
i
i

“”Extremal and Probabilistic Combinatorics”” — 2011/5/12 — 17:23 — page 56 — #56 i
i

i
i

i
i

Chapter 6

Szemerédi’s Regularity
Lemma

To ask the right question is harder than to answer it.

Georg Cantor

In Chapter 2 we saw that in any finite colouring of the positive
integers, some colour class must contain arbitrarily long arithmetic
progressions. In 1936, Erdős and Turán conjectured that the colour-
ing here is just a distraction; the same conclusion should hold for the
‘largest’ colour class.

6.1 The Erdős-Turán Conjecture

Recall that the upper density of a set A � N is

dpAq � lim sup
nÑ8

|AX rns|
n

.

Conjecture 6.1.1 (Erdős and Turán, 1936). If dpAq ¡ 0, then A
contains arbitrarily long arithmetic progressions.

Roth proved the case k � 3 of the conjecture in 1953, and Sze-
merédi proved the case k � 4 in 1969, before finally resolving the
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6.2. THE REGULARITY LEMMA 57

question in 1975. As mentioned in Section 6.3.4, Furstenburg (in
1977) and Gowers (in 2001) provided important alternative proofs
of Szemerédi’s Theorem. (According to Terry Tao, there are now at
least 16 different proofs known!)

Although the conjecture of Erdős and Turán may look like lit-
tle more than a curiosity, it is perhaps the greatest triumph of the
‘Hungarian school’ of mathematics, in which the aim is to pose (and
solve) beautiful and difficult problems, and allow deep theories and
connections between areas to present themselves. For more on the
modern (and very active) study of Additive Combinatorics, which
grew out of the proofs of Roth, Szemerédi, Furstenburg and Gowers,
see the excellent recent book by Tao and Vu [5].

In this section we shall prove Roth’s Theorem (the case k � 3 of
Szemerédi’s Theorem), using the Regularity Lemma introduced by
Szemerédi. We shall then see how one may use this powerful tool
to prove several other beautiful results. The lemma has proven so
useful, it is little exaggeration to say that whenever you see a graph,
the the first thing you should think to do is to take its Szemerédi
partition.

6.2 The Regularity Lemma

Szemerédi’s Regularity Lemma, perhaps the most powerful tool in
Graph Theory, may be thought of as an answer to the following,
fairly vague question.

Question 6.2.1. How well can an arbitrary graph be approximated
by a collection of random graphs?

Szemerédi’s answer to this question was as follows:

“Given any graph G, we can partition the vertex set V pGq into a
bounded number of pieces (at most k, say), such that for almost
every pair pA,Bq of parts, the induced bipartite graph GrA,Bs
is approximated well by a random graph.”

We shall quantify the statements ‘almost every’ and ‘is approximated
well by a random graph’ in terms of a parameter ε ¡ 0. The crucial
point is that the bound k depends on ε, but not on n � |V pGq|.
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58 CHAPTER 6. SZEMERÉDI’S REGULARITY LEMMA

To quantify ‘almost every’ is easy: it simply means all but εk2

pairs. To make precise the intuitive idea that a bipartite graph
‘looks random’ is more complicated, and we shall need the follow-
ing technical definition. Given subsets X,Y � V pGq, we shall write
epX,Y q for the number of edges from X to Y , i.e., the size of the set
txy P EpGq : x P X, y P Y u.
Definition. Let ε ¡ 0 and let A,B � V pGq be disjoint sets of vertices
in a graph G. The pair pA,Bq is said to be ε-regular if����epA,Bq|A||B| � epX,Y q

|X||Y |
���� ¤ ε

for every X � A and Y � B with |X| ¥ ε|A| and |Y | ¥ ε|B|.
In other words, for every pair pX,Y q of sufficiently large subsets of

A and B, the density of pX,Y q is about the same as that of pA,Bq. It
is easy to see (using Chernoff’s inequality, see [1]) that in the random
graph Gn,p, any (sufficiently large) pair of subsets pA,Bq is ε-regular
with high probability.

Before stating the Regularity Lemma, let us see why the defi-
nition above is useful by proving a couple of easy consequences of
ε-regularity. Indeed, if we believe that ε-regular pairs ‘look like’ ran-
dom graphs, then we would like ε-regular graphs and random graphs
to share some basic properties.

The simplest property of a random graph is that most vertices
have roughly the same number of neighbours. This property is shared
by ε-regular pairs.

Property 1. Let pA,Bq be an ε-regular pair of density d in a graph
G. Then all but at most 2ε|A| vertices of A have degree between
pd� εq|B| and pd� εq|B| in GrA,Bs.
Proof. Let X � A be the set of low degree vertices in A, i.e.,

X :�
!
v P A : |NGpvq XB|   pd� εq|B|

)
,

and let Y � B. Then the density of the pair pX,Y q is less than d�ε,
so |X|   ε|A|, by the definition of ε-regularity. By symmetry, the
same holds for the high degree vertices.
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6.2. THE REGULARITY LEMMA 59

Another nice property of Gn,p is that a (randomly chosen) induced
subgraph of Gn,p is also a random graph, with the same density.

Property 2. Let pA,Bq be an ε-regular pair of density d in a graph
G. If X � A and Y � B, with |X| ¥ δ|A| and |Y | ¥ δ|B|, then
pX,Y q is an 2ε{δ-regular pair, of density between d� ε and d� ε.

Proof. This follows easily from the definitions, so we leave its proof
as an exercise.

The properties above give us some idea of the motivation behind
the definition of ε-regularity. However, the main reason that the
definition is useful is the following ‘embedding lemma’. It says that,
for the purpose of finding small subgraphs in a graph G, we can treat
‘dense’ ε-regular pairs like complete bipartite graphs.

Given a graph H and an integer m, let Hpmq denote the graph
obtained by ‘blowing up’ each vertex of H to size m, i.e., each vertex
j P V pHq is replaced by a set Aj of size m. Thus Hpmq has vertex
set

�
j Aj , and edge set tuv : u P Ai, v P Aj for some ij P EpHqu.

Given a graph H, an integer m and δ ¡ ε ¡ 0, let GpH,m, ε, δq
denote the family of graphs G such that V pGq � V pHpmqq, G �
Hpmq, and GrAi, Ajs is ε-regular and has density at least δ whenever
ij P EpHq.
The Embedding Lemma (simple version). Let H be a graph,
and let δ ¡ 0. There exists ε ¡ 0 and M P N such that if m ¥ M
and G P GpH,m, ε, δq, then H � G.

For most of our applications the simple version of the embedding
lemma will be sufficient. The full version below is a bit harder to
remember, but is not much harder to prove.

The Embedding Lemma. Let ∆ P N, let δ ¡ 0, and let ε0 �
δ∆{p∆ � 2q. Let R be a graph, let m, t P N with t ¤ ε0m, and let
H � Rptq with maximum degree at most ∆.

If ε0 ¡ ε ¡ 0 and G P GpR,m, ε, δ � εq, then G contains at least
pε0mq|V pHq| copies of H.

Proof. We shall prove the simple embedding lemma for the triangle
H � K3, and leave the proof of the full statement to the reader. To
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find a triangle in G P GpK3,m, ε, δq, we simply pick vertices one by
one. Indeed, choose v1 P A1 arbitrarily amongst the vertices with at
least pδ � εqm neighbours in both A2 and A3.

Let X � Npvq X A2 and Y � Npvq X A3. Since |X| ¥ ε|A2| and
|Y | ¥ ε|A3|, it follows that there exists an edge between X and Y ,
so we are done. Alternatively (and more instructively for the general
case), note that, by Property 2 above, the pair pX,Y q is ε1-regular
and has density at least δ � ε (where ε1 � 2ε{pδ � εq). Hence, by
Property 1, all but 2ε1|X| vertices of X have degree at least δ� 2ε in
GrX,Y s, and so we have found the desired triangle.

Problem 6.2.2. Prove the full embedding lemma. [Hint: choose
vertices one by one, and keep track of their common neighbourhoods.]

Inspired by the Embedding Lemma, we shall (throughout this
section) refer to a graph on n vertices as sparse if it has opn2q edges,
and dense otherwise, i.e., if it has at least δn2 edges for some δ ¡ 0.
Note that (as stated) this definition is not precise; to understand it
we should think of a sequence of graphs pGnq, where |Gn| � n for
each n P N, and consider the limit n Ñ 8. However, our precise
statements will hold for (large) fixed graphs.

Having (we hope!) convinced the reader that our definition of
ε-regularity is a useful one, we are ready to state the Regularity
Lemma.

Theorem 6.2.3 (The Szemerédi Regularity Lemma, 1975). Let ε ¡
0, and let m P N. There exists a constant M � Mpm, εq such that
the following holds.

For any graph G, there exists a partition V pGq � A0 Y . . . Y Ak
of the vertex set into m ¤ k ¤M parts, such that

• |A1| � . . . � |Ak|,
• |A0| ¤ ε|V pGq|,
• all but εk2 of the the pairs pAi, Ajq are ε-regular.

The Regularity Lemma can be a little difficult to fully grasp at
first sight; the reader is encouraged not to worry, and to study the
applications below. We remark that the proof of the lemma (see
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Section 6.7) is not difficult; the genius of Szemerédi was to imagine
that such a statement could be true!

We note also that although the lemma holds for all graphs, it
is only useful for large and (fairly) dense graphs. Indeed, if n :�
|V pGq|  Mpm, εq then the statement is vacuous (since each part has
size at most one), and if epGq � opn2q then G is well-approximated
by the empty graph. Finally, we note that the best possible function
Mpm, εq is known to be (approximately) a tower of height fpεq, for
some function logp1{εq ¤ fpεq ¤ p1{εq5.

6.3 Applications of the Regularity Lemma

The easiest way to understand the Regularity Lemma is to use it. In
this section we shall give three simple (and canonical) applications:
the Erdős-Stone Theorem, which we proved in Chapter 3; the ‘trian-
gle removal lemma’, which we shall use to deduce Roth’s Theorem;
and bounds on Ramsey-Turán numbers.

6.3.1 The Erdős-Stone Theorem

Recall the statement of Theorem 3.3.

The Erdős-Stone Theorem. Let H be an arbitrary graph. Then

expn,Hq �
�

1 � 1
χpHq � 1

� op1q

�

n

2



.

We shall first give a sketch proof, and then fill in some of the
details. The reader is encouraged to spend some time turning this
sketch into a rigorous proof. Given a graph G, a typical application
of the Regularity Lemma (SzRL) goes as follows:

1. Apply the SzRL (for some sufficiently small ε ¡ 0). We obtain
a partition pA0, . . . , Akq of the vertex set as described above.

2. Remove edges inside parts, between irregular pairs, and be-
tween sparse pairs. There are at most Opεn2q such edges.
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3. Consider the ‘reduced graph’ R which has vertex set rks and
edge set 

ij : the pair pAi, Ajq is dense and ε-regular
(
.

4. Apply a standard result from Graph Theory (e.g., Hall’s The-
orem, Dirac’s Theorem, Turán’s Theorem) to R.

5. Use the Embedding Lemma to find a copy of the desired sub-
graph H in G.

Now let us see how to apply this approach in the case of Erdős-
Stone. The statement we are trying to prove is that, for every δ ¡ 0
there exists Npδq P N, such that if n ¥ Npδq, |G| � n and

epGq ¥
�

1 � 1
χpHq � 1

� δ


�
n

2



,

then H � G.

Proof of the Erdős-Stone Theorem. Let G be a graph on n vertices
as described above, let ε � εpH, δq ¡ 0 be sufficiently small, and let
m � 1{ε. Apply the SzRL to obtain a partition pA1, . . . , Akq, and
form the reduced graph R.

Claim: epRq ¡
�

1 � 1
χpHq � 1

� δ

2


�
k

2



.

Proof of Claim. Consider the edges inside parts, between irregular
pairs, and between pairs of density at most δ{4; we claim that there
are at most pδ{3q�n2� such edges. Indeed, there are at most kpn{kq2
edges inside parts (recall that k ¥ m � 1{ε); there are at most
εk2pn{kq2 edges between irregular pairs (since there are at most εk2

such pairs); and there are at most
�
k
2

�pδ{4qpn{kq2 edges between
‘sparse’ pairs.

Thus only considering edges between dense, regular pairs, we ob-
tain a graph G1 � G with

epG1q ¥
�

1 � 1
χpHq � 1

� 2δ
3


�
n

2



.
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Now, the edges of G1 are all between pairs of parts which correspond
to edges of R, so we have epG1q ¤ epRqpn{kq2, and the claim follows.

Applying Turán’s Theorem to the reduced graph, we deduce from
the claim that R contains a complete graph on r � χpHq vertices. Let
ip1q, . . . , iprq be the labels of the parts corresponding to the vertices
of this complete graph, and let A � �r

j�1Aipjq.
Then G1rAs P GpKr, n

1, ε, δ{2q for some n1 ¥ n{2k, by the defini-
tion of R. Also, since H is a fixed graph with χpHq � r, we have
H � Rptq for t � |H|. Hence, by the Embedding Lemma, H � G as
required.

6.3.2 The Triangle Removal Lemma

The next application is a famous and important one; until recently,
there was no known proof of it which avoided the Regularity Lemma.

The Triangle Removal Lemma (Ruzsa and Szemerédi, 1976). For
every ε ¡ 0 there exists a δ ¡ 0 such that the following holds:

If G is a graph with at most δn3 triangles, then all the triangles
in G can be destroyed by removing εn2 edges.

Proof. We shall use the same approach as in the proof above. Indeed,
let ε1 � ε1pε, δq ¡ 0 be sufficiently small, and apply the SzRL for ε1.
Remove all edges inside parts, between irregular pairs, and between
sparse pairs; there are at most εn2 such edges.

We claim that the remaining graph, G1, is triangle-free. Indeed,
the only edges remaining correspond to edges of the reduced graph,
R. Thus, if G1 contains a triangle, it follows that R contains a trian-
gle. But then, by the Embedding Lemma, G must contain at least
fpεqn3 ¡ δn3 triangles, which is a contradiction.

6.3.3 Roth’s Theorem

Finally, let’s deduce Roth’s Theorem from the triangle removal lemma.

Roth’s Theorem (Roth, 1954). If A � N has positive upper density,
then A contains an arithmetic progression of length three.
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Proof. Given A, we first form a graph G as follows. Choose 0  
ε   dpAq, and choose n sufficiently large, with |A X rns| ¡ εn. Let
V pGq � XYY YZ, where X, Y and Z are disjoint copies of rns, and
let

EpGq �  tx, yu : x P X, y P Y, and y � x� a where a P A(
Y  ty, zu : y P Y, z P Z, and z � y � a where a P A(
Y  tx, zu : x P X, z P Z, and z � x� 2a where a P A(

The key observation is that all but n2 of the triangles in G cor-
respond to 3-APs in A. Indeed, if tx, y, zu is a triangle in G, then a,
b and pa � bq{2 are in A, where a � y � x and b � z � y. So if A
contains no 3-AP, then the only triangles in G correspond to triples
pa, a, aq. There are n|AXrns| ¤ n2 such triangles (each is determined
by two of its vertices).

Apply the triangle removal lemma to G. Since n2   δpεqn3 (if n is
sufficiently large), it follows that we can destroy all triangles in G by
removing at most εn2 edges. But the triangles in G corresponding to
the triples pa, a, aq are edge-disjoint ! Hence n|AX rns| ¤ εn2, which
is a contradiction. Thus A must contain a 3-AP, as claimed.

Problem 6.3.1. Prove Roth’s Theorem in an arbitrary abelian group.

6.3.4 Ramsey-Turán numbers

In Turán’s Theorem, the extremal Kr-free graphs (i.e., the Turán
graphs) have very large independent sets. What happens to the ex-
tremal number if we require in addition that our Kr-free graphs have
small independence number?

Question 6.3.2. Let G be a triangle-free graph on n vertices, and
suppose that G has no independent set of size fpnq. If fpnq � opnq,
does it follow that epGq � opn2q?

Answer: Yes!

Proof. The maximum degree of a vertex in G is at most fpnq.
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Question 6.3.3. Let G be a Kr-free graph on n vertices, for some
r ¥ 5, and suppose that G has no independent set of size fpnq. If
fpnq � opnq, does it follow that epGq � opn2q?
Answer: No!

Proof. Recall from Theorem 4.1.2 that there exist arbitrarily large
graphs with girth at least four and no linear size independent set;
call such a graph an Erdős graph.

Now let H � Ttpr�1q{2upnq, the tpr� 1q{2u-partite Turán graph on
n vertices, and let G be the graph obtained from H by placing an
Erdős graph in each part. Then G contains no Kr, no independent
set of linear size, and at least n2{4 edges.

Given a ‘forbidden’ graph H, and a function f : N Ñ N, define
the Ramsey-Turán number of the pair pH, fq to be

RT
�
n,H, fpnq� :� max

 
epGq : |G| � n,H � G and αpGq ¤ fpnq(,

where αpGq denotes the independence number of G.
From Questions 6.3.2 and 6.3.3, we know that RT pn,Kr, opnqq is

opn2q if r ¤ 3, and is Θpn2q if r ¥ 5. But what about r � 4?

Theorem 6.3.4 (Szemerédi, 1972; Bollobás and Erdős, 1976).

RT pn,K4, opnqq � n2

8
� opn2q.

We shall prove the upper bound using the SzRL; the lower bound
follows from an ingenious construction of Bollobás and Erdős, which
we shall describe briefly below.

Proof of the upper bound in Theorem 6.3.4. We shall follow the usual
strategy, but this time we shall need a couple of extra (fairly simple)
ideas. Indeed, let G be a graph with n vertices, and apply the SzRL
to G, for some sufficiently small ε ¡ 0. Form the reduced graph R of
ε-regular pairs with density at least δ, in the usual way.

We make the following two claims.

Claim 1: R is triangle-free.
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Proof of Claim 1. Let tA,B,Cu be a triangle of parts in R, and
choose a P A with |Npaq XB|, |Npaq X C| ¥ pδ{2q|C|. Since the pair
pNpaq XB,Npaq X Cq is ε1-regular (by Property 6.2), we can choose
a vertex b P Npaq XB such that |Npbq XNpaq X C| ¥ pδ{2q2|C|.

But αpGq � opnq, so Npaq XNpbq XC is not an independent set.
But then G contains a copy of K4, so we are done.

By Claim 1 and Mantel’s Theorem, R has at most k2{4 edges.
The upper bound is thus an immediate consequence of the following
claim.

Claim 2: G contains no ε-regular pair with density bigger than 1{2�δ.
Proof of Claim 2. Let pA,Bq be an ε-regular pair with density 1{2�δ.
Since A has no linear size independent set, we can choose a pair x, y P
A such that xy P EpGq, and |NpxqXB|, |NpyqXB| ¥ p1{2� δ{2q|B|.

But then |Npxq XNpyq X B| ¥ δ|B|, and so either αpGq ¥ δ|B|,
or the set Npxq XNpyq XB contains an edge, in which case K4 � G.
In either case, we have a contradiction.

The result follows by counting edges. There are at most

k2

4

�
1
2
� δ


�
n

k


2

� n2

8
� opn2q

edges between dense regular pairs, and opn2q other edges, so G has
at most n2{8� opn2q edges, as required.

When Szemerédi proved the upper bound in Theorem 6.3.4 in
1972, most people expected the correct answer to be opn2q. It was
therefore very surprising when Bollobás and Erdős gave the following
construction, which shows that Szemerédi’s bounds is in fact sharp!

The Bollobás-Erdős graph. Let U � Sd be a sufficiently high-
dimensional sphere, and scatter n{2 red points and n{2 blue points
at random on U . Join two points of the same colour if they are
at distance less than

?
2 � ε, and join points of different colours if

they are at distance greater than 2 � ε, for some suitably chosen
ε � εpdq ¡ 0.

Problem 6.3.5. Show that the Bollobás-Erdős graph has n2{8�opn2q
edges, contains no copy of K4, and has independence number opnq.
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6.4 Graph Limits

Another way of viewing the Regularity Lemma is topological in na-
ture: it allows us to compactify the space of all large dense graphs.

Definition (Convergence of graph sequences). A sequence Gn �
prns, Enq of graphs is convergent if for any graph H, the density of
copies of H in Gn converges to a limit as nÑ8.

Theorem 6.4.1 (Lovász and Szegedy, 2004). Every sequence of
graphs has a convergent subsequence.

In fact, one can say something stronger.

Definition (Graphons). A graphon is a symmetric measurable func-
tion p : r0, 1s � r0, 1s Ñ r0, 1s.

For each graphon, define a generalised Erdős-Rényi graph Gpn, pq
on n vertices as follows: first give each vertex v a ‘colour’ xv P r0, 1s,
chosen uniformly at random; then add each edge vw with probability
ppxv, xwq, all independently.

Let Gp8, pq denote the (formal) limit of the random graphs Gpn, pq.
Theorem 6.4.2 (Lovász and Szegedy, 2004). Every sequence of
graphs has a subsequence converging to Gp8, pq for some graphon
p.

Various other metrics have been proposed for the space of graph
sequences; interestingly, although the definitions are quite different
from one another, almost all have turned out to be equivalent.

A closely related topic is that of graph testing : roughly speaking,
a property of graphs P is testable if we can (with high probability
as k Ñ 8) test whether or not a large graph G is in P by looking
at a random subgraph of G on k vertices. (More precisely, it accepts
any graph satisfying P with probability 1, and rejects any which is
ε � εpkq-far from P (in a given metric) with probability 1� ε.)

The strongest result along these lines is due to Austin and Tao,
who generalized results of Alon and Shapira (for graphs) and Rödl
and Schacht (for hypergraphs).

Theorem 6.4.3 (Rödl and Schacht, 2007). Every hereditary property
of hypergraphs is testable.
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This theorem has some surprising consequences: for example, it
implies Szemerédi’s Theorem.

Another related question asks for a fast algorithm which produces
a Szemerédi partition of a graph G. This problem has been studied
by various authors, and is (at least partly) so challenging because,
as noted earlier, the bound on the number of parts in a Szemerédi
partition is very large.

Motivated by this shortcoming, Frieze and Kannan introduced the
following notion of ‘weak regularity’: given a partition P, with given
edge densities dij , let

ePpS, T q �
¸
i,j

dij � |Vi X S| � |Vj X T |,

denote the expected number of edges of G between S and T , and say
that the partition P is weakly regular if |epS, T q � ePpS, T q| ¤ εn2

for every S, T � V pGq.
Theorem 6.4.4 (Frieze and Kannan, 1999). For every ε ¡ 0 and
every graph G, there exists a weakly regular partition of V pGq into at
most 22{ε2 classes.

Lovász and Szegedy showed that by iterating the Weak Regular-
ity Lemma, one can obtain the usual Regularity Lemma as a corol-
lary. They also proved a generalization in the setting of an arbitrary
Hilbert space, and described an algorithm which constructs the weak
Szemerédi partition as Voronoi cells in a metric space.

6.5 Recommended further reading

An excellent introduction to the area is provided by the survey:

J. Komlos and M. Simonovits, Szemerédi’s Regularity Lemma and
its applications in graph theory, DIMACS Technical Report (1996).

For a very different perspective, see

L. Lovász and B. Szegedy, Szemerédi’s Lemma for the analyst, J.
Geom. and Func. Anal., 17 (2007), 252–270.
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6.6 Exercises

1. Use Szemerédi’s Regularity Lemma to prove:

The p6, 3q-Theorem (Ruzsa and Szemerédi, 1976). Let A � Ppnq
be a set system such that |A| � 3 for every A P A, and such that for
each set B � rns with |B| � 6, we have�� A P A : A � B

(�� ¤ 2.

Then |A| � opn2q.

2. Let r3pnq be the size of the largest subset of rns with no 3-AP,
and let fpk, nq denote the maximum number of edges in a graph
on n vertices which is the union of k induced matchings.

paq Prove that r3pnq ¤ fpn, 5nq
n

.

[Hint: consider a graph with edge set px� ai, x� 2aiq.]
pbq Using Szemerédi’s Regularity Lemma, deduce Roth’s Theorem.

In the next exercise, we shall prove the following theorem of Thomassen.

Thomassen’s Theorem. If G is a triangle-free graph with mini-
mum degree

�
1
3�ε

�|G|, then χpGq ¤ C, for some constant C � Cpεq.
Given a Szemerédi partition A0 Y . . . Y Ak of V pGq, and d ¡ 0,

consider the auxiliary partition V pGq � �
I�rksXI , where

XI :�
!
v P V pGq : i P I ô |Npvq XAi| ¥ d|Vi|

)
.

3. paq Show that if |I| ¥ 2k{3, then XI is empty.
pbq Show that if |I| ¤ 2k{3, then XI is an independent set.
pcq Deduce Thomassen’s Theorem.

[You may assume the following strengthening of the Regularity Lemma:
that the reduced graph R has minimum degree

�
1{3� ε{2�|R|.]

4. Use the Kneser graph to show that Thomassen’s Theorem is sharp.



i
i

“”Extremal and Probabilistic Combinatorics”” — 2011/5/12 — 17:23 — page 70 — #70 i
i

i
i

i
i

70 CHAPTER 6. SZEMERÉDI’S REGULARITY LEMMA

6.7 Proof the of Regularity Lemma

The Regularity Lemma is not very hard to prove; the hard part was
imagining that it could be true. In this section we shall help the
reader to prove the lemma for himself.

The idea is as follows: starting with an arbitrary equipartition P ,
we shall repeatedly refine P , each time getting ‘closer’ to a Szemerédi
partition. The key point is to find he right notion of the ‘distance’ of
a partition from an ideal partition.

Given a partition P of V into parts V0, . . . , Vk, we define the index
of P to be

indpP q :� 1
k2

¸
i�j

�
dpVi, Vjq

	2

,

where dpX,Y q denotes the density of the pair pX,Y q, i.e., epX,Y q
|X||Y | .

Problem 6.7.1. Prove that if P is not a Szemerédi partition, i.e.,
more than εk2 of the pairs are irregular, then there exists a refinement
Q of P such that

indpQq ¥ indpP q � δ

for some δ � δpεq.
In order to solve Problem 6.7.1, you may need to use the following

‘defect’ form of the Cauchy-Schwarz inequality.

Improved Cauchy-Schwarz Inequality. Let a1, . . . , an ¡ 0, and
let m P rns and δ P R. Suppose that

m̧

k�1

ak � m

n

ņ

k�1

ak � δ.

Then
ņ

k�1

a2
k ¥ 1

n

�
ņ

k�1

ak

�2

� δ2n

mpn�mq .

We leave the remainder of the proof of Theorem 6.2.3 to the reader.

Problem 6.7.2. Deduce Szemerédi’s Regularity Lemma.


