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1 Introduction
The high level intuitive meaning of the Regularity Lemma of Szemerédi is that every graph is
made up of three parts: a structured part, a quasirandom part, and an error part. The size of
the structured part, the quality of quasirandomness, and the size of the error all depend on a
parameter ε > 0 that can be chosen arbitrary small. More concretely, the Regularity Lemma
states that given any ε > 0 every graph can be approximated by the disjoint union of constantly
many “random-like” bipartite graphs. Crucially, the number of these bipartite graphs depends
only on ε, and so is how closely they resemble a truly random graph. Furthermore all but a tiny
fraction of all possible pairs are contained in one of the quasirandom bipartite graphs.

Our concept of quasirandomness of a bipartite graph will be formulated through the distribu-
tion of edges. It will require that, just like in a typical random graph, the edges are distributed
evenly all over the graph, that there are no unnaturally dense parts and there are no unnaturally
sparse parts either. That is, for any pair of large enough subsets of the two sides the fraction
of pairs that are edges is roughly the same as the fraction of pairs that are edges in the whole
bipartite graph.

Definition 1.1. For a graph G and two disjoint subsets A,B ⊆ V (G) os the vertices let e(A,B) =
|{(a, b) ∈ A×B : ab ∈ E(G)}| denote the number of edges between A and B and let

d(A,B) :=
e(A,B)

|A| · |B|

denote the density of the pair {A,B}. The pair {A,B} is called ε-regular if for every A′ ⊆ A with
|A′| ≥ ε|A| and every B′ ⊆ B with |B′| ≥ ε|B| we have

|d(A′, B′)− d(A,B)| ≤ ε.

Remarks.
1. Note that 0 ≤ d(A,B) ≤ 1 for every A,B.
2. The definition becomes trivial for ε = 1 since then every pair is 1-regular.
3. The lower bound on the sizes of the subsets A′ and B′ is necessary in order to have a meaningful
definition. Taking it to the extreme, if we were to require the density condition to hold for every
pair of subsets A′ ⊆ A and B′ ⊆ B, then only the complete bipartite graph or the empty bipartite
graph would be ε-regular with some ε < 1

2 . Indeed the density of a pair of 1-element subsets is 0
or 1, so one of them would be at least 1

2 -away from d(A,B).
4. To see a concrete example of this definition: if a bipartite graph G on vertex set A ∪ B with
|A| = |B| = k is 1

100 -regular and has 0.37k2 edges, then for every subsets A′ ⊆ A and B′ ⊆ B

with |A′| ≥ |A|
100 and |B′| ≥ |B|

100 the number of edges between A′ and B′ is between 0.36|A′| · |B′|
and 0.38|A′| · |B′|.
5. The property of being ε-regular becomes stronger and stronger as ε decreases. Namely for any
ε > ε′ > 0, a graph G being ε′-regular implies that it is also ε-regular. This is immediate because
checking ε-regularity requires checking a weaker inequality holds for less subsets than checking
ε′-regularity.
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6. It is justified to think of ε-regularity as a “quasirandom property” as in the next homework you
will show that it holds with probability tending to 1 for the random bipartite graph with edge
probability p.

HW The random bipartite graph G(A,B, p) on vertex set A ∪ B is the probability space where
each pair (a, b) ∈ A×B is an edge with probability p, such that all these choices are mutually in-
dependent. For every ε > 0, a graph sampled from G(A,B, p) is ε-regular with probability tending
to 1 (as the sizes |A| = |B| = k tend to infinity).
Hint: You should apply the union bound combined with a Chernoff bound.

7. If you were wondering whether besides the above somewhat existential statement that “almost
all bipartite graphs are ε-regular”, are there any “concrete”, “palpable” ε-regular graphs. Here is
an example, the Payley biapartite graph. For each prime p we define a bipartite graph BPp with
vertex set L ∪ R, where both L and R are copies of the p-element field Fp. The vertex a ∈ L is
adjacent to the vertex b ∈ R if a−b is a quadratic residue (i.e., a square) in Fp. Exactly p−1

2 of the
non-zero elements of Fp are squares, hence BPp has density 1

2 . In next semester’s Constructive
Combinatorics course we will show that BPp is ε-regular for every ε > 0 and large enough p.

Definition 1.2. Let G = (V,E) be a graph and ε > 0 a real number. A partition V = V0 ∪ V1 ∪
· · · ∪ Vk is called an ε-regular partition if

• |V0| ≤ ε|V |

• |V1| = |V2| = · · · = |Vk|

• at most ε
(
k
2

)
pairs {Vi, Vj} are not ε-regular

Again, smaller ε means a stronger property, and more control over the edges of G. Formally,
for any ε > ε′ > 0 an ε′-regular partition is also an ε-partition.

Theorem 1.3 (Regularity Lemma (Szemerédi, 1975)). For every real ε > 0 and positive integer
m ∈ N, there exists an integer M = M(ε,m) such that every graph G = (V,E) with at least m
vertices has an ε-regular partition V = V0 ∪ V1 ∪ · · · ∪ Vk where m ≤ k ≤M .

Remarks.
1. The purpose of the Regularity Lemma is to gain some sort of control over “most edges” of G.
In particular the lemma gives a lot of information about the placement of edges between the two
sides of an ε-regular pair, but it gives essentially no information about the other edges. These
include edges incident to the exceptional set V0, edges inside the parts Vi, 1 ≤ i ≤ k, and edges
between pairs that are not ε-regular.
2. The real number ε > 0 clearly represents some sort of upper bound on the error in this
approximation of G, but what is the role of m? Without requiring at least m parts in the
partition, the Lemma becomes trivially true: the partition V = V1 is clearly ε-regular for every
ε > 0. This statement however is not very useful: it does not give any information about any set
of edges of G. Choosing m a large constant in applications, say m =

⌈
1
ε

⌉
, will ensure that only a

small fraction of the edges are inside the parts Vi.
3. It is worthwhile to think over a proof of the Lemma for a graph with k ≤ M vertices. In this
case we can choose our partition to contain only 1-element subsets. This is clearly an ε-regular
partition for any ε > 0, since any pair of 1-element subsets are trivially ε-regular for any ε > 0.
4. An important issue about the Regularity Lemma is whether the various imperfections contained
in its statement are indeed necessary.

• The presence of the exceptional vertex set V0 is not crucial. One can state a lemma without
it if one relaxes the condition of equipartition and allows that two parts differ in size by at
most 1. In many aplication however it is easier to work with completely equal parts and
rather allow the exceptional part.
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• The presence of the exceptional set of ε
(
k
2

)
non ε-regular pairs is necessary. A construction

showing this will be discussed in the Homework.

5. The main point of the Regularity Lemma is the guarantee of the partition into at most constant
number of parts, where this constant depends only on ε and m, but not on the number of vertices
of G. So once you decided on the error you can tolerate in the approximation, the number of
parts is bounded, no matter how large your input graph is. With this let us revisit the high level
intuitive interpretation of the Regularity Lemma mentioned at the beginning, that every graph
can be decomposed into three parts

• a structured part (of constant size)

• a quasirandom part

• an error part (of small size)

To make a more concrete sense of this heuristic, let us define the regularity graph R = R(P)
of an ε-regular partition P = {V0, V1, . . . , Vk} of the graph G on n vertices into k parts, with
m ≤ k ≤ M = M(ε,m). The vertex set of R is just [k], representing the indices of the non-
exceptional parts of the partition P. The edges of R correspond to the ε-regular pairs: E(R) :=
{ij : {Vi, Vj} is ε-regular}.

The quasirandom part of the heuristic “decomposition” of G consists of the (at most
(
k
2

)
)

ε-regular graphs. The structured part of this decomposition is the regularity graph itself: R has
constantly many vertices and describes the structure how the quasirandom pieces are put together.
Finally, the error part is represented by the graph containing those edges we have essentially no
information about. Let us count the edges in this “error part”. The number of edges

• incident to V0 is at most |V0|(n− 1) ≤ εn2;

• inside parts: k
(|Vi|

2

)
≤ k

(
n/k
2

)
≤ n2

2k ≤
n2

2m ;

• between irregular pairs: ε
(
k
2

)
|Vi| · |Vj | ≤ εk

2

2

(
n
k

)2
= ε

2n
2;

All together these are at most
(
3
2ε+ 1

2m

)
n2 edges. We could force this error part to be as small

a fraction of n2 as we wish by choosing ε small enough and m large enough.
Before giving the proof of the Regularity Lemma we consider a couple of its most important

applications. The first one is a relatively simple, yet extremely useful consequence, called the
Triangle Removal Lemma. In order to demonstrate the power of the Regularity Lemma we will
also discuss a couple of striking consequences of the Triangle Removal Lemma: one from number
theory, and one from algorithms. Our second application of the Regularity Lemma will be slightly
more technical: we derive a proof of the Erdős-Stone Theorem (which we already announced).

1.1 Application 1: Property Testing and the Triangle Removal Lemma
Suppose you are given a huge graph on n and you would need to decide whether it is triangle-free.1
You have the possibility to query the status of any pair of vertices in the graph. To identify a
graph as triangle-free might require for you to query the status of Θ(n2) pairs, which potentially
can take a lot of time if n is huge. Having no time for this, you are eager to gain at least some
approximate information about the triangle-freeness of the graph, and gain that fast. You will
be after identifying those graphs that are far from being triangle-free in the sense that one would
need to delete many edges from the graph to make it triangle-free.

The Triangle Removal Lemma is the backbone of a randomized testing algorithm which does
exactly this in constant(!) time. So the number of queries does not depend on the size of the
graph. Here we first state and prove the lemma and formulate the algorithmic consequence as a
homework exercise.

1Say, to decide whether the examined genome sequence contains an undesirable mutation.
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Theorem 1.4 (Triangle Removal Lemma). For every γ > 0 there exists δ = δ(γ) > 0 such that
for every graph G at least one of the following is true.

(A) there exists F ⊆ E(G), |F | ≤ γv(G)2, such that G− F is triangle-free

(B) G contains at least δv(G)3 triangles

Proof. Given an arbitrary γ > 0, we use the Regularity Lemma with ε = γ
3 and m =

⌈
1
ε

⌉
=
⌈
3
γ

⌉
and receive M = M(ε,m). Then we define

δ = (1− 2ε)ε3
(

1− ε
M

)3

.

Of course how the choice of these parameters came about will only be obvious from the proof. In
fact when one does the proof the first time, one does not set these parameters, but one sees what
is necessary for the various proof steps to go through.

Let G be an arbitrary graph and let us denote its number of vertices by n = v(G). We use the
Regularity Lemma with the above defined parameters ε and m to obtain an ε-regular partition
P = {V0, V1, . . . , Vk}, with m ≤ k ≤M .

We create a somewhat sparsified version of the regularity graph R(P) corresponding to the
partition P. For a density parameter d we define the regularity graph R(P, d) ⊆ R(P) on the
vertex set [k] as the subgraph of R(P) where we keep only those edges ij ∈ E(R(P)), where the
corresponding ε-regular pair {Vi, Vj} of the partition P has density d(Vi, Vj) ≥ d. Note that the
original regularity graph R(P) is just R(P, 0).

For our particular purpose we choose this “minimum-density” d = 2ε and set R = R(P, 2ε).
We classify G according to whether R contains a triangle or not. We will show that if R contains
a triangle then G itself contains many triangles, while if G is triangle-free then G can be made
triangle-free with the removal of some γn2 edges.

Case 1. R is triangle-free. We show that there is a set F ⊆ E(G) of at most γn2 edges of G,
such that G− F is triangle-free. Let F consists of all edges of G that are

• incident to the exceptional part V0

• contained in one of the parts Vi for some i, 1 ≤ i ≤ k

• go between a pair Vi, Vj that is not ε-regular

• go between a pair Vi, Vj that has density d(Vi, Vj) < d = 2ε

We have already counted above that the number of edges of G in the first three parts is not
more than

(
3
2ε+ 1

2m

)
n2 ≤ 2εn2. We still need to count the edges that are going in between parts

with density < d = 2ε. There are at most
(
k
2

)
such pairs, and between each there are at most

d · nk ·
n
k edges. All together this means at most k2

2 d
n2

k2 = εn2 edges. Therefore F contains at most
3εn2 edges.

Let us see now why the removal of F makes G triangle-free.
Since in G−F the exceptional set consists of isolated vertices any triangle would have to have

its vertices in ∪ki=1Vi. Since there are no edge inside any Vi, any triangle would have to use vertices
from three different parts. By the definition of our R and F , there is an edge in G−F between two
parts Vi and Vj if and only ij ∈ R. Since R is triangle-free there are no three different parts Vi, Vj
and Vk such that between all pairs there are edges in G−F . Consequently G−F is triangle-free.

Case 2. R contains a triangle, say ab, bc, ca ∈ E(R). We show that there are at least δn3
triangles going across in Va ∪ Vb ∪ Vc (see Figure 1). This is an immediate consequence of the
following lemma.

Lemma 1.5. Let A,B,C ⊆ V (G) are pairwise disjoint independent sets in some graph G. If the
pairs {A,B}, {B,C}, {A,C} are all ε-regular then the number of triangles in G is at least

(1− 2ε)(d(A,B)− ε)(d(A,C)− ε)(d(B,C)− ε)|A| · |B| · |C|.
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Indeed, in our case a, b, c form a triangle in R, so each of the pairs of Va, Vb, Vc is ε-regular and
for their density we have d(Va, Vb), d(Vb, Vc), d(Vc, Va) ≥ 2ε. So the lemma is applicable and the
number of triangles is at least

(1− 2ε)ε3|Va||Vb||Vc| ≥ (1− 2ε)ε3
(

(1− ε)n
k

)3

≥ (1− 2ε)ε3
(

(1− ε)n
M

)3

= δn3

Proof of Lemma 1.5. We will classify triangles based on their vertex in C. For any v ∈ C, the
number of triangles containing v is equal to the number of edges e(N(v,A), N(v,B)) between the
neighborhood N(v,A) = N(v) ∩ A of v in A and the neighborhood N(v,B) = N(v) ∩ B of v in
B. We can estimate this using ε-regularity provided the neighborhoods of v in A and B are both
large enough (at least ε-fraction of A and B, respectively). We will now see that the ε-regularity
of the pairs {A,C} and {B,C} implies that most vertices v ∈ C have large neighborhoods both
in A and B.

The ε-regularity condition regulates the number of edges between large enough subsets, and
does not in particular require anything about the degrees of individual vertices. So for example
the existence of a few isolated vertices is not impossible in a large ε-regular graph. However in
the next lemma we will see that most vertices in an ε-regular graph must have approximately the
right degree. This lemma is very useful in many application of the Regularity Lemma, we state it
under a bit more general conditions.

Lemma 1.6 (Degree Lemma). Let A,C ⊆ V (G) be an ε-regular pair of density at least d in some
graph G and let Y ⊆ A with |Y | ≥ ε|A|. Then

|{c ∈ C : |N(c, Y )| < (d− ε)|Y |}| < ε|C|.

Proof. LetX = {c ∈ C : |N(c, Y )| < (d−ε)|Y |} the set of those vertices in C that have unnaturally
low degree into Y . Since d ≤ d(A,C), we have |N(c, Y )| < (d(A,C) − ε)|Y | for all c ∈ X. Then
for the number of edges between X and Y we have

e(X,Y ) =
∑
c∈X
|N(c, Y )| <

∑
c∈X

(d(A,C)− ε)|Y | = (d(A,C)− ε)|Y | · |X|.

Consequently for the density we have d(X,Y ) < d(A,C) − ε. On the other hand if |X| ≥ ε|C|
then, since |Y | ≥ ε|C|, we could use the ε-regularity of {A,C} to bound the density of the pair
d(X,Y ) and in particular, d(X,Y ) ≥ d(A,C)− ε. This is a contradiction, so |X| < ε|C|.

Using the degree lemma for the ε-regular pair {A,C} with Y = A and for the ε-regular pair
{B,C} with Y = B, we conclude that at least (1− 2ε)|C| vertices in C are “normal” in the sense
that they have at least (d(A,C)− ε)|A| ≥ ε|A| neighbors in A and at least (d(B,C)− ε)|B| ≥ ε|B|
neighbors in B. Therefore by the ε-regularity of the pair {A,B}, the number of triangles is∑

v∈C
e(N(v,A), N(v,B)) ≥

∑
v∈C normal

e(N(v,A), N(v,B))

≥
∑

v∈C normal

(d(A,B)− ε)|N(v,A)| · |N(v,B))|

≥
∑

v∈C normal

(d(A,B)− ε)(d(A,C)− ε)|A| · (d(B,C)− ε)|B|

≥ (1− 2ε)|C|(d(A,B)− ε)(d(A,C)− ε)|A| · (d(B,C)− ε)|B|.
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(b) Regularity Graph

Figure 1: Triangle removal lemma

1.1.1 Property Testing

In property testing one wants to have information about a huge input structure (say a graph)
having a certain property (say triangle-freeness). Deciding whether the structure does have the
property might require to query most of the input (say, looking at most pairs of vertices, and see
whether they form an edge), which might be too large. Nevertheless, if we were content to only
have information about the structure being far from having the property, then this can be decided
much faster. Sometimes it is enough to query only a constantly many elements of the structure
(constantly many edges of the graph), independent of its size!

A graph G is called ε-far from being triangle-free, if the removal of εv(G)2 edges does not make
G triangle-free.

Theorem 1.7. For every ε > 0 there exists an f(ε) > 0 such that for every graph G there exists
a randomized algorithm that queries at most f(ε) edges of G and then outputs accept or reject,
such that

• if G is triangle-free then the algorithm accepts it with probability 1;

• if G is ε-far from being triangle-free, then the algorithm rejects it with probability 0.999.

This statement is analogous to the (much simpler) phenomenon that exists in poll-making
before elections. In order to know the approximate results of a binary election up to a certain
error probability, it is enough to query say 1000 fully random people about their choices, where
the size 1000 of the sample needed for the appropriate error-guarantees is irrespective of whether
the election was in Steglitz or in the United States.2

1.2 Application 2: The Erdős-Stone Theorem
Let us revisit the statement of the more difficult direction of the Erdős-Stone Theorem, stating
the upper bound on the Turán number of the Turán graph.

Theorem 1.8 (Erdős-Stone, 194?). For every γ > 0 and integers r, s ∈ N there exists an integer
N0 > 0 such that for every graph G on n ≥ N0 vertices with at least

(
1− 1

r−1

) (
n
2

)
+ γn2 edges

contains subgraph isomorphic to the Turán graph.

Proof. Here is our plan:
2For the correctness of this statement we of course assumed that we are able to extract a truly independent

sample of random people. This is much easier in theory than in practice. Nevertheless, the phenomenon that an
effective sample size is not very sensitive to the size of the whole population does hold at large.
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• Given the parameters γ > 0 and r, s ∈ N, we will choose a small parameter d > 0, a tiny
parameter ε > 0, and a large parameter m ∈ N. We apply the Regularity Lemma to obtain
an integer M = M(ε,m), an ε-regular partition P of G, and construct the regularity graph
R(P, d).

• When choosing the parameters d, ε, and m, we make sure that the number of edges of G that
are not going between ε-regular pairs of density at least d is small, in fact less than γ

2n
2.

• We conclude that most edges of G go between parts Vi, Vj with ij ∈ E(R). From this we
will infer that R must also have many edges, in fact so many, that Turán’s Theorem will
imply the existence of a Kr in R.

• We consider r parts of the partition P in G, which correspond to a Kr in R. Using the
pairwise ε-regularity of these r parts, we derive that they induce a copy of Trs,r.

Nice plan, now let’s get down to business. Given a real γ > 0, let us define parameters

d =
γ

6
, m =

⌈
6

γ

⌉
, ε =

1

rs

(
d

2

)rs2
, N0 =

s

ε(1− ε)
M.

As we have shown in the proof of the Triangle Removal Lemma, the number of edges in G that
do not go between parts Vi, Vj with ij ∈ E(R) is at most

(
3
2ε+ 1

2m + d
2

)
n2. With our choice

of parameters this is at most γ
2n

2 (note that our ε is much less than our d). Hence the number
of edges of G that do go between parts Vi, Vj with ij ∈ E(R) is, on the one hand, at least(

1− 1
r−1

) (
n
2

)
+ γ

2n
2. On the other hand, the number of these edges is trivially not more than the

number of all pairs between Vi and Vj with ij ∈ E(R), that is |E(R)|
(
n
k

)2. Consequently,
|E(R)| ≥ k2

n2

((
1− 1

r − 1

)(
n

2

)
+
γ

2
n2
)
≥
(

1− 1

r − 1

)(
k

2

)
+
γ

2
k2,

where the last inequality is true since n ≥ N0 ≥M ≥ k.
Hence for large k the number of edges in the regularity graph R is more than e(Tk,r−1) ≤(

1− 1
r−1

) (
k
2

)
+k, which, by Turán’s Theorem, is the maximum number of edges in Kr-free graph

on k vertices. Our choice of m =
⌈
6
γ

⌉
is large enough that for every k ≥ m, the quadratic function

γ
2k

2 is larger than the linear error term k in the expression for e(Tk,r−1). Therefore, by Turán’s
Theorem, R contains a Kr.

For ease of notation, let us assume that an r-clique in R can be found on the vertex set [r].
In G this means that the parts V1, . . . , Vr are pairwise ε-regular with density at least d. We will
find a copy of Trs,r in ∪ri=1Vi, by iteratively finding subsets Sj ⊆ Vj of size s for j = 1, . . . `, that
are pairwise fully adjacent to each other, and have a large common neighborhood in each of the
remaining parts Vi, i = `+ 1, . . . r. To this end the following generalization of the Degree Lemma
will come in handy.

Lemma 1.9 (Common Neighborhood Lemma). Let A,B ⊆ V (G) be an ε-regular pair of density
at least d in some graph G. For every subset Y ⊆ B with (d− ε)s−1|Y | ≥ ε|A|. Then

|{~a = (a1, . . . , as) ∈ As : |N(~a) ∩ Y | < (d− ε)s|Y |}| < sε|A|s.

Remark This lemma states yet another quasirandom consequence of ε-regularity. The ex-
pected number of common neighbors of an s-element vertex set {a1, . . . , as} in a truly random
graph with edge-probability d is ds|Y | (since each vertex in Y is a common neighbor of all ai
with probability ds). While we cannot expect all s-subsets having close to this many common
neighbors, the Common Neighborhood Lemma states that most s-sets do.
2. The formulation of the lemma, talking about ordered s-tuples (and allowing repetitions), rather
than subsets, is purely for technical convenience.
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Claim Let ` ∈ [r]. Suppose we are given subsets Si ⊆ Vi of size s for i = 1, . . . , ` − 1, such
that for their common neighborhood Aj := N(∪`−1i=1Si) ∩ Vj in the parts Vj, for j = `, . . . , r we
have |Aj | ≥ (d − ε)(`−1)s|Vj |. Then there exists a subset S` ⊆ V` of size |S`| = s such that
|N(∪`i=1Si) ∩ Vj | ≥ (d− ε)`s|Vj | for every j = `+ 1, . . . , r.

By repeated application of the Claim we obtain the required sets S1 ⊆ V1, . . . , Sr ⊆ Vr, of size
s each, which induce a copy Trs,r.

For a proof of the Claim we use the Common Neighborhood Lemma for each j = `+ 1, . . . , r
with the ε-regular pair {V`, Vj} of density at least d, and with the subsets Aj as Y . For the size
of Y we check that

(d− ε)s−1|Y | ≥ (d− ε)s−1(d− ε)(`−1)s|Vj | ≥ ε|Vj |

holds, where the first inequality uses our assumption on |Aj | and the second one follows from our
choice of parameters for ε:

(d− ε)s`−1 ≥ (d− ε)rs
2

≥
(
d

2

)rs2
≥ srε > ε.

Therefore we can apply the Common Neighborhood Lemma.
From the lemma we obtain that for each j = ` + 1, . . . , r, the number of vectors ~a ∈ V s` for

which the common neighborhood N(~a) ∩ Aj has size less than (d − ε)s|Aj | is at most sε|V`|s.
So for all but (r − `)sε|V`|s s-tuples, the size of its common neighborhood in each of the Aj ,
j = `+ 1, . . . , r, is at least (d− ε)s|Aj |.

We want to find at least one such s-tuple in As` , which has pairwise different coordinates. The
number of vectors with at least one pair of repeated coordinates is at most

(
s
2

)
|V`|s−1 ≤ sε|V`|s,

since |V`| ≥ 1−ε
M n ≥ s−1

2ε by our choice of N0.
Since |As` | ≥

(
(d− ε)(`−1)s|V`|

)s ≥ (d− ε)rs2 |V`|s > (r− `+ 1)sε|V`|s by our choice of ε, we can
conclude the existence of an s-set S` ⊆ A`, such that the neighborhood of S` inside the further
Aj = N(∪`−1i=1Si) ∩ Vj is large enough:

|N(∪`i=1Si) ∩ Vj | = |N(S`) ∩Aj | ≥ (d− ε)s|Aj | ≥ (d− ε)`s|Vj |

for every j = `+ 1, . . . , r.
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