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But from (3.7), using again the fact about the exponential function, we have 

-,,/2 < < c:/2 e {h(}2'" (}m _ J-liJ-l2'" J-lm _ e (}1(}2··· (}m, 

which combined with the previous inequality implies 

with probability at least ~. Since Z iZ2 ... Zm = N- i and (}1(}2 ... (}m = IM( G)I- i , 

our estimator N for IM(G)I satisfies requirement (3.1). Thus the algorithm that 
computes computes N as above is an FPRAS for IM(G)I. 

The run-time of the algorithm is dominated by the number of samples re
quired, which is 8m :::; 75c 2m 2 , multiplied by the time-per-sample, which is 
T(n, m, f); the claimed time-bound is immediate. 0 

Exercise 3.5. Prove a result analogous to Proposition 3.4 with (proper vertex) 
q-colourings of a graph replacing matchings. Assume that the number of colours q 
is strictly greater than the maximum degree Ll of G. There is no need to repeat all 
the calculation, which is in fact identical. The key thing is to obtain an inequality 
akin to (3.5), but for colourings in place of matchings. 

In light of the connection between approximate counting and almost uniform 
sampling, methods for sampling from complex combinatorially defined sets gain 
additional significance. The most powerful technique known to us is Markov chain 
simulation. 

3.3 Markov chains 

We deal exclusively in this section with discrete-time Markov chains on a finite 
state space D. Many of the definitions and claims extend to countable state spaces 
with only minor complication. In Chapter 6 we shall need to employ Markov chains 
with continuous state spaces, but the corresponding definitions and basic facts will 
be left until they are required. See Grimmett and Stirzaker's textbook [33] for a 
more comprehensive treatment. 

A sequence (Xt E D)~o of random variables (LV'S) is a Markov chain (MC), 
with state space D, if 

Pr[Xt+i = y I X t = Xt, X t - i = Xt-i,"" Xo = Xo] = Pr[Xt+i = y I X t = xtl, 
(3.10) 

for all tEN and all Xt, Xt-i, ... ,Xo E D. Equation (3.10) encapsulates the Marko
vian property whereby the history of the MC prior to time t is forgotten. We 
deal only with (time-) homogeneous MCs, i.e., ones for which the right-hand side 
of (3.10) is independent of t. In this case, we may write 

P(X, y) := Pr[Xt+l = y I X t = x], 



Markov chains 31 

where P is the transition matrix of the MC. The transition matrix P describes 
single-step transition probabilities; the t-step transition probabilities pt are given 
inductively by 

t( ) {I(X' y), if t = 0; 
P x, y:=" t 1 , , 

L..Jy'ED P - (x, y )P(y ,y), if t > 0, 

where I denotes the identity matrix I(x, y) := 8xy . Thus pt(x, y) = Pr[Xt = y I 
Xo =xJ. 

A stationary distribution of an MC with transition matrix P is a probability 
distribution 7f : D ---+ [0, 1] satisfying 

7f(Y) = L 7f(x)P(x, y). 
xED 

Thus if Xo is distributed as 7f then so is Xl (and hence so is X t for all tEN). 
A finite MC always has at least one stationary distribution. An MC is irreducible 
if, for all x, y E D, there exists atE N such that pt(x, y) > 0; it is aperiodic if 
gcd{t: pt(x,x) > O} = 1 for all x E D.5 A (finite-state) MC is ergodic ifit is both 
irreducible and aperiodic. 

Theorem 3.6. A n ergodic M G has a unique stationary distribution 7f; moreover the 
MG tends to 7f in the sense that pt(x, y) ---+ 7f(y), as t ---+ 00, for all xED. 

Informally, an ergodic MC eventually "forgets" its starting state. Computa
tion of the stationary distribution is facilitated by the following little lemma: 

Lemma 3.1. Suppose P is the transition matrix of an MG. If the function 7f' : 

D ---+ [0, 1] satisfies 

7f'(x)P(x,y) = 7f'(y)P(y,x), for all x,y ED, (3.11) 

and 

L 7f'(x) = 1, 
xED 

then 7f' is a stationary distribution of the MG. If the MG is ergodic, then clearly 
7f' = 7f is the unique stationary distribution. 

Proof. We just need to check that 7f' is invariant. Suppose Xo is distributed as 7f'. 

Then 

Pr[Xl = yJ = L 7f'(x)P(x,y) = L 7f'(y)P(y,x) = 7f'(y) . 
xED xED 

SIn the case of an irreducible Me, it is sufficient to verify the condition 
gcd{t: pt(x,x) > O} = 1 for just one state x E Q . 

o 
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Remark 3.8. Condition (3.11) is known as detailed balance. An MC for which 
it holds is said to be time reversible. Clearly, Lemma 3.7 cannot be applied to 
non-time-reversible MCs. This is not a problem in practice, since all the MCs 
we consider are time reversible. In fact, it is difficult in general to determine 
the stationary distribution of large non-time-reversible MCs, unless there is some 
special circumstance, for example symmetry, that can be taken into consideration. 
Furthermore, all the usual methods for constructing MCs with specified stationary 
distributions produce time-reversible MCs. 

Example 3.9. Here is a natural (time homogeneous) MC whose state space is 
the set M (G) of all matchings (of all sizes) in a specified graph G = (V, E). 
The transition matrix of the MC is defined implicitly, by an experimental trial. 
Suppose the initial state is Xo = M E M(G). The next state Xl is the result of 
the following trial: 

1. With probability ~ set Xl <- M and halt. 

2. Otherwise, select e E E( G) and set M' <- M EB {e }.6 

3. If M' E M(G) then Xl <- M' else Xl <- M. 

Since the MC is time homogeneous, it is enough to describe the first transition; 
subsequent transitions follow an identical trial. Step 1 may seem a little unnatural, 
but we shall often include such a looping transition to avoid a certain technical 
complication. Certainly its presence ensures that the MC is aperiodic. The MC is 
also irreducible, since it is possible to reach the empty matching from any state by 
removing edges (and reach any state from the empty matching by adding edges). 
Thus the MC is ergodic and has a unique stationary distribution. 

Exercise 3.10. Demonstrate, using Lemma 3.7, that the stationary distribution of 
the MC of Example 3.9 is uniform over M(G). 

Exercise 3.10 and Proposition 3.4, taken together, immediately suggest an 
approach to estimating the number of matchings in a graph. Simulate the MC on 
M( G) for T steps, starting at some fixed state Xo, say Xo = 0, and return the final 
state X T. If T is sufficiently large, this procedure will satisfy the requirements of an 
almost uniform sampler for matchings in G. Then the method of Proposition 3.4 
may be used to obtain a randomised approximation scheme for the number of 
matchings 1M (G) I. Whether this approach is feasible depends crucially on the 
rate of convergence of the MC to stationarity. We shall prove in Chapter 5 that 
a modification7 of the Me described in Example 3.9 does in fact come "close" to 
stationarity in a polynomial number of steps (in the size of the graph G), hence 
yielding an FPRAS for the number of matchings in a graph. 

6The symbol EEl denotes symmetric difference. 
7In fact, by comparing the original and modified MCs [19], one can show that the MC as 

presented in Example 3.9 also converges in polynomially many steps. 



M. Jerrum 
© Birkhauser Verlag 2003

Counting, Sampling and Integrating: Algorithms and Complexity



34 Chapter 4: Coupling and colourings 

1. Select a vertex v E V, u.a.r. 

2. Select a colour CEQ \ Xo(r(v)), u.a.r. 

3. Xl(V) ;- C and Xl(U) ;- Xo(u) for all U f. v. 

Figure 4.1: Trial defining an MC on q-colourings. 

contain KL1+l as a connected component [7, 9J.2 The proof of Brooks' theorem is 
effective, and yields a polynomial-time algorithm for constructing a q-colouring. 
It is also best possible in the (slightly restricted) sense that there are pairs, for 
example q = 3, .1 = 4, which just fail the condition of the theorem, and for which 
the problem of deciding q-colourability is NP-complete, even when restricted to 
graphs of maximum degree .1. So if we are aiming at an efficient sampling proce
dure for q-colourings we should certainly assume q 2 .1. Moreover, to approximate 
the number of q-colourings using the reduction of Exercise 3.5 we need to assume 
further that q > .1. Before we complete the work of this section, we shall need to 
strengthen this condition still further. 

So let e = (V, E) be a graph of maximum degree .1 and let f2 denote the set 
of all q-colourings of e, for some q > .1. Denote by r( v) = {u : {u, v} E E( e)} 
the set of vertices in e that are adjacent to v. Consider the (time-homogeneous) 
MC (Xt ) on f2 whose transitions are defined by the experimental trial presented 
in Figure 4.1. Here we are considering a colouring as a function V ---) Q, so Xo (u) 
denotes the colour of vertex u in the initial state, and Xo(r(v)) = {Xo(u) : u E 
rev)} denotes the set of all colours applied to neighbours of v. Note that the 
assumption q > .1 makes it easy to construct a valid initial state Xo. 

Exercises 4.1. 1. Prove that the above MC is irreducible (and hence ergodic) 
under the (stronger) assumption q 2 .1+2. Further prove, using Lemma 3.7, 
that its (unique) stationary distribution is uniform over f2. 

2. [Alan Sokal.J Exhibit a sequence of connected graphs of increasing size, with 
.1 = 4, such that the above MC fails to be irreducible when q = 5. (Hint: 
as a starting point, construct a "frozen" 5-colouring of the infinite square 
lattice, i.e., the graph with vertex set Z x Z and edge set {(i,j),(i',/) : 
Ii - i'l + Ii - /1 = 1}. The adjective "frozen" applied to a state is intended 
to indicate that the only transition available from the state is a loop (with 
probability 1) to the same state.) 

3. Design an MC on q-colourings of an arbitrary graph e of maximum degree .1 
that is ergodic, provided only that q 2 .1 + 1. The MC should be easily 
implementable, otherwise there is no challenge! (Hint: use transitions based 
on edge updates rather than vertex updates.) 

2 Kr denotes the complete graph on T vertices. 
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We shall show that (Xt ) is rapidly mixing, provided q 2: 2.,1 + 1, which 
we assume from now on. (The reader may be assured that this is the very last 
time we shall strengthen the lower bound on the number of colours!) This result 
will provide us with a simple and efficient sampling procedure for q-colourings in 
low-degree graphs. 

Suppose (Xt ) is any ergodic MC on countable state space D, with transition 
matrix P and initial state Xo = xED. For tEN, the distribution of X t (the 
t step distribution) is naturally denoted pt (x, . ). Let K denote the the stationary 
distribution of the MC, i.e., the limit of pt(x, . ) as t ---+ 00. Recall the definition 
of total variation distance from (3.2). We measure the rate of convergence to 
stationarity of (Xt ) by its mixing time (from initial state x): 

TX(C) := min {t : Ilpt(x, . ) - KilTY::; C}. ( 4.1) 

Lemma 4.2. The total variation distance Ilpt(x, . ) -KilTY oj the t-step distribution 
Jrom stationarity is a non-increasing Junction oj t. 

Exercise 4.3. Prove Lemma 4.2. (A proof is given at the end of the chapter.) 

In the light of Lemma 4.2, the following definition of mixing time is equivalent 
to (4.1): 

Tx(c) := min {t: IIPS(x, .) -KilTY::; c, for all s 2: t}. 

In other words, once the total variation distance becomes smaller than c it stays 
smaller than c. 

Often we would like to make a statement about mixing time that is indepen
dent of the initial state, in which case we take a worst-case view and write 

T(C) = max Tx(c); 
xEn 

we shall refer to T(C) simply as the mixing time. 

Remark 4.4. Sometimes the further simplification of setting c to some constant, 
say c = ~, is made. The justification for this runs as follows. If T is the first time t 
at which Ilpt(x, . ) -KilTY ::; ~, then it can be shown [2, Chap. 2, Lemma 20] that 
IlpkT(x, . ) - KilTY::; 2- k for every kEN. 

Our aim in the next section is to show that the mixing time T(C) of the MC 
on colourings is bounded by a polynomial in n and log c 1. 

Proposition 4.5. Suppose G is a graph on n vertices oj maximum degree .,1. As
suming q 2: 2.,1+ 1, the mixing time T(c) oj the Me oj Figure 4.1 is bounded above 
by 

q-Ll (n) T(c) ::; --A nln - . 
q - 2L.l c 
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Taking the instance size n into account is a prominent feature of applications 
of MCs in computer science, especially as compared with classical Markov chain 
theory. Observe that Proposition 4.5, combined with Proposition 3.4, implies the 
existence of an FPRAS for q-colourings in graphs of low enough degree. 

Corollary 4.6. Suppose G is a connected graph of maximum degree L1, and q 2 
2L1 + 1. Then there is an FPRAS for counting q-colourings in G. Denote by n the 
number of vertices in G and by m the number of edges. Then the running time of 
this FPRAS as a function of n, m and the error tolerance c (regarding L1 and q 
as fixed) is bounded by cnm2C 2 max{ln(m/c), I} for some constant c. 

4.2 Bounding mixing time using coupling 

Coupling as a proof technique was discovered by Doeblin in the 1930s. However, its 
more recent popularity as a tool for bounding mixing time owes much to Aldous. 
Actually, we shall be using only a restricted form of coupling, namely Markovian 
coupling. 

We start with a ground (time homogeneous) MC (Zd with state space n 
and transition matrix P. A (Markovian) coupling for (Zt) is an MC (Xt, yt) on 
n x n, with transition probabilities defined by: 

Pr[X1 = x' I Xo = x, Yo = y] = P(x, x'), 
Pr[Y1 = y' I Xo = x, Yo = y] = P(y, y'). 

( 4.2) 

Equivalently, with P : n2 --> n2 denoting the transition matrix of the coupling, 

L P((x,y),(x',y')) = P(x,x'), 
y'En 

L P((x, y), (x', y')) = P(y, y'). 
x'En 

Thus, the sequence of LV. 's (Xt} viewed in isolation forms an MC with transition 
matrix P, as does the sequence (yt). 

The easy way to achieve (4.2) would be to assume independence of (X t ) and 
(yt), i.e., that 

P((x, y), (x', y')) = P(x, x')P(y, y'). 

But this is not necessary, and for our application not desirable. Instead, we are 
after some correlation that will tend to bring (X t ) and (yt) together (whatever 
their initial states) so that X t = yt for some quite small t. Note that once X t = yt, 
we can arrange quite easily for Xs to be equal to Ys, for all s 2 t, while continuing 
to satisfy (4.2): just choose a transition from Xs and let Y. copy it. 

The following simple lemma, which is the basis of the coupling method, 
was perhaps first made explicit by Aldous [1, Lemma 3.6]; see also Diaconis [18, 
Chap. 4, Lemma 5]. 
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Lemma 4.7 (Coupling Lemma). Let (Xt, yt) be any coupling, satisfying (4.2), based 
on a ground Me (Zd on fl. Suppose t : [0,1] -+ N is a function satisfying the 
condition: for all x, y E fl, and all E > ° 

Pr[Xt(c) i= yt(c) I Xo = x, Yo = y] ~ E. 

Then the mixing time T(E) of (Zt) is bounded above by t(E). 

Proof. Denote by P the transition matrix of (Zt). Let A ~ fl be arbitrary. Let 
Xo = x E fl be fixed, and Yo be chosen according to the stationary distribution 7r 
of (Zt). For any E E (0,1) and corresponding t = t(E), 

pt(x, A) = Pr[Xt E A] 

2 Pr[Xt = yt A yt E A] 
= 1 - Pr[Xt i= yt V yt ~ A] 
2 1 - (Pr[Xt i= yt] + Pr[yt ~ AD 
2 Pr(Yt E A) - E 

= 7r(A) - E. 

Hence, by the second part of definition (3.2), Ilpt(x, . ) - 7rIITV ~ e. 

Remark 4.8. Actually we established the stronger conclusion 

Ilpt(x, .) - pt(y, . )IITV ~ e, for all pairs x, y E fl. 

o 

This slightly different notion of It -convergence corresponds to a slightly different 
notion of mixing time. This new mixing time has certain advantages, notably 
submultiplicativity: see Aldous and Fill [2] for more detail. 

Let's now see how these ideas may be applied to the q-colouring MC of 
Figure 4.1. We need to define a coupling on fl2 such that the projections onto 
the first and second coordinates are faithful copies of the original MC in the sense 
of (4.2). Moreover, we wish the coupling to coalesce, i.e., reach a state where 
X t = yt, as soon as possible. Figure 4.2 presents what seems at first sight to 
be a reasonable proposal. Note that if you hide the random variable Y1 then 
the companion random variable Xl is distributed exactly as if we had used the 
trial presented in Figure 4.1. (By symmetry, a similar statement could be made 
about Yd Thus the coupling condition (4.2) is satisfied. 

We have argued that the coupling in Figure 4.2 is correct, but how efficient 
is it? Intuitively, provided we can arrange for Pr[cx = cy] in step 2 to be large, we 
ought to reach a state with X t = yt (i.e., coalescence) in not too many steps. The 
Coupling Lemma will then provide a good upper bound on mixing time. In order 
to understand what is involved in maximising Pr[cx = cy], the following exercise 
may be useful. 
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1. Select a vertex v E V u.a.r. 

2. Select a pair of colours (cx , cy) from some joint distribution on 

(Q \ Xo(r(v))) x (Q \ Yo(r(v))) 

that has the "correct" marginal distributions; specifically, the distribution 
of Cx (respectively cy ) should be uniform over Q \ Xo(r(v)) (respectively 
Q\ Yo(r( v)). This joint distribution will be chosen so as to maximise Pr[cx = 
cy]. 

3. Set X1(v) f- Cx and Y1(v) f- Cy' 

Figure 4.2: A coupling for the MC on colourings 

Exercise 4.9. Suppose that Q = {O, 1, ... , 6}, Xo(r(v)) = {3,6} and Yo(r(v)) = 
{ 4, 5, 6}. Thus the sets oflegal colours for v in Xl and Y1 are Cx E {O, 1, 2, 4, 5} and 
cy E {O, 1,2, 3}, respectively. Construct a joint distribution for (cx , cy) such that 
Cx is uniform on {O, 1,2,4, 5}, cy is uniform on {O, 1,2, 3}, and Pr[cx = cy] = ~. 
Show that your construction is optimal. 

The best that can be done in general is as follows. 

Lemma 4.10. Let U be a finite set, A, B be subsets of U, and Za, Zb be random 
variables, taking values in U. Then there is a joint distribution for Za and Zb 
such that Za (respectively Zb) is uniform and supported on A (respectively B) 
and, furthermore, 

IAnBI 
Pr[Za = Zb] = max{IAI, IBI} 

Exercise 4.11. Prove Lemma 4.10 and show that the result is best possible. (As
suming your construction in Exercise 4.9 is reasonably systematic, it should be 
possible to adapt it to the general situation.) 

Remark 4.12. The term "coupling" does not have a precise agreed meaning, but 
its general sense is the following. A pair or perhaps a larger collection of r.v's is 
given. A coupling is a joint distribution of the several variables that has the correct 
marginals - i.e., each r.v., when observed independently of the others, has the 
correct probability distribution - but, taken together, the variables are seen to 
be correlated. Usually the correlation aims to "bring the r.v's closer together" in 
some sense. Lemma 4.10 is a special example of an optimal coupling of two r.v's 
that Lindvall calls the ,-coupling [42, §I.5]. The coupling of MCs, as captured in 
condition (4.2), is another example of the concept. 

We are now well prepared for the main result of the chapter. 
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d'(u) 
u~=\===-_ 

d'(v) 

v 

Figure 4.3: Two ways to count the edges spanning the cut (At, Dt). 

Proof of Proposition 4.5. We analyse the coupling of Figure 4.2 using the joint 
distribution for the colour-pair (cx , cy) that is implicit in Lemma 4.10. Thus, letting 

~ := IQ \ Xo(T(v))1 
'f/ := IQ \ Yo(T(v))1 

and 

(= # legal colours for v in Xl)' 

(= # legal colours for v in Y1), 

(:= I(Q\Xo(T(v))) n (Q\ Yo(T(v))) I (= # common legal colours), 

the probability that the same colour is chosen for both Xl and Y1 in step 2 is just 

( 
Pr[cx = cy ] = {~} max ,7] 

(4.3) 

Consider the situation that obtains after the coupling has been run for t steps. 
Let At ~ V be the set of vertices on which the colourings X t and Yt agree, and 
D t = V \ At be the set on which they disagree. Let d' (v) denote the number of 
edges incident at vertex v that have one endpoint in At and one in D t . Clearly, 

L d'(v) = L d'(u) = m', 
vEA, uEDt 

where m' is the number of edges of G that span At and Dt . (The situation is 
visualised in Figure 4.3.) We want to prove that the disagreement set D t tends to 
get smaller and smaller. 

In one transition, the size of the disagreement set Dt changes by at most 
one. We therefore need to consider just three cases: increasing/decreasing by one 
or remaining constant. In fact, we just need to compute the probability of the first 
two, since the third can be got by complementation. 

Consider first the probability that 1 Dt+ 11 = 1 Dt 1 + 1. For this event to occur, 
the vertex v selected in step 1 must lie in At, and the new colours Cx and cy selected 
in step 2 must be different. Observing that the quantities ~, 7] and ( satisfy the 
linear inequalities 

~ - ( 5: d' ( v ) , 

'f/ - ( 5: d'(v), and 

~,7] 2:: q - 11, 
(4.4) 
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we deduce, from (4.3), that 

P [ _ 1 max { ~, 17} - d' ( v ) 
r Cx - cy ~ {C } max ",17 

> 1 _ d'(v) 
- q-Ll' 

conditional on v being selected in step (1). Thus 

1 
Pr [IDt+1 1 = IDtl + 1] = - L Pr [cx i=- cy I v selected] 

n 
vEAt 

1 d'(v) m' 
::::; ;, L q - Ll = (q - Ll)n' 

VEAt 

(4.5) 

Now consider the probability that IDt+ll = IDtl-l. For this event to occur, 
the vertex v selected in step 1 must lie in D t , and the new colours Cx and cy 
selected in step 2 must be the same. The analogues of inequalities (4.4) in this 
case are 

~-(::::;Ll-d'(v), 

17 - ( ::::; Ll- d'(v), and 

~,17 ~ q - Ll. 

Proceeding as in the previous case, 

P [ _ 1 max{~, 17} - Ll + d'(v) 
r Cx - cy ~ {} max ~,17 

= 1 _ Ll - d' ( v ) 
max{~, 17} 

> q - 2Ll + d' (v) 
- q-Ll ' 

conditional on v being selected in step (1). Hence 

Pr [IDt +1 1 = IDtl-1] ~ ~ " q - 2Ll + d'(v) 
n ~ q-Ll 

vED t 

q - 2Ll D m' 
~ (q - Ll) nit I + -:-( q---Ll-:-:)-n 

Define 
q - 2Ll m' 

a= (q-Ll)n and b=b(m') = (q-Ll)n' 

(4.6) 

so that Pr [IDt+1 1 = IDt l+1] ::::; band Pr [ID t+1 1 = IDt l-1] ~ a IDtl+b. Provided 
a > 0, i.e., q > 2Ll, the size of the set Dt tends to decrease with t, and hence, 



Path coupling 41 

intuitively at least, the event D t = 0 should occur with high probability for some 
t :::; T with T not too large. Since D t = 0 is precisely the event that coalescence 
has occurred, it only remains to confirm this intuition, and quantify the rate at 
which D t converges to the empty set. From equations (4.5) and (4.6), 

E [IDt+111 Dt ] :::; b(IDtl + 1) + (alDtl +b)(IDtl-1) 
+ (1 - alDtl - 2b)IDtl 

= (1 - a)IDtl. 

Thus E IDtl :::; (1- a)tlDol :::; (1- a)tn, and, because IDt I is a non-negative integer 
random variable, Pr[IDtl f 0] :::; n(l- a)t :::; ne-at . Note that Pr[Dt f 0] :::; E, 

provided t 2: a - 1ln(nc1), establishing the result. 0 

Remark 4.13. With a little care, the argument can be pushed to q = 2.1, though 
the bound on mixing time worsens by a factor of about n2 . (The r.v. D t behaves in 
the boundary case rather like an unbiased random walk, and therefore its expected 
time to reach the origin D t = 0 is longer; refer, e.g., to Dyer and Greenhill [24], 
in particular their Theorem 2.1.) 

The (direct) coupling technique described here has been used in a number 
of other applications, such as approximately counting independent sets in a low
degree graph (Luby and Vigoda [46])3 and estimating the volume of a convex body 
(Bubley, Dyer and Jerrum [15]).4 In practice, the versatility of the approach is 
limited by our ability to design couplings that work well in situations of algorithmic 
interest. The next section reports on a new technique that promises to extend the 
effective range of the coupling argument by providing us with a powerful design 
tool. 

4.3 Path coupling 

The coupling technique described and illustrated in the previous section is con
ceptually very simple and appealing. However, in applying the method to concrete 
situations we face a technical difficulty, which began to surface even in §4.2: how 
do we encourage (Xd and (Yi) to coalesce, while satisfying the demanding con
straints (4.2)7 Path coupling is an engineering solution to this problem, invented 
by Bubley and Dyer [ll, 12]. Their idea is to define the coupling only on pairs of 
"adjacent" states, for which the task of satisfying (4.2) is relatively easy, and then 
to extend the coupling to arbitrary pairs of states by composition of adjacent cou
plings along a path. The approach is not entirely distinct from classical coupling, 
and the Coupling Lemma still plays a vital role. 

3Though the subsequent journal article [47J uses the more sophisticated path coupling method, 
which will be described presently. 

4The latter application draws inspiration from Lindvall and Rodgers's [43J idea of coupling 
diffusions by refiection. 
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1. Select P E [n - 1] according to the distribution f, and r E {O, I} u.a.r. 

2. If r = 1 and Xo 0 (p,p + 1) E [l, then Xl := Xo 0 (p,p + 1); otherwise, 
Xl := Xo. 

Figure 4.4: Trial defining an MC on linear extensions of a partial order --<. 

We illustrate path coupling in the context of a Me on linear extensions of 
a partial order. We are given a partially ordered set (V, --<), where V = [n] = 
{O, 1, ... , n - I}. Denote by Sym V the symmetric group on V. We are interested 
in sampling, u.a.r., a member of the set 

[l = {g E Sym V: g(i) --< g(j) => i::::; j, for all i,j E V} 

oflinear extensions of --<. In forming a mental picture of the the set [l, the following 
characterisation may be helpful: 9 E [l iff the linear order 

g(O) L g(l) L ... L g(n - 1) (4.7) 

extends, or is consistent with, the partial order --<. 
As usual, we propose to sample from [l by constructing an ergodic Me 

on state space [l, whose stationary distribution is uniform. The transitions from 
one linear extension to another are obtained by pre-composing the current linear 
extension with a random transition (p, p + 1). Instead of selecting p E [n - 1] 
uniformly, we select p from a probability distribution f on [n - 1] that gives 
greater weight to values near the centre of the range. It is possible that this 
refinement actually reduces the mixing time; in any case, it leads to a simplification 
of the proof. Formally, the transition probabilities of the Me are defined by the 
experimental trial presented in Figure 4.4. Note that composition "0" is to be read 
right to left, so that (assuming r = 1): XI(p) = Xo(p+ 1), X1(p+ 1) = Xo(p) and 
XI(i) = Xo(i), for all i rJ- {p,p+ I}. 

Provided the probability distribution f is supported on the whole interval [n-
1], this Me is irreducible and aperiodic. It is easy to verify, for example using 
Lemma 3.7, that the stationary distribution of the Me is uniform. As in §3.3, the 
explicit loop probability of ~ is introduced mainly for convenience in the proof. 
However, some such mechanism for destroying periodicity is necessary in any case 
if we wish to treat the empty partial order consistently. 

Our analysis of the mixing time of the MC using path coupling will closely 
follow that of Bubley and Dyer [13]. To apply path coupling, we need first to decide 
on an adjacency structure for the state space [l. In this instance we decree that 
two states 9 and g' (linear extensions of --<) are adjacent iff g' = go (i,j) for some 
transposition (i, j) with 0 ::::; i < j ::::; n - 1; in this case, the distance d(g, g') from 
9 to g' is defined to be j - i. Note that the notions of adjacency and distance are 
symmetric with respect to interchanging 9 and g', so we can regard this imposed 
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1. Select p E [n - 1] according to the distribution f, and rx E {O, I} u.a.r. If 
j - i = 1 and p = i, set ry := 1 - rx; otherwise, set ry := r x . 

2. If rx = 1 and Xo 0 (p,p + 1) E n then set Xl := Xo 0 (p,p + 1); otherwise, 
set Xl := Xo· 

3. If ry = 1 and Yo 0 (p,p + 1) E n then set YI := Yo 0 (p,p + 1); otherwise, set 
YI := Yo· 

Figure 4.5: A possible coupling for the Me on linear extensions. 

adjacency structure as a weighted, undirected graph on vertex set n; let us refer 
to this structure as the adjacency graph. It is easily verified that the shortest path 
in the adjacency graph between two adjacent states is the direct one using a single 
edge. Thus d may be extended to a metric on n by defining d(g, h), for arbitrary 
states 9 and h, to be the length of a shortest path from 9 to h in the adjacency 
graph. 

Next we define the coupling. We need to do this just for adjacent states, as 
the extension of the coupling via shortest paths to arbitrary pairs of states will be 
automatic. Suppose that (Xo, yo) E n2 is a pair of states related by Yo = Xo 0 (i, j) 
for some transposition (i,j) with 0::; i < j ::; n-1. then the transition to (Xl, Yd 
in the coupling is defined by the experimental trial presented in Figure 4.5. We 
need to show: 

Lemma 4.14. For adjacent states Xo and Yo, 

(4.8) 

where {! < 1 is a constant depending on f. For a suitable choice for f, one has 
(! = 1 - 0, where 0 = 6/(n3 - n). 

Informally, Lemma 4.14 says that distance between pairs of states in the 
coupled process tends to decrease: exactly the situation we encountered earlier 
in the context of the Me on q-colourings. Before proceeding with the proof of 
Lemma 4.14, let us pause to consider why it is sufficient to establish (4.8) just for 
adjacent states. 

Lemma 4.15. Suppose a coupling (Xt , Yt) has been defined, as above, on adja
cent pairs of states, and suppose that the coupling satisfies the contraction con
dition (4.8) on adjacent pairs. Then the coupling can be extended to all pairs of 
states in such a way that (4.8) holds unconditionally. 

Proof. Suppose Xo = Xo E n and Yo = Yo E n are now arbitrary. Denote 
by P(. , .) the transition probabilities of the Me on linear extensions. Let Xo = 
z(O), z(1), ... , z(£) = Yo be a shortest path from Xo to Yo in the adjacency graph. 
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Figure 4.6: Extending a coupling along a shortest path 

(Assume a deterministic choice rule for resolving ties.) First select Z(O) E Q ac
cording to the probability distribution P(z(O), . ). Now select Z(l) according to the 
probability distribution induced by the transition (z(O), z(1)) f--+ (Z(O), Z(l)) in the 
coupled process, conditioned on the choice of Z(Ol; then select Z(2) according to 
the probability distribution induced by the transition (z(1) , z(2)) f--+ (Z(l), Z(2)), 
conditioned on the choice of Z(1); and so on, ending with Z(t). (The procedure is 
visualised in Figure 4.6.) 

Let Xl = Z(O) and Yl = Z(£). It is routine to verify, by induction on path 
length e, that Yl has been selected according to the (correct) distribution P(yo, . ). 
Moreover, by linearity of expectation and (4.8), 

£-1 

E [d(Xl' Yd I Xo = Xo, Yo = yo] ::; L Ed(Z(i), Z(i+l)) 
i=O 

£-1 
::; e L d(Z(i), z(Hl)) 

i=O 

o 

So we see that it is enough to establish the contraction property (4.8) for 
adjacent pairs of states. 

Proof of Lemma 4.14. If p ¢c {i - 1, i, j - 1, j} then the tests made in steps (2) 
and (3) either both succeed or both fail. Thus Yl = Xl 0 (i,j) and d(Xl' Yl ) = 
j - i = d(Xo, Yo). Summarising: 

d(Xl' Yl ) = d(Xo, Yo), if p ¢c {i - 1, i,j - 1,j}. (4.9) 

Next suppose p = i-lor p = j. These cases are symmetrical, so we consider 
only the former. With probability at least ~, the tests made in steps (2) and (3) 
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both fail, since Pr[rx = ry = 0] = 1. If this happens, clearly, d(XI' YI ) = j - i = 
d(Xo, Yo). Otherwise, with probability at most 1, one or other test succeeds. If 
they both succeed, then 

YI = Yo ° (i - 1, i) 
=Xoo(i,j)o(i-1,i) 

= Xl ° (i -l,i) ° (i,j) ° (i -l,i) 
=Xl o(i-1,j), 

and d(Xl' Yd = j - i + 1 = d(Xo, Yo) + 1; if only one (say the one in step 2) 
succeeds, then Y1 = Yo = X o ° (i,j) = Xl ° (i - 1, i) ° (i,j), and d(XI, YI ) < 
j - i + 1 = d(Xo, Yo) + 1. Summarising: 

1 
E [d(XI' YI ) I Xu, Yo,p = i-I V P = j] :::; d(Xo, Yo) + 2. (4.10) 

Finally suppose p = i or p = j -1. Again, by symmetry, we need only consider 
the former. There are two subcases, depending on the value of j - i. The easier 
subcase is j - i = 1. If r x = 1 then r y = ° and 

X I = X o 0 (i, i + 1) = Yo ° (i, i + 1) 0 (i, i + 1) = Yo = YI , 

with a similar conclusion when rx = 0. Thus d(Xl' Y1 ) = ° = d(X01 Yo) - 1. The 
slightly harder subcase is the complementary j - i ;::: 2. The crucial observation 
is that Xo ° (i, i + 1), Yo ° (i, i + 1) E [l and hence the tests in steps (2) and (3) 
either both succeed or both fail, depending only on the value of r x = r y. To see 
this, observe that 

Xo(i) 'I- Xo(i + 1) = Yo(i + 1) 'I- Yo(j) = Xo(i), 

from which we may read off the fact that Xo(i) and Xo(i + 1) are incomparable 
in -..;. The same argument applies equally to Yo(i) and Yo(i + 1). If rx = ° there is 
no change in state; otherwise, if r x = 1, 

Xl =Xo o(i,i+1) 

= Yo ° (i, j) 0 (i, i + 1) 

= YI ° (i, i + 1) 0 (i, j) 0 (i, i + 1) 

=Y1 o(i+1,j), 

and d(Xt, Yt} = j - i-I = d(Xo, Yo) - 1. Summarising both the j - i = 1 and 
j - i ;::: 2 subcases: 

E [d(XI' Y1 ) I Xo, Yo,p = i V P = j - 1] :::; e(Xo, Yo), (4.11) 

where 

(X Yr) _ {a, if d(Xo, Yo) = 1; 
e 0, ° - I . d(Xo, Yo) - 2' otherwIse. 
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Note that, in the case j - i = 1, inequality (4.11) covers just one value of p, namely 
p = i = j - 1, instead of two; however, this effect is exactly counterbalanced by 
an expected reduction in distance of 1 instead of just ~. Combining (4.9)-(4.11) 
we obtain 

E[d(X Y) IX Yi] <d(X Yi)- -f(i-l)+f(i)+f(j-l)-f(j) 
1, 1 0, 0 - 0, 0 2 . 

Specialising the probability distribution f(-) to be f(i) := a(i + 1)(n - i-I) -
where a := 6/(n3 -n) is the appropriate normalising constant - we have, by direct 
calculation, - f(i -1) + f(i) + f(j -1) - f(j) = 2a(j - i). Since d(Xo, Yo) = j - i, 
we obtain (4.8) with f] = 1 - a. 0 

From Lemmas 4.14 and 4.15 it is now a short step to: 

Proposition 4.16 (Bubley and Dyer). The mixing time of the MC on linear exten
sions (refer to Figure 4.4) is bounded by 

T(E) ::; (n3 - n)(2ln n + lnE- 1 )/6. 

Proof. By iteration, E [d(Xt, Yt) I X o, Yo] ::; f]td(Xo, Yo). For any pair of linear 
extensions g and h, there is a path in the adjacency graph using only adjacent 
transpositions (i.e., length one edges) that swaps each incomparable pair at most 
once. Thus d(Xo, Yo) ::; G) ::; n2 , and 

The latter quantity is less than 10, provided t ;::: (n3 - n)(2lnn + lnE- 1)/6. The 
result follows directly from Lemma 4.7. 0 

David Wilson has recently derived a similar O( n3 log n) bound on mixing 
time when f is uniform, i.e, when the transposition (p, p + 1) is selected u.a.r. 

Exercises 4.17. 1. Use Proposition 4.16 to construct an FPRAS for linear ex-
tensions of a partial order. 

2. Reprove Proposition 4.5 using path coupling. Note the significant simplifi
cation over the direct coupling proof. 

New applications of path coupling are regularly being discovered. Bubley, 
Dyer and Greenhill [14] have presented an FPRAS for q-colourings of a low de
gree graph that extends the range of applicability of the one described earlier. 
They were able, for example, to approximate in polynomial time the number of 
5-colourings of a graph of maximum degree 3, thus "beating the 2.1 bound" that 
appeared to exist following the result described in §4.1. Vigoda [66], in a path
coupling tour de force, was able to beat the 2.1 bound uniformly over all sufficiently 
large .1; specifically, he proved rapid mixing whenever q > ll.1. It is fair to say 
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that neither of these improvements would have been possible without the aid of 
path coupling. 

Dyer and Greenhill have also considered independent sets in a low degree 
graph [25J, and obtained a result similar to, but apparently incomparable with, 
that of Luby and Vigoda [47J. Bubley and Dyer (again) applied path coupling 
to establish rapid mixing of a natural Markov chain on sink-free orientations of 
an arbitrary graph [10J. McShine [50J presents a particularly elegant application 
of path coupling to sampling tournaments. One further example must suffice: 
Cooper and Frieze [17J have applied path coupling to analyse the "Swendsen
Wang process," which is commonly used to sample configurations of the "random 
cluster" or ferromagnetic Potts model in statistical physics. 

Finally, for those who skipped Exercise 4.3, here is the missing proof. 

Proof of Lemma 4.2. The claim is established by the following sequence of (in-) 
equalities: 

yEn 

= LILPt(X,Z)P(z,y)- Ln(z)p(z,y)1 
yEn zEn zEn 

::; L LIPt(x,z) -n(z)lp(z,y) (4.12) 
yEn zEn 

where (4.12) is the triangle inequality. o 
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1. Select e = {u, v} E E u.a.r. 

2. There are three mutually exclusive (but not exhaustive) possibilities: 

en If u and v are not covered by Xo, then M +-- Xo U {e}. 

(1) If e E Xo, then M +-- Xo \ {e}. 

( ...... ) If u is uncovered and v is covered by some edge e' E X 0 (or vice versa, 
with the roles of u and v reversed), then M' +-- M U { e} \ {e'}. 

If none of the above situations obtain, then M +-- Xo. 

3. With probability min{1, 7r(M)/7r(Xo)} set Xl +-- M; otherwise, set Xl +-

Xo. (This form of acceptance probability is known as the Metropolis filter.) 

Figure 5.1: An MC for sampling weighted matchings 

and then extract the coefficients of Z(A) by interpolating the computed values. 
(Observe that Z (A) is a polynomial in A.) But the highest-order coefficient is just 
the number of perfect matchings in G. It follows from Theorem 2.2 that evaluating 
Z(A) at (say) integer points A E N is #P-hard. Indeed, with a little more work, 
one can show that evaluating Z(A) at the particular point A = 1 (i.e., counting 
the number of matchings in G) is #P-complete. Although it is unlikely that Z can 
be computed efficiently, nothing stops us from having an efficient approximation 
scheme, in the FPRAS sense of §3.1. 

We construct an MC for sampling from distribution (5.1) as shown in Fig
ure 5.1. As usual, denote the state space of the MC by D, and its transition matrix 
by P. Consider two adjacent matchings M and M' with 7r(M) ::; 7r(M'). By adja
cent we just mean that P(M, M') > 0, which is equivalent to P(M', M) > O. The 
transition probabilities between M and M' may be written 

P(M,M') =~, and 
m 

P(M' M) = ~ 7r(M) 
, m 7r(M') , 

giving rise to the symmetric form 

7r(M)P(M, M') = 7r(M')P(M'M) = ~ min {7r(M), 7r(M')}. (5.2) 
m 

The above equality makes clear that the MC is time-reversible, and that its sta
tionary distribution (appealing Lemma 3.7) is 7r. 

Remarks 5.1. (a) The transition probabilities are easy to compute: since a tran
sition changes the number of edges in the current matching by at most one, 
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the acceptance probability in step 3 is either 1 or min {.A, .A -I}, and it is easy 
to determine which. 

(b) Broder [8] was the first to suggest sampling matching by simulating an ap
propriate MC. His proposal was to construct an :MC whose states are perfect 
matchings (i.e., covering all the vertices of G) and near-perfect matchings 
(i.e., leaving exactly two vertices uncovered). The MC on all matchings pre
sented in Figure 5.1 was introduced by Jerrum and Sinclair [36]. 

(c) Time reversibility is a property of MCs that is frequently useful to us; in 
particular, as we have seen on several occasions, it permits easy verification 
of the stationary distribution of the MC. However, we shall not make use of 
the property in the remainder of the chapter, and all the results will hold in 
the absence of time reversibility. 

5.2 Canonical paths 

The key to demonstrating rapid mixing using the "canonical paths" technique lies 
in setting up a suitable multicommodity flow problem. For any pair x, y E il, 
we imagine that we have to route 7r(x)7r(Y) units of distinguishable fluid from x 
to y, using the transitions of the MC as "pipes." To obtain a good upper bound on 
mixing time we must route the flow evenly, without creating particularly congested 
pipes. To formalise this, we need a measure for congestion. 

For any pair x,y E il, define a canonical path "fxy = (x = ZO,Zl,'" ,Z£ = y) 
from x to y through pairs (Zi, zHd of states adjacent in the MC, and let 

T := {"(xy I x, Y E il} 

be the set of all canonical paths. The congestion {! = {!(T) of the chain is defined 
by 

{!(T):= max { ()pl() L 7r(x)7r(Y) hxyl }. 
t=(u,v) 7r U U, V 

x,y: ,xy uses t 

(5.3) 

~ ''-----v,-----
(capacity of tj-l total flow through t 

where t runs over all transitions, i.e., all pairs of adjacent states of the chain, and 
l"Yxyl denotes the length £ of the path "Yxy. 

We want to show that if {! is small then so is the mixing time of the MC. 
Consider some arbitrary "test" function f : il ---t R The variance of f (with 
respect t07r) is 

where 
E11' f := L 7r(x)f(x). 

xED 
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It is often convenient to work with an alternative, possibly less familiar expression 
for variance, namely 

1 '" 2 Var7r f = 2 L.J 7r(X)7r(Y) (J(x) - f(y)) . 
x,yE[} 

(5.5) 

Equivalence of (5.4) and (5.5) follows from the following sequence of identities: 

1 '" 2 2 L.J 7r(X)7r(Y) (J(x) - f(y)) 
x,yE[} 

= L [7r(x)7r(y)f(x)2 - 7r(x)7r(y)f(x)f(y)] 
x,yE[} 

= L 7r(x)f(xf L 7r(y) - L 7r(x)f(x) L 7r(y)f(y) 
xE[} yE[} xE[} yE[} 

= L 7r(x)f(xf - (E7r ff 
xE[} 

The variance Var7r f measures the "global variation" of f over fl. By contrast, the 
Dirichlet form 

1 ~ 2 
£7r(/' f) :="2 L.J 7r(x)P(x,y)(J(x) - f(y)) 

x,yE[} 

(5.6) 

measures the "local variation" of f with respect to the transitions of the Me. The 
key result relating the congestion f] to local and global variation is the following. 

Theorem 5.2 (Diaconis and Stroockj Sinclair). For any function f : fl -> JR, 

(5.7) 

where f] = f](r) is the congestion, defined in (5.3), with respect to any set of 
canonical paths r. 

Remarks 5.3. (a) An inequality such as (5.7), which bounds the ratio ofthe local 
to the global variation of a function, is often termed a Poincare inequality. 

(b) If the congestion f] is small, then high global variation of a function entails 
high local variation. This in turn entails, as we shall see presently, short 
mixing time. 
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Proof of Theorem 5.2. We follow Sinclair [57, Thm. 5] whose proof in turn is in
spired by Diaconis and Stroock [20]. 

x,yEll 

= L 1f(x)1f(Y) ( L 1· (J(u) - f(V))) 2 (5.8) 
x,yEll (u,v)E'Yxy 

::; L 1f(x)1f(Y) i'Yxyi L (J(u) - f(V))2 (5.9) 
x,yEll (u,v)E'Yxy 

= L L 1f(x)1f(Y) i'Yxyi (J(u) - f(v))2 
u,lIEll x,y: 

(u,lI)E'Yxy 

= L (J(u) - f(v))2 
u,lIEll x,y: 

(u,lI)E'Yxy 

::; L (J(u) - f(v))2 1f(u)p(u, v) e 
u,vEll 

(5.10) 

Equality (5.8) is a "telescoping sum," inequality (5.9) is Cauchy-Schwarz, and 
inequality (5.10) is from the definition of e. 0 

For the following analysis, we modify the chain by making it "lazy." In each 
step, the lazy MC stays where it is with probability ~, and otherwise makes the 
transition specified in Figure 5.1. Formally, the transition matrix of the lazy MC 
is Pzz := ~(I + P), where I is the identity matrix. It is straightforward to show 
that the lazy MC is ergodic if the original MC is, in which case the stationary 
distribution of the two is identical. (In fact, irreducibility of the original MC is 
enough to guarantee ergodicity of the lazy MC.) 

Exercise 5.4. Verify these claims about the lazy MC. 

Remarks 5.5. (a) This laziness doubles the mixing time, but ensures that the 
eigenvalues of the transition matrix are all non-negative, and avoids possible 
parity conditions that would lead to the MC being periodic or nearly so. In 
an implementation, to simulate 2t steps of the lazy MC, one would generate 
a sample T from the binomial distribution Bin(2t, ~), and then simulate 
T steps of the original, non-lazy MC. Thus, in practice, efficiency would not 
be compromised by laziness. 

(b) The introduction of the lazy chain may seem a little unnatural. At the ex
pense of setting up a little machinery, it can be avoided by using a continuous
time MC rather than a discrete-time MC as we have done. Some other parts 
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of our development would also become smoother in the continuous-time set
ting. We shall return to -this point at the end of the chapter. 

Before picking up the argument, some extra notation will be useful. If f is 
any function f : [l -> JR. then Pzzf : [l -> JR. denotes the function defined by 

[PzzfJ(x) := L Pzz(x, y)f(y)· 
yEfl 

The function Pzzf is the "one-step averaging" of f. Similarly, P;zf, defined in 
an analogous way, is the "t-step averaging" of f: it specifies the averages of f 
over t-step evolutions of the MC, starting at each of the possible states. If the 
MC is ergodic (as here), then P;zf tends to the constant function En f as t -> 00. 

(Observe that En(Pzzf) = E7f f and hence E7f(P;zf) = E7f f; in other words, t-step 
averaging preserves expectations.) Thus we can investigate the mixing time of the 
MC by seeing how quickly Var7f (P;z!) tends to ° as t -> 00. This is the idea we 
shall now make rigorous. 

Theorem 5.6. For any function f : [l -> JR., 

(5.11) 

Proof. We follow closely Mihail's [51J derivation. Consider the one-step averaging 
of f with respect to the lazy chain: 

[Pzzf](x) = L Pzz(x, y)f(y) 
yEfl 

1 1 
= "2 f(x) + "2 L P(x, y)f(y) 

yEn 

1 ="2 L P(x,y) (j(x) + f(y)). 
yEfl 

(5.12) 

For convenience, assume1 E7f f = 0, and hence E7f(Pzzf) = 0. Then the left-hand 
side of (5.11) is bounded above as follows: 

= ~ L 7r(x) (L P(x, y) (j(x) + f(y))) 2 

xEfl yEfl 

(5.13) 

1 ""' 2 :::; 4: ~ 7r(x)P(x, y) (j(x) + f(y)) , 
x,yEfl 

(5.14) 

lOtherwise add or subtract a constant, an operation that leaves unchanged the quantities of 
interest, namely Var" j, Var", (Pzzl) and £"(/' I). 
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where step (5.13) uses (5.12), and step (5.14) relies on the fact that the square of 
the expectation of a r.v. is no greater than the expectation of its square. To get at 
the right-hand side of (5.11) we use yet another expression for the variance of f: 

1", 2 1", 2 
Var7r f = 2 ~ n(x)f(x) + 2 ~ n(y)f(y) 

xEn yEn 

= ~ L n(x)f(x)2 P(x, y) + ~ L n(x)P(x, y)f(y)2 
x,yEn x,yEn 

= ~ L n(x)P(x,y) (J(x)2 + f(y)2). 
x,yEn 

(5.15) 

Subtracting (5.14) from (5.15) yields 

Var7r f - Var7r (Pzzf) 2: ~ L n(x)P(x, y) (J(x) - f(y))2 
x,yEll 

as required. o 

Combining Theorem 5.2 and Theorem 5.6 gives: 

Corollary 5.7. For any function f : n ----+ JR., 

where {! = {!(r) is the congestion, defined in (5.3), with respect to any .set of 
canonical paths r. 
Remark 5.8. The algebraic manipulation in the proof of Theorem 5.6 seems mys
terious. The discussion of the continuous-time setting at the end of the chapter 
will hopefully clarify matters a little. 

We can now use Corollary 5.7 to bound the mixing time of the chain, by 
using a special function f. For a subset A ~ n of the state space, we consider its 
indicator function 

f(X):={l, 
0, 

Then we have Var7r f ::::; 1 and therefore 

if x E A; 
otherwise. 
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where p;J is the t-step averaging of f. Fix some starting state x E Q and set 

This gives 

On the other hand, 

which implies 

Var,,(p;J) ;:: 7r(x) ([P;zfl(x) - E"(P;zf))2 

= 7r(x) ([P;zfl(x) - E" f)2, 

c ;:: I [P;Jl(x) - E" fl = Ip;z(x, A) - 7r(A) I 
for all A. This in turn means that the total variation distance IIP;z(x, . ) - 7rliTv 
is bounded by c, and we obtain the following corollary: 

Corollary 5.9. The mixing time of the lazy MC is bounded by 

where (! = (!(r) is the congestion, defined in (5.3), with respect to any set of 
canonical paths r. 
Remark 5.10. The factor 2 in front of the bound on mixing time is an artifact of 
using the lazy MC. 

5.3 Back to matchings 

In the previous section, we saw how a general technique (canonical paths) can 
be used to bound the Poincare constant of an Me, and how that constant in 
turn bounds the mixing time. Let's apply this machinery to the matching chain 
presented in Figure 5.1. Our ultimate goal is to derive a polynomial upper bound 
on mixing time: 

Proposition 5.11. The mixing time r of the MC on matchings of a graph G (refer 
to Figure 5.1) is bounded by 

r(c) S nm~2(4Inc-l +2nlnn+nlln.\I), 

where nand m are the number of ver-tices and edges of G, respectively, and ~ = 
max{l,.\} . 

Remark 5.12. It is possible, with a little extra work, to improve the upper bound 
in Proposition 5.11 by a factor of~: see Exercise 5.17. 
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The first step is to define the set r of canonical paths. Given two matchings 
I (initial) and F (final), we need to connect I and F by a canonical path ,IF in 
the adjacency graph of the matching Me. Along this path, we will have to lose 
or gain at least the edges in the symmetric difference I EB F; these edges define a 
graph of maximum degree two, which decomposes into a collection of paths and 
even-length cycles, each of them alternating between edges in I and edges in F. 
If we fix some ordering of the vertices in V, we obtain a unique ordering of the 
connected components of (V, I EB F), by smallest vertex. Within each connected 
component we may identify a unique "start vertex": in the case of a cycle this will 
be the smallest vertex, and the case of a path the smaller of the two endpoints. We 
imagine each path to be oriented away from its start vertex, and each cycle to be 
oriented so that the edge in I adjacent to the start vertex acquires an orientation 
away from the start vertex. In Figure 5.2 - which focuses on a particular transition 
t = (M, M') on the canonical path from I to F - the r connected components of 
I EB F are denoted PI, ... , Pr . 

To get from I to F, we now process the components of (V, I EB F) in the 
order PI, ... , Pr . In each cycle, we first remove the edge in I incident to the start 
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vertex using a l-transition; with a sequence of +-+-transitions following the cycle's 
orientation, we then replace I-by F -edges; finally, we perform ai-transitions to 
add the edge in F incident to the start vertex. In every path, if the start vertex 
is incident to an F-edge, we use +-+-transitions along the path and finish by a 
i -transition in case the path has odd length. If the start vertex is incident to 
an I-edge, we start with a l-transition, then use +-+-transitions along the path, 
and finish with an i-transition in case the path has even length. This concludes 
the description of the canonical path "I IF. Each transition t on a canonical path 
"I IF can be thought of as contributing to the processing of a certain connected 
component of I E9 F; we call this the current component (or cycle, or path, if we 
want to be more specific). 

Denote by 
cp(t) := {(1, F) I t E "IIF} 

the set of pairs (1, F) E fl whose canonical path "I IF uses transition t. To bound 
the mixing time of the MC, we need to bound from above the congestion 

(} = t= ~~1' {K(M)P~M M') L K(1)K(F) hIFI} 
( , ) '(I,F)Ecp(t) 

(5.16) 

(c.f. (5.3)), where the maximum is over all transitions t = (M, M'). It is not 
immediately clear how to do this, as the sum is over a set we don't have a ready 
handle on. Suppose, however, that were able to construct, for each transition t = 
(M, M'), an injective function Tit : cp(t) -+ fl such that 

(5.17) 

for all (1, F) E cp(t), where the relational symbol "~" indicates that the left
hand side is larger than the right-hand side by at most a polynomial factor in the 
"instance size," i.e., some measure of G and A. Then it would follow that 

(} ~ mrx { L K(Tlt(1, F)) hIFI} 
(I,F)Ecp(t) 

from (5.16) and (5.17) 

~mF{ L K(Tlt(1,F))} 
(I,F)Ecp(t) 

since hIFI :::; n 

since Tit is injective. 

In other words, the congestion (} (and hence the mixing time of the MC) is poly
nomial in the instance size, as we should like. 

We now complete the programme by defining an encoding Tit with the appro
priate properties, and making exact the calculation just performed. To this end, 
fix a transition t = (M, M'). If t is a +-+-transition, (1, F) E cp(t), and the current 
component (with respect to the canonical path "II F) is a cycle, then we say that t 
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I I 
I 

Pi-l I 

Figure 5.3: The corresponding encoding TIt (X , Y). 

is troublesome (with respect to the path II F). If t is troublesome, then we denote 
by eIFt E I the (unique) edge in I that is adjacent to the start vertex of the cycle 
being processed by t. For all (I, F) E cp(t), define 

( ) _ {(I EO F EO (M U M')) \ {eI Ft}, if t is troublesome; 
TIt I, F -

I EO F EO (M U M'), otherwise. 

Roughly speaking, the encoding C = TIt (I, F) agrees with I on the components 
that have been completely processed, and with F on the components that have 
not been touched yet. Moreover, C agrees with I and F on the edges common to 
both. (See Figure 5.3.) The crucial properties of TIt are described in the following 
sequence of claims. 

Claim 5.13. For all transitions t and all pairs (I, F) E cp(t), the encoding C = 
TIt (I, F) is a matching; thus TIt is a function with range [l, as required. 

Proof. Consider the set of edges A = I EO F EO (M U M'), and suppose that some 
vertex, u say, has degree two in A. (Since A ~ I U F, no vertex degree can exceed 
two.) Then A contains edges {u, vd, {u, V2} for distinct vertices VI, V2, and since 
A ~ I U F, one of these edges must belong to I and the other to F. Hence both 
edges belong to I EO F, which means that neither can belong to MUM'. Following 
the form of MUM' along the canonical path, however, it is clear that there 
can be at most one such vertex u; moreover, this happens precisely when t is a 
troublesome transition and u is the start vertex of the current cycle. Our definition 
of TIt removes one of the edges adjacent to u in this case, so all vertices in C have 
degree at most one, i.e., C is indeed a matching. 0 

Claim 5.14. For every transition t, the function TIt : cp(t) --+ [l is injective. 

Proof. Let t be a transition, and (I, F) E cp(t). We wish to show that the pair 
(I, F) can be uniquely reconstructed from a knowledge only of t and TIt (I, F). It 
is immediate from the definition of TIt that the symmetric difference I EO F can be 
recovered from C = TIt (I, F) using the relation 

I EO F = {(CEO (M U M')) U {eIFt}, if t is troublesome; 
CEO (M U M') , otherwise. 
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Of course, we don't know, a priori, the identity of the edge eIFt. However, once 
we have formed the set C EEl (M U M') we can see that e I Ft is the unique edge that 
forms a cycle when added to the current path. There is a slightly delicate issue 
here: how do we know whether we are in the troublesome case or not? In other 
words, how to we know whether the current component is a cycle or a path? The 
answer lies in the convention for choosing the start vertex. It can be checked that 
choosing the lowest vertex as start vertex leads to a path being oriented in the 
opposite sense to a cycle in this potentially ambiguous situation. 

Given I EEl F, we can at once infer the sequence of paths PI, P2 , ... , Pr that 
have to be processed along the canonical path from I to F, and the transition t 
tells us which of these, Pi say, is the current one. The partition of I EEl F into I 
and F is now straightforward: I agrees with C on paths PI, ... , Pi-I, and with lvI 
on paths PH I, ... , Pr . On the current path, Pi, the matching I agrees with C on 
the already processed part, and with M on the rest. (If t is troublesome, then the 
edge eIFt also belongs to I.) Finally, the reconstruction of I and F is completed 
by noting that I n F = M \ (I EEl F), which is immediate from the definition of 
the paths. Hence I and F can be uniquely recovered from C = T/t (I, F), so T/t is 
injective. 0 

Claim 5.15. For all transitions t = (M, M') and all pairs (I, F) E cp(t), 

1T(I)1T(F) ::; m5.21T(M)P(M, M') 1T(T/t(I, F)), 

where 5. := max{l, A}. 

Proof. Let C = T/t(I, F), and consider the expressions 

which are closely related to the quantities 

1T(I)1T(F) and 1T(M)P(M, M') 1T(T/t(I, F)) 

of interest. Each edge e E E contributes a factor 1, A or A2 to AlII AIFI, according 
to whether e is in neither, exactly one, or both of I and F. A similar observation 
can be made about AIMUM'IAIGI. If e tt I and e tt F then e tt MuM' and 
e tt C, and the contribution to both expressions is 1. If eEl and e E F then 
e EMu M' and e E C and the contribution to both expressions is A 2 • If eEl EEl F 
then e E (M U M') EEl C and the contribution to both expressions is A, with one 
possible exception: if t is troublesome and e = eIFt then there is a contribution A 
to AIIIAIFI and 1 to AIMUM'IAIGI. Thus, 

AlII AIFI ::; 5. AIMUM'I AlGI. 

Dividing by Z2, the square of the partition function, it follows that 
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where we have used the fact that IMI, IM'I 2': 1M U M'I- 1. Then 

n(I)n(F) ::; 5.2 min {n(M), n(M')} n(C) 

= m5.2n(M)P(M, M')n(C) 

yielding the required inequality. 

Now we are ready to evaluate the congestion (}. 

by (5.2), 
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o 

Proposition 5.16. With a set of canonical paths r defined as in this section, the 
congestion (} = (}(r) of the MC on matchings of a graph G (refer to Figure 5.1) is 
bounded by (} ::; nm5.2 , where nand m aTe the number of vertices and edges of G, 
respectively, and 5. = max{l,A}. 

Proof. We just need to make precise the rough calculation following (5.17). 

(} = t=W,~/) {n(M)p~M' M') L n(I)n(F) I'YIFI} 
(I ,F)Ecp(t) 

::; m5.2 L n(T)t(I, F)) !'YIFI 
(I,F)Ecp(t) 

::; nm5.2 L n(T)t(I, F)) 
(I,F)Ecp(t) 

by Claim 5.15 

since !'YI F I ::; n 

by Claim 5.14. 

The sought-for bound on mixing time follows immediately. 

o 

Proof of Proposition 5.11. Combine Corollary 5.9 and Proposition 5.16, noting the 
crude bound lnn(x)-l::; nlnn+ ~nllnAI, which holds uniformly over x E n. 0 

Exercise 5.17. Show how to tighten the upper bound in Proposition 5.11 by a 
factor 5.. Since Claim 5.15 is essentially tight when t is troublesome, it is necessary 
to improve somehow the inequality 

L n(T)t(I,F))::; 1, 
(I,F)Ecp(t) 

by studying carefully the range of T)t. See Jerrum and Sinclair [36], specifically the 
proof of their Proposition 12.4. 
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... ~ 
(k hexagons) 

Figure 5.4: A graph with many "near perfect" matchings. 

5.4 Extensions and further applications 

Let G be a graph with at least one perfect matching (Le., matching that covers 
all vertices of G). In the limit, as A -----4 00, the partition function Z(A) counts the 
number of perfect matchings in G. However, the bound on mixing time provided by 
Proposition 5.11 grows unboundedly with increasing>., so it is not clear whether 
the MC we have studied in this chapter provides us with a FPAUS for perfect 
matchings in G. At first we might hope that it is not necessary to set A very large; 
perhaps the distribution (5.1) already places sufficient probability on the totality 
of perfect matchings at some quite modest A. (According to Proposition 5.11, we 
need A to be bounded by a polynomial in n, the number of vertices in G, to achieve 
a FPAUS/FPRAS for perfect matchings.) 

Unfortunately, there are graphs (see Figure 5.4) for which the perfect match
ings make an insignificant contribution to distribution (5.1) unless A is exponen
tially large in n. This claim follows from the these easily verified properties of the 
illustrated graph: (i) it has a unique perfect matching, and (ii) it has 2k matchings 
that cover all vertices apart from u and v. The question of whether there exists an 
FPRAS (equivalently, by the observations of Chapter 3, an FPAUS) for perfect 
matchings in a general graph is still open at the time of writing. However, progress 
has been made in some special cases, that of bipartite graphs being perhaps the 
most interesting. 

The problem of counting perfect matchings in a bipartite graph is of particu
lar significance, since is is equivalent to evaluating the permanent of a 0, 1-matrix. 
(Refer to problems #BIPARTITEPM and O,l-PERM of Chapter 2.) Recently, Jer
rum, Sinclair and Vigoda [37J presented an FPRAS for the permanent of a 0,1-
matrix (in fact a general matrix with non-negative entries) using MC simulation. 
Noting that the counterexample of Figure 5.4 is bipartite, it is clear that we need 
to introduce a more sophisticated MC to achieve this result. In very rough terms, 
it is necessary to weight matchings according not just to the number of uncovered 
vertices but also their locations. In this way it is possible to access perfect match
ings from near-perfect ones via a "staircase" of relatively small steps. Full details 
may be found in [37J. 

The canonical paths technique has also been applied by Jerrum and Sinclair 
to the ferromagnetic Ising model [35J and by Morris and Sinclair to "knapsack so
lutions" [52J. The latter application is particularly interesting for its use of random 
canonical paths. 


