
4. The Lovasz Local Lemma 

In this chapter, we introduce one of the most powerful tools of the proba­
bilistic method: The Lovasz Local Lemma . We present the Local Lemma by 
reconsidering the problem of 2-colouring a hypergraph. 

Recall that in Sect. 3.1 we showed that any hypergraph with fewer than 
2k-1 hyperedges, each of size at least k, has a proper 2-colouring because the 
expected number of monochromatic edges in a uniformly random 2-colouring 
of the vertices is less than 1. 

Now suppose that a k-uniform hypergraph has many more than 2k-1 

hyperedges, say 22k hyperedges. Obviously, the First Moment Method will 
fail in this case. In fact, at first glance it appears that any attempt to apply 
the probabilistic method by simply selecting a uniformly random 2-colouring 
is doomed since the chances of it being a proper 2-colouring are typically very 
remote indeed. Fortunately however, for the probabilistic method to succeed 
we don't require a high probability of success, just a positive probability of 
success. 

To be more precise, we will choose a uniformly random 2-colouring of 
the vertices, and for each hyperedge e, we denote by Ae the event that e 
is monochromatic. Suppose, for example, that our k-uniform hypergraph 
consisted of m completely disjoint hyperedges. In this case, the events Ae 
are mutually independent, and so the probability that none of them hold is 
exactly (1- 2-(k-1) )m which is positive no matter how large m is. Therefore, 
the hypergraph is 2-colourable.1 

Of course for a general hypergraph, H, the events {Aele E E(1i)} are 
not independent as many pairs of hyperedges intersect. The Lovasz Local 
Lemma is a remarkably powerful tool which says that in such situations, as 
long as there is a sufficiently limited amount of dependency, we can still claim 
a positive probability of success. 

Here, we state the Lovasz Local Lemma in its simplest form. We omit the 
proof for now, as we will prove it in a more general form in Chap. 19. 

The Lovasz Local Lemma [44]: Consider a set£ of (typically bad} events 
such that for each A E £ 

(a) Pr(A) 5_ p < 1, and 

1 The astute reader may have found an alternate proof of this fact. 
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(b) A is mutually independent of a set of all but at most d of the other events. 

If 4pd ~ 1 then with positive probability, none of the events in £ occur. 

Remark 4.1 The inequality 4pd ~ 1 can be replaced by ep(d+ 1) < 1, which 
typically yields a slightly sharper result. (Here e = 2.71 .. .) Only rarely do we 
desire such precision so we usually use the first form. Shearer {143} proved 
that we cannot replace "e" by any smaller constant. 

Our first application of the Lovasz Local Lemma is the following: 

Theorem 4.2 If 1l is a hypergraph such that each hyperedge has size at 
least k and intersects at most 2k-3 other hyperedges, then 1l is 2-colourable. 

Remark This application is the one used in virtually every introduction to 
the Lovasz Local Lemma. The authors do not apologize for using it again 
here, because it is by far the best example. We refer the reader who for once 
would like to see a different first example to [125] where this application is 
disguised as a satisfiability problem. 

Proof We will select a uniformly random 2-colouring of the vertices. For 
each hyperedge e, we define Ae to be the event that e is monochromatic. We 
also define Ne to be the set of edges which e intersects (i.e. its neighbourhood 
in the line graph of1l). Recall that INel < 2k-3 by assumption. We shall apply 
the Local Lemma to the set of events£= {Aele E E(1l)}. 

Claim: Each event Ae is mutually independent of the set of events {A f : 

f tJ. Ne} U Ae. 

The proof follows easily from this claim and the Lovasz Local Lemma, as 
Pr(Ae) ~ 2-(k-I) and 4 x 2-(k-I) x 2k-3 ~ 1. The claim seems intuitively 
clear, but we should take care to prove it, as looks can often be deceiving in 
this field. 

Suppose that the vertices are ordered VI, ... , Vn where e = {VI, ... , Vt}. 
Consider any edges !I, ... , fr, 9I, ... , g8 tf. Ne. Let Y be the set of 2-colourings 
for which the event B = Ah n ... n Atr n A91 n ... n A9• holds. 

For any 2-colouring p of G-V (e), define Tp to be the set of the 2t different 
2-colourings of G which extend p. It is straightforward to verify that for 
each p, Y contains either all of Tp or none of Tp. In other words, there is an£ 
such that Y is the disjoint union Tp 1 U ... U TP£ for some Pb ... , Pi· Thus, 

( ) 2t£ 
Pr B = ¥· 

Within each TPi, there are exactly two 2-colourings in which e is monochro­
matic, and so Pr(AenB) =~~.Thus, Pr(AeiB) = (~~)/Pr(B) = 2-(t-I) = 
Pr(Ae) as claimed. D 
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The claim in the preceding proof is a special case of a very useful principle 
concerning mutual independence. In fact, we appeal to the following fact 
nearly every time we wish to establish mutual independence in this book. 

The Mutual Independence Principle Suppose that X = Xt, ... , Xm 
is a sequence of independent random experiments. Suppose further that 
A1, ... , An is a set of events, where each A; is determined by F; t;;; X. If 
F; n ( F;1 , ... , F;k) = 0 then Ai is mutually independent of { A;1 , ••• , A;k}. 

The proof follows along the lines of that of the preceding claim, and we 
leave the details as an exercise. 

We end this chapter with another application of the Local Lemma. 

4.1 Constrained Colourings 
and the List Chromatic Number 

As discussed in Sect. 3.3, Alon has shown that a graph has bounded list 
chromatic number if and only if it has bounded colouring number. Thus, 
if we impose no extra conditions on our lists, to approximately determine 
how big our lists must be to ensure that an acceptable colouring exists, we 
need only consider the colouring number. In this section, we show that we 
can ensure the existence of acceptable colourings for much shorter lists, if we 
impose a (natural) constraint on the ways in which the lists can intersect. The 
results discussed in this section first appeared in [133]. For further discussion, 
including some conjectures, the reader should consult that paper. 

As we mentioned in Chap. 1, the greedy colouring procedure yields 
a bound of Ll + 1 on Xt (G). The following theorem suggests that a much 
stronger result, stated as a conjecture below, may be true. The theorem is 
quite powerful in its own right and will be used repeatedly throughout the 
book. 

Theorem 4.3 If there are at least e acceptable colours for each vertex, and 
each colour is acceptable for at most ~ of the neighbours of any one vertex, 
then there there is an acceptable colouring. 

Conjecture 4.4 The ~ in the above theorem can be replaced by e - 1. 

Remark The ~ in the above theorem can be replaced by 2£e by using the more 
precise version of the Local Lemma. Furthermore, using different techniques, 
Haxell [77] has proven that the result holds if the value is ~, and by iteratively 
applying the Local Lemma, Reed and Sudakov [134] have shown that e-o( €) 
is sufficient. 

We now prove Theorem 4.3, which requires an application of the Local 
Lemma. 
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Proof of Theorem 4.3. Fix a graph G and an acceptable list of colours Lv 
for each vertex v, which satisfy the conditions of the theorem. For ease of 
exposition, we truncate each Lv so that it has exactly R. colours. 

Now, we consider the random colour assignment in which each vertex is 
independently assigned a uniform element of Lv. For each edge e = xy and 
colour i E Lx n Ly, we let Ai,e be the event that both x andy are coloured 
with i. We let £ be the set of all such events. We use the Local Lemma to 
show that with positive probability none of the events in £ occur, i.e. the 
colouring obtained is acceptable. 

Consider first the probability of Ai,e, clearly this is ( t) 2 • Consider next 
the dependency between events. If e has endpoints x andy, then Ai,e depends 
only on the colours assigned to x andy. Thus, letting Ex= {Aj.Jij E Lx,x is 
an endpoint of !} and letting Ey = { Aj ,J lj E Ly, y is an endpoint of !} , 
we see that Ai,e is mutually independent of £ -Ex - Ey. Now, since Lx 
has exactly R. elements, and x has at most ~ neighbours of colour i for each 

i E Lx, we see that IExl ::; ~· Similarly, lEy I ::; e:. Thus, setting d = ~'we 
see that each Ae,i is mutually independent of a set of all but at most d of 

the other events in £. Since ( t) 2 x ~ ::; ~, the Local Lemma implies that an 
acceptable colouring exists. This yields the desired result. D 

As is often the case with the Local Lemma, once we choose our bad 
events, the proof is straightforward. However, choosing the good bad events 
can sometimes be a bit tricky. For example, in Exercise 4.2, we see that two 
natural attempts at defining the bad events for this application do not lead 
to proofs. 

Exercises 

Exercise 4.1 Prove the Mutual Independence Principle. 

Exercise 4.2 Show what would go wrong if you attempted to prove Theo­
rem 4.3 by giving each vertex a uniformly random colour from its list and 
applying the Local Lemma to either of the following sets of bad events. 

1. For each vertex v, Av is the event that v receives the same colour as one 
of its neighbours. 

2. For each edge e, Ae is the event that the endpoints of e both receive the 
same colour. 

Exercise 4.3 Consider a graph G with maximum degree .1 where every 
vertex v of G has a list Lv of acceptable colours. Each colour c E Lv has 
a weight Wv(c) such that LcELv Wv(c) = 1. Prove that if for every edge uv 
we have LcELunLv Wu(c)wv(c) ::; 8~ then G has an acceptable colouring. 


