworks, Proc. 13th Ann. ACM Symp. Theoretical Aspects of Computer Sci-
ence (1996), 669–687.

10. Bernd Gärtner, Emo Welzl: LP-type problems of the second kind for primal/dual
methods, manuscript, in preparation (2001).

11. Ronald L. Graham, Donald E. Knuth, Oren Patashnik: Concrete Mathematics; A

Foundation for Computer Science, Addison-Wesley (1989).
12. Gil Kalai: Linear programming, the simplex algorithm and simple polytopes, Math.

Programming 79 (1997), 217–233.
13. Gil Kalai: A subexponential randomized simplex algorithm, Proc. 24th Ann. ACM

Symp. Theory of Computing (1992), 475–482.
14. Jǐŕı Matoušek, Micha Sharir, Emo Welzl: A subexponential bound for linear pro-

gramming, Algorithmica 16 (1996), 498–516.
15. Nimrod Megiddo: Linear programming in linear time when the dimension is fixed,

J. Assoc. Comput. Mach. 31 (1984), 114–127.
16. Rajeev Motwani, Prabhakar Raghavan: Randomized Algorithms, Cambridge Uni-

versity Press (1995).
17. Raimund Seidel: Small-dimensional linear programming and convex hulls made

easy, Discrete Comput. Geom. 6 (1991), 423–434.
18. James Joseph Sylvester: A question in the geometry of situation, Quart. J. Math.

1 (1857), 79.
19. Emo Welzl: Smallest enclosing disks (balls and ellipsoids), in “New Results and

New Trends in Computer Science”, (H. Maurer, ed.), Lecture Notes in Computer
Science 555 (1991), 359–370.

A An Estimate for Cycle Numbers

Lemma 10. i, n ∈ N0; i ≤ n.

[
n + 1

i + 1

]

≤ n!

i!
(Hn)i .

Proof by induction.
i = 0: [

n + 1

1

]

= n! =
n!

0!
(Hn)0 .

i = n: [
n + 1

n + 1

]

= 1 ≤ n!

n!
(Hn)n .

0 < i < n:
[
n + 1

i + 1

]

= n

[
n

i + 1

]

+
[n

i

]

≤ n
(n− 1)!

i!
(Hn−1)

i +
(n− 1)!

(i− 1)!
(Hn−1)

i−1

=
n!

i!

(

(Hn−1)
i + i

1

n
(Hn−1)

i−1

)

≤ n!

i!

(

Hn−1 +
1

n

)i

=
n!

i!
(Hn)

i
,

where we employed the Binomial Theorem.

