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ABSTRACT: A sequence is nonrepetitive if it does not contain two adjacent identical blocks. The
remarkable construction of Thue asserts that three symbols are enough to build an arbitrarily long
nonrepetitive sequence. It is still not settled whether the following extension holds: for every sequence
of three-element sets L1, . . . , Ln there exists a nonrepetitive sequence s1, . . . , sn with si ∈ Li. We
propose a new non-constructive way to build long nonrepetitive sequences and provide an elementary
proof that sets of size 4 suffice confirming the best known bound. The simple double counting in
the heart of the argument is inspired by the recent algorithmic proof of the Lovász local lemma due
to Moser and Tardos. Furthermore we apply this approach and present game-theoretic type results
on nonrepetitive sequences. Nonrepetitive game is played by two players who pick, one by one,
consecutive terms of a sequence over a given set of symbols. The first player tries to avoid repetitions,
while the second player, in contrast, wants to create them. Of course, by simple imitation, the second
player can force lots of repetitions of size 1. However, as proved by Pegden, there is a strategy for the
first player to build an arbitrarily long sequence over 37 symbols with no repetitions of size greater
than 1. Our techniques allow to reduce 37–6. Another game we consider is the erase-repetition game.
Here, whenever a repetition occurs, the repeated block is immediately erased and the next player to
move continues the play. We prove that there is a strategy for the first player to build an arbitrarily long
nonrepetitive sequence over 8 symbols. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 42, 214–225,
2013
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1. INTRODUCTION

A repetition of size h in a sequence S is a subsequence of consecutive terms of S consisting
of two identical blocks x1 . . . xhx1 . . . xh. A sequence is nonrepetitive if it does not contain
a repetition of any size h � 1. For instance, the sequence 1,232,312 contains a repetition
2323 of size two, while 123,132,123 is nonrepetitive.

It is easy to see that each binary sequence of length at least four contains a repetition.
In 1906 Thue [24] proved that three symbols are sufficient to produce arbitrarily long
nonrepetitive sequences (see [6]). His method is constructive and uses substitutions over a
given set of symbols. For instance, the substitution

1 → 12, 312

2 → 131, 232

3 → 1, 323, 132

preserves the property of nonrepetitiveness on the set of finite sequences over {1, 2, 3}. This
means that replacing all symbols in a nonrepetitive sequence by the assigned blocks results
in a sequence that still does not contain repetitions. Sequences generated by substitutions
have found many unexpected applications in such diverse areas as group theory, universal
algebra, number theory, ergodic theory, and formal language theory. The work of Thue
inspired a stream of research leading to emergence of new branches of mathematics with a
variety of challenging open problems (see [1, 5, 7, 14, 19]).1

In this paper we present a different approach to creating long nonrepetitive sequences.
Consider the following naive procedure: generate consecutive terms of a sequence by choos-
ing symbols at random (uniformly and independently) and every time a repetition occurs,
erase the repeated block and continue. For instance, if the generated sequence is 12,323,
we must cancel the last two symbols, which brings us back to 123.

We prove by a simple counting that with positive probability the length of a constructed
sequence exceeds any finite bound, provided the number of symbols is at least 4. This is
slightly weaker than Thue’s result, but our argument remains valid in more general settings,
in which the method of substitutions does not seem to work.

One particular example of such a setting is the list-version of nonrepetitive sequences –
an analog of the classical graph choosability introduced by Vizing [25] and independently
by Erdős, Rubin, and Taylor [9]. Suppose we are given a collection of lists (sets of symbols)
L1, . . . , Ln. A sequence s1 . . . sn is chosen from lists L1, . . . , Ln if si ∈ Li for all i = 1, . . . , n.
The following list-version of Thue’s theorem seems plausible.

Conjecture 1. For every n � 1 and a sequence of sets L1, . . . , Ln, each of size 3, there is
a nonrepetitive sequence chosen from L1, . . . , Ln.

Notice that the statement of the conjecture is not obvious, even for lists of any given
size. However, a rather straightforward touch of the Lovász local lemma assures that the
conjecture is true for sufficiently large lists (for a careful introduction to the local lemma

1A collective work by Dominique Perrin, Jean Berstel, Christian Choffrut, Robert Cori, Dominique Foata, Jean Eric
Pin, Guiseppe Pirillo, Christophe Reutenauer, Marcel-P. Schützenberger, Jacques Sakarovitch and Imre Simon,
With a foreword by Roger Lyndon, Edited and with a preface by Perrin.
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216 GRYTCZUK, KOZIK, AND MICEK

and the probabilistic method in general we send the reader to [3]).2 In fact, the bound 64
comes as a special case of a result on nonrepetitive colorings of bounded degree graphs
(Alon, Grytczuk, Hałuszczak, and Riordan [2]; see also [13]). Recently Grytczuk, Przybyło
and Zhu [15] proved that lists of sizes at least 4 suffice. They achieve this almost tight bound
applying an enhanced version of the local lemma due to Pegden [21]. In Section 2 we give
a simple argument for the same bound.

This research would not emerge without a contribution of Moser on his way to an
algorithmic proof of Lovász local lemma [20]: his entropy compression argument. This
was widely discussed in the combinatorics community and we send the reader to great
expositions of the topic by Tao [22] and Fortnow [12].

In this paper we make use of the above-mentioned approach to games involving
nonrepetitve sequences.

The nonrepetitive game over a symbol set S is played by two players in the following
way. The players collectively build a sequence choosing from S, one by one, consecutive
terms of the sequence. The first player, Ann, is trying to avoid repetitions, while the second
player, Ben, does not necessarily cooperate. Of course, just by mimicking Ann’s moves
Ben can force a lot of repetitions of size 1. It turns out however that for large enough S
he cannot force any larger repetition at all! Pegden [21], using his extension of the Lovász
local lemma, proved that Ann has a strategy in the nonrepetitive game to build an arbitrarily
long sequence with no repetition of size greater than 1 over symbol set of size at least 37
(no matter how perfidiously Ben is playing). In this paper we prove (Theorem 3) that Ann
can do the same on every set of symbols of size at least 6. On the other hand, Ben can easily
force nontrivial repetitions in a game on just 3 symbols (see [21]). Thus, the minimum size
of a set of symbols required to ensure Ann’s strategy is 4, 5 or 6.

The erase-repetition game over a set of symbols S is also a two-player game between
Ann and Ben. As before they build a sequence picking symbols alternately from S and
appending them to the end of the sequence built so far. But this time whenever a repetition
occurs the second instance of the repeated block is immediately erased and the next player
continues extending the remaining prefix of the sequence. We prove (Theorem 2) that there
is a strategy for Ann in this game to build an arbitrarily long nonrepetitive sequence over
at least 8 symbols.

The paper is organized as follows. Section 2 contains the generic argument proving that
from any sequence of lists, each of size 4, one can choose a nonrepetitive sequence. Section 3
introduce a bit of generating functions theory used in counting arguments. Sections 4 and 5
are devoted to erase repetiton game and nonrepetitive game, respectively.

2. THE ALGORITHM

Consider the following randomized algorithm. The input is a sequence of lists L1, . . . , Ln.
Random elements are chosen independently with uniform distribution.

The general idea is that if Algorithm 1 works long enough for all evaluations of the
random experiments, then a lot of repetitions occur, based on which we can compress a
random string to a better extent than is actually possible.

Theorem 1. For every n � 1 and a sequence of sets L1, . . . , Ln, each of size 4, there is a
nonrepetitive sequence chosen from L1, . . . , Ln.

2With an appendix on the life and work of Paul Erdös.
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NEW APPROACH TO NONREPETITIVE SEQUENCES 217

Algorithm 1: Choosing a nonrepetitive sequence from lists of size 4

i ← 1
while i � n do

si ← random element of Li

if s1, . . . , si is nonrepetitive then
i ← i + 1

else
there is exactly one repetition, say si−2h+1, . . . , si−h, si−h+1, . . . , si

i ← i − h + 1

Proof. Suppose for a contradiction that it is not possible to choose a nonrepetitive sequence
from L1, . . . , Ln. This means that Algorithm 1 does not terminate on this sequence. In the
following, by the j-th step of the algorithm, we mean the j-th iteration of the while loop.
Set M to be a sufficiently large integer. We are going to record, in two different ways, the
possible scenarios of what algorithm does in the first M steps.

Order arbitrarily the elements of each Li. In each step the algorithm picks a random
element from a list of size 4. Let rj (1 � j � M) be the position of the chosen element in
the appropriate list. Clearly, r1, . . . , rM is a sequence of random variables with 4M possible
evaluations. When we fix evaluations of r1, . . . , rM we make Algorithm 1 deterministic.

For fixed evaluations of r1, . . . , rn, let d1 = 1 and dj (2 � j � M) be the difference
between the values of variable i after jth and (j − 1)th steps of the algorithm. The important
properties are:

i. dj � 1, for all 1 � j � M,
ii.

∑k
j=1 dj � 1, for all 1 � k � M.

A pair (D, S) is a log if there is an evaluation of (r1, . . . , rM) such that D is the corresponding
sequence of differences and S is the final sequence produced after M steps of the algorithm.
The key point is that a log encodes all values of r1, . . . , rM in a lossless fashion.

Claim. Every log corresponds to a unique evaluation of r1, . . . , rM .

Proof of Claim. Given a log ((d1, . . . , dM), SM) with SM = (s1, . . . , sl) we are going to
decode the evaluation of rM (the last random choice taken) and SM−1 – the sequence con-
structed after M −1 steps. Then by simple iteration one can extract all the remaining values
of rM−1, . . . , r1.

If dM = 1 then, the element generated in the Mth step is appended to the end of SM . Thus
the value of rM is simply the position of sl in Ll. Moreover, no repetition occurred after the
Mth step and therefore SM−1 = (s1, . . . , sl−1).

If dM � 0 then some symbols were erased after the Mth step. But, since we know the
size of the repeated sequence, namely h = |dM | + 1, and only one part of it was erased,
we can read and copy the appropriate block to restore the sequence before the erasure
(s1, . . . , sl, sl−h+1, . . . , sl). Then we read the value of rM as a position of sl in Ll+h, and SM−1

as (s1, . . . , sl, sl−h+1, . . . , sl−1) (in case of h = 0 we put SM−1 = (s1, . . . , sl)).

Let TM be the number of sequences d1, . . . , dM satisfying (i), (ii) and additionally∑M
j=1 dj = 1. Such sequences are in close relation to plane trees, and are known to be

Random Structures and Algorithms DOI 10.1002/rsa
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218 GRYTCZUK, KOZIK, AND MICEK

enumerated by Catalan numbers, i.e., TM+1 = CM = 1
M+1

(2M
M

) = o(4M). Note that every
feasible sequence of differences in a log has total sum less than n (as Algorithm 1 never
terminates). The number of sequences satisfying (i), (ii) but with total sum equal k (fixed
k � 1) is at most TM . Thus, we conclude that the number of all feasible difference sequences
of size M is at most n ·TM . Clearly, for every feasible sequence of differences D the number
of sequences which can occur in log with D is at most 4n. Since the number of logs is exactly
4M we get

4M � n · TM · 4n = o(4M)

which is a contadiction for large enough M. This means that the number of realizations
which do not generate a nonrepetitive sequence of length n is smaller than the number of
all realizations.

3. PRELIMINARIES

We make some use of generating functions theory. We consider only algebraic functions. A
generating function t(z) = ∑

n Tnzn with positive radius of convergence is algebraic if there
exists a nonconstant polynomial P(z, t) ∈ C[z, t] (defining polynomial) such that P(z, t(z))
is constantly zero within the disc of convergence of t(z). It is a well known fact that, if the
radius of convergence of

∑
n Tnzn is strictly greater than α, then Tn = o(α−n). The following

observation is fundamental in analysis of algebraic generating functions, the thorough study
of which can be found in [11] (chapter VII.7).

Observation . Let t(z) = ∑
n Tnzn be a nonpolynomial algebraic generating function

with defining polynomial P(z, t). Then the radius of convergence of t(z) is one of the roots
of the discriminant of P(z, t) with respect to the variable t (i.e., the resultant of P(z, t) and
∂tP(z, t) with respect to t).

The coefficients of the functions we use are nonnegative integers. In such cases it is
easy to see that the radius of convergence is not greater than 1, whenever a function has
infinite number of nonzero coefficients. In order to bound the growth of the sequence of
coefficients of such a function, we calculate the discriminant of its defining polynomial
P(z, t) with respect to the variable t, and look for its positive real root in the interval (0, 1].
If there is only one such root, it must be the radius of convergence of the function.

4. THE ERASE-REPETITION GAME

Theorem 2. In the erase-repetition game over a symbol set of size 8, there exists a strategy
for Ann to build an arbitrarily long nonrepetitive sequence.

Proof. We fix n and prove that Ann has a strategy to build a nonrepetitive sequence of
size n. In fact, the strategy for Ann will be randomized and we will show that for every
strategy of Ben there is an evaluation of random experiments leading to the sequence of size
n against that strategy. The fact that for every strategy of Ben there is a strategy for Ann to
build a sequence of size n implies that Ann simply has a strategy to build such a sequence.

Random Structures and Algorithms DOI 10.1002/rsa
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NEW APPROACH TO NONREPETITIVE SEQUENCES 219

Let C be the size of a symbol set. The argument to be presented turns out to work for
C � 8. The strategy for Ann is the following: choose a random element distinct from the
last three symbols in the sequence constructed so far. In this setting, Ann does not generate
repetitions of size 1, 2 and 3. Obviously, Ben can cause many repetitions of size 1 but
repetitions of size 2 and 3 are not possible. Indeed, in order to get a repetition of the form
“abcabc” the last three symbols must be generated by Ben. Consider Ann’s move just before
Ben puts “b” in the repeated block. As she could not play preceding symbol “a” she must
have invoked a repetition. But all her repetitions are of size at least 4 and therefore the
repeated block must have ended with “abca.” This would mean that she played “a” which
is not possible as this symbol is not distinct from the last three in the current sequence at
that step. Analogous argument proves that repetitions of size 2 are also impossible.

Fix n and a strategy of Ben. Take M sufficiently large and consider possible scenarios of
the first 2M moves of the game against that fixed Ben’s strategy. Suppose, for a contradiction,
that the size of a sequence after 2M moves is always (for any evaluation of Ann’s choices)
less than n. Ann generates exactly M elements. Let rj (1 � j � M) be the jth symbol
generated by Ann. Clearly, r1, . . . , rM is a sequence of random variables with at least (C−3)M

possible evaluations. When we fix an evaluation of r1, . . . , rM the course of the whole game
is determined.

Let hj (1 � j � 2M) be the length of the sequence generated after j moves (including
possible erasure invoked by the jth move) and let d1, . . . , d2M be the sequence of differences:
d1 = 1, dj = hj − hj−1 for 2 � j � 2M. Note that dj = 1 means that there is no erasure
after jth move and dj < 1 indicates that repeated block of size |dj| + 1 was removed. A
pair (D, S) is a game log and D is feasible if there is an evaluation of r1, . . . , rM such that
D is the sequence of differences and S is the final sequence produced after 2M moves. A
pair (D, S) is a reduced game log if it is a log but with all zeros in D erased. Note that any
sequence of differences D = (d1, . . . , dm) in a reduced log satisfies:

i. m � 2M,
ii dj ∈ {1, −3, −4, −5, . . .}, for all 1 � j � m,

iii.
∑k

j=1 dj � 1, for all 1 � k � m.

Claim. Every reduced log corresponds to a unique evaluation of r1, . . . , rM .

Proof. Given a reduced log ((d1, . . . , dm), Sm) with Sm = (s1, . . . , sl), we decode all random
choices taken by Ann in two steps. First we reconstruct the sequence x1, . . . , xm of all symbols
introduced in the game except those (of Ben) generating repetitions of size 1. The introduced
symbols generating repetitions of size 1 are called bad, other symbols are good. The move
is good (bad) if a good (bad) symbol is introduced. The number of good moves played is
exactly the size of the difference sequence in the reduced log, namely m. Note that Sm is
the sequence formed after the mth good move (even if a bad move is played afterwards, it
does not change the sequence).

We reconstruct the sequence of good symbols backwards, i.e., we first decode xm, which
is the last good symbol introduced, and the sequence Sm−1 constructed after m − 1 good
moves. Then, by simple iteration, we extract all the remaining good symbols xm−1, . . . , x1.

If dm = 1, then the mth good symbol introduced did not invoke a repetition. Thus, the
last good symbol introduced is the last symbol of the final sequence, i.e., xm = sl and
Sm−1 = (s1, . . . , sl−1).

Random Structures and Algorithms DOI 10.1002/rsa
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220 GRYTCZUK, KOZIK, AND MICEK

If dm � 0, then some symbols were erased after the mth good move. But since we know
the size of the repetition, namely h = |dm|+1, and only one half of it was erased, we can read
and copy the first part of the repeated block to restore Sm−1 = (s1, . . . , sl, sl−h+1, . . . , sl−1)

and xm = sl.
Once we get all x1, . . . , xm, we read the sequence from the beginning and check whether

the symbols agree with the strategy of Ben we fixed. The difference appears only where
Ben introduces a bad symbol. There we extend the sequence with this symbol and continue.
This way we reconstruct the sequence of all symbols introduced in the game and clearly
every second symbol is chosen by Ann.

By a game walk we mean a sequence d1, . . . , dm satisfying (ii), (iii) and additionally∑m
j=1 dj = 1. Let Tm be the number of gamewalks of length m. By our assumption that Ann

never wins, every feasible sequence of differences in a reduced log sums up to a number
smaller than n. The number of sequences of size m satisfying (ii), (iii) but with a total sum k
(for fixed k � 1) is bounded by Tm+3 (just append two “1”s and “−(k +1)” to the end). Note
also that Tm � Tm+1 for m > 1. Indeed, for a given sequence d1, . . . , dm let i be the least index
with di < 0 (there must be such provided m > 1). Then d1, . . . , di−1, 1, di + 1, di+1, . . . , dm

is a sequence counted by Tm+1 and this extension is injective. Finally, all feasible sequences
of differences are of size at most 2M. All this yields that the number of feasible difference
sequences in a reduced log is at most 2M · n · T2M+3. For a given feasible sequence of
differences D, the number of final sequences which can occur with D in a reduced log is
bounded by Cn. Thus, the number of reduced logs is bounded by

2M · n · T2M+3 · Cn.

We turn to the approximation of T2M . Every game walk d1, . . . , dm is either a single
step up (i.e., m = 1, d1 = 1), or it can be uniquely decomposed into |dm| + 1 subsequent
game walks of total length m − 1. The jth component of the decomposition is the substring
between the last visit of height j−1 and the last visit of height j (i.e., between the last k such
that

∑k
i=1 di = j − 1 and last l such that

∑l
i=1 di = j). This description together with the

fact that if m > 1, then |dM | + 1 � 4, certify that the generating function t(z) = ∑
n∈N Tnzn

satisfies the following functional equation:

t(z) = z + z(t(z)4 + t(z)5 + . . .),

where the right hand side is z + z t(z)4

1−t(z) . From this equation we extract a polynomial

P(z, t) = zt4 + t2 − (1 + z)t + z

that defines t(z). In the standard way we calculate the discriminant polynomial obtaining:

−4 − 19z + 32z2 − 2z3 + 36z4 + 229z5.

This polynomial has only one positive real root equal to ρ = 0.457 . . . > 5− 1
2 . Pick any α

with ρ−2 < α < 5. Then T2M = o(αM).
By the claim the number of realizations is exactly the number of reduced logs. That gives

(C − 3)M � 2M · n · T2M+3 · Cn = 2M · n · o(αM) · Cn = o(5M).

Thus for C � 8 and sufficiently large M we obtain a contradiction.

Random Structures and Algorithms DOI 10.1002/rsa
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NEW APPROACH TO NONREPETITIVE SEQUENCES 221

5. THE NONREPETITIVE GAME

Theorem 3. In the nonrepetitive game over a symbol set of size 6, there is a strategy for
Ann to build an arbitrarily long sequence with no repetitions of size greater than 1.

Proof. We fix n and prove that Ann has a strategy to build a sequence of size n without
repetitions of size greater than 1. As before we consider randomized Ann’s strategy and we
show that for every strategy of Ben there is an evaluation of random experiments leading
to the generation of a nonrepetitive sequence of size n. This means that Ben cannot have
winning strategy. Therefore, there exists a winning strategy for Ann.

In this proof, by a repetition we mean a repetition of size greater than 1.
Let s1, . . . , sm−1 be the sequence already generated in the game and suppose that it is

Ann’s turn (m is odd). The strategy for Ann goes as follows: choose any symbol at random,
but

i. exclude sm−2,
ii. if sm−1 = sm−4, then exclude sm−3,

iii. if only one symbol has been excluded in (i) and (ii), then exclude sm−4.

This stategy explicitly ensures that no repetitions of size 2 and 3 occur in the game. It
turns out that also repetitions of size 4 are avoided. Suppose for a contradiction that at some
point in the game a sequence with a suffix of the form x1x2x3x4x1x2x3x4 is produced. Suppose
also that Ann introduces the last symbol, namely x4. As she did not prevent a repetition of
size 4, the rule (iii) of the strategy did not exclude a symbol and therefore rule (ii) must
have been invoked. In particular, x3 = x4. But this means that in the previous move of Ann
(when she introduced x2 in the repeated block) the symbols excluded by (i) and (ii) were
the same, so, rule (iii) must have been applied. But that rule excludes x2, a contradiction.
Analogous reasoning works for the case when Ben finishes a repetition of size 4.

Fix a strategy for Ben. We simulate the play between randomized Ann and this fixed
strategy, and whenever a repetition of size h occurs in the mth move (of the real game), we
backtrack to the move m − h + 1. This means that we remove the whole repeated segment
and continue the simulation starting from the move m − h + 1 again (with independent
random experiments).

A search sequence is the sequence of consecutive symbols chosen by players in the
simulation. Note that it is not possible for Ben to introduce three symbols in a row in the
search sequence. Indeed, if he introduces two symbols in a row, then there must have been
a repetition (of odd size) after the first symbol. Thus, the second one is the same as the
symbol just erased at this position (as Ben’s strategy is fixed in the simulation). This means
that the second symbol could not generate repetition and therefore Ann is next to play in
the simulation.

The weight of a search sequence is the number of symbols chosen by Ann in the sequence.
Fix M large enough. We are going to show that there is a scenario of the first M random
experiments (first M moves of Ann) leading the simulation to an outcome sequence of size
n. This will prove that Ann has a strategy to build a sequence of size n against the fixed
strategy of Ben. For a contradiction we suppose that all outcome sequences generated after
M moves of Ann in the simulation are of length less than n for all possible evaluations of
random experiments.

Random Structures and Algorithms DOI 10.1002/rsa
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222 GRYTCZUK, KOZIK, AND MICEK

Clearly, a search sequence of weight M is uniquely determined by the sequence of M
Ann’s choices. Let r1, . . . , rM be the symbols chosen by Ann. As she always chooses one
symbol out of at least C −2 symbols, the sequence r1, . . . , rM has at least (C −2)M possible
evaluations. A search sequence induced by an evaluation of r1, . . . , rM is called a realization
of this evaluation.

Let hj be the length of the current sequence just before the jth step (move) of the simu-
lation. The sequence (hj) is called a height sequence. If Ann introduces a symbol in the jth
step, then her next move is in step k ∈ {j + 1, j + 2, j + 3} (as Ben never plays three times in
a row). There are only few possible extensions of the height sequence from hj up to hk:

0. Ann makes no repetition in the jth step and Ben makes no repetition in the (j + 1)th
step. In this case k = j + 2 and hj+1 = hj + 1, hj+2 = hj + 2.

1. Ann makes a repetition of odd size, at least 5, in the jth step and therefore she plays
again in the (j + 1)th step. Here k = j + 1 and hk � hj − 4.

2. Ann makes a repetition of even size, at least 6, in the jth step and Ben plays no
repetition in the (j + 1)th step. Here k = j + 2 and hk � hj − 4.

3. Ann makes no repetition in the jth step and Ben produces a repetition of even size, at
least 6, in the (j + 1)th step. Here again k = j + 2 and hk � hj − 4.

4. Ann makes no repetition in the jth step. Ben makes a repetition of odd size, at least 5,
in the (j + 1)th step. Then he plays no repetition in the (j + 2)th step. Here k = j + 3
and hk � hj − 2.

We want to get rid of some redundancy in the height sequence. More precisely, we encode
the sequence of heights into its subsequence consisting of hj’s corresponding to Ann’s moves
with a little extra information. Let hj, hk be again the heights of the current sequence right
before any two consecutive moves of Ann. Note that

• If hk > hj, then the sequence of heights between hj and hk is of type (0).
• If hk = hj − 2, then the sequence of heights between hj and hk is of type (4).
• If hk � hj − 4, then the sequence of heights between hj and hk is of type (1), (2), (3)

or (4).

Therefore, in order to record the whole height sequence it is enough to remember the
subsequence h′

1, . . . , h′
M of heights corresponding to Ann’s moves and additionally, if h′

j+1 �
h′

j −4, to record type(h′
j, h′

j+1) ∈ {1, 2, 3, 4}, which is the type of the original height sequence
between symbols corresponding to h′

j and h′
j+1.

Finally, note that all the h′
j’s are even (as the current sequence before Ann’s move contains

an even number of symbols). The reduced sequence of differences is: d1 = 1, dj+1 =
(h′

j+1 − h′
j)/2 for 1 � j < M, and the type function type(dj+1) = type(hj, hj+1), provided

the latter is defined. Note that

i. dj � 1,
ii.

∑k
j=1 dj � 1, for all 1 � k � M,

iii. type(dj) is defined if and only if dj � −2.

A pair ((D, type), S) is a search log if there is an evaluation of r1, . . . , rM such that D is
the reduced sequence of differences in the realization of r1, . . . , rM , type is a type function

Random Structures and Algorithms DOI 10.1002/rsa
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NEW APPROACH TO NONREPETITIVE SEQUENCES 223

of D, and S is the final sequence produced after M steps of Ann in this realization of the
search procedure.

Claim. Every search log corresponds to a unique evaluation of r1, . . . , rM .

Proof. Given a search log ((D, typeD), S) where S = (s1, . . . , sl) we decode the evaluation
of r1, . . . , rM in a few steps. First we extract the height sequence h1, . . . , hm from (D, typeD)

and put additionally hm+1 = |S|. Now, we are going to describe how to reconstruct the
sequence x1, . . . , xm of all symbols introduced in the simulation. This is done in backward
direction, i.e., we decode first xm and the sequence Sm−1 constructed after m − 1 steps of
the simulation. Then by simple iteration we extract all the remaining symbols xm−1, . . . , x1.

If hm+1 − hm = 1, then the introduction of xm did not invoke a repetition. Thus, xm is the
last symbol in the final sequence S, i.e., xm = sl and Sm−1 = (s1, . . . , sl−1).

If hm+1 − hm � 0, then some symbols were erased after the introduction of xm. But we
know the size of the repetition, namely h = |hm+1 − hm| + 1, and since only one half of it
was erased, we can copy the appropriate block to restore sm−1 = (s1, . . . , sl, sl−h+1, . . . , sl−1)

and xm = sl.
Once we get all x1, . . . , xm we read the sequence from the beginning and track the current

sequence in the simulation. Every time the current sequence is of even length the next
symbol is introduced by Ann.

By a typed search walk we mean a pair ((d1, . . . , dM), type) satisfying (i), (ii), (iii) and
additionally

∑M
j=1 dj = 1. Let TM be the number of typed search walks of length M (i.e., D is

of length M). By our assumption that Ann never wins, every feasible sequence of differences
in a typed search walk sums up to less than n. The number of typed search walks of length M
satisfying (i), (ii), (iii) with total sum k (fixed k � 1) is at most TM+1 (just append −(k − 1)

to the end and pick arbitrary type, if necessary). Furthermore, Tm � Tm+1 for m > 1. All
this implies that the number of feasible typed search walks is n · TM+1. For a given feasible
typed search walk (D, type) the number of final sequences which can occur with (D, type)
in a search log is bounded by Cn. Thus, the number of reduced logs is bounded by

n · TM+1 · Cn.

We turn to the approximation of Tm. Every typed search walk ((d1, . . . , dm), type) is
either a single step up (i.e., m = 1, d1 = 1), or it can be uniquely decomposed into |dm| + 1
subsequent search walks of total length m − 1 and additionally into the type of dm if it is
defined (i.e., if dm � −2). This decomposition (analogous as in the proof of Theorem 3)
gives the following functional equation for the generating function t(z):

t(z) = z + zt2(z) + 4z(t3(z) + t4(z) + t5(z) + . . .),

where z stands for a trivial one-step-up walk, zt2(z) stands for the case dm = −1 in which
dm has no type, and the last term stands for the case dm � −2. The right hand side of the
equation is in fact equal to z + zt2(z) + 4z t3(z)

1−t(z) . From that form we derive the defining
polynomial for t(z):

P(z, t) = −t + t2 + z − tz + t2z + 3t3z.

In the standard way we calculate the discriminant polynomial obtaining:

1 + 12z − 24z2 − 80z3 − 288z4.
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224 GRYTCZUK, KOZIK, AND MICEK

The radius of convergence of t(z) is one of the roots of the above polynomial. This
polynomial has only one positive real root in ρ = 0.2537.. > 4−1. Therefore TM = o(4M).

By the claim, the number of realizations is exactly the number of search logs. That gives

(C − 2)M � n · TM+1 · Cn = o(4M).

Therefore for C � 6 and sufficiently large M we obtain a contradiction.

6. FINAL REMARKS

The expected running time of the algorithm is linear in n for lists of size at least 4. It
is immediate for lists of size 5, and needs a little effort for size 4. The computational
experiments suggests different behaviour for size 3. This somehow explains the difficulty
of Conjecture 1. It might be also the case that the list version of Thue’s theorem does not
hold, as it goes with the list version of the Four Color Theorem, although every planar graph
is colorable from lists of size 5 [23].

It is natural to try a similar approach for other Thue-type problems, especially for those
in which the Lovász local lemma has been previously successfully applied. One such topic
concerns graph-theoretic analogues of nonrepetitive sequences. A coloring of the vertices of
a graph G is nonrepetitive if sequences of colors on all simple paths of G are nonrepetitive.
The minimum number of colors needed is denoted by π(G). This parameter is bounded for
graphs with bounded degree [2], as well as for graphs with bounded treewidth [4], [18].
A major challenge of this area is to settle whether π(G) is bounded by a constant for all
planar G.

The ideas behind the erase-repetition algorithm already led to the proof [17] that for
every tree and lists of size 4 one can choose a coloring with no three consecutive identical
blocks on any simple path. This fits to the recent construction from [10] proving that no
constant-size of lists guarantees a nonrepetitive coloring of a tree chosen from these lists.

Another direction is to look for stronger versions of nonrepetitive sequences. Here is
an interesting variation due to Erdős [8]. A sequence S is strongly nonrepetitive if no two
adjacent blocks of S are permutations one of another. It is known that there are arbitrarily
long strongly nonrepetitive sequences over four symbols [16]. But is it true that one can
choose strongly nonrepetitive sequences from any collection of lists of sufficiently large
size?
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[8] P. Erdős, Some unsolved problems, Magyar Tud Akad Mat Kutató Int Közl 6 (1961), 221–254.
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