
11. Azuma's Inequality and a Strengthening 
of Brooks' Theorem 

11.1 Azuma's Inequality 

In this chapter, we introduce a new tool for proving bounds on concentration. 
It differs from the tools we have mentioned so far, in that it can be applied to 
a sequence of dependent trials. To see a concrete example of such a situation, 
imagine that we are colouring the vertices of a graph one by one, assigning 
to each vertex a colour chosen uniformly from those not yet assigned to 
any of its coloured neighbours. This ensures that the colouring obtained is 
indeed a proper colouring, and analyzing such a random process may yield 
good bounds on the minimum number of colours required to obtain vertex 
colourings with certain properties. However, our choices at each vertex are 
now no longer independent of those made at the other vertices. 

In this chapter, we introduce a new concentration inequality which can be 
used to handle such situations, Azuma's Inequality. It applies to a random 
variable R which is determined by a sequence X 1, ... , Xn of random trials. 
Our new tool exploits the ordering on the random trials; it obtains a bound 
on the concentration of R using bounds on the maximum amount by which 
we expect each trial to affect R when it is performed. This approach bears 
fruit even when we are considering a set of independent trials. To illustrate 
this point, we consider the following simple game. 

A player rolls a fair six-sided die n+ 1 times, with outcomes r0 , r 1, ... , Tn· 

Roll 0 establishes a target. The players winnings are equal to X, the number 
of rolls i ~ 1 such that ri = ro. 

It should be intuitively clear that X is highly concentrated. However, 
changing the outcome of ro can have a dramatic effect on X. For example, if 
our sequence is 1, 1, ... , 1 then any change to r 0 will change X from n to 0. 
Thus, we cannot directly apply the Simple Concentration Bound or Tala­
grand's Inequality to this problem. It turns out that we can apply Azuma's 
Inequality because the conditional expected value of X after the first roll 
is ~ regardless of the outcome of this trial. Thus, the first trial has no effect 
whatsoever on the conditional expected value of X. 

Remark Of course, we do not need a bound as powerful as Azuma's In­
equality, to prove that X is highly concentrated - we could prove this by first 
rolling the die to determine r0 and then simply applying the Chernoff Bound 
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to the sequence r 1 , ... , rn- However, the reader can easily imagine that she 
could contrive a similar but more complicated scenario where it is not so easy 
to apply our other bounds. For one such example, see Exercise 11.1. 

Like Talagrand's Inequality, Azuma's Inequality can be viewed as 
a strengthening of the Simple Concentration Bound. There are three main 
differences between Azuma's Inequality and the Simple Concentration Bound. 

(i) We must compute a bound on the amount by which the outcome of each 
trial can affect the conditional expected value of X, 

(ii) Azuma's Inequality can be applied to sequences of dependent trials and 
is therefore much more widely applicable, 

(iii) The concentration bound given by the Simple Concentration Bound 
is in terms of an upper bound c on the maximum amount by which 
changing the outcome of a trial can affect the value of X. To apply Azu­
ma's Inequality we obtain distinct values c1 , ... , Cn where ci bounds the 
amount by which changing the outcome of Ti can affect the conditional 
expected value of X. We then express our concentration bound in terms 
of c1 , ... , en. This more refined approach often yields stronger results. 

Azuma's Inequality [14] Let X be a random variable determined by n trials 
T1 , ... , Tn, such that for each i, and any two possible sequences of outcomes 

I 

t1, ... , ti and t1, ... , t;-1, ti: 

then 

Condition (11.1) corresponds to condition (10.1) in the Simple Concen­
tration Bound, however the two inequalities are very different. The following 
discussion underscores the difference between them. Suppose we have an 
adversary who is trying to make X as large as he can, and a second adversary 
who is trying to make X as small as she can. Either adversary is allowed to 
change the outcome of exactly one trial Ti· Condition (10.1) says that if the 
adversaries wait until all trials have been carried out, and then change the 
outcome of Ti, then their power is always limited. Condition (11.1) says that 
if they must make their changes as soon as Ti is carried out, without waiting 
for the outcomes of all future trials, then their power is limited. 

The above discussion suggests that condition (10.1) is more restrictive 
than condition (11.1), and thus that Azuma's Inequality implies the Simple 
Concentration Bound. It is, in fact, straightforward to verify this implication 
(this is Exercise 11.2). As we will see, Azuma's Inequality is actually much 
more powerful than the Simple Concentration Bound. For example, in the 
game discussed earlier, we satisfy condition (11.1) with c0 = 0 and ci = 1 
for i > 0 (by Linearity of Expectation) and so Azuma's Inequality implies 
that X is highly concentrated. 
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Azuma's Inequality is an example of a Martingale inequality. For further 
discussion of Martingale inequalities, we refer the reader to [10], [112] or [114]. 

If we apply Azuma's Inequality to a set of independent trials with each ci 
equal to a small constant c, then the resulting bound is e-.t2 In for a positive 
constant t: rather than the often more desirable e-'t2 /E(X) which is typically 
obtained from Talagrand's Inequality. While the bound given by applying 
Azuma's inequality using such ci is usually sufficient when E(X) = {3n for 
some constant {3 > 0, it is often not strong enough when E(X) = o(n). How­
ever, in such situations, by taking at least some of the Ci to be very small, we 
can often apply Azuma's Inequality to get the desired bound of e-(.t2 /E(X)). 

We will see an example of this approach in the proof of Lemma 11.8 later in 
this chapter. 

We now consider variables determined by sequences of dependent tri­
als, where the change in the conditional expectation caused by each trial 
is bounded. Our discussion focuses on one commonly occurring situation. 
Suppose X is a random variable determined by a uniformly random permu­
tation P of {1, ... , n }, with the property that interchanging any two values 
P(i), P(j) can never affect X by more than c. Then, as we discuss below, we 
can apply Azuma's Inequality to show that X is concentrated. 

For each 1 ::; i ::; n, we let Ti be a uniformly random element of 
{1, ... , n}- {T1, ... , Ti-d· It is easy to see that T1, ... , Tn forms a uniformly 
random permutation. Furthermore, we will show that this experiment satisfies 
condition ( 11.1). 

Consider any sequence of outcomes T1 = t1, ... , Ti-l =ti-l, along with 
two possibilities for Ti, ti, ( For any permutation P satisfying P(1) = 
t1 , ... , P( i) = ti and P(j) = t: for some j > i, we let P 1 be the per­
mutation obtained by interchanging P(i) and P(j). Our hypotheses yield 
JX(P)- X(P1 )1 ::::; c. Furthermore, it is easy to see that 

I I 1 
Pr(PIT1 =it, ... , T, = t,) = Pr(P IT1 = t1, ... , T, = ti) = (n _ i)! 

It is straightforward to verify that these two facts ensure that condition (11.1) 
holds, and so we can apply Azuma's Inequality to show that X is highly 
concentrated. (Note that it is important that Azuma's Inequality does not 
require our random trails to be independent.) Of course, Azuma's Inequality 
also applies in a similar manner when X is determined by a sequence of 
several random permutations. 

Remark As discussed in the last chapter, we can generate a uniformly 
random permutation by generating n independent random reals between 0 
and 1. We applied Talagrand's Inequality to this model to prove that the 
length of the longest increasing subsequence is concentrated. We cannot use 
Talagrand's inequality in the same way to prove the above result as the 
condition that swapping two values P(i) and P(j) can affect X by at most c 
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does not guarantee that changing the value of one of the random reals affects 
the value of X by a bounded amount. 

For a long time, Azuma's Inequality (or, more generally, the use of Martin­
gale inequalities) was the best way to prove many of the difficult concentration 
bounds arising in probabilistic combinatorics. However, the conditions of 
Talagrand's inequality are often much easier to verify. Thus in situations 
where they both apply, Talagrand's Inequality has begun to establish itself 
as the "tool of choice" . 

It is worth noting, in this vein, that Talagrand showed that his inequality 
can also be applied to a single uniformly random permutation (see Theo­
rem 5.1 of [148]). More recently, McDiarmid obtained a more general version 
which applies to sequences of several permutations, as we will discuss in 
Chap. 16. Thus, we can now prove concentration for variables which depend 
on such a set of random trials, using a Talagrand-like inequality rather than 
struggling with Azuma. To see the extent to which this simplifies our task, 
compare some of the lengthy concentration proofs in [132] and [119] (which 
predated McDiarmid's extension of Talagrand's Inequality) with the corre­
sponding proofs in Chaps. 16 and 18 of this book. 

Nevertheless, there are still many sequences of dependent trials to which 
Talagrand cannot be applied but Azuma's Inequality can (see for exam­
ple [116]). 

11.2 A Strengthening of Brooks' Theorem 

Brooks' Theorem characterizes graphs for which x :S: L1. For L1 at least 3, 
they are those that contain no L1 + 1 clique. Characterizing which graphs 
have x :S: L1 - 1 seems to be more difficult, Maffray and Preissmann [110] 
have shown it is NP-complete to determine if a 4-regular graph has chromatic 
number at most three (if you do not know what NP-complete means, replace it 
by han!). However, Borodin and Kostochka [29] conjectured that if L1(G) 2 9 
then an analogue of Brooks' Theorem holds; i.e. x( G) :S: L1( G) -1 precisely if 
w( G) :S: L1- 1 (this is Problem 4.8 in [85] to which we refer readers for more 
details). To see that 9 is best possible here, consider the graph G, depicted in 
Fig. 11.1, obtained from five disjoint triangles T1 , ... , T5 by adding all edges 
between Ti and Tj if li- Jl = 1 mod 5. It is easy to verify that L1(G) = 8, 
w( G) = 6, and x( G) = 8. Beutelspacher and Hering [22] independently posed 
the weaker conjecture that this analogue of Brooks' Theorem holds for suffi­
ciently large L1. We prove their conjecture. That is, we show: 

Theorem 11.1 There is a L12 such that if L1 (G) 2 L12 and w (G) :S: L1 (G) - 1 
then x( G) :S: L1( G) - 1. 

It would be natural to conjecture that Theorem 11.1 could be generalized 
as follows: 
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Fig. 11.1. G 

For all k, there is a Llk such that if Ll( G) 2: Llk and w( G) :S Ll( G) + 1 - k 
then x(G) :S Ll(G) + 1- k. 

However this conjecture turns out to be false even for k = 3, as the 
following example shows: For Ll 2: 5, let G .1 be a graph obtained from a clique 
K.1_4 with Ll- 4 vertices and a chordless cycle C with 5 vertices by adding 
all edges between C and K.1_4 (see Fig. 11.2). It is easy to verify that G.1 
has maximum degree Ll, clique number Ll- 2, and chromatic number Ll-1. 

Nevertheless, we can generalize Theorem 11.1 in two ways. Firstly, we can 
bound how quickly x must decrease as w moves away from Ll + 1. 

Theorem 11.2 For all k, there is a Llk such that if Ll(G) 2: Llk and w(G) :S 
Ll(G) + 1- 2k then x(G) :::; Ll(G) + 1- k. 

This result is a corollary of Theorem 16.4 discussed in Chap. 16. As 
pointed out in that chapter, the theorem is essentially best possible for large k. 

Secondly, we can show that if x is sufficiently near Ll then although we 
may not be able to determine X precisely simply by considering the sizes 
of the cliques in G, we can determine it by considering only the chromatic 
numbers of a set of subgraphs of G which are very similar to cliques. For 
example, we have: 

There is a Llo such that for any Ll 2: Llo and k > Ll - J3 + 2, 

there is a collection of graphs H1, ... , Ht, which are similar to k­
cliques in that x(Hi) = k, IV(Hi)l :S Ll + 1 and 8(Hi) 2: k- 1, such 
that the following holds: 
For any graph G with maximum degree Ll, x( G) 2: k iff G contains 
at least one Hi as a subgraph. 
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Fig. 11.2. G .<1 

We discuss a number of results of this type in Chap. 15. The proofs of 
these generalizations of Theorem 11.1 all use ideas introduced in its proof. 

Proof of Theorem 11.1. We fix a L12 which satisfies a number of implicit 
inequalities scattered throughout the proof and prove the theorem for this 
value of L12. To this end, we assume the theorem is false and let G be 
a counter-example to it with the fewest number of vertices. Thus, G has 
maximum degree L1 ~ ..12 , w(G) :S ..1- 1, and x(G) = Ll. 

Before presenting the key ideas of the proof, we make the following easy 
observations. 

11.3 Every subgraph H of G with H =/=- G has aLl- 1 colouring. 

Proof If Ll(H) = L1 then the result follows by the minimality of G. Other­
wise, the result follows from Brooks' Theorem because w(H) :S w(G) :S Ll-1. 

D 
11.4 Every vertex of G has degree at least L1- 1. 

Proof For any vertex v of G, by (11.3), G - v has a L1 - 1 colouring. 
If v had fewer than L1 - 1 neighbours then we could extend this to a L1 - 1 
colouring of G. D 

We have already seen in Sect. 10.3 that for L1 sufficiently large, if no 
vertex in G has more than (~)-(log ..1)3 L1 edges in its neighbourhood, then 

x( G) :S ..1- (loge6L1)3 :S Ll-1. Thus, the crux of the proof will be to deal with 
vertices which have such dense neighbourhoods. This motivates the following: 

Definitions A vertex v of G is dense if N(v) contains fewer than Ll(log ..1)3 

non-adjacent pairs of vertices. Otherwise, it is sparse. 

We need to investigate the structure surrounding such dense vertices. 

Definition Set r =(log ..1)4 . We say a clique is big if ICI ~ Ll- r. 
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We shall prove: 

Lemma 11.5 Every dense vertex is contained in a big clique. 

Lemma 11.6 We can partition V( G) into D~, ... , Dz, S so that 

{i} each Di contains a big clique Ci Furthermore, either Di = Ci or Di = 
Ci +vi for some vertex Vi which sees at least 3.f but not all of the vertices 
ofCi; 

{ii} no vertex of V- Di sees more than 3.f vertices of Di; 
{iii) each vertex of S is sparse; and 
{iv) each vertex v of ci has at most one neighbour outside ci which see more 

than r +4 vertices of Ci, furthermore if I Gil = Ll-1 then v has no such 
neighbours. 

It is this decomposition of G into l dense sets and a set of sparse vertices 
which allows us to prove Theorem 11.1. For, having proved Lemma 11.6, 
to deal with the dense vertices we need only colour each Di. This will be 
relatively easy, for these sets are disjoint and there are very few edges from Di 
to V- Di. 

For ease of exposition, we consider the Ll-regular graph G' obtained 
from G by taking two copies of G and adding an edge between the two 
copies of each vertex of degree Ll-1. We note that applying Lemma 11.6 to 
both copies of G yields: 

Corollary 11.7 There is a decomposition of G' satisfying conditions {i}-(iv} 
of Lemma 11.6. 

Now, by taking advantage of this corollary, we can extend the proof 
technique of the last chapter to prove a useful lemma. 

Definition Consider a decomposition as in Corollary 11.7. For 1 ~ i ~ l, 
if Di is the clique Ci set Ki = Ci else set Ki = Ci n N(vi)· 

Lemma 11.8 There is a partial Ll-1 colouring of G' satisfying the following 
two conditions. 

(a) for every vertex v E S there are at least 2 colours appearing twice in the 
neighbourhood of v, 

{b} every Ki contains two uncoloured vertices Wi and xi whose neighbour­
hoods contain two repeated colours. 

To complete a partial Ll- 1 colouring satisfying (a) and (b) to a Ll- 1 
colouring of G' and thereby obtain a Ll- 1 colouring of G, we proceed as 
follows. 

We let U2 be the set of uncoloured vertices whose neighbourhoods contain 
at least two repeated colours and we let U1 be the remaining uncoloured 
vertices. We complete the colouring greedily by colouring the uncoloured 
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vertices one at a time. The only trick is to colour all the vertices of U1 before 
colouring any vertex of U2 . Consider a vertex v of U1 . Since every sparse 
vertex is in U2 by (a), v is in some Di. By (b), the vertices xi and Wi are 
in U2 and hence are uncoloured when we come to colour v. Since v has these 
two uncoloured neighbours, it follows that there is a colour available with 
which to colour v. Thus, we can extend our partial colouring of G' to a .1-1 
colouring of G'- U2 • We can then complete the colouring because for each 
vertex u in U2 there are two repeated colours in N ( u). D 

Remark We note that in proving Theorem 11.1 from Lemma 11.8, we used 
a slight refinement of our greedy colouring procedure. We carefully chose 
the order in which we would complete the colouring, and then coloured each 
vertex greedily when we came to it. This idea, which we first encountered in 
the proof of Brooks' Theorem in Chap. 1, will prove crucial to many of the 
proofs to follow both in this chapter and future ones. 

We have yet to prove Lemmas 11.5, 11.6, and 11.8. We prove the last of 
these in the next section, and prove the first two in the third and final section 
of the chapter. 

11.3 The Probabilistic Analysis 

Proof of Lemma 11.8. We find a partial .1-1 colouring satisfying conditions 
(a) and (b) of Lemma 11.8 by analyzing our naive colouring procedure. In 
doing so, we take advantage of the partition given by Corollary 11.7. Once 
again, we will use the Local Lemma. 

To do so, we need to define two kinds of events. For each v E S, we let Av 
be the event that (a) fails to hold for v, i.e., that there are fewer than 2 
repeated colours on N ( v). For each Di, we let Ai be the event that (b) fails 
to hold for Di, i.e. that there do not exist two uncoloured vertices of Ki each 
of which has two repeated colours in its neighbourhood. We note that if none 
of the events in the set E = (UAv) U (UAi) hold then the random colouring 
satisfies (a) and (b) of Lemma 11.8. To finish the proof we use the Local 
Lemma to show that this occurs with positive probability. 

We note that Av depends only on the colours within distance two of v. 
Also each Ai depends only on the colour of the vertices in Di or within 
distance two of Di. It follows that each event in E is mutually independent 
of a set of all but at most .15 other events. So, we need only show that each 
event in E holds with probability at most .1-6 . 

11.9 Each Av has probability at most ,1-6 . 

To prove this result we consider (as in the last chapter) the variable Xv 
which counts the number of colours assigned to at least two neighbours of v 
and retained by all such neighbours. We first obtain a bound on the expected 
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value of Xv and then bound its concentration using Talagrand's Inequality. 
As the proof is almost identical to one in the last chapter, we omit the details. 

11.10 Each Ai has probability at most _.1-6 • 

To prove this result, we need the following simple corollary of Corollary 11.7. 

Lemma 11.11 For any Di, there are at least£. disjoint triples each of which 
consists of a vertex v of Ki and two neighbours of v outside of Ki both of 
which have at most r + 4 neighbours in Ki. 

Proof of Lemma 11.11. Consider any Di, and corresponding Ki. By definition, 
IKil 2: 3f. Take a maximal set of disjoint triples each of which consists of 
a vertex in Ki and two neighbours of this vertex outside of Di, each of which 
has at most r + 4 neighbours in Ki. Suppose there are k triples in this set 
and let W be the 2k vertices in these triples which are not in Di. By (iv) of 
Corollary 11.7 and the maximality of our set of triples, every vertex in Ki 
is a neighbour of some vertex in W. Hence, (r + 4)IWI 2: IKil, which yields 
k 2: £. as required. D 

To compute the probability bound on Ai, we consider the set Ti of £. 
disjoint triples guaranteed to exist by Lemma 11.11. We let Ti be the union 
of the vertex sets of these triples. We let Mi be the number of these triples 
for which (i) the vertex in Ki is uncoloured, (ii) both the other vertices are 
coloured with a colour which is also used to colour a vertex of Ki, and (iii) 
no vertex of the triple is assigned a colour assigned to any other vertex inTi. 
This last condition is present to ensure that changing the colour of a vertex 
can only affect the value of Mi by two. 

To begin, we compute the expected value of Mi. We note that Mi counts 
the number of triples (a, b, c) in Ti with c E Ki such that there are colours 
j,k,l and vertices x,y,z with x E Ki- Ti- N(a), y E Ki- Ti- N(b), 
z E N(c)- Ti, such that 

1. j is assigned to a and x but to none of the rest of Ti U N(a) U N(x), 
2. k is assigned to bandy but to none of the rest of Ti U N(b) U N(y), 
3. l is assigned to z and c but on none of the rest of Ti. 

To begin, we fix a triple {a, b, c} in Ti. We let Aj,k,l,x,y,z be the event that 
(1), (2), and (3) hold. Since ITil :S ~'the probability of Aj,k,l,x,y,z is at least 
( Ll - 1) - 6 ~. Furthermore, two such events with different sets of indices are 
disjoint. Now, there are at least 2~ choices for both x and y. There are at 
least ;~ choices for z and (Ll- 1)(..1- 2)(..1- 3) choices for distinct j, k, l. 
So, a straightforward calculation shows that the probability that (1), (2), 
and (3) hold for some choice of {j,k,l,x,y,z} is at least (Ll-1)-6 (..1-1) 

(Ll- 2)(..1- 3) 2~ 2 ;~ ~ 2: ~- Since, there are £. triples inTi, the expected 
value of Mi is at least £. ~ 2: ~. 
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We now prove that Mi is concentrated around its mean, and hence at least 
two with high probability, by applying Azuma's Inequality. To apply Azuma's 
Inequality, we must be careful about the order in which we assign the random 
colours to V (G). We will colour the vertices of V - Ti - Ki first and then 
the vertices of Ti U Ki. So, we order the vertices of Gas WI, ... , Wn where for 
somes, we have {w1, ... , W 8 } = V -Ti-Ki and {ws+1 =, ... , Wn} = TiUKi. 
We then choose the random colour assignments for the vertices in the given 
order. 

For each of these choices we now obtain our bound c1 on the effect of the 
choice on the conditional expected value of E(Mi)· We note that changing 
the colour of any vertex can affect the conditional expected value of Mi 
by at most 2 since it affects the value of Mi by at most 2 for any given 
assignment of colours to the remaining vertices. So, L~-s c] :.::; 22 ITi U Kil 
:.::; 5..:1. Furthermore, changing the colour assigned to a vertex w1 of V-Ti-Ki 
from a to (3 will only affect Mi if some neighbour of Wj in Ti U Ki receives 

either a or (3. This occurs with probability at most ~ where d1 is the 
number of neighbours of w1 inTi U Ki. Hence by colouring w1 we can change 

the conditional expected value of Mi by at most Cj = 4..{ . Since the d1 sum 

to at most ..:12 , 2:~:18 Cj is at most 4..:1. As, each Cj is at most 4, we see 
that 2:~:18 c] :.::; 16..:1. Thus, the sum of all the c] is at most 21..:1. Applying 
Azuma's Inequality with t = ~- 2 yields Pr(Ai) < ..:1-6 , as desired. D 

11.4 Constructing the Decomposition 

In this section we prove our two lemmas on the local structure surrounding 
dense vertices, i.e. Lemmas 11.5 and 11.6. The proofs of these lemmas are 
not probabilistic. We include them for completeness. In these proofs, we 
repeatedly apply the refinement of the greedy colouring procedure discussed 
above. That is, we repeatedly find some partial ..:1- 1 colouring and complete 
it to a ..:1 - 1 colouring by greedily colouring the uncoloured vertices in an 
appropriate order. Crucial to the proofs is the following: 

Observation 11.12 If H is a subgraph of G with at most ..:1 + 1 vertices 
such that every vertex of H has at least ~~ neighbours in H then H is either 
a clique or is a clique and a vertex. 

Proof Let X 1, ... , Xz be a maximum size family of disjoint stable sets of 
size two in H. If l = 0 then His a clique and we are done, so we assume lis 
at least 1. Clearly l:.::; Llt1 . We letS= U~= 1 Xi. We can ..:1-1 colour G- H 
since it is a proper subgraph of G. We claim that if H is not a clique and 
a vertex then we can extend any such colouring to a ..:1 - 1 colouring of G. 

We will first extend our colouring to the vertices of S so that for each i, the 
vertices of Xi get the same colour. To do so, we colour the two vertices of Xi 
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at the same time. Between them, these vertices have at most ;~ neighbours 
outside of H. Our colouring procedure ensures that there are at this point at 
most l colours used on H. Thus, there are at least ~~ - 1 colours which can 
be assigned to both vertices of Xi. So we can indeed extend the colouring 
to s so that each xi is monochromatic. 

Case 1: l 2': ft + 2. 

By our degree condition on H, each vertex of H- S misses at most ft 
vertices of S and hence has two repeated colours in its neighbourhood. So we 
can complete our Ll - 1 colouring greedily. 

Case 2: l < ft + 2. 

Note that C = H - S is a clique with at least ~~ - 3 vertices. By our 

degree and size conditions on H, there are at most ;~ vertices of C which 
miss a vertex in X 1 . Thus, we can find vertices u and v of C both of which 
see both vertices of X 1. In fact, a similar argument allows us to insist that if 
l 2': 2 then u and v both see all of x1 u x2. 

Now, we claim that if l 2': 2 then we can complete our colouring greedily 
provided we colour u and v last. When we colour a vertex of C - u- v it has 
two uncoloured vertices ( u and v). Both u and v have two repeated colours 
in their neighbourhoods. The claim follows. 

Finally, if l = 1 then we let X 1 = { x, y}. Since H is not a clique and 
a vertex, both x and y miss a vertex of C. Since there are no two disjoint 
stable sets of size two in H, they both miss some vertex z of C and see all of 
C- z. In this case, we insist that when extending our colouring of G- H to 
G- ( H- X 1 ) we actually extend it to a colouring of G- ( H- X 1 - z) by using 
one of the ~~ - 1 colours which do not appear on N(x) U N(y) U N(z)- H 
to colour {x,y,z}. Now we can complete the colouring greedily, as all the 
vertices of C - z see the three vertices x, y, z on which we have used one 
colour. D 

Proof of Lemma 11.5. Consider a dense vertex v. Define S(v) = v + {wlw E 

N(v), IN(w) n N(v)l 2': ~~ + r}. Since IN(v)l 2': Ll- 1 and IE(N(v))l :S 
Ll(log Ll) 3 , it follows that IN(v) - S(v)l < r. This implies that Ll + 1 > 
IS(v)l > Ll-r+ 1, and that every vertex of Sv has more than~~ neighbours 
in Sv. By Observation 11.12, either Sv is a clique Cv or there is a vertex w 
of Sv such that Sv - w is a clique Cv. In either case, Cv is the desired big 
clique containing v. D 

A bit more work is required to prove Lemma 11.6. 

Proof of Lemma 11. 6. We have just proven that every dense vertex is in a big 
clique. We now examine these cliques more closely. 
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11.13 If two maximal big cliques cl and c2 with ICll :s; IC2I intersect, then 
ICl- C21 :s; 1. 

Proof By considering a vertex in the intersection of the two cliques, we 
see that their union contains at most L1 + 1 vertices. Hence, we can apply 
Observation 11.12 to the graph obtained from their union. 0 

We then obtain: 

11.14 No maximal big clique C intersects two other maximal big cliques. 

Proof By (11.13), the union S of these three big cliques would contain 
at most ICI + 2 :s; L1 + 1 vertices. Applying Lemma 11.12 to S yields that S 
is a clique or a clique and a vertex. This contradicts our assumption that S 
contains three maximal big cliques. 0 

Now, (11.13), (11.14), and Lemma 11.5 imply that we can partition G up 
into sets E1 , ... , E1 and T such that T is the set of vertices in no big clique 
and hence contains no dense vertices, and each Ei is either a maximal big 
clique Ci or consists of a maximal big clique Ci and a vertex Vi Seeing at least 
L1 - r - 1 but not all of the vertices of ci. 

To complete the proof of Lemma 11.6, we need the following result. 

Observation 11.15 For each vertex v ofCi, there is at most one neighbour 
of v in G - Ci which sees more than r + 4 vertices of Ci. Furthermore, if 
ICil = L1- 1 then there is no such vertex. 

Proof For ICil < L1-1, this proof is similar to the case l = 2 of Observa­
tion 11.12 and is left as an exercise. For ICil = L1-1, the proof has the same 
flavour but is slightly more complicated. The reader may work through the 
details by solving Exercises 11.3 -11.5 0 

Corollary 11.16 For each Ci, there is at most one vertex in G- Ci which 
sees at least 3f vertices of ci. 

This corollary ensures that we can obtain D1 , ... , D1 and S satisfying 
(i),(ii), and (iii) of Lemma 11.6 by 

1. Setting Di = Ei if Ei is not a clique, 
2. Setting Di = Ei if Ei is Ci but no vertex v of G-Ci satisfies IN(v)nCil;::: 

3.:1 
4' 

3. Setting Di = Ei +Vi for the unique vertex vi of G- ci satisfying IN (Vi) n 
ci 1 ;::: 

3f otherwise. 

Now, Observation 11.15 implies (iv) of Lemma 11.6 holds as well, and the 
proof is complete. 0 
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Exercises 

Exercise 11.1 Consider the experiment in which we toss a fair coin once 
and then one of two biased coins n - 1 times. If the ith flip came up heads 
then the coin we use for the ( i + 1 )st flip will yield heads with probability ~. 
If the ith flip came up tails then the coin we use for the ( i + 1 )st flip will 
yield tails with probability ~. Let X be the total number of flips which come 
up heads. Prove that each coin flip changes the conditional expected value 
of X by at most 3. Use Azuma's Inequality to prove that X is concentrated 
around its expected value. Can you apply Talagrand's Inequality to obtain 
this result? 

Exercise 11.2 Show that Azuma's Inequality implies the Simple Concen­
tration Bound. 

In the following exercises, C is a clique of size L1 - 1 in our minimal 
counterexample G, z is a vertex outside of C which sees at least r + 5 vertices 
of C, and v is a neighbour of z in C. 

Exercise 11.3 Mimic the proof of the case l :::; 2 of Observation 11.12 to 
show 

(a) v has degree L1, and 
(b) the other external neighbour y of v has at most two other neighbours 

in C. 

Exercise 11.4 Assume every neighbour of z in C has degree L1 and no vertex 
outside C + z has more than three neighbours in C n N ( z). Let y be the other 
neighbour of v outside C. Show 

(a) there is a vertex w in N ( z) n C - N (y) such that adding an edge between 
y and the neighbour of w in V - C - z does not create a clique of size L1, 

(b) for any such w there is a colouring of G - ( C - w) - z in which y and w 
receive the same colour, and 

(c) for any such w and vertex x in C - N ( z) there is a colouring of G - ( C -
w - x) in which y and w receive the same colour and z and x receive the 
same colour. 

Exercise 11.5 Combine the last two results to show that z does not exist. 


