
3.10. Moser’s entropy compression argument 467

• Consider as an oracle an extremely large book of randomly

generated numbers. This oracle could be used to simulate

any probabilistic algorithm, so P = BPP relative to this

oracle. On the other hand, if one assigns the task to deter-

mine whether a given string of numbers exists in some range

in the book, this question is in NP but not in P .

• Another example of an oracle would be an extremely large

book, in which most of the pages contained the answer to

the problem at hand, but for which the nth page was blank

for every natural number n that could be quickly created

by any short deterministic algorithm. This type of oracle

could be used to create a scenario in which P 6= BPP and

P 6= NP .

• A third example, this time of an advice function rather than

an oracle, would be if the proctor wrote a long random string

on the board before starting the exam (with the length of

the string depending on the length of the exam). This can

be used to show the inclusion BPP ⊂ P/poly.

By using written oracles instead of computer oracles, it also became

more obvious that the oracles were non-interactive (i.e. subsequent

responses by the oracle did not depend on earlier queries).

3.10. Moser’s entropy compression argument

There are many situations in combinatorics in which one is running

some sort of iteration algorithm to continually “improve” some object

A; each loop of the algorithm replaces A with some better version A′

of itself, until some desired property of A is attained and the algorithm

halts. In order for such arguments to yield a useful conclusion, it is

often necessary that the algorithm halts in a finite amount of time,

or (even better), in a bounded amount of time10.

10In general, one cannot use infinitary iteration tools, such as transfinite induc-
tion or Zorn’s lemma (Section 2.4), in combinatorial settings, because the iteration
processes used to improve some target object A often degrade some other finitary quan-
tity B in the process, and an infinite iteration would then have the undesirable effect
of making B infinite.

468 3. Expository articles

A basic strategy to ensure termination of an algorithm is to ex-

ploit a monotonicity property, or more precisely to show that some

key quantity keeps increasing (or keeps decreasing) with each loop

of the algorithm, while simultaneously staying bounded. (Or, as the

economist Herbert Stein was fond of saying, “If something cannot go

on forever, it must stop.”)

Here are four common flavours of this monotonicity strategy:

• The mass increment argument. This is perhaps the most

familiar way to ensure termination: make each improved

object A′ “heavier” than the previous one A by some non-

trivial amount (e.g. by ensuring that the cardinality of A′

is strictly greater than that of A, thus |A′| ≥ |A|+ 1). Du-

ally, one can try to force the amount of “mass” remaining

“outside” of A in some sense to decrease at every stage of

the iteration. If there is a good upper bound on the “mass”

of A that stays essentially fixed throughout the iteration

process, and a lower bound on the mass increment at each

stage, then the argument terminates. Many “greedy algo-

rithm” arguments are of this type. The proof of the Hahn

decomposition theorem (Theorem 1.2.2) also falls into this

category. The general strategy here is to keep looking for

useful pieces of mass outside of A, and add them to A to

form A′, thus exploiting the additivity properties of mass.

Eventually no further usable mass remains to be added (i.e.

A is maximal in some L1 sense), and this should force some

desirable property on A.

• The density increment argument. This is a variant of the

mass increment argument, in which one increments the “den-

sity” of A rather than the “mass”. For instance, A might

be contained in some ambient space P , and one seeks to im-

prove A to A′ (and P to P ′) in such a way that the density

of the new object in the new ambient space is better than

that of the previous object (e.g. |A′|/|P ′| ≥ |A|/|P |+ c for

some c > 0). On the other hand, the density of A is clearly

bounded above by 1. As long as one has a sufficiently good

lower bound on the density increment at each stage, one

3.10. Moser’s entropy compression argument 469

can conclude an upper bound on the number of iterations

in the algorithm. The prototypical example of this is Roth’s

proof of his theorem[Ro1953] that every set of integers of

positive upper density contains an arithmetic progression of

length three. The general strategy here is to keep looking

for useful density fluctuations inside A, and then “zoom in”

to a region of increased density by reducing A and P appro-

priately. Eventually no further usable density fluctuation

remains (i.e. A is uniformly distributed), and this should

force some desirable property on A.

• The energy increment argument. This is an “L2” analogue

of the “L1”-based mass increment argument (or the “L∞”-

based density increment argument), in which one seeks to

increments the amount of “energy” that A captures from

some reference object X, or (equivalently) to decrement the

amount of energy of X which is still “orthogonal” to A. Here

A and X are related somehow to a Hilbert space, and the

energy involves the norm on that space. A classic example

of this type of argument is the existence of orthogonal pro-

jections onto closed subspaces of a Hilbert space; this leads

among other things to the construction of conditional ex-

pectation in measure theory, which then underlies a number

of arguments in ergodic theory, as discussed for instance in

Section 2.8 of Poincaré’s Legacies, Vol. I. Another basic

example is the standard proof of the Szemerédi regularity

lemma (where the “energy” is often referred to as the “in-

dex”). These examples are related; see Section 4.2 for fur-

ther discussion. The general strategy here is to keep looking

for useful pieces of energy orthogonal to A, and add them

to A to form A′, thus exploiting square-additivity proper-

ties of energy, such as Pythagoras’ theorem. Eventually, no

further usable energy outside of A remains to be added (i.e.

A is maximal in some L2 sense), and this should force some

desirable property on A.

470 3. Expository articles

• The rank reduction argument. Here, one seeks to make each

new object A′ to have a lower “rank”, “dimension”, or “or-

der” than the previous one. A classic example here is the

proof of the linear algebra fact that given any finite set of

vectors, there exists a linearly independent subset which

spans the same subspace; the proof of the more general

Steinitz exchange lemma is in the same spirit. The general

strategy here is to keep looking for “collisions” or “depen-

dencies” within A, and use them to collapse A to an object

A′ of lower rank. Eventually, no further usable collisions

within A remain, and this should force some desirable prop-

erty on A.

Much of my own work in additive combinatorics relies heavily

on at least one of these types of arguments (and, in some cases, on

a nested combination of two or more of them). Many arguments

in nonlinear partial differential equations also have a similar flavour,

relying on various monotonicity formulae for solutions to such equa-

tions, though the objective in PDE is usually slightly different, in that

one wants to keep control of a solution as one approaches a singular-

ity (or as some time or space coordinate goes off to infinity), rather

than to ensure termination of an algorithm. (On the other hand,

many arguments in the theory of concentration compactness, which

is used heavily in PDE, does have the same algorithm-terminating

flavour as the combinatorial arguments; see Section 2.1 of Structure

and Randomness for more discussion.)

Recently, a new species of monotonicity argument was introduced

by Moser[Mo2009], as the primary tool in his elegant new proof of

the Lovász local lemma. This argument could be dubbed an entropy

compression argument, and only applies to probabilistic algorithms

which require a certain collection R of random “bits” or other random

choices as part of the input, thus each loop of the algorithm takes an

object A (which may also have been generated randomly) and some

portion of the random string R to (deterministically) create a better

object A′ (and a shorter random string R′, formed by throwing away

those bits of R that were used in the loop). The key point is to design

the algorithm to be partially reversible, in the sense that given A′ and

3.10. Moser’s entropy compression argument 471

R′ and some additional data H ′ that logs the cumulative history of

the algorithm up to this point, one can reconstruct A together with

the remaining portion R not already contained in R′. Thus, each

stage of the argument compresses the information-theoretic content

of the string A+R into the string A′ +R′ +H ′ in a lossless fashion.

However, a random variable such as A + R cannot be compressed

losslessly into a string of expected size smaller than the Shannon

entropy of that variable. Thus, if one has a good lower bound on the

entropy of A + R, and if the length of A′ + R′ + H ′ is significantly

less than that of A + R (i.e. we need the marginal growth in the

length of the history file H ′ per iteration to be less than the marginal

amount of randomness used per iteration), then there is a limit as to

how many times the algorithm can be run, much as there is a limit

as to how many times a random data file can be compressed before

no further length reduction occurs.

It is interesting to compare this method with the ones discussed

earlier. In the previous methods, the failure of the algorithm to halt

led to a new iteration of the object A which was “heavier”, “denser”,

captured more “energy”, or “lower rank” than the previous instance of

A. Here, the failure of the algorithm to halt leads to new information

that can be used to “compress” A (or more precisely, the full state

A + R) into a smaller amount of space. I don’t know yet of any

application of this new type of termination strategy to the fields I

work in, but one could imagine that it could eventually be of use

(perhaps to show that solutions to PDE with sufficiently “random”

initial data can avoid singularity formation?), so I thought I would

discuss (a special case of) it here.

Rather than deal with the Lovász local lemma in full general-

ity, I will work with a special case of this lemma involving the k-

satisfiability problem (in conjunctive normal form). Here, one is given

a set of boolean variables x1, . . . , xn together with their negations

¬x1, . . . ,¬xn; we refer to the 2n variables and their negations collec-

tively as literals. We fix an integer k ≥ 2, and define a (length k)

clause to be a disjunction of k literals, for instance

x3 ∨ ¬x5 ∨ x9

472 3. Expository articles

is a clause of length three, which is true unless x3 is false, x5 is

true, and x9 is false. We define the support of a clause to be the set

of variables that are involved in the clause, thus for instance x3 ∨
¬x5 ∨ x9 has support {x3, x5, x9}. To avoid degeneracy we assume

that no clause uses a variable more than once (or equivalently, all

supports have cardinality exactly k), thus for instance we do not

consider x3 ∨ x3 ∨ x9 or x3 ∨ ¬x3 ∨ x9 to be clauses.

Note that the failure of a clause reveals complete information

about all k of the boolean variables in the support; this will be an

important fact later on.

The k-satisfiability problem is the following: given a set S of

clauses of length k involving n boolean variables x1, . . . , xn, is there

a way to assign truth values to each of the x1, . . . , xn, so that all of

the clauses are simultaneously satisfied?

For general S, this problem is easy for k = 2 (essentially equiv-

alent to the problem of 2-colouring a graph), but NP-complete for

k ≥ 3 (this is the famous Cook-Levin theorem). But the problem

becomes simpler if one makes some more assumptions on the set S

of clauses. For instance, if the clauses in S have disjoint supports,

then they can be satisfied independently of each other, and so one

easily has a positive answer to the satisfiability problem in this case.

(Indeed, one only needs each clause in S to have one variable in its

support that is disjoint from all the other supports in order to make

this argument work.)

Now suppose that the clauses S are not completely disjoint, but

have a limited amount of overlap; thus most clauses in S have disjoint

supports, but not all. With too much overlap, of course, one expects

satisfability to fail (e.g. if S is the set of all length k clauses). But

with a sufficiently small amount of overlap, one still has satisfiability:

Theorem 3.10.1 (Lovász local lemma, special case). Suppose that S

is a set of length k clauses, such that the support of each clause s in S

intersects at most 2k−C supports of clauses in S (including s itself),

where C is a sufficiently large absolute constant. Then the clauses in

S are simultaneously satisfiable.

3.10. Moser’s entropy compression argument 473

One of the reasons that this result is powerful is that the bounds

here are uniform in the number n of variables. Apart from the loss of

C, this result is sharp; consider for instance the set S of all 2k clauses

with support {x1, . . . , xk}, which is clearly unsatisfiable.

The standard proof of this theorem proceeds by assigning each of

the n boolean variables x1, . . . , xn a truth value a1, . . . , an ∈ {true, false}
independently at random (with each truth value occurring with an

equal probability of 1/2); then each of the clauses in S has a positive

zero probability of holding (in fact, the probability is 1− 2−k). Fur-

thermore, if Es denotes the event that a clause s ∈ S is satisfied, then

the Es are mostly independent of each other; indeed, each event Es
is independent of all but most 2k−C other events Es′ . Applying the

Lovász local lemma, one concludes that the Es simultaneously hold

with positive probability (if C is a little bit larger than log2 e), and

the claim follows.

The textbook proof of the Lovász local lemma is short but non-

constructive; in particular, it does not easily offer any quick way to

compute an actual satisfying assignment for x1, . . . , xn, only saying

that such an assignment exists. Moser’s argument, by contrast, gives

a simple and natural algorithm to locate such an assignment (and

thus prove Theorem 3.10.1). (The constant C becomes 3 rather than

log2 e, although the log2 e bound has since been recovered in a paper

of Moser and Tardos.)

As with the usual proof, one begins by randomly assigning truth

values a1, . . . , an ∈ {true, false} to x1, . . . , xn; call this random assign-

ment A = (a1, . . . , an). If A satisfied all the clauses in S, we would be

done. However, it is likely that there will be some non-empty subset

T of clauses in S which are not satisfied by A.

We would now like to modify A in such a manner to reduce the

number |T | of violated clauses. If, for instance, we could always find

a modification A′ of A whose set T ′ of violated clauses was strictly

smaller than T (assuming of course that T is non-empty), then we

could iterate and be done (this is basically a mass decrement argu-

ment). One obvious way to try to achieve this is to pick a clause s in

T that is violated by A, and modify the values of A on the support

474 3. Expository articles

of s to create a modified set A′ that satisfies s, which is easily ac-

complished; in fact, any non-trivial modification of A on the support

will work here. In order to maximize the amount of entropy in the

system (which is what one wants to do for an entropy compression

argument), we will choose this modification of A′ randomly ; in par-

ticular, we will use k fresh random bits to replace the k bits of A in

the support of s. (By doing so, there is a small probability (2−k) that

we in fact do not change A at all, but the argument is (very) slightly

simpler if we do not bother to try to eliminate this case.)

If all the clauses had disjoint supports, then this strategy would

work without difficulty. But when the supports are not disjoint, one

has a problem: every time one modifies A to “fix” a clause s by

modifying the variables on the support of s, one may cause other

clauses s′ whose supports overlap those of s to fail, thus potentially

increasing the size of T by as much as 2k−C − 1. One could then try

fixing all the clauses which were broken by the first fix, but it appears

that the number of clauses needed to repair could grow indefinitely

with this procedure, and one might never terminate in a state in which

all clauses are simultaneously satisfied.

The key observation of Moser, as alluded earlier, is that each fail-

ure of a clause s for an assignment A reveals k bits of information

about A, namely that the exact values that A assigns to the support

of s. The plan is then to use each failure of a clause as a part of a com-

pression protocol that compresses A (plus some other data) losslessly

into a smaller amount of space. A crucial point is that at each stage

of the process, the clause one is trying to fix is almost always going

to be one that overlapped the clause that one had just previously

fixed. Thus the total number of possibilities for each clause, given

the previous clauses, is basically 2k−C , which requires only k − C

bits of storage, compared with the k bits of entropy that have been

eliminated. This is what is going to force the algorithm to terminate

in finite time (with positive probability).

Let’s make the details more precise. We will need the following

objects:

3.10. Moser’s entropy compression argument 475

• A truth assignment A of n truth values a1, . . . , an, which is

initially assigned randomly, but which will be modified as

the algorithm progresses;

• A long random string R of bits, from which we will make

future random choices, with each random bit being removed

from R as it is read.

We also need a recursive algorithm Fix(s), which modifies the

string A to satisfy a clause s in S (and, as a bonus, may also make A

obey some other clauses in S that it did not previously satisfy). It is

defined recursively:

• Step 1. If A already satisfies s, do nothing (i.e. leave A

unchanged).

• Step 2. Otherwise, read off k random bits from R (thus

shortening R by k bits), and use these to replace the k bits

of A on the support of s in the obvious manner (ordering the

support of s by some fixed ordering, and assigning the jth

bit from R to the jth variable in the support for 1 ≤ j ≤ k).

• Step 3. Next, find all the clauses s′ in S whose supports

intersect s, and which A now violates; this is a collection of

at most 2k−C clauses, possibly including s itself. Order these

clauses s′ in some arbitrary fashion, and then apply Fix(s′)

to each such clause in turn. (Thus the original algorithm

Fix(s) is put “on hold” on some CPU stack while all the

child processes Fix(s′) are executed; once all of the child

processes are complete, Fix(s) then terminates also.)

An easy induction shows that if Fix(s) terminates, then the re-

sulting modification of A will satisfy s; and furthermore, any other

clause s′ in S which was already satisfied by A before Fix(s) was

called, will continue to be satisfied by A after Fix(s) is called. Thus,

Fix(s) can only serve to decrease the number of unsatisfied clauses T

in S, and so one can fix all the clauses by calling Fix(s) once for each

clause in T - provided that these algorithms all terminate.

Each time Step 2 of the Fix algorithm is called, the assignment A

changes to a new assignment A′, and the random string R changes to

a shorter string R′. Is this process reversible? Yes - provided that one

476 3. Expository articles

knows what clause s was being fixed by this instance of the algorithm.

Indeed, if s,A′, R′ are known, then A can be recovered by changing

the assignment of A′ on the support of s to the only set of choices

that violates s, while R can be recovered from R′ by appending to R′

the bits of A on the support of s.

This type of reversibility does not seem very useful for an entropy

compression argument, because while R′ is shorter than R by k bits,

it requires about log |S| bits to store the clause s. So the map A+R 7→
A′ +R′ + s is only a compression if log |S| < k, which is not what is

being assumed here (and in any case the satisfiability of S in the case

log |S| < k is trivial from the union bound).

The key trick is that while it does indeed take log |S| bits to store

any given clause s, there is an economy of scale: after many recursive

applications of the fix algorithm, the marginal amount of bits needed

to store s drops to merely k − C + O(1), which is less than k if C is

large enough, and which will therefore make the entropy compression

argument work.

Let’s see why this is the case. Observe that the clauses s for

which the above algorithm Fix(s) is called come in two categories.

Firstly, there are those s which came from the original list T of failed

clauses. Each of these will require O(log |S|) bits to store - but there

are only |T | of them. Since |T | ≤ |S|, the net amount of storage space

required for these clauses is O(|S| log |S|) at most. Actually, one can

just store the subset T of S using |S| bits (one for each element of S,

to record whether it lies in T or not).

Of more interest is the other category of clauses s, in which Fix(s)

is called recursively from some previously invoked call Fix(s′) to the

fix algorithm. But then s is one of the at most 2k−C clauses in S

whose support intersects that of s′. Thus one can encode s using s′

and a number between 1 and 2k−C , representing the position of s

(with respect to some arbitrarily chosen fixed ordering of S) in the

list of all clauses in S whose supports intersect that of s′. Let us call

this number the index of the call Fix(s).

Now imagine that while the Fix routine is called, a running log

file (or history) H of the routine is kept, which records s each time

one of the original |T | calls Fix(s) with s ∈ T is invoked, and also

3.10. Moser’s entropy compression argument 477

records the index of any other call Fix(s) made during the recursive

procedure. Finally, we assume that this log file records a termination

symbol whenever a Fix routine terminates. By performing a stack

trace, one sees that whenever a Fix routine is called, the clause s that

is being repaired by that routine can be deduced from an inspection

of the log file H up to that point.

As a consequence, at any intermediate stage in the process of all

these fix calls, the original state A + R of the assignment and the

random string of bits can be deduced from the current state A′ +R′

of these objects, plus the history H ′ up to that point.

Now suppose for contradiction that S is not satisfiable; thus the

stack of fix calls can never completely terminate. We trace through

this stack for M steps, where M is some large number to be chosen

later. After these steps, the random string R has shortened by an

amount of Mk; if we set R to initially have length Mk, then the string

is now completely empty, R′ = ∅. On the other hand, the history H ′

has size at most O(|S|) + M(k − C + O(1)), since it takes |S| bits

to store the initial clauses in T , O(|S|) + O(M) bits to record all

the instances when Step 1 occurs, and every subsequent call to Fix

generates a k − C-bit number, plus possibly a termination symbol

of size O(1). Thus we have a lossless compression algorithm A +

R 7→ A′ + H ′ from n + Mk completely random bits to n + O(|S|) +

M(k−C+O(1)) bits (recall that A and R were chosen randomly, and

independently of each other). But since n+Mk random bits cannot

be compressed losslessly into any smaller space, we have the entropy

bound

(3.49) n+O(|S|) +M(k − C +O(1)) ≥ n+Mk

which leads to a contradiction if M is large enough (and if C is larger

than an absolute constant). This proves Theorem 3.10.1.

Remark 3.10.2. Observe that the above argument in fact gives an

explicit bound on M , and with a small bit of additional effort, it can

be converted into a probabilistic algorithm that (with high probabil-

ity) computes a satisfying assignment for S in time polynomial in |S|
and n.

478 3. Expository articles

Remark 3.10.3. One can replace the usage of randomness and Shan-

non entropy in the above argument with Kolmogorov complexity in-

stead; thus, one sets A+R to be a string of n+Mk bits which cannot

be computed by any algorithm of length n + O(|S| log |S|) + M(k −
C + O(1)), the existence of which is guaranteed as soon as (3.49) is

violated; the proof now becomes deterministic, except of course for

the problem of building the high-complexity string, which by their

definition can only be constructed quickly by probabilistic methods.

Notes. This article first appeared at terrytao.wordpress.com/2009/08/05,

but is based on an earlier blog post by Lance Fortnow at

blog.computationalcomplexity.org/2009/06.

Thanks to harrison, Heinrich, nh, and anonymous commenters

for corrections.

There was some discussion online about the tightness of bounds

in the argument.

3.11. The AKS primality test

The Agrawal-Kayal-Saxena (AKS) primality test, discovered in 2002,

is the first provably deterministic algorithm to determine the primal-

ity of a given number with a run time which is guaranteed to be

polynomial in the number of digits, thus, given a large number n,

the algorithm will correctly determine whether that number is prime

or not in time O(logO(1) n). (Many previous primality testing algo-

rithms existed, but they were either probabilistic in nature, had a

running time slower than polynomial, or the correctness could not be

guaranteed without additional hypotheses such as GRH.)

In this article I sketch the details of the test (and the proof that

it works) here. (Of course, full details can be found in the original

paper[AgKaSa2004], which is nine pages in length and almost en-

tirely elementary in nature.) It relies on polynomial identities that

are true modulo n when n is prime, but cannot hold for n non-prime

as they would generate a large number of additional polynomial iden-

tities, eventually violating the factor theorem (which asserts that a

polynomial identity of degree at most d can be obeyed by at most d

