
Part IV 

A Naive Colouring Procedure 

The proofs presented in the next two chapters use a simple but surpris­
ingly powerful technique. As we will see, this technique is the main idea 
behind many of the strongest results in graph colouring over the past decade 
or so. We suggest that the primary goal of the reader of this book should be 
to learn how to use this method. 

The idea is to generate a random partial colouring of a graph in perhaps 
the simplest way possible. Assign to each vertex a colour chosen uniformly at 
random. Of course, with very high probability this will not be a partial colour­
ing, so we fix it by uncolouring any vertex which receives the same colour as 
one of its neighbours. What remains must be a proper partial colouring of 
the graph. We then extend this partial colouring (perhaps greedily) to obtain 
a colouring of G. 

If there are many repeated colours in each neighbourhood, then using 
our greedy procedure we can finish off the colouring with significantly fewer 
than Ll colours (see for example Exercise 1.1). This is the general approach 
taken here. Of course, if N(v) is a clique then there will be no repeated 
colours in N(v) under any partial colouring. Thus, the procedure works 
best on graphs in which each neighbourhood spans only a very few edges. 
Our first application will be to triangle-free graphs, i.e. those in which the 
neighbourhoods span stable sets. 

The key to analyzing this procedure is to note that changing the colour 
assigned to a vertex v cannot have an extensive impact on the colouring we 
obtain. It can only affect the colouring on v and its neighbourhood. This 
permits us to to apply the Local Lemma to obtain a colouring in which every 
vertex has many repeated colours in its neighbourhood provided that for each 
vertex v the probability that N ( v) has too few repeated colours is very small. 

Now, we perform this local analysis in two steps. We first show that the 
expected number of colours which appear twice on N ( v) is large. We then 
show that this random variable is concentrated around its expected value. 
In order to do so, we need to introduce a new tool for proving concentration 
results, as neither Markov's Inequality nor the Chernoff Bound is appropriate. 
In fact, we will introduce two new tools for proving concentration results, one 
in each of the next two chapters. 
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As we shall see, even this naive procedure yields surprisingly strong re­
sults. We answer a question of Erdos and Nesetfil posed in 1985 and prove 
a conjecture of Beutelspacher and Hering. Later in the book, we will use more 
sophisticated variants of the same approach to obtain even more impressive 
results. 



10. Talagrand's Inequality 
and Colouring Sparse Graphs 

10.1 Talagrand's Inequality 

In Chap. 5 we saw the Chernoff Bound, our first example of a concentration 
bound. Typically, this bound is used to show that a random variable is very 
close to its expected value with high probability. Such tools are extremely 
valuable to users of the probabilistic method as they allow us to show that 
with high probability, a random experiment behaves approximately as we 
"expect" it to. 

The Chernoff Bound applies to a very limited type of random variable, 
essentially the number of heads in a sequence of tosses of the same weighted 
coin. While this limited tool can apply in a surprisingly large number of 
situations, it is often not enough. In this chapter, we will discuss Talagrand's 
Inequality, one of the most powerful concentration bounds commonly used in 
the probabilistic method. We will present another powerful bound, Azuma's 
Inequality, in the next chapter. These two bounds are very similar in nature, 
and both can be thought of as generalizations of the following: 

Simple Concentration Bound Let X be a random variable determined 
by n independent trials T1, ... , Tn, and satisfying 

changing the outcome of any one trial can affect X by at most c, (10.1) 

then 
t2 

Pr(IX- E(X)I > t) :::; 2e- 2c2n. 

Typically, we take c to be a small constant. 
To motivate condition (10.1), we consider the following random variable 

which is not strongly concentrated around its expected value: 

{ 
n, with probability ~ 

A= 
0, with probability ~ . 

To make A fit the type of random variable discussed in the Simple Con­
centration Bound, we can define T1 , ... , Tn to be binomial random variables, 
each equal to 0 with probability ~ and 1 with probability ~, and set A = 0 
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if Tn = 0 and A = n if Tn = 1. Here, E(A) = ~ but with probability 1, 
lA- E(A)I ~ ~· Contrast this with the random variable B = L~=l Ti (i.e. 
the number of 1's amongst T1 , ... , Tn)· The expected value of B is also ~' 
but by the Chernoff Bound, the probability that IE- E(B)I ~ o:n is at most 

2 

2e-¥. The difference is that B satisfies condition (10.1) with c = 1, while 
A clearly does not satisfy this condition unless we take c to be far too large 
to be useful. In essence, the outcomes of each of T1 , ... , Tn combine equally 
to determine B, while A is determined by a single "aU-or-nothing" trial. In 
the language of the stock markets, a diversified portfolio is less risky than 
a single investment. 

It is straightforward to verify that the Simple Concentration Bound im-
2 

plies that Pr(IBIN(n, ~)- ~~ > t)::;: 2e--k, which is nearly as tight as the 
Chernoff Bound. (This is very good, considering that the Simple Concentra­
tion Bound is so much more widely applicable than the Chernoff Bound!) In 
the same way, for any constant p, the Simple Concentration Bound yields 
as good a bound as one can hope for on Pr(IBIN(n,p) - npl > t), up to 
the constant term in the exponent. However, when p = o(1), the Simple 
Concentration Bound performs rather poorly on BIN(n,p). For example, if 
p = n-~, then it yields Pr (IBIN(n,p)- npl > ~np) ::;: 2e--h which is far 

worse than the bound of 2e-~ provided by the Chernoff Bound. 
In general, we would often like to show that for any constant o: > 0 there 

exists a (3 > 0 such that Pr(IX- E(X)I > o:E(X))::;: e-/3E(X). The Simple 
Concentration Bound can only do this if E(X) is at least a constant fraction 
of n. Fortunately, when this property does not hold, Talagrand's Inequality 
will often do the trick. 

Talagrand's Inequality adds a single condition to the Simple Concentra­
tion Bound to yield strong concentration even in the case that E(X) = o(n). 
In its simplest form, it yields concentration around the median of X, Med(X) 
rather than E(X). Fortunately, as we will see, if X is strongly concentrated 
around its median, then its expected value must be very close to its median, 
and so it is also strongly concentrated around its expected value, a fact that 
is usually much more useful as medians can be difficult to compute. 

Talagrand's Inequality I Let X be a non-negative random variable, not 
identically 0, which is determined by n independent trials T~, ... , Tn, and 
satisfying the following for some c, r > 0: 

1. changing the outcome of any one trial can affect X by at most c, and 
2. for any s, if X ~ s then there is a set of at most r s trials whose outcomes 

certify that X ~ s (we make this precise below), 

then for any 0::;: t::;: Med(X), 

Pr(IX- Med(X)I > t) ::;: 4e- sc2rMed(x) 
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As with the Simple Concentration Bound, in a typical application c and r 
are small constants. 

More precisely, condition 2 says that there is a set of trials Ti1 , •.. , Tit for 
some t :S rs such that changing the outcomes of all the other trials cannot 
cause X to be less than s, and so in order to "prove" to someone that X 2: sit 
is enough to show her just the outcomes of Ti1 , •.. , Tit. For example, if each Ti 
is a binomial variable equal to 1 with probability p and 0 with probability 
1 - p, then if X 2: s we could take Ti1 , •.• , Tit to be s of the trials which 
came up "1". 

The fact that Talagrand's Inequality proves concentration around the 
median rather than the expected value is not a serious problem, as in the 
situation where Talagrand's Inequality applies, those two values are very close 
together, and so concentration around one implies concentration around the 
other: 

Fact 10.1 Under the conditions of Talagrand's Inequality I, JE(X) -
Med(X)I :S 40cyfrE(X). 

This fact, which we prove in Chap. 20, now allows us to reformulate 
Talagrand's Inequality in terms of E(X). 

Talagrand's Inequality II Let X be a non-negative random variable, 
not identically 0, which is determined by n independent trials T1, ... , Tn, and 
satisfying the following for some c, r > 0: 

1. changing the outcome of any one trial can affect X by at most c, and 
2. for any s, if X 2: s then there is a set of at most rs trials whose outcomes 

certify that X 2: s, 

then for any 0 :S t :S E(X), 

Pr(JX- E(X)J > t + 60cyfrE(X)) :S 4e- sc2rE(x). 

Remarks 

1. The reason that the "40" from Fact 10.1 becomes a "60" here is that 
there is some loss in replacing Med(X) with E(X) in the RHS of the 
inequality. 

2. In almost every application, c and r are small constants and we take t 
to be asymptotically much larger than JE(X) and so the 60cyfrE(X) 
term is negligible. In particular, if the asymptotic order oft is greater 
than JE(X), then for any {3 < 8c\r and E(X) sufficiently high, we have: 

j3t2 

Pr(JX- E(X)I > t) :S 2e -E(x). 
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3. This formulation is probably the simplest useful version of Talagrand's 
Inequality, but does not express its full power. In fact, this version does 
not imply the Simple Concentration Bound (as the interested reader may 
verify). In Chap. 20, we will present other more powerful versions of Tala­
grand's Inequality, including some from which the Simple Concentration 
Bound is easy to obtain. The version presented here is along the lines of 
a version developed by S. Janson, E. Shamir, M. Steele and J. Spencer 
(see [145]) shortly after the appearance of Talagrand's paper [148]. 

The reader should now verify that Talagrand's Inequality yields a bound 
on the concentration of BIN ( n, p) nearly as good as that obtained from the 
Chernoff Bound for all values of p. 

To illustrate that Talagrand's Inequality is more powerful than the Cher­
noff Bound and the Simple Concentration Bound, we will consider a situation 
in which the latter two do not apply. 

Consider a graph G. We will choose a random subgraph H ~ G by placing 
each edge in E(H) with probability p, where the choices for the edges are all 
independent. We define X to be the number of vertices which are endpoints 
of at least one edge in H. 

Here, each random trial clearly affects X by at most 2, and so X satisfies 
condition (10.1). The problem is that if v is the number of vertices in G, 
then clearly E(X) :::; v, while it is entirely possible that the number of edges 
in G, and hence the number of random trials, is of order v2 . Thus, the Simple 
Concentration Bound does not give a good bound here (and the Chernoff 
Bound clearly doesn't apply). However, if X 2: s then it is easy to find s 
trials which certify that X is at least s, namely a set of sedges which appear 
in H and which between them touch at least s vertices. Thus Talagrand's 
Inequality suffices to show that X is strongly concentrated. 

We will present one final illustration, perhaps the most important of the 
simple applications of Talagrand's Inequality. 

Let O" = x1 , ... , Xn be a uniformly random permutation of 1, .. . , n, and 
let X be the length of the longest increasing subsequence of 0" 1 . A well­
known theorem of Erdos and Szekeres [47] states that any permutation 
of 1, ... , n contains either a monotone increasing subsequence of length I y'ri l 
or a monotone decreasing subsequence of length I y'ril. It turns out that the 
expected value of X is approximately 2y'ri, i.e. twice the length of a mono­
tone subsequence guaranteed by the Erdos-Szekeres Theorem (see [104, 153]). 
A natural question is whether X is highly concentrated. Prior to the onset of 
Talagrand's Inequality, the best result in this direction was due to Frieze [61] 
who showed that with high probability, X is within a distance of roughly 
E(X) 213 of its mean, somewhat weaker than our usual target of E(X) 112 . 

At first glance, it is not clear whether Talagrand's Inequality applies 
here, since we are not dealing with a sequence of independent random trials. 

1 In other words, a subsequence Xi 1 < Xi 2 < ... < Xik where, of course, i1 < ... 
< ik. 



10.2 Colouring Triangle-Free Graphs 83 

Thus, we need to choose our random permutation in a non-straightforward 
manner. We choose n uniformly random real numbers, y~, ... , Yn, from the 
interval [0, 1]. Now arranging y1, ... ,Yn in increasing order induces a permu­
tation (j of 1, ... , n in the obvious manner2 . 

If X ;::=: s, i.e. if there is an increasing subsequence of length s, then the s 
corresponding random reals clearly certify the existence of that increasing 
subsequence, and so certify that X ;::=: s. It follows that changing the value of 
any one Yi can affect X by at most one. So, Talagrand's Inequality implies: 

t2 

Pr(IX- E(X)I > t + 60JE(X)) < 4e -sE(x). 

This was one of the original applications ofTalagrand's Inequality in [148]. 
More recently, Baik, Deift and Johansson [15] have shown that a similar result 

holds when we replace JE(X) by E(X)~, using different techniques (see 
also [96]). 

We will find Talagrand's Inequality very useful when analyzing the Naive 
Colouring Procedure discussed in the introduction to this part of the book. To 
illustrate a typical situation, suppose that we apply the procedure using (3l1 
colours for some fixed (3 > 0, and consider what happens to the neighbour­
hood of a particular vertex v. Let A denote the number of colours assigned 
to the vertices in Nv, and let R denote the number of colours retained by the 
vertices in Nv after we uncolour vertices involved in conflicts. 

If deg(v) = l1, then it turns out that E(A) and E(R) are both of the 
same asymptotic order as l1. A is determined solely by the colours assigned 
to the l1 vertices in Nv, and so a straightforward application of the Simple 
Concentration Bound proves that A is highly concentrated. R, on the other 
hand, is determined by the colours assigned to the up to l12 vertices of 
distance at most two from v, and so the Simple Concentration Bound is 
insufficient here. However, as we will see, by applying Talagrand's Inequality 
we can show that R is also highly concentrated. 

10.2 Colouring Triangle-Free Graphs 

Now that we have Talagrand's Inequality in hand, we are ready to carry out 
our analysis of the naive random procedure we presented in the introduction 
to this part of the book. In this section we consider the special case of triangle­
free graphs. We shall show: 

Theorem 10.2 There is a l1o such that if G is a triangle-free graph with 
l1( G) ;:::: l1o then x( G) :::; (1 - ~ )l1. 

2 Because these are uniformly random real numbers, it turns out that with prob­
ability 1, they are all distinct. 
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We shall improve significantly on this theorem in Chap. 13 where with 
the same hypotheses we obtain: x(G) S:: OCo~Ll). 

Proof of Theorem 10.2. We will not specify Llo, rather we simply insist that 
it is large enough so that certain inequalities implicit below hold. We can 
assume G is Ll-regular because our procedure from Sect. 1.5 for embedding 
graphs of maximum degree Ll in Ll-regular graphs maintains the property 
that G is triangle free. 

We prove the theorem by finding a partial colouring of G using fewer than 
Ll - ~ colours such that in every neighbourhood there are at least ~ + 1 
colours which appear more than once. As discussed in the introduction to this 
part of the book, we can then complete the desired colouring using a greedy 
colouring procedure (see Exercise 1.1). We find the required partial colouring 
by analyzing our naive random colouring procedure. 

So, we set C = l ~ J and consider running our random procedure using C 
colours. That is, for each vertex w we assign to w a uniformly random colour 
from {1, ... , C}. If w is assigned the same colour as a neighbour we uncolour 
it, otherwise we say w retains its colour. 

We are interested, for each vertex v of G, in the number of colours which 
are assigned to at least two neighbours of v and retained on at least two 
of these vertices. In order to simplify our analysis, we consider the random 
variable Xv which counts the number of colours which are assigned to at least 
two neighbours of v and are retained by all of these vertices. 

For each vertex v, we let Av be the event that Xv is less than ~ + 1. 
We let £ = {Aviv E V(G)}. To prove the desired partial colouring exists, 
we need only show that with positive probability, none of these bad events 
occurs. We will apply the Local Lemma. 

To begin, note that Av depends only on the colour of vertices which are 
joined to v by a path of length at most 2. Thus, setting 

Sv = {Awlv and ware joined by a path of length at most 4}, 

we see that Avis mutually independent of£- Sv. But JSvl < ..::14 . So, as long 
as no Av has probability greater than ~, we are done. 

We compute a bound on Pr(Av) using a two step process which will be 
a standard technique throughout this book. First we will bound the expected 
value of Xv, and then we show that Xv is highly concentrated around its 
expected value: 

Lemma 10.3 E(Xv) ~ ~ -1. 

Lemma 10.4 Pr(JXv- E(Xv)l > logLl X JE(Xv)) <:do. 
These two lemmas will complete our proof, because 

Ll Ll Ll 
- -1-logLl x JE(X) >- -1-logLlJLl >- + 1 e6 v - e6 2e6 , 
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for L1 sufficiently large, and so these lemmas imply that Pr(Av) < ~ as 
required. 

I 

Proof of Lemma 10.3. For each vertex v we define Xv to be the number of 
colours which are assigned to exactly two vertices in N(v) and are retained 

• I 
by both those vertices. Note that Xv 2: Xv. 

A pair of vertices u, w E N ( v) will both retain the same colour a which is 
assigned to no other neighbour of v, iff a is assigned to both u and wand to 
no vertex inS= N(v)UN(u)UN(w) -u-v. Because lSI::; 3L1-3::; 6C, for 

any colour a, the probability that this occurs is at least (-b) 2 x ( 1 - -b) 60 . 

There are C choices for a and ( ~) choices for { u, w}. Using Linearity of 
Expectation and the fact that e-l/C < 1- -b + 2b, we have: 

for C sufficiently large. D 

Proof of Lemma 10.4. Instead of proving the concentration of Xv directly, we 
will focus on two related variables. The first of these is ATv (assigned twice) 
which counts the number of colours assigned to at least two neighbours of v. 
The second is Delv (deleted) which counts the number of colours assigned to 
at least two neighbours of v but removed from at least one of them. We note 
that Xv = ATv- Delv, and so to prove Lemma 10.4, it will suffice to prove 
the following concentration bounds on these two related variables, which hold 
for any t 2: JL1log L1. 

Claim 1: 
t2 

Pr(IATv- E(ATv)l > t) < 2e-83. 

Claim 2: 
t2 

Pr(jDelv- E(Delv)l > t) < 4e-Ui03. 

To see that these two claims imply Lemma 10.4, we observe that by 
Linearity of Expectation, E(Xv) = E(ATv) - E(Delv)· Therefore, if IXv -
E(Xv)l > logL1JE(Xv), then setting t = !logL1JE(Xv), we must have 
either IATv- E(ATv) I > tor IDelv- E(Delv) I > t. Applying our claims, along 
with the Subadditivity of Probabilities, the probability of this happening is 
at most 

It only remains to prove our claims. 

Proof of Claim 1. The value of ATv depends only on the L1 colour assignments 
made on the neighbours of v. Furthermore, changing any one of these assign­
ments can affect ATv by at most 2, as this change can only affect whether 
the old colour and whether the new colour are counted by ATv. Therefore, 
the result follows from the Simple Concentration Bound with c = 2. D 
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Proof of Claim 2. The value of Delv depends on the up to nearly L\2 colour 
assignments made to the vertices of distance at most 2 from v. Because 
E(Delv) :::; L\ = o(L\2 ) (since in fact Delv is always at most L\), the Sim­
ple Concentration Bound will not apply here. So we will use Talagrand's 
Inequality. 

As with ATv, changing any one colour assignment can affect Delv by 
at most 2. Furthermore, if Delv 2: s then there is a set of at most 3s colour 
assignments which certify that Delv 2: s. Namely, for each of s colours counted 
by Delv, we take 2 vertices of that colour in Nv and one of their neighbours 
which also received that colour. Therefore, we can apply Talagrand's Inequal­
ity with c = 2 and r = 3 to obtain: 

Pr(IDelv- E(Delv)l > t) < 4e 
( t -120-/3Ecoer;;·n 2 

96E(Delv) 
t2 

< 4e-m, 

since t 2: y12llog 21 and E(Delv) :::; L\. D 

So, we have proven our two main lemmas and hence the theorem. D 

10.3 Colouring Sparse Graphs 

In this section, we generalize from graphs in which each neighbourhood con­
tains no edges to graphs in which each neighbourhood contains a reasonable 
number of non-edges. In other words, we consider graphs G which have max­
imum degree L\ and such that for each vertex v there are at most ( ~) - B 
edges in the subgraph induced by N ( v) for some reasonably large B. 

We note that to ensure that G has a L\- 1 colouring we will need to insist 
that B is at least L\ - 1 as can be seen by considering the graph obtained 
from a clique of size L\ by adding a vertex adjacent to one element of the 
clique. More generally, we cannot expect to colour with fewer than L\ - l ~ J 
colours for values of B which are smaller than L\~ - L\ (see Exercise 10.1). 
We shall show that if B is not too small, then we can get by with nearly this 
small a number of colours. 

Theorem 10.5 There exists a L\0 such that if G has maximal degree L\ > L\0 

and B 2: L\(log L\) 3 , and no N( v) contains more than ( ~) - B edges then 
x( G) :::; L\ + 1 - /!11 • 

Proof The proof of this theorem mirrors that of Theorem 10.2. Once 
again, we will consider Xv, the number of colours assigned to at least two 
non-adjacent neighbours of v and retained on all the neighbours of v to which 
it is assigned. Again, the proof reduces to the following two lemmas, whose 
(omitted) proofs are nearly identical to those of the corresponding lemmas 
in the previous section. 
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Lemma 10.6 E(Xv) 2:: e~~. 

Lemma 10.7 Pr (IXv- E(Xv)l > log.1JE(Xv)) < ~. 

It is easy to see that provided B is at least Ll(log .1) 3 then we can combine 
these two facts to obtain the desired result. D 

Remarks 

1. Using much more complicated techniques, such as those introduced in 
Part 6, we can show that Theorem 10.5 holds for every B. 

2. As you will see in Exercise 10.2, a slight modification to this proof yields 
the same bound on the list chromatic number of G. 

Using our usual argument, we can obtain a version of Theorem 10.5 which 
holds for every .1, by weakening our constant e6 : 

Corollary 10.8 There exists a constant r5 > 0 such that if G has maximal 
degree .1 > 0 and B;:::: Ll(log .1)3 , and no N(v) contains more than(~) -B 
edges then x( G) ::::; .1 + 1 - r5 ~. 

Proof of Corollary 10. 8. Set r5 = min { 1o , ;;t}. Now, if .1 > Llo then the result 

holds by Theorem 10.5. Otherwise it holds because B < :f so we are simply 
claiming that G is .1 colourable, which is true by Brooks' Theorem . D 

10.4 Strong Edge Colourings 

We close this chapter by describing an application of Theorem 10.5 to strong 
edge colourings, which appears in [118] and which motivated Theorem 10.5. 
The notion of a strong edge colouring was first introduced by Erdos and 
Nesetfil (see [52]), and is unrelated to the strong vertex colourings which 
were discussed in Chap. 8. 

A strong edge-colouring of a graph, G, is a proper edge-colouring of G with 
the added restriction that no edge is adjacent to two edges of the same colour, 
i.e. a 2-frugal colouring of L( G) (note that in any proper edge-colouring of G, 
no edge is adjacent to three edges of the same colour and so the corresponding 
colouring of L( G) is 3-frugal). Equivalently, it is a proper vertex-colouring 
of L( G) 2 , the square of the line graph of G which has the same vertex set 
as L( G) and in which two vertices are adjacent precisely if they are joined 
by a path of length at most two in L(G). The strong chromatic index of G, 
sxe (G) is the least integer k such that G has a strong edge-colouring using 
k colours. We note that each colour class in a strong edge colouring is an 
induced matching, that is a matching M such that no edge of G - M joins 
endpoints of two distinct elements of M. 
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e 

Fig. 10.1. An edge and its neighbourhood in L(G)2 

If G has maximum degree Ll, then trivially sxe(G) ~ 2Ll2 - 2Ll + 1, as 
L( G)2 has maximum degree at most 2Ll2 - 2Ll. In 1985, Erdos and Nesetfil 
pointed out that the graph Gk obtained from a cycle of length five by dupli­
cating each vertex k times (see Fig. 10.2) contains no induced matching of 
size 2. Therefore, in any strong colouring of Gb every edge must get a different 
colour, and so 

sxe(Gk) = IE(Gk)l = 5k2 . 

We note that Ll(Gk) = 2k, and so sxe(Gk) = ~Ll(Gk) 2 . 
Erdos and Nesetfil conjectured that these graphs are extremal in the 

following sense: 

Conjecture For any graph G, sxe(G) ~ ~Ll(G) 2 • 

They also asked if it could even be proved that for some fixed E > 0 every 
graph G satisfies sxe(G) ~ (2- E)Ll(G)2 . In this section we briefly point out 

Fig. 10.2. G3 
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how Theorem 10.5 can be used to answer this question in the affirmative. For 
other work on this and related problems, see [11], [33], [53], [83] and [84]. 

Theorem 10.9 There is a .10 such that if G has maximum degree .1 2 .10 , 

then sxe (G) :::; 1.99995.12 • 

Corollary 10.10 There exists a constant E > 0 such that for every graph G, 
sxe( G) :::; (2- E)Ll2 . 

Proof of Corollary 10.10. Set E = min{.00005, .J0 }. If Ll(G) ::::=: Llo then the 
result follows from the theorem. Otherwise, we simply need to use the fact 
that Ll(L(G)2):::; 2Ll(G)2 - 2Ll(G) and apply Brook's Theorem. 

To prove Theorem 10.9, the main step is to show the following, whose 
tedious but routine proof can be found in [118]: 

Lemma 10.11 If G has maximum degree .1 sufficiently large then, for each 

e E V(L(G)2), NL(G)2(e) has at most (1- 316 )(2~2) edges. 

Using this lemma, it is a straightforward matter to apply Theorem 10.5 
to yield Theorem 10.9. 

Exercises 

Exercise 10.1 Show that for every .1 and B:::; .1i- .1 there exists a graph 
with .1 + 1 vertices in which the neighbourhood of each vertex contains at 
most ( ~) - B edges, whose chromatic number is l .1 - ~ J . 

Exercise 10.2 Complete the proof of Theorem 10.5 and then modify it to 
get the same bound on the list chromatic number of G. 


