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Hungary; e-mail: geza@renyi.hu

Received 29 August 2001; accepted 21 March 2002
Published online 00 Month 2001 in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/rsa.10053

ABSTRACT: The crossing number of G is the minimum number of crossing points in any drawing
of G. We consider the following two other parameters. The rectilinear crossing number is the
minimum number of crossing points in any drawing of G, with straight line segments as edges. The
pairwise crossing number of G is the minimum number of pairs of crossing edges over all drawings
of G. We prove several results on the expected values of these parameters of a random graph. © 2002
Wiley Periodicals, Inc. Random Struct. Alg., 21: 347–358, 2002

1. INTRODUCTION

A drawing of a graph G is a mapping which assigns to each vertex a point of the plane
and to each edge a simple continuous arc connecting the corresponding two points. We
assume that in a drawing no three edges (arcs) cross at the same point, and the edges do
not pass through any vertex. The crossing number CR(G) of G is the minimum number of
crossing points in any drawing of G. We consider the following two variants of the
crossing number. The rectilinear crossing number LIN-CR(G) is the minimum number of
crossing points in any drawing of G, with straight line segments as edges. The pairwise
crossing number or pair-crossing number, PAIR-CR(G), of G is the minimum number of
crossing pairs of edges over all drawings of G.
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Clearly, PAIR-CR(G) � CR(G) � LIN-CR(G).
Bienstock and Dean [6, 17] constructed a series of graphs with crossing number 4,

whose rectilinear crossing numbers are arbitrary large. On the other hand, Pach and Tóth
[27] proved that, for any graph G, CR(G) � 2(PAIR-CR(G))2. Probably this bound is very
far from being optimal, we can not even rule out that CR(G) � PAIR-CR(G) for any graph G.

The determination of the crossing numbers is extremely difficult. Even the crossing
numbers of the complete graphs are not known. Let

�PAIR-CR � lim
n3�

PAIR-CR�Kn�

�n

2
�2 , �CR � lim

n3�

CR�Kn�

�n

2
�2 , �LIN-CR � lim

n3�

LIN-CR�Kn�

�n

2
�2 .

These limits are known to exist [18] and the best known bounds are 1/30 � �PAIR-CR �
1/16, 1/20 � �CR � 1/16, 0.05191 � �LIN-CR � 0.0639 [1, 7] (see also [10, 18]).

In this paper we investigate the crossing numbers of random graphs. Let G � G(n, p)
be a random graph with n vertices, whose edges are chosen independently with probability

p. Let e denote the expected number of edges of G, i.e., e � p(n
2). We shall always have

e 3 � [indeed, p � �(n�1)] so that G almost surely has e(1 � o(1)) edges.

In [16] it was shown that if e � 10n, then almost surely we have CR(G) � e2

4000.

Consequently, almost surely we also have LIN-CR(G) � e2

4000. As we always can draw a
graph with straight lines, the crossing number (in any form) is never larger than the

number of pairs of edges and the expected number of pairs of edges is 	 e2

2 . Our interest
will be in those regions of p for which the various crossing numbers are, asymptotically,
a positive proportion of the number of pairs of edges.

Let

�LIN-CR�n, p� �
E
LIN-CR�G��

e2 , �CR(n, p) �
E
CR�G��

e2 , �PAIR-CR�n, p� �
E
PAIR-CR�G��

e2 .

We have �PAIR-CR(n, p) � �CR(n, p) � �LIN-CR(n, p) for any n, p.

Theorem 1. For any fixed n, �LIN-CR(n, p), �CR(n, p), �PAIR-CR(n, p) are increasing,
continuous functions of p.

With Theorem 1 we may express (roughly) our two central concerns. At which p �
p(n) are �LIN-CR(n, p), �CR(n, p), �PAIR-CR(n, p) bounded away from zero? At which
p � p(n) are �LIN-CR(n, p), �CR(n, p), �PAIR-CR(n, p) close to the values �LIN-CR, �CR,
�PAIR-CR, respectively? Our results for these three crossing numbers shall be quite
different. We are uncertain whether or not that represents the reality of the situation. The
following relatively simple result shows basically that, for p � 1

n, all three crossing
numbers are asymptotically negligible and that, for p � c

n with c � 1 fixed, the three
crossing numbers have not reached their limiting values.

Theorem 2.

1. lim supn3� �LIN-CR(n, c/n) � 0 for c � 1
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2. lim supn3� �CR(n, c/n) � 0 for c � 1
3. lim supn3� �PAIR-CR(n, c/n) � 0 for c � 1
4. limc31 lim supn3� �LIN-CR(n, c/n) � 0
5. limc31 lim supn3� �CR(n, c/n) � 0
6. limc31 lim supn3� �PAIR-CR(n, c/n) � 0
7. lim supn3� �LIN-CR(n, c/n) � �LIN-CR for all c
8. lim supn3� �CR(n, c/n) � �CR for all c
9. lim supn3� �PAIR-CR(n, c/n) � �PAIR-CR for all c.

Theorem 2 gives only upper bounds for the various crossing numbers. The main results
of this paper, given in Theorems 3, 4, 5, deal with lower bounds for the three crossing
numbers. Our weakest result is for the pair-crossing number.

Theorem 3. For any � � 0, p � p(n) � n��1,

lim inf
n3�

�PAIR-CR�n, p� � 0.

For the crossing number we have a much stronger result.

Theorem 4. For any c � 1 with p � p(n) � c/n

lim inf
n3�

�CR�n, p� � 0.

As LIN-CR(G) � CR(G), the lower bound of Theorem 4 applies also to the rectilinear
crossing number. Our most surprising result is that with the rectilinear crossing number
one reaches an asymptotically best limit in relatively short time.

Theorem 5. If p � p(n) � ln n
n , then

lim
n3�

�LIN-CR�n, p� � �LIN-CR�n, p�.

2. UPPER BOUNDS

First we prove Theorem 1. Let f be any real valued function on graphs. Then with G 	
G(n, p)

E
f�G�� � �
H

f�H�pe�H��1 	 p��n
2��e�H�,

where H runs over the labelled graphs on n vertices and e(H) is the number of edges of
H. This is a polynomial and hence a continous function of p, giving the second part of
Theorem 1. We argue that �CR(n, p) is an increasing function of p, the arguments in the
other cases are identical. For 0 � p, q � 1 we may view G(n, p) as a two-step process,
first creating G(n, p) and then taking each edge from G(n, p) with probability q. After
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the first stage consider a drawing with the minimal number of crossings X, so that E[X]
� �CR(n, p). Now keep that drawing but take each edge with probability q. Each crossing
is still in the new picture with probability q2. This gives a drawing of G(n, pq) with
expected number of crossings q2�CR(n, p). We do not claim this drawing is optimal, but
it does give the desired upper bound as E[CR(G(n, p))] � q2E[CR(G(n, p))], completing
Theorem 1.

The first six parts of Theorem 2 will come as no surprise to those familiar with random

graphs as in the classic papers of Erdős and Rényi it was shown that with p � c
n the

random graph G(n, p) is almost surely planar when c � 1. Our argument is a bit
technical, however, as we must bound the expected crossing number.

We prove only part 1, for c � 1. Parts 2 and 3 for c � 1 follow immediately, since
they involve smaller crossing numbers. The statements for c � 1 follow from parts 4, 5,
and 6, respectively. Fix c � 1, set p � c

n and X � LIN-CR(G) with G 	 G(n, p). Let Y
be the number of cycles of G and Z the number of edges of G. Then we claim X � YZ.
Remove from G one edge from each cycle. This leaves a forest which can be drawn with
straight lines and no crossings. Now add back in those Y edges as straight lines. At worst
they could hit every edge, giving � YZ crossings. With c � 1 E[Y] � ¥i�3

n �n�i

2i pi � ¥i�3
�

ci is bounded by a constant, say A. As Z has Binomial Distribution standard bounds give,
say Pr[Z � 10n] � 
�n for some explicit 
 � 1. As X � n4 always, X � 10nY �
n4�(Z � 10n) where � is the indicator random variable. Thus E[X] � 10An � n4
�n �
o(n2). This completes the proof of parts 1, 2, and 3 for the case c � 1.

Now fix c � 1 � � with � positive and small. Set p � 1 � �
n , p
 � 1 	 �

n and let p* satisfy

p
 � p* � p
p* � p so that p* 	 2�
n . We may consider G(n, p) as the union of

independently chosen G(n, p
) and G(n, p*). Say the first has rectilinear crossing number
X and Y edges and the second has Z edges. Then their union has rectilinear crossing
number at most X � Z(Y � Z) as we can draw G(n, p
) optimally and assume all other
pairs of edges do intersect. But E[X] � o(n2), and it is easy to show that E(Z(Y � Z)) 	
E(Z)(E(Y � Z)) 	 1

2 n2�(1 � �). Thus

E
LIN-CR�G�� � �1 � o�1��1
2 ��1 � ��n2,

from which part 4 of Theorem 2 follows. Parts 5 and 6 then also follow as they involve
smaller crossing numbers.

The final three parts of Theorem 2 are also natural to those familiar with random
graphs. For c � 1 fixed G(n, c

n) has a “giant component” with �(n) vertices. Outside the
giant component there are �(n) edges all lying in trees of unicyclic components. These
edges may be drawn with no crossings, and that will involve a positive proportion of the
potential edge crossings. Again, our argument will be a bit technical as we must deal with
expectations. We state the argument only for rectilinear crossing number but it is the same
in all three cases.

We first note a deterministic result: Let G be any graph on n vertices with e edges.
Then

LIN-CR�G�

e2 �
4 � LIN-CR�Kn�

�n�4
.
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Fix a drawing of Kn with LIN-CR(Kn) crossings. Define a random drawing of G by
randomly mapping its n vertices bijectively to the n vertices of the drawing. Let e1, e2 be
two edges of G with no common vertex, there being at most e2/ 2 such unordered pairs.
They may be mapped to a particular crossing of the drawing of Kn in eight ways, so they
have probability 8 � LIN-CR(Kn)/(n)4 of being mapped to a crossing. Now the expected
number of crossings of G in this random drawing is at most, by Linearity of Expectation,
e2

2
8 � LIN-CR�Kn�

�n�4
and thus there exists a drawing of G with at most that many crossings.

As the right-hand side approaches �LIN-CR, we have

LIN-CR�G�

e2 � �LIN-CR � o�1�,

where the o(1) term approaches zero in n, uniformly over all graphs G.
With c � 0 fixed (this argument is only needed for c � 1 but works for all positive

c), p � c
n, and G 	 G(n, p), let X denote the number of edges and Y denote the number

of isolated edges. The savings comes from noting that isolated edges can always be added
to a graph with no additional crossings. Thus

E
LIN-CR�G�� � E
�X 	 Y�2���LIN-CR�o�1��.

Here E[X] 	 c
2 n and E[Y] � (2

n) p(1 � p)2n�4 	 c
2 e�2cn and elementary calculations

give

E
�X 	 Y�2� � E
X 	 Y�2 � � c

2
�1 	 e�2c�n� 2

With e :� p(2
n) 	 c

2 n we have

E
LIN-CR�G��

e2 � �LIN-CR�1 	 e�2c�2�1 � o�1��

Comments and Open Questions. We note that as c approaches infinity the (1 � e2c)2

term above approaches 1. The above bound may be improved somewhat by letting Y
denote the edges in isolated trees and unicyclic components and there are even further
improvements possible. Still, all these improvements seem to approach 1 as c approaches
infinity. This leads to an intriguing conjecture: If p(n) �� 1

n then �LIN-CR(n, p) 3 �LIN-CR.
One may make the same conjecture for all three variants of the crossing number. Indeed,
this entire paper may be viewed as an attempt (thus far unsuccessful) of the authors to
resolve these conjectures.

We conjecture that for any c � 0, the limits limn3� �LIN-CR(n, c/n), limn3�(n, c/n),
and limn3� �PAIR-CR(n, c/n) exist. This follows from Theorem 2, for c � 1. If this
conjecture is true, it is not hard to see that the functions fLIN-CR(c) � limn3� �LIN-CR(n,
c/n), fCR(c) � limn3� �CR(n, c/n), and fPAIR-CR(c) � limn3� �PAIR-CR(n, c/n) are
continuous and increasing for all c � 0.
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3. THE PAIR-CROSSING NUMBER

Here we prove Theorem 3. Fix � � 0 and set p � p(n) � n��1. Our object is to show

lim inf
n3�

�PAIR-CR�n, p� � 0.

This is equivalent to showing that for n sufficiently large

E
PAIR-CR�G�n, p��� � 
n4p2

for some 
 dependent only on �. For L � 1 we let K5(L) denote the following graph:

● There are five vertices x1, . . . , x5.
● For each distinct pair xi, xj there is a path between them of length L.

There are no other vertices nor edges so K5(L) has 5 � 10(L � 1) vertices and 10L
edges. Note that K5(L) is a topological K5. Hence in any drawing of K5(L) there must be
at least one crossing. We shall fix L such that L� � 1. We shall show that G contains
many K5(L). Each K5(L) will force at least one crossing. With L fixed this is a positive
(albeit only 0.01L�2) proportion of the square of the number of edges involved. When
this is carefully counted over all K5(L), we shall see that the total number of crossings is
at least this constant times the square of the total number of edges.

We use three results about the almost sure behavior of G(n, p). In the third K is any
fixed constant.

1. Every vertex has degree 	 np.
2. Between every pair of distinct vertices there are 	 nL�1pL paths of length L.
3. For any distinct x, y, z1, . . . , zK there are 	 nL�1pL paths of length L between x

and y that do not use any of the zj.

The first result holds whenever np � ln n and follows from basic Large Deviation
bounds on the degree of a vertex. Both the first and the second result are examples of a
more general result [19] on counting extensions. For the third we note from [19] that the
probability that the number of paths of length L between fixed x and y is not in [(1 �
�)nL�1pL, (1 � �)nL�1pL] is exponentially small. Fix x, y, z1, . . . , zK. Consider
L-paths from x to y on G with z1, . . . , zK deleted, which has distribution G(n � K, p).
The K has negligible effect and so with exponentially small failure this number is as
desired—hence almost surely it is as desired for all O(nK�2) choices of x, y, z1, . . . , zK.

Now we count the K5(L). There are (5
n) 	 1

5! n5 choices for x1, . . . , x5. We want to
know how many ways we can add the ten paths, say P1, . . . , P10, one between each pair
of vertices. Suppose we have already selected P1, . . . , Pi. Then a constant number of
vertices have been taken. Thus the number of choices for Pi�1 is 	 nL�1pL. So we are
making ten choices, and each time we have 	 nL�1pL choices so the total number of
choices is 	 [nL�1pL]10. This gives a total of 	 1

5! n10L�5p10L copies of K5(L). For each
one we count one crossing. Now consider a crossing between, say, edges uv and wz. How
many K5(L) do they lie on? Renumbering for convenience say the path from x1 to x2 has
u as its ith and v as its (i � 1)st point and the path from x3 to x4 has w as its jth and z
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as its ( j � 1)st point. There are L2 choices for i, j. Now fix u, v, w, z and i, j. From
the first property there are 	 (np)i paths of length i starting at u, 	 (np)L�i�1 paths of
length L � i starting at v and similarly for w, z. Further these numbers are not
asymptotically effected when we require that they miss a fixed number of points. So we
extend u, v, w, z to some x1, x2, x3, x4 in 	 (np)2(L�1) ways. We have n choices for
x5 and then 	 (nL�1pL)8 ways to complete the remaining eight paths forming K5(L).
Thus edges uv, wz lie on 	 L2n10L�9p10L�2 different K5(L). So each crossing has been
counted at most that many times and hence the number of crossings is at least asymp-
totically

1
5! n10L�5p10L

L2n10L�9p10L�2 �
1

120L2 n4p2,

as desired.

Comments and Open Questions. As we must take L � ��1 the constant 1
120 L�2 in this

result goes to zero as � 3 0. This is in surprising contrast to the crossing number CR(G)
discussed in the next section. That crossing number becomes a positive proportion of the
square of the number of edges already at p � c

n when c � 1. Can the pair-crossing number
and the crossing number have such different behavior? We doubt it. As mentioned in the
Introduction, we cannot rule out the possibility that the pair-crossing number and the
crossing number are always exactly the same. We can certainly make the weaker
conjecture that the expectation of the pair-crossing number of G(n, p) becomes �(n4p2)

already at p � 1 � �
n . We further note that we have no idea at which p �PAIR-CR(n, p) gets

within o(1) of its limit �PAIR-CR.
Pach and Tóth [17] introduced another variant of the crossing number. The odd-

crossing number, ODD-CR(G), of any graph G is the minimum number of pairs of edges
that cross an odd number of times, over all drawings of G. Clearly, for any graph,
ODD-CR(G) � PAIR-CR(G). With a little modification, the above argument works also for
the odd-crossing number, therefore, the statement of Theorem 3 holds also for the
odd-crossing number.

4. THE CROSSING NUMBER

Here we prove Theorem 4. Fix c � 1 and set p � c
n. Let G 	 G(n, p). Our object is to

show

lim inf
n3�

E
CR�G��

��n
2�p�2 � 0.

As c is constant this is equivalent to showing that for n sufficiently large

E
CR�G�� � 
n2

CROSSING NUMBERS OF RANDOM GRAPHS 353
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for some 
 dependent only on c.
We begin by reviewing in outline form the argument of Pach and Tóth [17], which

requires that c be a sufficiently large constant. We will see why their argument does not
work for c � 1 � � with � � 0 small and then how a modification of their argument,
combined with results on G(n, p), does work.

Define the bisection width of G, denoted by b(G), as the minimal number of edges
running between T (top) and B (bottom) over all partitions of the vertex set into two
disjoint parts V � T � B such that 2

3�V� � �T�, �B� �
1
3�V�. (The specific constant 2

3 is not
essential here, we need only to assure that the sizes of T and B are within a constant
factor.) Leighton observed that there is an intimate relationship between the bisection
width and the crossing number of a graph [12], which is based on the Lipton-Tarjan
separator theorem for planar graphs [13]. The following version of this relationship was
obtained by Pach, Shahrokhi, and Szegedy [15]. Let G be a graph on vertex set V with dv

denoting the degree of vertex v. Then

b�G� � 10�CR�G� � 2� �
v�V�G�

dv
2.

With G 	 G(n, c
n), E[dv

2] 	 c2 � O(1) and almost surely 2�¥v�V dv
2 � O(�n),

which proves to be negligible. For c a large constant basic probabilistic methods give that
almost surely every partition V � T � B with 2

3�V� � �T�, �B� �
1
3�V� has a constant

proportion of the edges running between them. That is, almost surely b(G) � �(n).
Hence almost surely CR(G) � �(n2).

Now suppose c � 1 � � with � � 0 small. The difficulty is: almost surely b(G) is
zero! Why? From classic Erdős-Rényi results G will have a “giant component” of size 	
kn with k � k(c) and all other components will have size O(ln n). The function k � k(c)
was given explicitly by Erdős and Rényi, but we need here only to note that limc31�

k(c) � 0. For � a small (actually, not so small) but fixed constant and c � 1 � �, the
giant component has size kn with k � 2

3. Place the giant component in the top T. Now
take all other components sequentially. Add them to the top T if �T� remains below
2
3 n; otherwise place them in the bottom B. This gives a partition with 2

3�V� � �T�, �B�
�

1
3�V� and no edges running between T and B.
Our approach shall be to show, effectively, that the giant component of G(n, c

n) has
high bisection width for any c � 1. To do this, we employ an “enhancement” approach
which we take, with only slight modification, from the work of Łuczak and McDiarmid
[14].

Theorem 6. Let V be a set of m vertices. Let T be a tree on V. Let G be the random graph
on V with edge probability p � a

m. For a � 0 fixed almost surely

b�T � G� � ��m�.

That is, there exists � � 0 dependent only on a such that Pr[b(T � G) � m�] approaches
zero as m approaches infinity.

Consider partitions V � V1 � V2 such that T has at most m� cut edges. For i � m�
we can choose i cut edges in at most (i

m�1) � (i
m) ways and orient them (selecting one
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endpoint for V1 and the other for V2) in at most 2i ways. As T is connected, these choices
determine the partition. Hence the number of such partitions is at most

�
i�m�

�m
i �2i � 2m� �

i�m�

�m
i � � 2m���H����,

where H(�) :� �� log2 � � (1 � �) log2(1 � �) is the standard entropy function.
Now fix a partition V � V1 � V2 with m

3 � �Vi� �
2m
3 for i � 1, 2. Let b(V1, V2);

G) denote the number of edges { x, y} of G with x, y in different Vi. Then

b��V1, V2�; G� � B� �V1� � �V2�,
a

m� ,

where B is the binomial distribution. As �V1� � �V2� �
2
9 m2,

Pr
b��V1, V2�; G� � m�� � Pr�B�2

9
m2,

a

m� � m��.

This last large deviation probability can be bounded in a number of ways. For our
purposes let us assume � � a

9 and use that (see, e.g., the Appendix of [5]) Pr[B(n, p) �
1
2 np] � e�np/8.

We select � � 0 such that � � a
9 and

�ln 2��� � H���� �
a

36
.

Each of the at most 2m(��H(�)) partitions of V which has fewer than m� cut edges with
respect to T, has probability less than exp[�1

8
2a
9 m] of having fewer than m� cut edges

with respect to G, and so the expected number of partitions with fewer than m� cut edges
with respect to both T and G is at most the product. Our selection of � insures that the
product approaches zero, completing the proof of Theorem 6.

Now we prove Theorem 4. Let c � 1 be fixed. Fix c1, a with 1 � c1 � c and c1 �

a � c; for definiteness we may take c1 � 1 � c
2 and a � c 	 1

2 . Set p � c
n, p1 �

c1

n and p2

such that p � p1 � p2 � p1p2. Note p2 	 a
n. We may regard G 	 G(n, p) as the union

of independently chosen G1 	 G(n, p1) and G2 	 G(n, p2). On G1 almost surely there
exists a “giant component” X with �X� 	 d1n, where d1 is an explicit function of c1 given
in the classic Erdős-Rényi papers. Set m � �X�. Then p2m 	 ad1. Then G1�X contains
some tree T. From Theorem 6 there is a constant � such that almost surely (T � G2)�X
has bisection width at least m� 	 n(d1�). As adding edges can only increase the
bisection width b(G�X) � n(d1�)(1 � o(1)). Applying the basic relationship between
bisection width and crossing numbers gives CR(G�X) � �(n2). Hence CR(G) �
CR(G�X) � �(n2).

Comments and Open Questions. From Theorem 1 we know �CR(n, p) 3 �CR as p 3
1, and we have just shown that �CR(n, c

n) is bounded from below. How large does p �
p(n) need to be so that �CR(n, p(n)) 	 �CR? We have already conjectured that for any
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p � p(n) with np 3 � we have �CR(n, p) 3 �CR. But we cannot even show that �CR(n,
p) 3 �CR when p � 1 is a constant. Suppose (which is surely true though we are unable
to show it) that limn �CR(n, c

n) exists and call it fCR(c). Then fCR(c) would be increasing
so limc3� fCR(c) would exist but might be a value strictly less than �CR. Would there be
a second (or even a third or more) region (something like p � �(n�1/ 2) or, more likely,
p � �(1)) where �CR(n, p) increases (in some asymptotic sense) until it finally reaches
�CR?

5. THE RECTILINEAR CROSSING NUMBER

Here we show Theorem 5. An order type of the points x1, x2, . . . , xn in the plane (with
no three colinear) is a list of orientations of all triples xixjxk, i � j � k [14]. Elementary
geometry gives that the order type of the four triples xixjxk, xixjxl, xixkxl, xjxkxl

determines whether or not the straight line segments xixj and xkxl intersect. Let X be the
set of all order types of the points x1, x2, . . . , xn in the plane. We shall make critical use
of a result of Goodman and Pollack [8, 9] that �X� � n6n. We note that the Goodman-
Pollack result is derived from the Milnor-Thom theorem, a now classical and very deep
result concerning algebraic varieties.

First, however, we examine a fixed order type � � X. For any graph G with vertices
v1, . . . , vn let LIN-CR�(G) denote the number of crossings in the straight line drawing of
G, where vi is placed at xi in the plane and x1, . . . , xn have order type �.

Theorem 7. Let G(n, p) be a random graph with vertices v1, v2, . . . , vn, with edge
probability 0 � p � p(n) � 1, and let e � p(2

n). Then

Pr
�LIN-CR��G� 	 E
LIN-CR��G��� � 3
e3/2� � 3 exp��
2/4�

holds for every 
 satisfying (e/4)3 exp(�e/4) � 
 � �e.

Proof. We follow the approach of Pach and Tóth [16]. (We note that general polynomial
concentration results of Kim and Vu [11] could also be used.) Let e1, e2, . . . , e(2

n) be the
edges of the complete graph on V(G). Define another random graph G* on the same
vertex set, as follows. If G has at most 2e edges, let G* � G. Otherwise, there is an i �
(2

n) so that �{e1, e2, . . . , ei} � E(G)� � 2e, and set E(G*) � {e1, e2, . . . , ei} � E(G).
Finally, let f(G) � LIN-CR�(G*).

The addition of any edge to G can modify the value of f by at most 2e. Following the
terminology of Alon–Kim–Spencer [3], we say that the effect of every edge is at most 2e.
The variance of any edge is defined as p(1 � p) times the square of its effect. Therefore,
the total variance cannot exceed

�2 � �n
2�p�2e�2 � 4e3.

Applying the Martingale Inequality of [3], which is a variant of Azuma’s Inequality [5]
(see also [4]), we obtain that for any positive 
 � �/e � 2�e,
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Pr
�f�G� 	 E
f�G��� � 
� � 2
e3/2� � 2 exp��
2/4�.

Our goal is to establish a similar bound for LIN-CR�(G) in place of f(G). Obviously,

Pr
f�G� � LIN-CR��G�� � Pr
G � G*� � exp��e/4�.

Thus, we have

�E
f�G�� 	 E
LIN-CR��G��� � Pr
f�G� � LIN-CR��G�� max LIN-CR��G�

� exp��
e

4� n4

8
� 
e3/2,

whenever 
 � (e/4)3exp(�e/4) (say). Therefore,

Pr
�LIN-CR��G� 	 E
LIN-CR��G��� � 3
e3/2�

� Pr
LIN-CR��G� � f�G�� � Pr
�f�G� 	 E
f�G��� � 2
e3/2�

� exp��e/4� � 2 exp��
2/4�.

If 
 � �e, the last sum is at most 3 exp(�
2/4), as required. This concludes the proof
of Theorem 7.

Now we can prove Theorem 5. Fix p � p(n) with p(n) �� ln n
n and G 	 G(n, p). Set

e� p(2
n). Let Cn � �LIN-CR(n, 1). Since � � X, E[LIN-CR�(G)] � p2

LIN-CR�(Kn) � Cne2.
Let � � 0 be arbitrarily small, but fixed. Then

Pr
LIN-CR�G� � �Cn 	 ��e2� � �
��X

Pr
LIN-CR��G� � E
LIN-CR��G�� 	 �e2�.

We apply Theorem 7 with 3
e3/ 2 � �e2 so that 
2/4 � 1
36 �2e. The growth rate of p(n)

insures that this is o(n�6n) for any fixed positive �. The Goodman-Pollack result critically
bounds �X� � n6n. Hence the sum goes to zero, as desired.

Comments and Open Quesetions. We have not been able to determine if the condition

p � ln n
n in Theorem 5 is necessary. We have already conjectured that for any p � p(n)

with np 3 � we already have limn3� �LIN-CR(n, p) � �LIN-CR. While the Goodman-
Pollack theorem itself cannot be improved asymptotically [2], it might be the case that
there are few (in some sense) near optimal drawings so that the n��(n) error probability
used in the proof of Theorem 5 may not be fully necessary. This, however, remains highly
speculative.
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