
11

A Constructive Proof of the General Lovász Local Lemma

ROBIN A. MOSER

ETH Zürich, Switzerland

AND

GÁBOR TARDOS

Simon Fraser University, Burnaby BC, Canada and Rényi Institute, Budapest, Hungary

Abstract. The Lovász Local Lemma discovered by Erdős and Lovász in 1975 is a powerful tool to

non-constructively prove the existence of combinatorial objects meeting a prescribed collection of

criteria. In 1991, József Beck was the first to demonstrate that a constructive variant can be given

under certain more restrictive conditions, starting a whole line of research aimed at improving his

algorithm’s performance and relaxing its restrictions. In the present article, we improve upon recent

findings so as to provide a method for making almost all known applications of the general Local

Lemma algorithmic.

Categories and Subject Descriptors: G.2.1 [Discrete Mathematics]: Combinatorics—combinatorial
algorithms; G.3 [Probability and Statistics]: probabilistic algorithms

General Terms: Algorithms

Additional Key Words and Phrases: Constructive proof, Lovász local lemma, parallelization

ACM Reference Format:
Moser, R. A., and Tardos, G. 2010. A constructive proof of the general Lovász local lemma. J. ACM

57, 2, Article 11, (January 2010), 15 pages.

DOI = 10.1145/1667053.1667060 http://doi.acm.org/10.1145/1667053.1667060

The research of R. A. Moser was supported by the SNF Grant 200021-118001/1. The work of G.

Tardos was Supported by NSERC grant 329527, and by OTKA grants T-046234, AT-048826, and

NK-62321.

Part of the work of R. A. Moser was done during an internship with Microsoft Research, Redmond,

WA.

Authors’ addresses: R. A. Moser, Institute for Theoretical Computer Science, Department of Computer

Science, ETH Zürich, Switzerland, e-mail: robin.moser@inf.ethz.ch; G. Tardos, School of Computing

Science, Simon Fraser University, Burnaby, BC, Canada and Rényi Institute, Budapest, Hungary,

e-mail: tardos@cs.sfu.ca.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along with the

full citation. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute

to lists, or to use any component of this work in other works requires prior specific permission and/or

a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,

New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 0004-5411/2010/01-ART11 $10.00

DOI 10.1145/1667053.1667060 http://doi.acm.org/10.1145/1667053.1667060

Journal of the ACM, Vol. 57, No. 2, Article 11, Publication date: January 2010.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1667053.1667060&domain=pdf&date_stamp=2010-02-08

11:2 R. A. MOSER AND G. TARDOS

1. Introduction

Let A be a finite collection of mutually independent events in a probability space.

The probability that none of these events happen is exactly
∏

A∈A(1 − Pr[A]). In

particular, this probability is positive whenever no event in A has probability 1.

László Lovász’s famous Local Lemma [Erdős and Lovász 1975] allows for limited

dependence among the events, but still concludes that with positive probability

none of the events happen if the individual events have bounded probability. Here

is the lemma in a very general form.

THEOREM 1.1. (ERDŐS AND LOVÁSZ [1975]). Let A be a finite set of events
in a probability space. For A ∈ A let �(A) be a subset of A satisfying that A
is independent from the collection of events A \ ({A} ∪ �(A)). If there exists an
assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr[A] ≤ x(A)
∏

B∈�(A)

(1 − x(B)),

then the probability of avoiding all events in A is at least
∏

A∈A(1 − x(A)), in
particular it is positive.

The original proof of this statement is non-constructive and does not yield an

efficient procedure for searching the probability space for a point with the desired

property. The purpose of this article is to give an alternative, algorithmic proof

that provides such a procedure. This is not the first attempt to do so. Beck [1991]

achieved a significant breakthrough, demonstrating that algorithmic versions of the

Local Lemma exist. He formulated his strategy in terms of hypergraph 2-coloring

as a specific application of the lemma and proved that if in a hypergraph, every

edge contains at least k vertices and shares common vertices with no more than

roughly 2k/48 other edges, then a polynomial time algorithm can 2-color the ver-

tices without producing a monochromatic edge. The existential version of the Local

Lemma on the other hand allows for every edge to share vertices with roughly 2k/e
other edges and guarantees the existence of such a coloring. Subsequently, several

authors have attempted to improve upon the gap between the existential version

and its constructive counterparts. Alon [1991] improved the threshold to essen-

tially 2k/8 using a simpler and randomized variant of Beck’s algorithm. Molloy

and Reed [1998] provided a general framework capturing the requirements a par-

ticular application has to meet so as to become tractable by the tools of Beck and

Alon. A small error in this result was recently fixed by Pach and Tardos [2010].

Czumaj and Scheideler [2000] extended known algorithmic versions to somewhat

more general cases where the edges of the hypergraph in question need not be of

uniform size. Srinivasan [2008] provided another improvement that reduced the

gap to a threshold of essentially 2k/4 along with a series of other advantages over

the previous approaches. In Moser [2008], yet another variant was presented that

achieves a polynomial running time for instances up to a neighborhood size of

roughly 2k/2 and finally in Moser [2009], the threshold was lowered to roughly

2k/32. In the present paper, we reformulate and improve upon the last cited result

both so as to get rid of the now unnecessary constant in the hypothesis and so as

to directly apply to almost all applications of the Local Lemma known so far. The

only restriction we have to impose upon the general setting in the non-constructive

version as formulated above will be that we consider events determined by different

Journal of the ACM, Vol. 57, No. 2, Article 11, Publication date: January 2010.

A Constructive Proof of the General Lovász Local Lemma 11:3

subsets of underlying mutually independent random variables and �(A) consists

of all events that depend on some of the same variables as A. See the exact for-

mulation below. While this appears to be necessary in order to get any algorith-

mic access to the problem, it seems as well to be the case in almost all known

applications.

Let P be a finite collection of mutually independent random variables in a fixed

probability space �. We will consider events A that are determined by the values of

some subset S ⊆ P of these variables. In such a case, we say that an evaluation of the

variables in S violates A if it makes A happen. This choice of term is to emphasize

that we model a typical application by a collection of ’bad’ events that represent the

violation of constraints we would like to impose upon a desired solution or object.

Clearly, if A is determined by P , then there is a unique minimal subset S ⊆ P that

determines A. We denote this set of variables by vbl(A) and assume throughout the

paper that this set is given to all algorithms dealing with the event A.

Let A be a finite family of events in � determined by P . We define the de-
pendency graph G = GA for A to be the graph on vertex set A with an edge

between events A, B ∈ A if A 	= B but vbl(A) ∩ vbl(B) 	= ∅. For A ∈ A we

write �(A) = �A(A) for the neighborhood of A in G. Note that �(A) satisfies

the requirement in Theorem 1.1 as A is determined by the variables in vbl(A)

and the events in A \ ({A} ∪ �(A)) are determined by the rest of the variables

in P .

Given the familyA of events as above our goal is not only to show that there exists

an evaluation that does not violate any event in the family but to efficiently find such

an evaluation. The algorithm we suggest (Algorithm 1.1) is as simple and natural as

it can get: We start with a random point in � and maintain an evaluation vP of each

variable P ∈ P . We check whether some event in A is violated. If so, we arbitrarily

pick a violated event A ∈ A and sample another random assignment of values for

the variables in vbl(A) on which A depends, each one independently and according

to its distribution while not changing the values of the variables in P \ vbl(A). We

call this a resampling of the event A. We continue resampling violated events until

no such event exists anymore. We will prove that this simple algorithm quickly

terminates, that is, it quickly reaches an evaluation of the variables not violating

any of the events in A if the conditions of the Local Lemma are satisfied.

Algorithm 1.1 The Sequential Solver

function sequential lll(P,A)

for all P ∈ P do
vP ← a random evaluation of P;

while ∃ A ∈ A : A is violated when (P = vP : ∀ P ∈ P) do
pick an arbitrary violated event A ∈ A;

for all P ∈ vbl(A) do
vP ← a new random evaluation of P;

return (vP)P∈P ;

The efficiency of the method clearly depends upon whether random values

for each variable can be efficiently sampled and whether they can be efficiently

checked against the given events. This is the case for almost all known applications

of the lemma and it is less restrictive than previously known methods which

required conditional probabilities or expectations to be computed. We will analyze

Journal of the ACM, Vol. 57, No. 2, Article 11, Publication date: January 2010.

11:4 R. A. MOSER AND G. TARDOS

the efficiency of the algorithm in terms of the expected number of times an event

A ∈ A is resampled.

THEOREM 1.2. Let P be a finite set of mutually independent random variables
in a probability space. Let A be a finite set of events determined by these variables.
If there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr[A] ≤ x(A)
∏

B∈�A(A)

(1 − x(B)),

then there exists an assignment of values to the variables P not violating any of
the events in A. Moreover the randomized algorithm described above resamples
an event A ∈ A at most an expected x(A)/(1 − x(A)) times before it finds such
an evaluation. Thus, the expected total number of resampling steps is at most∑

A∈A
x(A)

1−x(A)
.

Our algorithm lends itself for parallelization. In the parallel version of the al-

gorithm (Algorithm 1.2), we start again with the evaluation of the variables at a

random point in the probability space, then in every step, we select a maximal

independent set S in the subgraph of the dependency graph G spanned by the vio-

lated events and resample all the variables these events depend on in parallel. That

is, we take independent new samples of the variables in ∪A∈Svbl(A) and keep the

values assigned to the rest of the variables. We continue until we find an evaluation

not violating any of the events. This algorithm can be considered a special case of

the sequential algorithm, so the statement of Theorem 1.2 applies to the parallel

version too. In order to give a logarithmic bound for the expected number of steps,

we assume slightly stronger bounds on the probabilities of the events.

Algorithm 1.2: The Parallel Solver

function parallel lll (P,A)

for all P ∈ P do in parallel
vP ← a random evaluation of P;

while ∃A ∈ A : A is violated when (P = vP : ∀P ∈ P) do
S ← a maximal independent set in the subgraph of GA induced by all events which are

violated when (P = vP : ∀P ∈ P), constructed in parallel;

for all P ∈ ⋃
A∈S vbl(A) do in parallel;

vP ← a new random evaluation of P
return (vP)P∈P ;

THEOREM 1.3. Let P be a finite set of mutually independent random variables
in a probability space. Let A be a finite set of events determined by these variables.
If ε > 0 and there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr[A] ≤ (1 − ε)x(A)
∏

B∈�A(A)

(1 − x(B)),

then the parallel version of our algorithm takes an expected O(1
ε

log
∑

A∈A
x(A)

1−x(A)
)

steps before it finds an evaluation violating no event in A.

There is not much about our algorithm that is inherently randomized. We can

demonstrate that under additional conditions, most notably a constant bound on the

Journal of the ACM, Vol. 57, No. 2, Article 11, Publication date: January 2010.

A Constructive Proof of the General Lovász Local Lemma 11:5

maximum degree of the dependency graph, the same task can be performed by a

deterministic procedure. Subsequent to our work, Chandrasekaran et al. [2010] has

removed this assumption on constant maximum degree and developed a determin-

istic variant of the algorithm that runs in polynomial time under only slightly more

restrictive bounds on the probabilities of of the “bad” events.

THEOREM 1.4. Let P = {P1, P2, . . . , Pn} be a finite set of mutually indepen-
dent random variables in a probability space, each Pi taking values from a finite
domain Di . Let A be a set of m events determined by these variables. Consider the
problem size to be s := m + n +∑n

i=1 |Di |. Suppose there exists an algorithm that
can compute, for each A ∈ A and each partial evaluation (vi ∈ Di)i∈I , I ⊆ [n] the
conditional probability Pr[A | ∀i ∈ I : Pi = vi] in time polynomial in s. Suppose,
moreover, that the maximum degree of the dependency graph GA is bounded by a
constant, that is ∀A ∈ A : |�A(A)| ≤ k for some constant k. If there is a constant
ε > 0 and an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr[A] ≤ (1 − ε)x(A)
∏

B∈�A(A)

(1 − x(B)),

then a deterministic algorithm can find an evaluation of the variables such that no
event occurs in time polynomial in s.

In Sections 2 and 3, we provide an analysis of the algorithm, proving Theorem 1.2,

In Section 4, we analyze the parallel version and prove Theorem 1.3. In Section 5,

we prove the correctness of the derandomized algorithm as claimed in Theorem 1.4.

Section 6 contains a lopsided version of Theorem 1.2, and Section 7 has concluding

remarks.

2. Execution Logs and Witness Trees

Note that the decision which violated event A ∈ A to correct in each step can be

taken completely arbitrarily. Let us fix any (deterministic or randomized) procedure

for this selection, this makes the algorithm and the expected values we consider well

defined. The selection method the algorithm uses does not matter for our analysis.

We need to record an accurate journal of what the algorithm does. Let C : N → A
list the events as they have been selected for resampling in each step. If the algorithm

terminates, C is partial and defined only up to the given total number of steps carried

out. We call C the log of the execution. With a fixed selection discipline as described

above, C is now a random variable determined by the random choices the algorithm

makes.

Recall that dependency graph G is a graph on vertex set A where two distinct

events A, A′ ∈ A are connected if vbl(A) ∩ vbl(A′) 	= ∅ and that �(A) denotes the

neighborhood of the vertex A in G. We also use here the inclusive neighborhood
�+(A) := �(A) ∪ {A} of a vertex A.

A witness tree τ = (T, σT) is a finite rooted tree T together with a labelling

σT : V (T) → A of its vertices with events such that the children of a vertex

u ∈ V (T) receive labels from �+(σT (u)). If distinct children of the same vertex

always receive distinct labels we call the witness tree proper. To shorten notation,

we will write V (τ) := V (T) and for any v ∈ V (τ), we write [v] := σT (v). Given the

log C , we will now associate with each resampling step t carried out a witness tree

Journal of the ACM, Vol. 57, No. 2, Article 11, Publication date: January 2010.

11:6 R. A. MOSER AND G. TARDOS

FIG. 1. Simple Dependency Graph, a Possible Log C and the Witness Tree τC (6).

τC (t) that can serve as a ‘justification’ for the necessity of that correction step. Let

us define τ
(t)
C (t) to be an isolated root vertex labelled C(t). Then, going backwards

through the log, for each i = t − 1, t − 2, . . . , 1, we distinguish two cases. If

there is a vertex v ∈ τ
(i+1)

C (t) such that C(i) ∈ �+([v]), then we choose among

all such vertices the one having the maximum distance from the root and attach a

new child vertex u to v that we label C(i), thereby obtaining the tree τ
(i)

C (t). In the

selection of the maximum distance vertex, we break ties arbitrarily. If there is no

vertex v ∈ τ
(i+1)

C (t) such that C(i) ∈ �+([v]), then we skip time step i and simply

define τ
(i)
C (t) := τ

(i+1)

C (t). Finally let τC (t) := τ
(1)

C (t). See an example in Figure 1.

We say that the witness tree τ occurs in the log C if there exists t ∈ N such that

τC (t) = τ .

LEMMA 2.1. Let τ be a fixed witness tree and C the (random) log produced by
the algorithm.

(i). If τ occurs in C, then τ is proper.
(ii). The probability that τ appears in C is at most

∏
v∈V (τ) Pr[[v]].

PROOF. Assume τ occurs in the log C , so we have τC (t) = τ for some t ∈ N.

For a vertex v ∈ V (τ) let d(v) denote the depth of vertex v , that is its distance from

the root and let q(v) stand for the step of the algorithm constructing τC (t) in which

v was attached, that is, q(v) is the largest value q with v contained in τ
(q)

C (t).
First, note that if q(u) < q(v) for vertices u, v ∈ V (τ) and vbl([u]) and vbl([v])

are not disjoint, then d(u) > d(v). Indeed, when adding the vertex u to τ
(q(u)+1)

C (t)
we attach it to v or to another vertex of equal or greater depth. As a consequence

observe that for any two vertices u, v ∈ V (τ) at the same depth d(v) = d(u), [u]

and [v] do not depend on any common variables, that is the labels in every level of

τ form an independent set in G. In particular τ must be proper, establishing claim

(i).

Consider the following procedure that we call τ -check: In an order of decreasing

depth (e.g., reversed breadth first search order) visit the vertices of τ and for a

vertex v take a random evaluation of the variables in vbl([v]) (according to their

distribution, independent of possible earlier evaluations) and check if the resulting

evaluation violates [v]. We say that the τ -check passes if all events were violated

when checked.

Trivially, the τ -check passes with probability exactly
∏

v∈V (τ) Pr[[v]]. The lemma

follows from the observation that whenever τ occurs in the log and we run the τ -

check on the same random source it passes. For this coupling argument, we have to

specify explicitly how the algorithms use the random source. We assume that for

Journal of the ACM, Vol. 57, No. 2, Article 11, Publication date: January 2010.

A Constructive Proof of the General Lovász Local Lemma 11:7

each variable P ∈ P the random source produces an infinite list of independent

random samples P (0), P (1), . . . , and whenever either algorithm calls for a new

random sample of P we pick the next unused value from this sequence.

Having assumed that τ = τC (t), we need to prove that the τ -check passes, that

is, when it considers a vertex v ∈ V (τ) and takes random samples of the variables

in vbl([v]), the resulting evaluation violates [v]. Let us fix the vertex v and for

P ∈ vbl([v]) let S(P) be the set of vertices w ∈ V (τ) with d(w) > d(v) and

P ∈ vbl([w]). When the τ -check considers the vertex v and samples P the random

source gives P (|S(P)|). This is because the τ -check visits the vertices in order of

decreasing depth and among the vertices with depth equal to d(v) only the label of

v depends on P , so before the τ -check considers v it had sampled P exactly when

it was considering the vertices in S(P).

In step q(v), our algorithm chooses the event [v] for resampling, so [v] must be

violated before this resampling. We claim that for P ∈ vbl([v]) the current value

of the variable P is P (|S(P)|) at this time. Indeed, P was sampled at the beginning

of the algorithm and then at the steps q(w) < q(v) for w ∈ S(P). As the τ -check

has these exact same values for the variables in vbl([v]) when considering v it also

must find that [v] is violated, proving (ii).

Let C be the log of the execution of our algorithm. For any event A ∈ A, let

us denote by NA the random variable that counts how many times the event A
is resampled during the execution of our algorithm, that is the number of time

steps t with C(t) = A. Let ti denote the i-th such time step. Let TA denote the

set of all proper witness trees having the root labelled A. As we have previously

demonstrated, τC (ti) ∈ TA, for all i . Moreover, again for each i , the tree τC (ti)
contains exactly i vertices labelled A and thus τC (ti) 	= τC (t j) unless i = j . From

this we conclude that NA not only counts the number of occurrences of A in the

log, but also coincides with the number of distinct proper witness trees occurring

in C that have their root labeled A, that is,

NA =
∑
τ∈TA

1{τ occurs in C}.

Therefore, one can bound the expectation of NA simply by summing the bounds in

Lemma 2.1 on the probabilities of the occurrences of the different proper witness

trees. In the next section, we do just that by relating these probabilities to a random

process.

3. Random Generation of Witness Trees

Let us fix an event A ∈ A and consider the following multitype Galton-Watson

branching process for generating a proper witness tree having its root labelled A. In

the first round, we produce a singleton vertex labelled A. Then, in each subsequent

round, we consider each vertex v produced in the previous round independently

and, again independently, for each event B ∈ �+([v]) identical or adjacent to [v] in

the dependency graph, we add to v a child node carrying the label B with probability

x(B) or skip that label with probability 1−x(B). All these choices are independent.

The process continues until it dies out naturally because no new vertices are born in

some round (depending on the probabilities used, there is, of course, the possibility

that this never happens).

Journal of the ACM, Vol. 57, No. 2, Article 11, Publication date: January 2010.

11:8 R. A. MOSER AND G. TARDOS

Let x ′(B) := x(B)
∏

C∈�(B)(1 − x(C)). For the probability that the described

Galton-Watson process yields a prescribed proper witness tree we obtain the

following.

LEMMA 3.1. Let τ a fixed proper witness tree with its root vertex labeled A.
The probability pτ that the Galton-Watson process described above yields exactly
the tree τ is

pτ = 1 − x(A)

x(A)

∏
v∈V (τ)

x ′([v]).

PROOF. For a vertex v ∈ V (τ) we denote by Wv ⊆ �+([v]) the set of inclusive

neighbors of [v] that do not occur as a label of some child node of v . Then clearly,

the probability that the Galton-Watson process produces exactly τ is given by

pτ = 1

x(A)

∏
v∈V (τ)

(
x([v])

∏
u∈Wv

(1 − x([u]))

)
,

where the leading factor accounts for the fact the the root is always born. In order

to get rid of the Wv , we can rewrite this expression in an obvious way to obtain

pτ = 1 − x(A)

x(A)

∏
v∈V (τ)

(
x([v])

1 − x([v])

∏
u∈�+([v])

(1 − x([u]))

)
,

where again we have to account for the root separately. Replacing inclusive by

exclusive neighborhoods, this simplifies to

pτ = 1 − x(A)

x(A)

∏
v∈V (τ)

(
x([v])

∏
u∈�([v])

(1 − x([u]))

)
= 1 − x(A)

x(A)

∏
v∈V (τ)

x ′([v])

and concludes the argument.

Recall that TA denotes the set of all proper witness trees having the root labelled

A. We have

E(NA) =
∑
τ∈TA

Pr[τ appears in the log C]

≤
∑
τ∈TA

∏
v∈V (τ)

Pr[[v]] ≤
∑
τ∈TA

∏
v∈V (τ)

x ′([v]),

where the first inequality follows from Lemma 2.1, while the second follows

from the assumption in Theorem 1.2. We further have

E(NA) ≤
∑
τ∈TA

∏
v∈V (τ)

x ′([v]) = x(A)

1 − x(A)

∑
τ∈TA

pτ ≤ x(A)

1 − x(A)
,

where the equality comes from Lemma 3.1, while the last inequality follows from

the fact that the Galton-Watson process produces exactly one tree at a time (not

necessarily one from TA since it might also grow infinite). This concludes the proof

of Theorem 1.2.

Journal of the ACM, Vol. 57, No. 2, Article 11, Publication date: January 2010.

A Constructive Proof of the General Lovász Local Lemma 11:9

4. Analyzing the Parallel Algorithm

Let us consider an arbitrary execution of the parallel version of the algorithm. We

choose an arbitrary ordering of the violated events selected for resampling at each

step and consider that these resamplings are done in that order sequentially. This

way we obtain an execution of the sequential algorithm. Let Sj be the segment of

the log C of this execution that corresponds to resamplings done in step j of the

parallel algorithm. We call the maximal depth of a vertex in a witness tree the depth
of the tree.

LEMMA 4.1. If t ∈ Sj , then the depth of τC (t) is j − 1.

PROOF. Let tk be the first number in the segment Sk and let τk = τ
(tk)

C (t) for

k ≤ j . As the events resampled in the j th parallel step are independent, the root

is the only vertex of τ j . For k < j we obtain τk from τk+1 by attaching some

vertices corresponding to the kth parallel step of the algorithm. As these vertices

have independent labels they can only add one to the depth. To see that they do

add one to the depth consider a vertex v of τk+1 of maximal depth. This vertex

corresponds to a resampling of the event [v] some time after step k of the parallel

algorithm. If τk has no vertex with higher depth than v , then from the parallel step

k to the resampling corresponding to v no event from �+([v]) was resampled. But

this implies that [v] was already violated at parallel step k and we did not select a

maximal independent set of violated events there for resampling. The contradiction

shows that the depth of τk is indeed one more than that of τk+1. To finish the proof,

notice that τC (t) = τ1.

Let Q(k) denote the probability, that the parallel algorithm makes at least k steps.

By Lemma 4.1, some witness tree of depth k − 1 must occur in the log in this case.

Notice that a depth k − 1 witness tree has at least k vertices. Let TA(k) be the set of

witness trees in TA having at least k vertices. We have

Q(k) ≤
∑
A∈A

∑
τ∈TA(k)

Pr[τ appears in the log C]

≤
∑
A∈A

∑
τ∈TA(k)

∏
v∈V (τ)

Pr[[v]] ≤ (1 − ε)k
∑
A∈A

∑
τ∈TA

∏
v∈V (τ)

x ′([v]),

where the last inequality follows from the assumption in Theorem 1.3. Then, as

before, we have

Q(k) ≤ (1 − ε)k
∑
A∈A

∑
τ∈TA

∏
v∈V (τ)

x ′([v])

= (1 − ε)k
∑
A∈A

x(A)

1 − x(A)

∑
τ∈TA(k)

pτ ≤ (1 − ε)k
∑
A∈A

x(A)

1 − x(A)
.

This bound easily implies Theorem 1.3.

5. A Deterministic Variant

It is possible to derandomize our algorithm under the additional assumptions listed

in Theorem 1.4. The idea is to create a list of all large potential witness trees that,

if done with care, remains polynomial in length, and then to search for a table of

Journal of the ACM, Vol. 57, No. 2, Article 11, Publication date: January 2010.

11:10 R. A. MOSER AND G. TARDOS

evaluations of all random variables which, substituted for the random source in the

original randomized variant, guarantees that the running time will be low.

We mention here that the recent work of Chandrasekaran et al. [2010] has further

developed the idea above to get rid of the constant degree assumption in Theorem 1.4

for the very small price of a slightly more stringent bound on the probabilities of

the “bad” events.

To begin with, let us note that we can assume the weights x(A) for A ∈ A to be

bounded away from 1. If they are not, we can simply replace x(A) by, say, x̃(A) :=
(1 − ε/2)x(A) for all A and ε by ε/2. It is easily checked that all requirements are

still satisfied and now the weights x̃(A) are upper bounded by (1 − ε/2).

Let (v (j)

i ∈ Di)1≤i≤n, j∈N be sequences of values for the variables. Suppose we

replace the random source by these sequences in such a way that we take v (j)

i as

the j th sample P (j)

i and now run either the parallel or the sequential algorithm

as detailed in the previous sections. Recalling the proof of Lemma 2.1, let us say

that a witness tree τ is consistent with the sequences (v (j)

i ∈ Di)1≤i≤n, j∈N if the

τ -check passes when substituting them for the random source. We have proved that

if the values v (j)

i are selected at random, then the expected number of witness trees

which are consistent with them and which feature at least k vertices is bounded

by (1 − ε)k
∑

A∈A
x(A)

1−x(A)
and if the weights are bounded away from 1, this is in

turn bounded by O(m(1 − ε)k). There exists therefore a constant c such that the

expected number of witness trees of size at least c log m that are consistent with the

sequences is at most 1/2. With probability at least 1/2, no consistent witness tree of

size at least c log m exists at all. Since no variable can then be reassigned more than

c log m times, we can restrict ourselves to finding values (v (j)

i ∈ Di)1≤i≤n,0≤ j≤c log m
such that no large tree becomes consistent. Such values can be found sequentially

using the method of conditional expectations. First of all, we have to make sure

that the number of witness trees we have to consider is not too large, which is

demonstrated by the following lemma.

LEMMA 5.1. Suppose the maximum degree of the dependency graph is bounded
by k as required in the theorem. Let u ∈ N. If there exists a witness tree of size
at least u that is consistent with given evaluation sequences (v (j)

i)1≤i≤n, j∈N, then
there also exists a witness tree of some size in the range [u, (k + 1)u] that is also
consistent with the sequences.

PROOF. To arrive at a contradiction, assume that the claim is wrong for some

value u. Then, let τ be a smallest counterexample, that is a consistent witness tree

of size larger than (k +1)u such that there exists no consistent witness tree of a size

in the range [u, (k +1)u]. Due to the bounded maximum degrees of the dependency

graph, each node in τ has at most k +1 children. Let w1, w2, . . . , w j with j ≤ k +1

be the immediate children of the root. Now we can build j distinct witness trees that

are all consistent with the sequences as follows: traverse τ in the usual level-by-

level fashion bottom-up, starting at the lowest level and ending at the root. Consider

this sequence of corrections to be a log C ′ of length |τ | and now construct for the j
penultimate correction steps in C ′ (which obviously correspond to w1 through w j)

the corresponding witness trees τi := τC ′(|τ | − i) for i = 1, 2, . . . , j . For obvious

reasons, each τi is consistent with the sequences. Moreover, since τi must contain

at least as many vertices as the subtree of τ rooted at wi , there must be at least one

Journal of the ACM, Vol. 57, No. 2, Article 11, Publication date: January 2010.

A Constructive Proof of the General Lovász Local Lemma 11:11

i such that τi has at least (|τ |−1)/(k +1) vertices. Since τ has at least (k +1)u +1

vertices, τi has at least u of them, implying that τi either contradicts the assumption

or constitutes a smaller counterexample.

A deterministic algorithm can now proceed as follows: Enumerate all witness

trees that have a size in the range [c log m, (k + 1)c log m] in a list L . There

is clearly a polynomial number of those given that the dependency graph has

bounded degrees. Now, in any ordering, go through all index pairs (i, j) with

1 ≤ i ≤ n, 0 ≤ j ≤ c log m, computing suitable values for v (j)

i incrementally.

For each of them, consider each possible value of Di that we could assign to v (j)

i
and then compute the expected number of trees in L that become consistent with

the sequences of values given that all values chosen so far and v (j)

i are fixed and

the yet uncomputed values are considered to be random. In the beginning when no

value is fixed so far, that expected value is at most 1/2. Clearly, in each step we

can preserve that it remains at most 1/2 by selecting a value for v (j)

i that minimizes

that expectation. Once all values are fixed, the expectation has to coincide with the

actual number of consistent witness trees in L and therefore that number has to be

zero.

Computing the probability of each tree τ ∈ L given that some evaluations are

random and others are fixed can be done easily by traversing τ in the usual bottom-

up level-by-level fashion (note that each time we encounter a variable during this

traversal we increment a counter pointing to the sample that has to be used as the

current value for this variable), for each vertex computing the conditional probabil-

ity that the corresponding event is violated given the values for the samples fixed

so far (using the algorithm we assume to exist in the hypothesis) and multiplying

those probabilities.

After this polynomial preprocessing step, we run the usual algorithm substituting

our tailored values for the random source having guaranteed that it will terminate

after a polynomial number of steps.

6. The Lopsided Local Lemma

In this section, we study a lopsided version of the Local Lemma that is slightly

outside the framework of Theorem 1.1. Using lopsided dependence, which is an

adaptation of the notion in Erdős and Spencer [1991] to our setting, we formulate our

main result in a slightly more general form. We started with the original formulation

of Theorem 1.2 because we find it more intuitive and it is general enough for most

applications of the Local Lemma. This lopsided generalization can also be applied

to the derandomized variant of Theorem 1.4. On the other hand, we could not find

an effective parallelization.

We are still in the setting of Theorem 1.2:P is a finite set of mutually independent

random variables in a probability space and A is a finite set of events determined

by these variables. We say that two events A, B ∈ A are lopsidependent if there

exist two evaluations f and g of the variables in P that differ only on variables

in vbl(A) ∩ vbl(B) such that f violates A and g violates B but either f does not

violate B or g does not violate A. The lopsidependency graph is the graph on the

vertex set A, where lopsidependent events are connected by an edge. We write

�′(A) = �′
A(A) for the neighborhood of an event A in this graph.

Journal of the ACM, Vol. 57, No. 2, Article 11, Publication date: January 2010.

11:12 R. A. MOSER AND G. TARDOS

Clearly, if vbl(A) is disjoint from vbl(B), then A and B cannot be lopsidepen-

dent, so we have �′(A) ⊆ �(A). Substituting �′(A) for �(A) in the statement of

Theorem 1.2 makes the assumption weaker and therefore the theorem itself stronger.

We call an event A ∈ A elementary, if there is a single evaluation of the vari-

ables in vbl(A) violating A. Lopsidependence between elementary events is more

intuitive: the elementary events A and B are lopsidependent if they are disjoint

(mutually exclusive). Elementary events form a very special case of events consid-

ered in the Local Lemma, but in case the variables in vbl(A) have finite domain,

any event A is the union of finitely many elementary events determined by the same

set of variables. Avoiding A is equivalent to avoiding all of these elementary events

and such a “breaking up” of event A is not too costly in the following sense. If the

assignment x : A → (0, 1) satisfies the (slightly stronger than usual) condition

∀A ∈ A : Pr[A] ≤ x(A)
∏

B∈�+(A)

(1 − x(B)),

then we can break up all the events A ∈ A into elementary events and find a

corresponding assignment to the elementary events satisfying the same condition.

Even in cases where a suitable assignment is not possible for the set A, breaking

up the events may cause many of the dependencies among the elementary events

to disappear when considering lopsidependence, and Theorem 6.1 may become

applicable.

An important application where using lopsidependence has proven to be effective

is the satisfiability problem. In a CNF formula, two clauses A and B are said to

have a conflict if one contains a literal l and the other one its complement l̄. When

conducting the random experiment of sampling a truth assignment to each variable

independently, the (elementary) events that A is violated or that B is violated,

respectively, are lopsidependent on one another. If, on the other hand, A and B
merely overlap in some literal, then correcting either of them in the case of being

violated will not harm the other one. Hence, being in conflict is the more relevant

notion to analyze dependencies in a SAT problem. The lopsided Local Lemma has

been effectively used, for example, by Berman et al. [2003], to prove better bounds

on the number of occurrences per variable that can be allowed while guaranteeing

a satisfying assignment. Proofs of this type can be made constructive using the

method we present here.

THEOREM 6.1. Let P be a finite set of mutually independent random variables
in a probability space. Let A be a finite set of events determined by these variables.
If there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr[A] ≤ x(A)
∏

B∈�′
A(A)

(1 − x(B)),

then there exists an assignment of values to the variables P not violating any of
the events in A. Moreover, our randomized algorithm resamples an event A ∈ A at
most an expected x(A)/(1 − x(A)) times before it finds such an evaluation. Thus,
the expected total number of resampling steps is at most

∑
A∈A

x(A)

1−x(A)
.

As the proof of this theorem is almost identical to that of Theorem 1.2 we

concentrate on the few differences. We define �′+(A) = �′+
A (A) = �′

A(A)∪{A} for

A ∈ A. Given a log C of an execution of Algorithm 1.1 and a time index t , we define

Journal of the ACM, Vol. 57, No. 2, Article 11, Publication date: January 2010.

A Constructive Proof of the General Lovász Local Lemma 11:13

the lopsided witness tree �C (t) similarly to the usual witness tree τC (t), but now

the children of a vertex labeled A will be labeled from �′+(A). Formally, we start

with the root labeled C(t) and going through the time steps i = t − 1, t − 2, . . . , 1

of the log we add a new vertex labeled C(i) every time C(i) ∈ �′+(A) for a label A
of a vertex of the tree constructed so far. If such a vertex exists, we choose one as

far from the root as possible and attach the new vertex of label C(i) to this existing

vertex.

We denote the label of a vertex v by [v] and call a witness tree a proper lopsided
witness tree if the children of any vertex v receive distinct labels from �′+([v]).

Clearly, �C (t) is a proper lopsided witness tree, but the equivalent of part (ii) of

Lemma 2.1 is less trivial. We state and prove it below. One also has to modify the

Galton-Watson branching process considered to produce a proper lopsided witness

tree. With these modifications the original proof of Theorem 1.2 carries over to the

lopsided version.

LEMMA 6.2. Let τ be a fixed proper lopsided witness tree and C the (random)
log produced by the algorithm. The probability that τ = �C (t) holds for some t is
at most

∏
v∈V (τ) Pr[[v]].

PROOF. We prove this statement with the same coupling argument we used in

Lemma 2.1: if τ = �C (t), then the τ -check (as defined in the proof of Lemma 2.1)

passes if both the algorithm and the τ -check use the same list of independent random

samples P (0), P (1), . . . for the variables P ∈ P . Recall that the τ -check considers

the vertices of τ in some fixed order v1, . . . , vs of non-increasing distance from the

root and, when considering vi draws new samples for the variables in vbl([vi]) and

checks if they violate [vi]. Clearly, the probability that the τ -check passes (meaning

that each event is violated when checked) is exactly
∏

v∈V (τ) Pr[[v]].

Let us fix the sequences P (0), P (1), . . . of random samples of the variables P ∈ P .

The log of our algorithm is still not determined because of the arbitrary choices

we make in selecting the violated event to resample. If a possible log C satisfies

�C (t) = τ for some t we denote by qC (v) the time step the vertex v was added

during the construction of �C (t). In particular we have qC (r) = t for the root r of

τ and we have C(qC (v)) = [v]. If there are several possible logs C with τ = �C (t)
for some t , then we choose the one that minimizes w(C) := ∑s

i=1(s +1− i)qC (vi).

We claim that with this choice we have qC (vi) = i for i = 1, . . . , s. Assuming

the claim it is clear that the τ -check passes since when it considers vi it will draw

the same random values for the variables in vbl([vi]) that makes the selection of

C(i) = [vi] a valid choice for resampling in the i th step of our algorithm.

To prove the claim above, notice first that the definition of lopsidependence

ensures that if C is a possible log of our algorithm and for some j the events

C(j) and C(j + 1) are not lopsidependent, then the log C ′ obtained from C by

reversing the order of these two resamplings is still possible. Furthermore, if τ can

be obtained as �C (t) for some t , then τ can also be obtained as �C ′(t) for some t .
Now assume that the claim does not hold. In this case, there must exist indices i and

j with qC (vi) = j + 1 and qC (vi ′) 	= j for any i ′ < i . But this means that during

the construction of τ = �C (t) when considering time step j we did not attach a

new vertex labeled C(j), or if we did, it went on the level of vi or even higher. In

either case C(j) must not be lopsidependent from C(j + 1) = [vi], neither can

C(j) and C(j + 1) coincide. Thus, the log C ′ obtained from C by switching C(j)

Journal of the ACM, Vol. 57, No. 2, Article 11, Publication date: January 2010.

11:14 R. A. MOSER AND G. TARDOS

and C(j + 1) is also a possible log producing τ as a lopsided witness tree, and we

also have w(C ′) < w(C), a contradiction.

7. Conclusion

The bound x(A)/(1 − x(A)) in Theorem 1.2 is tight, but it is only achieved in the

rather uninteresting case when A is an isolated vertex of the dependency graph and

we set x(A) = Pr[A]. Consequently, the bound on the total number of resampling

steps is achieved only if all the events inA are independent. To see that the expected

number of resamplings of an event, A ∈ A cannot achieve the bound x(A)/(1 −
x(A)) unless A is isolated in the dependency graph notice that for equality any

proper witness tree with the root labelled A must be present in the log with positive

probability, but only those can be present where the labels on each level form an

independent set in the dependency graph.

To implement the sequential version of our algorithm we need only to assume

that we have an algorithm sampling the variables in P and another that finds the set

of violated events for a given evaluation of the variables. For the parallel version,

we also need to be able to find a maximal independent set of violated vertices of

the dependence graph. Luby’s randomized algorithm finds a maximal independent

set in any graph in logarithmic expected time using a processor associated with

each vertex of the graph. As we have to find an expected logarithmic number

of maximal independent sets, one after the other, the total running time of this

part of the algorithm is O(log2 m), where m = |V (G)| = |A|. Sampling and

finding the violated indices is typically faster, so this might be the bottleneck of

our algorithm. One can reduce the time required to find an independent set to

a constant by implementing only a single step of Luby’s algorithm. The result

will not be a maximal independent set, nevertheless we can use it to perform the

corresponding resamplings in parallel, but the expected number of steps this version

of the algorithm takes is yet to be analyzed.

Finally, we mention that one can give an alternative explanation why our algo-

rithms work based on the incompressibility method (or Kolmogorov complexity

method). Along these lines prior to our work Schweitzer [2009] has given an al-

ternative proof of some hypergraph coloring consequences of the Lovász Local

Lemma. He did not formulate his results as an algorithmic approach but used some

very similar arguments to the proofs presented here and in Moser [2009]. Gasarch

[2009] has recently given a common generalization of the work by Schweitzer

[2009] and the present work.

ACKNOWLEDGMENT. Many thanks go to Dominik Scheder and Philipp Zumstein

for various very helpful comments and to Emo Welzl for many fruitful discussions

and the continuous support.

REFERENCES

ALON, N. 1991. A parallel algorithmic version of the local lemma. Rand. Struct. Algor. 2, 4, 367–378.

BECK, J. 1991. An algorithmic approach to the Lovász local lemma. Rand. Struct. Algor. 2, 4, 343–365.

BERMAN, P., KARPINSKI, M., AND SCOTT, A. D. 2003. Approximation hardness and satisfiability of

bounded occurrence instances of SAT. Electron. Colloq. Computat. Complex. 10, 022.

CHANDRASEKARAN, K., GOYAL, N., AND HAEUPLER, B. To appear in 2010. Deterministic algorithms

for the Lovász local lemma. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms. ACM, New York.

Journal of the ACM, Vol. 57, No. 2, Article 11, Publication date: January 2010.

A Constructive Proof of the General Lovász Local Lemma 11:15

CZUMAJ, A., AND SCHEIDELER, C. 2000. Coloring non-uniform hypergraphs: a new algorithmic approach

to the general Lovász local lemma. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). ACM, New York, 30–39.

ERDŐS, P., AND LOVÁSZ, L. 1975. Problems and results on 3-chromatic hypergraphs and some related

questions. In A. Hajnal, R. Rado and V.T. Sós, Eds. Infinite and Finite Sets, North-Holland, II, 609–627.

ERDŐS, P., AND SPENCER, J. 1991. Lopsided Lovász local lemma and Latin transversals. Discr. Appl.
Math. 30, 2-3, 151–154.

GASARCH, W. 2009. Constructive lower bounds on several Ramsey numbers via the constructive Lovász

local lemma. Manuscript. www.cs.umd.edu/∼gasarch/v.pdf.

MOLLOY, M., AND REED, B. 1998. Further algorithmic aspects of the local lemma. In Proceedings of the
30th Annual ACM Symposium on the Theory of Computing (STOC). ACM, New York, 524–529.

MOSER, R. A. 2008. Derandomizing the Lovász local lemma more effectively. Eprint arXiv:0807.2120v2.

MOSER, R. A. 2009. A constructive proof of the Lovász local lemma. In Proceedings of the 41st Annual
ACM Symposium on the Theory of Computing (STOC). ACM, New York.

PACH, J., AND TARDOS, G. 2010. Conflict-free colorings of graphs and hypergraphs. Combinat. Probab.
Comput.

SCHWEITZER, P. 2009. Using the incompressibility method to obtain local lemma type results for Ramsey-

type problems. Inform. Process. Lett. 109, 4, 229–232.

SRINIVASAN, A. 2008. Improved algorithmic versions of the Lovász local lemma. In Proceedings of the
19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). ACM, New York, 611–620.

RECEIVED MAY 2009; ACCEPTED AUGUST 2009

Journal of the ACM, Vol. 57, No. 2, Article 11, Publication date: January 2010.

