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9.4 SZEMEREDI'S REGULARITY LEMMA

In this section we describe a fundamental result, Begularity Lemmaproved by
Endre Szemé&di in the 70s. The original motivation for proving it has besn
application in Combinatorial Number Theory, leading, tibge with several addi-
tional deep ideas, to a complete solution of thedsrduian conjecture discussed
in Appendix B.2: every set of integers of positive upper dgnsontains arbitrar-
ily long arithmetic progressions. It took some time to realthat the lemma is an
extremely powerful tool in Extremal Graph Theory, Combarats and Theoretical
Computer Science. Stated informally, the regularity lenasserts that the vertices
of everylarge graph can be decomposed into a finite number of parthasdhe
edges between almost every pair of parts form a random+gaigiaph. The power
of the lemma is in the fact it deals with an arbitrary graphkimg no assumptions,
and yet it supplies much useful information about its stitest A detailed survey of
the lemma and some of its many variants and fascinating qoesees can be found
in Komlés and Simonovits (1996).

Let G = (V,E) be a graph. For two disjoint nonempty subsets of vertices
A,B C V,lete(A, B) denote the number of edges@fwith one end in4 and one

in B, and letd(A, B) = ﬁf{l‘l’g‘) denote thedensityof the pair(A4, B). For a real
e > 0, apair(4, B) as above is calleg-regularif for every X C A andY C B that
satisfy| X | > ¢|A|, |Y| > ¢|B| the inequality|d(A, B) — d(X,Y)| < ¢ holds. It

is not difficult to see that for every fixed positizep, a fixed pair of two sufficiently
large disjoint subsetd and B of a random grapli = G(n, p) are very likely to

be e-regular of density roughly. (This is stated in one of the exercises at the end
of the chapter.) Conversely, arregular pairA, B with a sufficiently small positive

¢ is random-looking in the sense that it shares many progestésfied by random

(bipartite) graphs.
A partitionV =V, UV U --- UV, of V into pairwise disjoint sets in whichj
is called theexceptional seis anequipartitionif |V1| = |Va| = -+ = |Vi|. We view

the exceptional set 4%} | distinct parts, each consisting of a single vertex. For two
partitions? andP’ as aboveP’ is arefinemenbf P, if every part inP is a union

of some of the parts gP’. By the last comment on the exceptional set this means,
in particular, that ifP’ is obtained fronP by shifting vertices from the other sets in
the partition to the exceptional set, thhis a refinement oP. An equipartition is
callede-regularif |Vy| < ¢|V| and all pairg(V;, V;) with 1 < i < j < k, except at
mostek? of them, ares-regular.

Theorem 9.4.1 (The Regularity Lemma of Szemedi (1978)) For everye > 0
and every integet there exists an intege€f’ = T'(e,t) so that every graph with
at leastT vertices has am-regular partition (Vg, V4,..., V%), wheret < k < T.

The basic idea in the proof is simple. Start with an arbitzastition of the set of
vertices intot disjoint classes of equal sizes (with a few vertices in theepkional
set, if needed, to ensure divisibility By. Proceed by showing that as long as the
existing partition is not-regular, it can be refined in a way that increases the weidghte
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average of the square of the density between a pair of cla$sbse partition by at
least a constant depending only @nAs this average cannot excegdthe process
has to terminate after a bounded number of refinement stépse B each step we
control the growth in the number of parts as well as the nunalb@xtra vertices
thrown to the exceptional set, the desired result followlse precise details require
some care, and are given in what follows.

Let G = (V,E) be a graph ofV| = n vertices. For two disjoint subsets
U,W c V, defineq(U, W) = WXL 27, w). For partitiong/ of U andW of W/,
define

quwW) = > qU, W),
U'eU,W'ew

Finally, for a partitioriP of V', with an exceptional séfy, defineg(P) = > ¢(U, W),
where the sum ranges over all unordered pairs of distints pa#l in the partition,
with each vertex of the exceptional s&f forming a singleton part in its own.
Thereforeg(P) is a sum of(“*1"?!) terms of the formy(U, W). The quantityy(P)
is called thendexof the partitionP. Sinced?(U, W) < 1 for all U, W, and since the
sumy_ |U||W| over all unordered pairs of distinct paffsW is at most the number
of unordered pairs of vertices, it follows that the index 0§ partition is smaller than
1/2.

Lemma 9.4.2

(i) Let U, W be disjoint nonempty subsetsof letZ{ be a partition ofU and WV a
partition of IW. Theng(U, W) > q(U, W).

(i) If P’ andP are partitions of’ and P’ is a refinement oP, thenq(P’) > q(P).
(iii) Suppose:z > 0, and supposé/, W are disjoint nonempty subsets¥éfand the
pair (U, W) is note-regular. Then there are partitions = {U;,Us} of U and

W = {Wy, Wy} of W so thatg(U, W) > q(U, W) + * 12171,

Proof.

(i) Define a random variabl& as follows. Letu be a uniformly chosen random
element ofU, and letw be a uniformly chosen random elementi&t LetU’ € U
andW’ € W be those members of the partition so that U’, w € W’. Then

Z =dU',w’).
The expectation of is
W] [U'|[W'|e(U", W)
U, w') = =d(U,W).
U,Eu%,ew \Ul|w| U,GM%:V,GW \u|w| | |w]

By Jensen’s InequalityE [Z?] > (E [Z])?, and the desired result follows, as
E [22] = miga, W) and (B [2])* = d*(U, W) = ghapra(U, W).
(i) This is an immediate consequence of (i).

(ii) Since the pair(U, W) is note-regular, there are subsetsy c U, W; c W
so that|U;| > ¢|U|, [Wh] > ¢|W| and|d(Uy, W1) — d(U,W)| > e. PutUs; =
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U — Uy, Wy =W — W; and define the partitiorig = {Uy, U}, W = {W7, Wa}.
Let Z be the random variable defined in the proof of part (i). Thersteown in that
proof

TL2

- W(q(u,vv) —q(U,W)).

VarlZ] = E [2°] — (E[2])?

However, ast [Z] = d(U, W) it follows that with probability‘ﬁ}”%', Z deviates
from E [Z] by more thare, implying that

[U[WA o 4

Var(Z) > ———¢c“ > ¢
uliw|

This provides the desired result. |

Proposition 9.4.3 Suppos® < ¢ < 1/4, letP = {V,, V4,..., Vi } be an equiparti-
tion of V whereVj is the exceptional sefly| < en, and|V;| = cforall 1 <i < k.

If P is note-regular then there exists a refinemeépt = {V{, V{,...,V/} of P, in
whichk < ¢ < k4%, |V{] < Vo] + 4 all other setsV; are of the same size, and

g(P") > q(P) + 5.

Proof. For every pairl < i < j < k define a partitionV;; of V; andV;; of V;
as follows. If the pair(V;, V;) is e-regular, then the two partitions are trivial. Else,
each partition consists of two parts, chosen according torha 9.4.2, part (iii). For
eachl < i < k, letV; be the partition ofi; obtained by the Venn Diagram of all
(k — 1)-partitionsV;;. Thus eachV; has at mose*~! parts. LetQ be the partition
of V' consisting of all parts of the partition together with the original exceptional
setVy. By Lemma 9.4.2 parts (ii), (iii), and sincB is note-regular, we conclude
that the index ofQ satisfies

ke 2 5

EF > ap)+ 5,

where here we used the fact that > (1 — ¢)n > 3n/4. Note thatQ has at most
k2k=1 parts (besides the exceptional set), but those are notsadg®f equal sizes.
Defineb = |c/4% | and split every part o arbitrarily into disjoint sets of sizé,
throwing the remaining vertices in each part, if any, to tReeptional set. This
process creates a partitid with at mostk4* non-exceptional parts of equal size,
and a new exceptional s} of size smaller thahVp| + k25=1b < |Vo| + ke/2F <
Vol + 9. Moreover, by Lemma 9.4.2, part (i), the indgxP’) of P’ is at least

q(Q) > q(P) + %5 completing the proof. [ |

2
a(Q) > q(P) + ek’ =5 = g(P) + &7

Proof of Theorem 9.4.1.It suffices to prove the lemma fer< 1/4 andt satisfying
2072 > E% hence we assume that these inequalities hold.s &‘t{fﬂ and note
that for this choice21T < 5. forall k > t. Defineky =t andk; 1 = k; 4% for all

1 > 0. We prove the lemma witli’ = k.
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Let G = (V, E) be a graph witHV| = n > T vertices. Start with an arbitrary
partition P = P, of its vertices intok = ky = t pairwise disjoint parts, each of
size|n/t|, and let the exceptional set consist of the remaining \estiif any. Note
that their number is less thanwhich is (much) smaller thas /2. As long as the
partition’? we have already defined is notegular, apply Proposition 9.4.3 to refine
it to a new equipartitior®’ with at mostk4* non-exceptional parts, whose index
exceeds that P by at Ieast%, while the size of the exceptional set increases by at
mostg; < 5. Asthe initial index is non-negative, and the index neveeexisl /2,
the process must terminate in at mesteps, yielding aa-regular partition with at
mostT non-exceptional parts, and an exceptional set of size snthknzn. B

Remark. The proof shows thaf (e, é) is bounded by a tower of exponents of height
roughly1/e°. Surprisingly, as shown by Gowers (1997), this tower-typbavior is
indeed necessary.

Our next result both gives a good illustration of the neardcmn nature ofe-
regularity and shall play a role in the next sectidvi(z), as usual, denotes the set of
neighbors ofr in the graphG. Let H be a graph on vertex sét...,s. LetG be
a graph on vertex séf. Let A,,..., A; be disjoint subsets df, each of sizen.
Let NV denote the number of choicesof € A;,...,z, € A, such thate;, «; are
adjacent inG wheneveri, j are adjacent i{. (Note: Otherz;, z; may or may not
be adjacent.) Set;; = d(4;, A4;).

Theorem 9.4.4 For all e there existy = vy (¢) with the following property: Assume,
using the above notation, thé#;, A;) is e-regular for all ¢, j adjacent ind. Then

INm= =[] »psl <~ (9.6)
{i,j}eH

Further, and critically, we may take such that

li =0 9.7
lim v (e) (9.7)

The proof has some technicalities and the reader may kalkes a triangle and
p12 = p13 = pa3 = & to get the gist of the argument.

Proof. Set, with foresightx such that(x — ) > . We say we are in Case 1 if
somep;; < x (with ¢, j adjacent ini) and otherwise we are in Case 2. We will have
~v = max(v1,y2) whereyy, v2 handle two cases.

Case 1: Somg;; < k. Sety; = . The product of the,; over edgeqs, j} is
itself at mosts. There arq;,»ij < km? choices of adjacent;, z; and therefore
N < km?m®~2 = km*. Also N > 0. Thus (9.6) is satisfied.

Case 2:p;; > « for all adjacent;, j. Forl < r < s we call a choicer; € A;,

1 < i < r a partial copy ifz;, 2; are adjacent irG wheneveri, j are adjacent in
H. Further we call the choice normal (else abnormal) if théofwing holds for all
r <l < s: LetU be the set of. < r which are adjacent tbin H. LetY be the
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intersection of theV(x,,), uw € U and 4;. Then

[T @u—2 <Yim™ < I (pur +¢) (9.8)

uelU uelU

Letzy,...,x, be a normal partial copy. We say it is destroyediby; € A, 41 if
x1,...,T.41 IS @ partial copy but is not normal. We claim at mastm vertices
Zry1 Can destroyey, . .., z,.. How can this occur? Lét> r + 1 be adjacentto 41
and letU,Y be as above (looking only at,...,z,). ThenY N N(z,41) would
need to be either too big or too small. If more tisam verticesx,.,; destroyed
z1,...,x, then there would be a s&t C A, of size at leastne of suchz, 1, all
with the samé and with either all” N N (z,1) too big or all too small. Assume the
former, the latter being similar. Thef{X,Y") > p,11; +¢. But|Y| > me by our
choice ofx. Frome-regularity| X | < me, as claimed.

TheN choices ofr; € A;,1 < i < sforwhichz;, z; are adjacent id’ whenever
i, j are adjacent ii fall into two categories. There are at mastsm?® choices such
thatz,, destroysey, ...,z for somer. The other choices are bounded in number
betweenn® [ [(pi; —e) andm® [ [(pi; +¢), the products over, j adjacent inf. Let
f(e) denote the maximum distance between either of these pdnd{ | p;;. We
can then set, = 2s%¢ + f(e).

|

9.5 GRAPHONS

As in Section 9.3 we se¥ (H ) denote the number of labelled copiestbfas a (not
necessarily induced) subgraph @f We sett(H,G) = Ng(H)n™* whereH, G
havea, n vertices respectively. This may naturally be interpretedh& proportion
of Hin G, 0 < t(H,G) < 1 tautologically.

Definition 5 A sequence of graplds, is called alimit sequence, Ifm,, , o t(H, G,,)
exists for all finite graph<7.

Definition 6 Two limitsequences,,, G}, are called equivalentifim,, . t(H,G,) =
lim,,, o t(H, G%,) for all finite graphsH. Agraphonis an equivalence class of limit
seguences.

A graphon is a subtle object, an abstract limit of a convergby Definition
5) sequences of graphs. (We call a limit sequeGGea graphon even though,
technically, the graphon is the equivalence class.) ttasitself an infinite graph,
though it may seem like one. It reflects the properties of \engye graphs (formally,
in a limit sense) of similar nature. The excellent book (as¥ 2012) serves as a
general reference to graphons.

Surprisingly, and integral to the strength of this concépre is a good charac-
terization of graphons. L& : [0,1] x [0,1] — [0,1] be a Lebesgue measurable
function withW(z,y) = W(y, z) for all z,y € [0, 1]. For each positive integer
we define a random graph, denot@@n, 17) on vertex set, . .., n as follows:



