
7. A First Glimpse of Total Colouring 

In Part II, we introduced three probabilistic tools and saw an application of 
each of them. In the last chapter, we saw a more complicated application of 
one of them, the First Moment Method. In this chapter, we will illustrate 
the power of combining the other two, the Local Lemma and the Chernoff 
Bound, by discussing their application to total colouring. 

Recall that a total colouring of a graph G consists of a colouring of the 
vertices and the edges so that: 

(i) no two adjacent vertices receive the same colour, 
(ii) no two incident edges receive the same colour, 
(iii) no edge receives the same colour as one of its endpoints. 

The total chromatic number of G, denoted XT(G), is the minimum k for 
which G has a total colouring using k colours. As mentioned in Chap. 1, 
Behzad and Vizing independently conjectured that every graph G has a total 
colouring using ..1( G)+ 2 colours. 

Now, finding a ..1 + 2 vertex colouring presents no difficulty, as the greedy 
colouring procedure discussed in Sect. 1. 7 will generate one for us. Colouring 
the edges with Ll + 2 colours is also straightforward, for we can apply Vizing's 
Theorem which ensures that an edge colouring using ..1 + 1 colours exists. 
Complications arise when we try to put two such colourings together, as an 
edge may receive the same colour as one of its endpoints. The crux of the 
matter is to pair a ..1 + 2 vertex colouring with a ..1 + 2 edge colouring so that 
no such conflicts arise. 

Actually, provided we can find a pairing which generates only a few con­
flicts then we can find a total colouring using not many more than ..1 + 2 
colours. For example, if only r conflicts arise then we can recolour the r 
edges involved in conflicts with r new colours to generate a Ll + r + 2 total 
colouring. Of course, we may be able to use fewer than r new colours. For 
example, if the edges involved in conflicts form a matching then we need only 
one new colour. More generally, if we let R be the graph formed by all those 
edges whose colour is rejected because they are involved in a conflict, then 
we can recolour the edges of R with Xe(R) :::; ..1(R) + 1 new colours to obtain 
a ..1 + Ll(R) + 3 total colouring of G. This is the approach we take in this 
chapter. 



56 7. A First Glimpse of Total Colouring 

2 

Fig. 7 .1. An edge colouring, a vertex colouring and the resultant reject edges 

To warm up, we present a result from [117] (the proof also appears in [7 4]) 
which uses the Chernoff Bound and the First Moment Method to show: 

Theorem 7.1 Every graph G satisfies: xr(G) :S Ll + flog([V(G)\)l + 3. 

Proof We assume [V (G) I is at least three, as otherwise the theorem 
is trivial. let l = flog([V(G)\)l + 2. Consider an arbitrary Ll + 1 ver­
tex colouring C = {51 , ... , S.:1+1} and an arbitrary Ll + 1 edge colouring 
D = {M1, ... , MLl+l} of G. Let C1, ... , C(iHl)! be the (Ll + 1)! vertex 
colourings which are obtained by permuting the colour class names of C. 
Note that if some of the colour classes are empty then some vertex colourings 
may appear more than once on this list. We show that for some i, combin­
ing Ci with D yields a reject graph Ri with Ll(Ri) :S l- 1 (to be precise, 
Ri = uf=i1{xy\xy E Mj, x or y receives colour j under Ci}). Thus, we can 
edge colour R using l matchings, thereby completing the desired Ll + l + 1 
total colouring of G. 

To do so, we consider picking a Ci uniformly at random and let R = Ri 
be the random reject graph thereby obtained. We show that the expected 
number of vertices of degree at least l in R is less than one and thereby prove 
that there exists an Ri with maximum degree less than l. 

By the Linearity of Expectation, to show that the expected number of 
vertices of degree at least l is less than 1, it is enough to show that for each 
vertex v, Pr(dR(v) 2: l) < t. 

Now, at most one edge incident to v is in R because it conflicts with v. So 
we consider the event that there are l - 1 edges incident to v which conflict 
with their other endpoint. We need only show that the probability of this 
event is less than t. 

We actually show that for any vertex v, the expected number of sets of 
l-1 edges incident to v, all of which are in R because they conflict with their 
other endpoint is less than l. Applying Markov's Inequality, we obtain the n 
desired result. To this end, we first compute the probability that a particular 
set { vu1 , .. , vu1_I} of l-1 edges incident to v are all in R because they conflict 
with their other endpoint. We let ai be the colour of vui. We let f3i be the 
colour that ui is assigned under C. We are computing the probability that our 
random permutation takes (3i to ai for 1 :S i :S l - 1. This probability is zero 
if the f3i are not distinct. Otherwise, the probability that the permutation 
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does indeed take each of the l - 1 colours f3i to the corresponding ai is: 
(.::1+1-(l-1))! 

(.::1+1)! 

Now, there are at most (z:\) sets of l-1 edges incident to v in G. So the 
expected number of sets of l - 1 edges incident with v which conflict with 
their other endpoint is at most: 

( Ll )(Ll+1-(l-1))! 1 
l-1 (Ll+1)! < (l-1)!" 

It is easy to see that (flog n l + 1)! is greater than n provided n is at least 
three, so the result holds. D 

We now want to apply the same technique to obtain a bound on XT(G) 
which is independent of IV( G) I. To do so, we wish to apply the Local Lemma. 
However, the Local Lemma will only work if we are analyzing a random proce­
dure for which the conflicts in distant parts of the graph occur independently. 
One way of ensuring that this is true is to assign each vertex a uniformly 
random colour without considering the colours assigned to the other vertices. 
Our bad events would each be determined only by the colours on a cluster 
of vertices which are all very close together, and so events corresponding to 
clusters in distant parts of the graph would occur independently. 

The problem with this approach is that it is very unlikely to generate 
a proper vertex colouring. To overcome this problem, we will consider a two 
phase procedure, consisting of a random initial phase which retains the flavour 
of the random procedure proposed in the preceding paragraph, followed by 
a deterministic phase which ensures that we have a proper total colouring. 
We first randomly partition V into k sets V1, ... , Vk such that for each i, the 
graph Hi induced by Vi has maximum degree at most l - 1 with l near ~. 
We then greedily colour the vertices of each Hi using the colours in Ci = 

{(i- 1)l, ... , il- 1 }. This yields a kl colouring of V( G). 
We fix any Ll + 1 edge colouring { M1. ... , M.::1+1} before performing this 

process. We say that an edge xy conflicts with the endpoint x if xy is coloured 
with a colour in Ci and xis assigned to Vi. We note that if e does not conflict 
with x then in the second phase, the colour assigned to x will be different 
from that used on e. The advantage to widening our definition of conflict 
in this way is that now the conflicts depend only on the random phase of 
the procedure, and this allows us to apply the Local Lemma. Forthwith the 
details. 

Theorem 7.2 For any graph G with maximum degree Ll sufficiently large, 
3 

XT(G) ~ Ll + 2Ll4 

Proof As usual, we can assume that G is Ll-regular by the construction 
3 

in Sect. 1.5. Set k = k.1 = jLl1l and l = l.1 = l .::1+{4 J. We fix an arbitrary 
edge colouring of G using the colours 1, ... , Ll + 1. We then specify a vertex 
colouring of G using the colours 0, ... , kl- 1 ~ Ll + Lli - 1, as follows. 
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We first partition V (G) into V1 , ... , Vk such that 

(i) for each vertex v and part i, INv n Vii <::; l- 1, 
( ii) For each vertex v, there are at most L1 ~ - 3 edges e = ( u, v) such that 

u E v; and e has a colour in C;. 

Our next step will be to refine this partition into a proper colouring, colouring 
the vertices of v; using the colours in C;. 

By (i), we can do so using the simple greedy procedure of Lemma 1.3, 
since the subgraph induced by v; has maximum degree l - 1. By (ii), the 
reject graph formed has maximum degree at most L1 ~ - 2 (there is a 2 and 
not a 3 here because we may reject an edge incident to v because it has the 
same colour as v). Recolouring these edges with at most L1 ~ - 1 new colours 
yields the desired total colouring of G. 

It only remains to show that we can actually partition the vertices so 
that (i) and (ii) hold. To do so, we simply assign each vertex to a uniformly 
random part (where of course, these choices are made independently). For 
each v, i we let Av,i be the event that (i) fails to hold for { v, i} and Bv be 
the event that (ii) fails to hold for v. We will use the Local Lemma to prove 
that with positive probability none of these bad events occur. Bv and Av,i 
are determined by the colours of the vertices adjacent to v. Thus, by the 
Mutual Independence Principal, they are mutually independent of all events 
concerning vertices which are at distance more than 2 from v, and so every 
event is mutually independent of all but at most (k+ 1).:12 < .:13 other events. 
We will show that the probability that any particular bad event holds is much 
less than 4~3 . Thus, by the Local Lemma, there exists a colouring satisfying 
(i) and (ii). 

Consider first the event Bv. Let Rejv be the set of edges e = ( u, v) with 
the property that e has a colour in C; and u E v;. Since there are k parts, 
the probability that this occurs for a given e is exactly 1;;. Furthermore, as 
the choices of the parts are independent, the size of Rejv is just the sum of L1 
independent 0-1 variables each of which is 1 with probability p = J;;. Applying 
the Chernoff Bound for BIN(Ll,p) we obtain: 

3 

Since k = I L1 j l and LJ.2
4 > ~, it follows that for L1 sufficiently large, 

The size of Nv n v; is just the sum of L1 independent 0-1 variables each of 
which is 1 with probability 1;;, and so applying the Chernoff Bound as above 
we obtain that for large .:1, 
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Remark Actually, we can obtain a L\ + O(L\§ logL\) total colouring using 
exactly the same technique, but the computations are slightly more compli­
cated. 


