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marthe.bonamy@u-bordeaux.fr

2 Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
mohar@sfu.ca

agwesole@sfu.ca

Abstract. We introduce a model for random geodesic drawings of the
complete bipartite graph Kn,n on the unit sphere SS2 in R3, where we
select the vertices in each bipartite class of Kn,n with respect to two non-
degenerate probability measures on SS2. It has been proved recently that
many such measures give drawings whose crossing number approximates
the Zarankiewicz number (the conjectured crossing number of Kn,n).
In this paper we consider the intersection graphs associated with such
random drawings. We prove that for any probability measures, the re-
sulting random intersection graphs form a convergent graph sequence
in the sense of graph limits. The edge density of the limiting graphon
turns out to be independent of the two measures as long as they are
antipodally symmetric. However, it is shown that the triangle densities
behave differently. We examine a specific random model, blow-ups of an-
tipodal drawings D of K4,4, and show that the triangle density in the
corresponding crossing graphon depends on the angles between the great
circles containing the edges in D and can attain any value in the interval(

83
12288

, 128
12288

)
.

Keywords: Crossing Number · Graph Limits · Geodesic Drawing · Ran-
dom Drawing · Triangle Density.

1 Introduction

The crossing number cr(G) of a graph G is the minimum number of crossings
obtained by drawing G in the plane (or the sphere). In this paper we consider the
(spherical) geodesic crossing number cr0(G), for which we minimize the number
of crossings taken over all drawings of G in the unit sphere SS2 in R3 such that
each edge uv is a geodesic segment joining points u and v in SS2. Recall that
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geodesic segments (or geodesic arcs) in SS2 are arcs of great circles whose length
is at most π. Also note that cr(G) ≤ cr0(G) for every graph G.

Crossing number minimization has a long history and is used both in appli-
cations and as a theoretical tool in mathematics. We refer to [13] for an overview
about the history and the use of crossing numbers. Despite various breakthrough
results about crossing numbers, some of the very basic questions remain open
as of today, two of the most intriguing being what are the crossing numbers
of the complete graphs Kn and what are the crossing numbers of the complete
bipartite graphs Kn,n (the Turán Brickyard Problem). The asymptotic versions
of both problems are strongly related [12] and a lower bound for the limiting
crossing number of Kn,n gives a related lower bound for Kn. The asymptotic
version of the rectilinear crossing number of Kn is related to Sylvester’s Four
point problem in the plane [15,14], see also [13] for recent results. The geodesic
version on the sphere, which we discuss in this paper, is a spherical version of
Sylvester’s problem.

1.1 Outline

In this paper we initiate the study of limiting properties of intersection graphs
associated with drawings of complete and complete bipartite graphs. We limit
ourselves to geodesic drawings on the unit sphere in R3 in which case the draw-
ings are determined by the choice of the placements of the vertices on the sphere.
The first main result of this work shows that whenever the vertices in each bi-
partite class of Kn,n are selected according to some (non-degenerate) probability
measure on SS2 (where the two measures used for each class can be different),
then, with probability 1, the intersection graphs form a convergent sequence of
graphs in the sense of graph limits [6]. See Theorem 2.

The basic combinatorial property of convergent graph sequences is that of
subgraph densities. The density of edges in the crossing graphs corresponds to
the asymptotic crossing number. In addition to this, we examine one particu-
lar related basic question: what is the density of triangles. We show that their
density can be substantially different among different randomized models. Al-
though this result may be seen as “expected”, it is still somewhat surprising.
Indeed, it shows that there is a large variety of drawings of Kn,n, all attaining
the Zarankiewicz bound, in which the number of triples of mutually crossing
edges varies significantly, and can attain any value in the interval

(
83

12288 ,
128

12288

)
.

See Theorems 4 and 6. We believe that further exploring of subgraph densities
in crossing graphons may give a deeper insight into the basic Turán’s Brickyard
Problem for geodesic drawings on the sphere.

1.2 Asymptotic Zarankiewicz Conjecture

During World War II, Hungarian mathematician Pál Turán worked in a brick
factory near Budapest. There the bricks were transported on wheeled trucks
from kilns to storage yards. It was difficult to push the trucks past the rail
crossings and it would result in extra work if bricks fell of the trucks. Therefore
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Turán wondered if there was a way of arranging the rails such that there would
be less crossings between them. Seeing the kilns and storage yards as parts of a
bipartite graph, this led to the more general question of the minimum number of
crossings in drawings of complete bipartite graphs Kn,n. Zarankiewicz [18] and
Urbanik [16] suggested drawings that involved

Z(m,n) = bn2 c b
n−1
2 c b

m
2 c b

m−1
2 c =


1
16n(n− 2)m(m− 2), n,m are even;
1
16n(n− 2)(m− 1)2, n is even, m is odd;
1
16 (n− 1)2(m− 1)2, n,m are odd

(1)
crossings. Whether this value is the best possible remains unanswered to this
day despite numerous attacks using powerful machinery in trying to resolve this
conjecture.

A general construction of drawings of complete bipartite graphs attaining the
Zarankiewicz bound was recently exhibited [9]. All of them are geodesic drawings
in SS2 and they show that

cr(Kn,n) ≤ cr0(Kn,n) ≤ Z(n, n) for every n ≥ 1. (2)

It is not hard to see that the following limits exist:

λ := lim
n→∞

n−4 cr(Kn,n) and λ0 := lim
n→∞

n−4 cr0(Kn,n).

Clearly, (2) implies that λ ≤ λ0 ≤ 1
16 . The asymptotic Zarankiewicz conjecture

for the usual and the geodesic crossing number is also open.

Conjecture 1. λ = λ0 = 1
16 .

1.3 Random drawings of complete bipartite graphs

In 1965, Moon [11] proved that a random set of n points on the unit sphere SS2

in R3 joined by geodesics gives rise to a drawing of Kn whose number of crossings
asymptotically approaches the conjectured value. It was proved recently [10] that
the same phenomenon appears in a much more general random setting. These
results can also be extended to random drawings of the complete bipartite graphs
Kn,n where it was shown that under a symmetry condition on the probability
measures the crossings in such drawings converge to the Zarankiewicz value.

A probability distribution µ on SS2 is nondegenerate if for every great circle
Q ⊂ SS2, µ(Q) = 0. It is antipodally-symmetric if for every measurable set
A ⊆ SS2 the measure of its antipodal set A is the same, µ(A) = µ(A).

Theorem 1 ([10]). Let µ1, µ2 be nondegenerate antipodally-symmetric proba-
bility distributions on the unit sphere SS2. Then a µ1-random set of n points
on SS2 joined by geodesics (segments of great circles) to a µ2-random set of n
points gives rise to a drawing Dn of the complete bipartite graph Kn,n such that
cr(Dn)/Z(n, n) = 1 + o(1) a.a.s.

The random drawing model in the theorem will be referred to as (µ1, µ2)-
random drawing of the complete bipartite graph Kn,n.
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1.4 Crossing graphon

Let N = {n1, n2, n3, . . . } be an infinite set of positive integers, where n1 < n2 <
n3 < · · · . Suppose that for each n ∈ N , we have a drawing Dn of Kn,n. To each
such drawing we associate the crossing graph Xn = Xn(Dn), whose vertices are
all n2 edges in Dn, and two of them are adjacent in Xn if they cross in Dn. Then
we can consider what may be the limit of the sequence (Xn)n∈N . The notion of
graph limits has been introduced by Lovász et al. [3,2,8], see [6]. The basic setup
is described below.

Let (Xn)n∈N be a sequence of graphs. For any fixed graph H, let k = |H|
be its order, and let hom(H,Xn) denote the number of graph homomorphisms
H → Xn, i.e. the number of maps φ : V (H) → V (Xn) such that for each edge
uv ∈ E(H), φ(u)φ(v) ∈ E(Xn). Then we define the homomorphism density for
H as

t(H,Xn) =
hom(H,Xn)

|Xn|k
.

Note that this is the probability that a random mapping V (H) → V (Xn) is a
homomorphism. If the sequence t(H,Xn) converges, we denote its limit by t(H).
If t(H) exists for every H, then we say that (Xn) is a convergent sequence of
graphs. In that case there is a well-defined object W , called a graphon, and the
graphon W is called the limit of this convergent sequence [3,2]. We define the
homomorphism densities of W by setting t(H,W ) = limn→∞ t(H,Xn) = t(H).

The space of all graphons is a compact metric space [6,8]. Given any graphon
W , one can define W -random graphs [7]. A sequence (Rn) of W -random graphs
is convergent with probability 1, and its limit is W .

In this paper we consider nondegenerate probability measures on SS2. For
each pair of such probability measures µ1 and µ2, we have a (µ1, µ2)-random
sequence of drawings Dn of complete bipartite graphs Kn,n and we consider
their crossing graphs Xn. We prove that these sequences are convergent with
probability 1 and discuss their homomorphism densities with the goal to better
understand Conjecture 1.

Theorem 2. Let µ1 and µ2 be nondegenerate probability measures on SS2. Let
An and Bn be a µ1-random and a µ2-random set of n points in SS2, respectively,
let Dn be the corresponding (µ1, µ2)-random geodesic drawing of Kn,n on parts
An and Bn, and let Xn be its crossing graph. The sequence of graphs (Xn) is
convergent with probability 1 and there is a graphon W = W (µ1, µ2) that is the
limit of this convergent sequence.

Since the number of edges in the crossing graph corresponds to the number
of crossings in Dn, we have

t(K2, Xn) =
2|E(Xn)|
|Xn|2

=
2cr(Dn)

n4
.

Thus, Theorem 1 shows a tight relationship with the asymptotic Zarankiewicz
conjecture and can be expressed as follows.
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Theorem 3. Let µ1, µ2 be nondegenerate antipodally-symmetric probability mea-
sures on SS2. Let W = W (µ1, µ2) be the corresponding graphon of the sequence
(Xn) as defined above. Then

t(K2,W (µ1, µ2)) =
1

8
.

1.5 Definitions

We follow standard terminology from [1,4] for graph theory and from [13] for
drawings of graphs. A drawing of a graph is good if any two edges cross at
most once, no two edges with a common endvertex cross, and no three edges
cross at the same point. The first two conditions are clear when we consider
geodesic drawings, and the third condition can always be satisfied if we make an
infinitesimal perturbation.

We say that a set of points on the unit sphere SS2 is in general position if no
two of the points are antipodal to each other, no three of them lie on the same
great circle and no three geodesic arcs joining pairs of points cross at the same
point. If µ is a nondegenerate probability distribution on SS2, then randomly
chosen vertices will be in general position with probability 1.

2 The proof of Theorem 2

In the following we want to draw a comparison of subgraph densities of the
crossing graphs Xn to a concept similar to the Buffon Needle Problem (see,
e.g. [5] or [17]). We pick endpoints of segments randomly w.r.t. some probability
distribution and consider the crossings formed by the segments. If the probability
distribution is uniform on the sphere, it is equivalent as throwing a (bended)
needle onto the sphere, where the needle length varies. Now considering a small
number of such segments on the sphere we ask how they will cross each other.

Let µ1 and µ2 be nondegenerate probability measures on SS2. A (µ1, µ2)-
random geodesic segment is a geodesic segment uv whose endpoints u, v are
chosen randomly w.r.t. µ1 and µ2, respectively. For a given graph H of order
k = |H|, we pick k (µ1, µ2)-random geodesic segments on the sphere and look
at the probability that H is a subgraph of their intersection graph. Let A =
{a1, . . . , ak} be a µ1-random set of points in SS2 and B = {b1, . . . , bk} be a µ2

random set of points in SS2. The segments we are considering are a1b1, . . . , akbk.
Note that the probability that H is a subgraph of the intersection graph of
a1b1, . . . , akbk depends on µ1 and µ2 only.

Definition 1. Let X be the intersection graph of k (µ1, µ2)-random geodesic
segments a1b1, . . . , akbk and let H be a graph of order k. For a bijection φ :
V (H)→ V (X) we define

pH := Pr[φ is a graph homomorphism].
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Observe that pH is independent of φ, since the segments aibi (i = 1, . . . , k) are
selected independently.

We want to compare the above model with another model where we pick
n � k points with respect to µ1 and µ2 each, and consider the corresponding
crossing graph Xn of a drawing Dn of Kn,n. We will show that the models are
closely related: with growing n, picking k vertices from Xn, they will with high
probability come from k independent geodesic segments and therefore represent
(µ1, µ2)-random geodesic segments. In the following we fix a graph H and a
mapping φ : V (H)→ V (Xn).

Definition 2. For given Xn, let φ : V (H)→ V (Xn) and we define the random
variable yH,φ on Xn to be

yH,φ(Xn) =

{
1 if φ is a graph homomorphism H → Xn

0 otherwise

and denote its expectation by

Eφ := E[yH,φ].

Note that Eφ is not the same for every φ. For example, if H is a complete
graph, then Eφ = 0 whenever im(φ) contains edges that share a vertex, as those
edges never cross and hence are not adjacent in the crossing graph.

Lemma 1. Let (Xn) be a sequence of the crossing graphs of (µ1, µ2)-random
geodesic drawings Dn of Kn,n for n = 1, 2, . . . , and let H be a fixed graph of
order k. Then

lim
n→∞

1

|Xn|k
∑

φ:V (H)→V (Xn)

Eφ = pH .

Proof. Let im(φ) = {v1w1, . . . , vkwk}. Then if |{v1, . . . , vk, w1, . . . , wk}| = 2n we
are in the setup of Definition 1 and E[yH,φ] = pH . Moreover, there are O(n2k−1)
choices for φ for which |{v1, . . . , vk, w1, . . . , wk}| < 2n and the result follows. ut

Let us now consider the sum of the above defined random variables

YH :=
∑

φ:V (H)→V (Xn)

yH,φ, (3)

and note that YH(Xn) = hom(H,Xn) and E[YH ] =
∑
φ:V (H)→V (Xn)

Eφ. The
aim is to show that YH is in general not far from its expectation. This then gives

us the tool to show the existence of limn→∞
|YH |
|Xn|k = t(H) with probability 1.

Proposition 1. Let YH be defined as in (3). Then we have

var(YH) = O(n4k−2).

The proof of the proposition is in the appendix.
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Proof (of Theorem 2). By Proposition 1 and Chebyshev’s inequality there exists
a constant C such that

Pr
[
|YH − E[YH ]| ≥ kCn2k−1

]
≤ 1

k2
.

Now if we choose k = k(n) appropriately such that k(n)n−1 converges to zero
and the sum

∑∞
n=1

1
k(n)2 is finite we can use the Borel-Cantelli Lemma. For

example, we can choose k = n3/4 and using Lemma 1 we get

Pr

[∣∣∣∣ |YH ||Xn|k
− pH

∣∣∣∣− ∣∣∣∣pH − E[YH ]

|Xn|k

∣∣∣∣ ≥ Cn2k−1/4

|Xn|k

]
≤ 1

n3/2

=⇒ Pr

[∣∣∣∣ |YH ||Xn|k
− pH

∣∣∣∣ ≥ C ′

n1/4

]
≤ 1

n3/2
.

for some constant C ′. Then the Borel-Cantelli Lemma implies the following.

Claim. For each fixed H, |YH ||Xn|k → pH := t(H) with probability 1.

Given that for each H, t(H,Xn)→ t(H) with probability 1, and since the proba-
bilities are countably additive, it follows with probability 1 that t(H,Xn)→ t(H)
for every H. Consequently, the sequence of random crossing graphs (Xn) is con-
vergent with probability 1. ut

3 Blowup of an antipodal drawing of K4,4

In the previous sections, we have established the existence of crossing graphons
and determined densities t(H) for H = K2 if our measures µ1, µ2 are antipo-
dally symmetric. Somewhat surprisingly, these edge densities are the same for
any “suitable” measures µ1, µ2. It is natural to ask what happens with other
homomorphism densities in these crossing graphons. The purpose of this section
is to show that the homomorphism densities of triangles behave differently. To
us, this was not a priori clear. We study a particular case of (µ1, µ2)-random
drawings of complete bipartite graphs and determine t(K3) for the corresponding
graphon W (µ1, µ2).

In the following we fix a drawing D4 of the complete bipartite graph K4,4

where each part consists of two antipodal pairs of vertices on SS2 as in Figure
1.

We will be considering a blowup drawing D
(n)
4 of D4 for which we replace

each vertex from D4 with a circle of some small radius r = r(n) that is centered
at that vertex, and position n evenly spaced vertices on that circle. These n
vertices will be referred to as the node of the corresponding vertex of K4,4. We
also assume that all 8n vertices obtained in this way are in general position. In
that way, each edge of K4,4 is replaced by a complete bipartite graph between the
corresponding nodes which we call the edge bundle. This means for N = 4n that
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v2

w2

v1

v1

w1

w1

α

β γ

δ

Fig. 1. The left part shows a drawing D4 of a K4,4 on parts {v1, v1, v2, v2} and
{w1, w1, w2, w2}. The angles α and β are in the triangle formed by w2, v2 and a
crossing, whereas γ and δ are in a triangle formed by v1, w1 and the same crossing.
The right-hand side shows part of a D

(3)
4 drawing with the circles of w2 and v2 each

containing 3 vertices and with nine edges for each incident bundle emanating from
these two nodes.

D
(n)
4 is a drawing of KN,N . In what follows, we discuss the number of triangles

in the intersection graph (of edges in D
(n)
4 ) when n grows large. To simplify our

discussion about triangles, we first classify the crossings in D
(n)
4 .

3.1 Types of crossings in D
(n)
4

In the blowup drawing D
(n)
4 , we distinguish three types of crossings, depending

on what they stem from, as depicted in Figure 2.

(C) (B) (N)

Fig. 2. Possible crossings in the blow up: Bundle-bundle crossings (C), bundle crossings
(B) and node crossings (N).
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Let us define these types (B), (C), and (N) more precisely and state their
count. The corresponding counting process is described in the appendix.

(C) Two edge-bundles cross in a small neighborhood of a previous crossing in D4.
We call these bundle-bundle crossings (C). Since each edge-bundle consists
of n2 edges, this gives n4 bundle-bundle crossings for each crossing in D4.

(B) Two edges cross within a bundle. We call these bundle crossings (B). Here we

have
(
n
2

)2
crossings per bundle assuming r(n)� n−1 and a suitable rotation

of the circles.
(N) Two edge-bundles cross at a node. We call these node crossings (N). Let

α ∈ (0, π) be the angle between two incident edges e, f in D4 which were
blown up to the edge-bundles, and let crα be the resulting number of node
crossings between the edges in the corresponding edge-bundles. Then we

have: crα + crπ−α = n3(n−1)
2 .

3.2 Triangle densities in D
(n)
4

The crossings in a triangle need to stem from bundle-bundle crossings (C), bun-
dle crossings (B) or node crossings (N) as specified above. We first prove the
following lemma.

Lemma 2. Let D4 be a spherical drawing of a K4,4 where each part consists of
two pairs of antipodal vertices. Then no edge in D4 is crossed twice.

Proof. Let the parts of the K4,4 be A = {v1, v1, v2, v2} and B = {w1, w1, w2, w2}.
Note that the edge v1w1 can only be crossed by an edge between the other
antipodal pairs, i.e. v2w2, v2w2, v2w2, v2w2. All of them lie on the great circle
defined by v2w2 so in fact only one of these edges can cross v1w1. By symmetry
the same holds for the other edges. ut

We classify the triangles in the intersection graph of the blowup drawing D
(n)
4

as follows. We assign each crossing (which is an edge in the intersection graph) a
type (C), (B), or (N) depending on whether it is a bundle-bundle, within bundle
or a node crossing. We say a triangle c1c2c3 is of type (l(c1)l(c2)l(c3)) where l(ci)
is the type of crossing ci.

The above lemma shows that there are no (CCC) or (CCN) triangles in D
(n)
4 .

Also note that (CBB), (BBN) and (CBN) are not possible in general since BB
suggests that all edges are from the same bundle and the bundled edges in (CBN)
cross the third edge either at a node or at a bundle-bundle crossing but not at
both. Triangles of type (NNN) either appear at three different nodes or at one
node. However, we can not have (NNN) triangles at three different nodes since
K4,4 is bipartite and hence triangle-free. By the following lemma, the number
of (NNN) triangles with all three crossings at one node is only of order rn6 and
can therefore be neglected.

Lemma 3. The number of (NNN) triangles in D
(n)
4 that correspond to three

edges at the same node is O(rn6). Moreover, if r(n) � n−1, there are no such
triangles.
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(CCC) (CCN)

Fig. 3. Triangles of type (CCC) and (CCN).

x y

A
B B

2r 2r

d1 d2

Fig. 4. Two edges from node A leading to antipodal nodes B and B can cross. If
d = min{d1, d2} and r ≤ d, then |Lx| = O(rn).

Proof. Let us refer to Figure 4 and consider the possibility that an edge incident
with a vertex y and leading to a node B crosses an edge incident with a vertex
x that leads to the antipodal node B. If the geodesics from x to B intersect the
circle CA corresponding to A, we denote by Lx the set of vertices in A that are
on the smallest circular arc that contains those intersections.

Then it is easy to see that either x ∈ Ly or y ∈ Lx (or both as shown in
the figure). It can be shown (details can be found in the full paper) that the
number of cases where y ∈ Lx or x ∈ Ly is O(rn). In particular, if r � n−1 then
Lx is empty. For each such pair x, y, the number of vertices z whose incident
edges leading to a node different from B and B make an (NNN) crossing triangle
with two edges incident with x and y, respectively, is O((t+ r)n), where t is the
number of vertices on the arc between x and y. We define the parameter l which
is the number of vertices in the node A between x and the lowest point on the
circle of A (assuming that x is in the lower half of the circle and on the left side).
Then t ∈ [2l −Θ(rn), 2l +Θ(rn)]. This gives the following upper bound for the
number of such triples (x, y, z):

4

n/4∑
l=1

O(rn)O(2l + rn) = O(rn3).

Finally, since each such triple involves O(n3) triples of mutually crossing edges
incident with x, y, z, we confirm that the number of considered (NNN) triangles
is O(rn6). ut

We are left with the following four cases.
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(CNN) We consider pairwise crossings of three edges such that two cross at a
bundle-bundle crossing and the third edge crosses one edge each at one node each.
These crossings depend on the angles α, β, γ, δ as depicted in Figure 1. By Section
(N) in Appendix B the number of pairs of vertices x, y such that all edges at angle
α incident to x cross all horizontal edges incident to y is π−α

2π n2 + O(rn2 + n).
It is easy to see that the number of crossings we get in the triangle including α

and β is
(
π−α
2π

) (
π−β
2π

)
n6 +O(rn6 +n5). We have a similar count for the angles

γ and δ. Then we have to add three other contributions corresponding to other
crossings in D4. The antipodal crossing involves a triangles with α, β and γ, δ,
whereas the other two crossings involve triangles with α, γ and β, δ. Overall, this
gives 2

n2 (crα + crδ)(crγ + crβ) +O(rn6 + n5) triangles of this kind.
(BBB) We consider pairwise crossings of three edges such that all edges are

from one bundle. For each bundle we get
(
n
3

)2
+O(rn6) such triangles by Section

(B) in Appendix B. There are 16 bundles so in total we have ∼ 4
9n

6 + O(rn6)
triangles of the type (BBB).

(CCB) We consider pairwise crossings of three edges such that two edges are
in one bundle and cross the third edge at a bundle-bundle crossing. There are

2
(
n
2

)2
n2 + O(rn6) triangles per each crossing in D4. We have 4 crossings so in

total ∼ 2n6 +O(rn6) triangles of this kind.
(BNN) We consider pairwise crossings of three edges such that two are in the

same bundle and cross the third edge at a node. The argument is analogous to
the one for crossings of type (N). Starting at the top vertex, we enumerate the
vertices clockwise along the cycle as in Figure 6. We consider an edge at angle
α which ends in the i-th vertex in part (A) and its crossings to horizontal edges.
From Section (N) in the Appendix B, we know that |Si| = 2i + O(rn), where

Si is as defined there. We can choose from
(
2i+O(rn)

2

)
pairs of left endpoints and(

n
2

)
pairs of right endpoints for a triangle. The number of triangles with an edge

ending in i and another edge ending in a vertex in Wx = {y ∈ A | x ∈ Ly} is of
order O(rn4), where Ly is defined as in the proof of Lemma 3. We consider now
edges at angle α ending in a vertex x in (B). Note that |Sx| = π−α

π n + O(rn).

We can choose for any one of
(π−α

π n+O(rn)
2

)
pairs of left endpoints

(
n
2

)
pairs of

right endpoints for a triangle. The number of triangles with another edge ending
in a vertex in Wx is of order O(rn4). The contribution of triangles from edges
in (C) is the same as for edges in (A). Hence the number of triangles of type
(BNN) is

2

n (π−α)n/2π∑
i=1

(
2i

2

)
·
(
n

2

)+
( α

2π
n2
)
·
(π−α

π n

2

)(
n

2

)
+O(rn6 + n5).

For α and π − α added together, this gives

1

12
n6 − α(π − α)

8π2
n6 +O(rn6 + n5).

Now note that for two bundles at angle α we can choose one of the bundles to
contain the bundled edges. This gives two options. At each node we have two
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pairs of bundles meeting at angle α and two pairs of bundles meeting at angle
π − α. (In addition to these possibilities we get further (BNN) triangles from
two bundles at the same node that lead to antipodal nodes and correspond to
the value of α = π. They give only O(rn6 + n5) triangles.) If α, β, γ, δ are the
angles as in Figure 1, the overall number of (BNN) triangles is

α(α− π) + β(β − π) + γ(γ − π) + δ(δ − π)

π2
n6 +

8

3
n6 +O(rn6 + n5).

If we leave out smaller order terms, the total number of triangles in the
intersection graph by summing up the number of (CNN), (BBB), (CCB) and
(BNN) triangles is

α2 + β2 + γ2 + δ2 − π(α+ β + γ + δ)

π2
n6 +

(2π − α− δ)(2π − γ − β)

2π2
n6 +

46

9
n6.

Theorem 4. Given a drawing D4 of a K4,4 where each part has two antipodal

pairs, let D
(n)
4 be the blowup drawing, and let α, β, γ, δ be the angles defined

above. Then the limiting triangle density t(K3) of the sequence D
(1)
4 , D

(2)
4 , . . . is

equal to

3

212π2

(
(2π − α− δ)(2π − γ − β) + 2(α2 + β2 + γ2 + δ2)− 2π(α+ β + γ + δ)

)
+

23

3 · 210
+O(r).

Proof. We have determined the number of triangles in the intersection graphs.

Dividing by the number of possible triangles in the intersection graph,
(
16n2

3

)
=

163

6 n6 +O(n5), gives the triangle density. ut

4 Blowups as graphons

Finally, let us show that the crossing graphs of drawings D
(n)
4 can be interpreted

as certain graphons.

Theorem 5. For fixed r > 0 let µ1 and µ2 be uniform distributions over two
pairs of antipodal circles on SS2 of radius r each and let W (µ1, µ2) be the cross-

ing graph limit of corresponding drawings. If we consider blow-up drawings D
(n)
4

w.r.t. the centers of the circles of radius r, then the crossing graphs of D
(n)
4

converge and their limit is the graphon W (µ1, µ2).

Proof. All we need to show is that the density t1(H) in the random case limit and
the density t2(H) of the blow-up drawing limit are the same for each graph H.
Let k = |H| be the number of vertices of H and let φ : V (H)→ [k] be a bijection.
For distinct points x1, . . . , xk, y1, . . . , yk in SS2, let X(x1, . . . , xk, y1, . . . , yk) be
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the intersection graph of the geodesic segments x1y1, . . . , xkyk. Consider the
following function

f(x1, . . . , xk, y1, . . . , yk) =

{
1, if v 7→ xφ(v)yφ(v) is a hom. H → X(x1, . . . , yk)

0, otherwise.

Let S1 and S2 be the two circles on which µ1 and µ2 are defined, respectively.
Since f as defined above is measurable because f−1(1) is open, we can represent
t1(H) as

t1(H) =
1

(8πr)k

∫
x∈Sn1 ×Sn2

f(x) dx.

In order to approximate t1(H) consider a set Cn which consists of n equidistant
points on each of the cycles from S1, S2. Let πn : S1 ∪ S2 → Cn be the function
that maps a points from S1 ∪ S2 to its closest point in X. Let gn be a function
gn : (S1 ∪ S2)2n → (Cn)2n that applies πn componentwise. Then fn = f ◦ gn
converges pointwise to f on Sn1 × Sn2 . By the bounded convergence theorem

t1(H) =
1

(8πr)k

∫
x∈Sn1 ×Sn2

f(x) dx =
1

(8πr)k
lim
n→∞

∫
x∈Sn1 ×Sn2

fn(x) dx = t2(H).ut

The theorem shows that the same values for triangle densities in the (µ1, µ2)-
random setting hold as for the blow-up limit in Theorem 4.

Theorem 6. For fixed r > 0 let µ1 and µ2 be uniform distributions over two
pairs of antipodal circles on SS2 of radius r each and let W (µ1, µ2) be the cross-
ing graph limit of the corresponding drawings. Then

83

3 · 212
+O(r) ≤ t(K3,W (µ1, µ2)) ≤ 1

3 · 25
+O(r),

and these bounds are best possible. The limiting triangle density t(K3) depends
on the angles α, β, γ, δ, and any value in the interval

(
83

12288 ,
128

12288

)
is possible.

The proof is in the appendix.

5 Conclusion

It should be noted that the proofs of Theorem 2 and Theorem 3 also extend to
the case of the complete graph Kn where we choose n points from the sphere with
respect to some antipodally symmetric probability measure µ. (Let us observe
that antipodal symmetry is needed for such a result.) In Theorem 4 the value
23

3·210 = 0.00748 appears which is included in the interval given by Theorem
6. Numerical experiments show that the triangle density with respect to the
uniform distribution is close to 0.0075. This matches the mentioned special value
from the blow-up setting. It would be of interest to study the crossing graph limit
for drawings on the sphere of the complete graph or the complete bipartite graph
when we restrict our probability measure to a uniform measure on the sphere.
As Moon already showed in 1965 [11], it holds asymptotically almost surely that
t(K2) = 1

8 , so it would be of interest to find a closed expression for t(K3).
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A Proof of Proposition 1

Proof (of Proposition 1). By definition

var(YH) = E[(YH − E[YH ])2]

= E


 ∑
φ:V (H)→V (Xn)

yH,φ − Eφ

2


=
∑

φ:V (H)→V (Xn)

∑
φ′:V (H)→V (Xn)

E[(yH,φ − Eφ)(yH,φ′ − Eφ′)]. (4)

For independent variables yH,φ and yH,φ′ the expectation E[(yH,φ−Eφ)(yH,φ′ −
Eφ′)] equals zero so we only need to consider those pairs φ and φ′ for which yH,φ
and yH,φ′ are dependent.

The events “φ is a graph homomorphism H → Xn” and “φ′ is a graph homo-
morphismH → Xn” are independent if im(φ) = {e1, . . . , ek} = {v1w1, . . . , vkwk}
and im(φ′) = {e′1, . . . , e′k} = {v′1w′1, . . . , v′kw′k} satisfy

|{v1, . . . , vk, w1, . . . , wk} ∩ {v′1, . . . , v′k, w′1, . . . , w′k}| ≤ 1.

But note that for these sets to share at least two points we have
(
n
2

)
choices

for those two special points and at most (n2k−2)2 for the remaining ones. The
number of edges (e1, . . . , ek) that can be formed by a set of vertices in Xn

{v1, . . . , vk, w1, . . . , wk} does not depend on n, so we have at most O(n4k−2)
pairs yH,φ and yH,φ′ that are dependent as φ and φ′ are defined by (e1, . . . , ek)
and (e′1, . . . , e

′
k) only. Note that for each pair

|E[(yH,φ − µφ)(yH,φ′ − µφ′)]| ≤ 1

since |yH,φ(Xn)− µφ| ≤ 1 for any Xn. Summing up those expectations over the
dependent variables, (4) gives var(YH) = O(n4k−2). ut

B Counting crossings of types (C), (B), and (N)

To help us with counting crossings of type (N) below, we first prove the following
Lemma.

Lemma 4. Let A and B be two nodes corresponding to adjacent vertices in D4

and let x ∈ A. If the geodesics from x to B intersect the circle CA corresponding
to A, we denote by Lx the set of vertices in A that are on the smallest circular
arc that contains those intersections. Then |Lx| = O(rn). Moreover, if Wy =
{x ∈ A | y ∈ Lx}, then |Wy| = O(rn).

Proof. Note that the length of Lx is O(r2/d), where d is the distance from A to
B (see Figure 5). As we consider the distance d to be constant, the number of
vertices y such that y ∈ Lx is O(r2n/(2πr)) = O(rn). Moreover, since the angles
at y and x, as shown in Figure 5, are almost the same as d is large compared to
r, we also have |Wy| = O(rn). ut
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x y

A
B

2r

d

Fig. 5. Lx are the vertices on the arc between the extremal two edges leading from x
to B. The dashed arc in this figure contains vertices in Wy.

In the following we discuss and count the crossings of each type.

(C) Two edge-bundles cross in a small neighborhood of a previous crossing in
D4. (We assume that r(n) is small.) We call these bundle-bundle crossings
(C). Since each edge-bundle consists of n2 edges, this gives n4 bundle-bundle
crossings for each crossing in D4.

(B) Two edges cross within a bundle. We call these bundle crossings (B). Here

we have
(
n
2

)2
crossings per bundle if r(n)� n−1 and suitably rotated circles

considering the following elementary argument:

Claim. Let DA,B be the subdrawing of D
(n)
4 consisting of all edges between

two nodes A,B corresponding to two adjacent vertices of D4. If r(n)� n−1

and the cycles are suitably rotated, then cr(D) =
(
n
2

)2
.

Proof. Any 4-tuple of two vertices from A and two vertices from B deter-
mines precisely one crossing, and each crossing corresponds to precisely one
such 4-tuple of vertices. ut

If we drop the restriction r(n) � n−1 and consider general r the picture
looks slightly different. Referring to Figure 5 we can see that if y ∈ Lx then
the pair x, y does not contribute (B) crossings with any pair of vertices in
B. For another pair of vertices w, z in B we can see that the edges from x
to w, z and from y to the antipodals w, z contribute two crossings. Hence

generally we have
(
n
2

)2
+ O(rn4) bundle crossings and O(rn4) additional

node crossings.

(N) Two edge-bundles cross at a node. We call these node crossings (N). Let
α ∈ (0, π) be the angle between two incident edges e, f in D4 which were
blown up to the edge-bundles, and let crα be the resulting number of node
crossings between the edges in the corresponding edge-bundles. We consider
one bundle to be horizontal whereas the other bundle is counterclockwise
at angle α. We partition the edges from the bundle at angle α into four
sets depending on which vertex in the node they are adjacent to. Starting
at the top vertex, we enumerate the vertices clockwise along the cycle. The
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first π−α
2π n vertices3 belong to part (A), the next α

2πn vertices belong to part
(B), then we have π−α

2π n vertices belonging to part (C) and the last α
2πn

vertices belong to part (D) as in Figure 6. Assuming the circle radius r is
small enough, all edges in one bundle are almost parallel to each other up to
an error term that depends on r. For each vertex x we introduce two sets of
vertices, Sx and Wx. Let y ∈ Sx if all horizontal edges incident with y cross
all edges at angle α that are incident with x, and let Wx = {y ∈ A | x ∈ Ly}
where Ly is defined as in Lemma 3 with respect to the horizontal edges. If
x is the i-th vertex in (A) then |Sx| = 2i + O(rn) and |Wx| = O(rn). If x
is in (B) then |Sx| = π−α

π n + O(rn) and |Wx| = O(rn). If x is in (C) then
a similar count as in (A) applies if we enumerate those vertices starting at
the last vertex in (C). If x ∈ (D) then Sx is empty and |Wx| = O(rn). Note
that each pair x, y such that y ∈ Sx contributes n2 crossing and if y ∈ Wx

then the contribution is O(n2) crossing. Finally the number of crossings is

crα(r) = 2

(π−α)n/2π∑
i=1

(2i+O(rn)) · n2
+

( α
2π
n2
) (π − α

π
+O(rn)

)
n2

=
π − α

2π
· n4 +O(rn4 + n3).

(A)

(C)

(B)

(D)

α

Fig. 6. (A), (B), (C) and (D) are special areas of vertices of a node. An illustration
where 0 < α ≤ π

2
.

3 The numbers of nodes in each part are rounded up or down, but these changes will
make our counts of crossings deviate only in a lower order term and can thus be
neglected.
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x

y

α

Fig. 7. An illustration of the antipodal argument for the total number of node crossings
at one of the nodes. The edges incident with any x and y (x 6= y) yield precisely n2

node crossings.

Let us observe that crα + crπ−α = n3(n−1)
2 . This formula, which is exact,

can be obtained directly by considering all four bundles arriving to a node
as shown in Figure 7. It is apparent from the figure that the total number
of crossings, which is equal to 2 crα +2 crπ−α, can be counted by considering
any ordered pair (x, y) of distinct vertices in the node and observing that
the horizontal edges incident with x and the angle α edges incident with y
leaving in both directions from each vertex yield n2 crossings.

C Proof of Theorem 6

Lemma 5. Let α, β, γ, δ be as in Figure 1. Then α+ β + γ + δ < 2π.

Proof. We refer to Figure 1. Let T be the triangle formed by w2,v2 and the
crossing c of the segments w2v1 and v2w1. Let T ′ be the triangle formed by
v1, w1 and the crossing c and note that T ′ contains T . Note that the angle a at
v1 and the angle b at w1 in T ′ are a = π − γ and b = π − β. As T is within T ′

its area is smaller and hence its angular defect is smaller which is proportional
to the angle sum. This tells us that α+ β < a+ b = 2π− γ− δ which proves the
lemma. ut

Proof (of Theorem 6). By Theorem 5 we can refer to Theorem 4 to find the
extremal bounds. We give a proof for the upper bound first, which is attained
if all angles are close to zero as in Figure 8. This is optimal since rewriting the
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equation from Theorem 4 gives

3

212π2
(4π2 − 4π(α+ β + γ + δ) + (α+ δ)(γ + β) + 2α2 + 2β2 + 2γ2 + 2δ2)

+
23

3 · 210
+O(r)

≤ 3

212π2
(−4π(α+ β + γ + δ) + (2π)(γ + β) + 2πα+ 2πβ + 2πγ + 2πδ)

+
1

3 · 25
+O(r)

≤ 1

3 · 25
+O(r).

v2

w2

v1

v1

w1

w1

α

β
γ

δ

Fig. 8. If w2, v2 approach w1, v1, respectively, then all angles α, β, γ, δ converge to zero.

The claimed value in the lower bound in Theorem 4 is attained for α = β =
γ = δ = π

2 . To construct an example where all values are close to π
2 , we exchange

v1 and v1 with w1 and w1 in Figure 8, respectively. To show that we can not do
better let α = π

2 + a, β = π
2 + b, γ = π

2 + c and δ = π
2 + d. Omitting O(r) terms,

the associated triangle density is

3

212π2

(
(π − a− d)(π − c− b) + 2a2 + 2b2 + 2c2 + 2d2 − 2π2

)
+

23

3 · 210

=
83

3 · 212
+ π(−a− b− c− d)

+
1

2
(a+ b+ c+ d)2 +

1

2
(a− d)2 +

1

2
(b− c)2 + a2 + b2 + c2 + d2

and it attains its global minimum at a = b = c = d = 0 as −a− b− c− d ≥ 0 by
Lemma 5.
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As we can come from any arrangement of four antipodal pairs of points to
any other arrangement by continuously changing the points, and since r can
be arbitrary small, any triangular density in the interval

(
83

12288 ,
128

12288

)
can be

attained with one of these graphons. ut

D Sketch of the proof of Theorem 1

As ref. [10] is not available in its final form at this time, we add a sketch of the
proof of Theorem 1. It is based on the following result, see [9].

Theorem 7. Suppose that n > 0 is an even integer and that P,Q are disjoint
sets, each containing n/2 points, on the unit sphere in general position. Let D be
the geodesic drawing of Kn,n, where points in P ∪ P and Q ∪Q are the vertices
of the bipartition of Kn,n. Then cr(D) = Z(n, n).

Proof (of Theorem 1, sketch).
By the nondegeneracy we can assume that Dn has no antipodal vertices and

let P,Q be the vertices of the bipartition of the Kn,n. Let D be the corresponding
drawing of K2n,2n with parts P ∪ P and Q ∪ Q. We can partition the set of
antipodal geodesic drawings of K2n,2n on the sphere into classes of equivalent
drawings, where two drawings are isomorphic if there exists a homeomorphism
of the sphere which transforms one into the other. There are only finitely many
equivalence classes of geodesic drawings of the complete bipartite graph with 2n
vertices in each part. Let C1, . . . , Cm be those equivalence classes. Considering
drawings D in Ci, if we delete one vertex from each antipodal pair uniformly at
random, we get a drawing Dn. The drawing D has Z(n, n) crossings by Theorem
7 and one of those crossings appears in Dn if and only if all the involved vertices
are in Dn, which is with probability 1

16 . By linearity of expectation

E(cr(Dn) |D ∈ Ci) =
1

16
Z(2n, 2n) =

1

16
n2(n− 1)2.

Using the law of total expectation we get

E(cr(Dn)) =

m∑
i=1

P (D ∈ Ci) · E(cr(Dn) |D ∈ Ci) =
1

16
n2(n− 1)2.

Since Z(n, n) ∼ 1
16n

4 the theorem follows. ut
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