Oriented Matroid and pseudosphere arrangements

Tobias Reiter, Yujin Choi

Department of Mathematics, TU Berlin

July 2020

Table of Contents

- 1. What is an Oriented Matroid?
- 2. What is an Arrangement of Pseudospheres?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

3. How are they related?

What is an Oriented Matroid?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

What is an Oriented Matroid?

(a) $C = (+, +, -, +, -, 0, 0, 0)$

K ロ ト K 個 ト K 産 ト K 差 ト 一 差 …

What is an Oriented Matroid?

(a) $C = (+, +, -, +, -, 0, 0, 0)$

 Ω

Composition, Support, and Separation set of covectors

$$
(C \circ D)_e := \begin{cases} C_e & \text{if } C_e \neq 0, \\ D_e & \text{otherwise} \end{cases} = (+, +, -, +, -, -, +, -)
$$

$$
\underline{C} := \{ e \in E \mid C_e \neq 0 \} = \{ 1, 2, 3, 4, 5 \}
$$

$$
S(C, D) := \{ e \in E \mid C_e = -D_e \neq 0 \} = \{ 3 \}
$$

Definition of oriented matroid with covector axioms

An **oriented matroid** given in terms of its covectors is a pair $\mathcal{M}:=(\mathcal{E},\mathcal{L})$, where $\mathcal{L}\subset \{-,0,+\}^{\mathcal{E}}$ satisfies (CV0) $\mathbf{0} \in \mathcal{L}$ $(CV1)$ $C \in \mathcal{L} \implies -C \in \mathcal{L}$ $(CV2)$ $C, D \in \mathcal{L} \implies C \circ D \in \mathcal{L}$ (CV3) $C, D \in \mathcal{L}$, $e \in S(C, D) \implies$ there is a $Z \in \mathcal{L}$ with $Z_e=0$ and with $Z_f=(C\circ D)_f$ for $f\in E\setminus S(C,D).$

KORKARYKERKER POLO

Figure: Line Arrangement[\[dCvO08\]](#page-27-0)

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Figure: Oriented hyperplane arrangement[\[Hoc10\]](#page-27-1)

$$
H = \{x \in \mathbb{R}^2 \mid a^T x = c\}
$$

$$
H^+ = \{x \in \mathbb{R}^2 \mid a^T x > c\}
$$

$$
H^- = \{x \in \mathbb{R}^2 \mid a^T x < c\}
$$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Figure: Oriented hyperplane arrangement[\[Hoc10\]](#page-27-1)

$$
SignVector(V) = (+ + 0 + -0)
$$

SignVector(W) = (0 + +0 + +)
SignVector(Shaded Region) = (+ + + + + +))

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$$
\mathcal{L} = \{\pm \text{SignVector}(x) \mid x \in \mathbb{R}^2\} \cup \{\mathbf{0}\}\
$$

$$
= \{\pm \text{SignVector}(C) \mid C \text{ cell of the arrangement}\} \cup \{\mathbf{0}\}\
$$

メロトメ 御 トメ 君 トメ 君 トー

ミー 2990

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

(CV0) $\mathbf{0} \in \mathcal{L}$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 $(CV1)$ $C \in \mathcal{L} \implies -C \in \mathcal{L}$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

 $(CV2)$ $C, D \in \mathcal{L} \implies C \circ D \in \mathcal{L}$

(CV3) $C, D \in \mathcal{L}$, $e \in S(C, D) \implies$ there is a $Z \in \mathcal{L}$ with $Z_e=0$ and with $Z_f=(C\circ D)_f$ for $f\in E\setminus S(C,D).$

KORK EXTERNE PROVIDE

Recall: Cocircuit Axiom

A collection $\mathcal{C}^* \subset \{-,0,+\}^E$ is the set of cocircuits of an oriented matroid M if and only if it satisfies

(CC0)
$$
0 \notin \mathcal{C}^*
$$

\n(CC1) $C \in \mathcal{C}^* \implies -C \in \mathcal{C}^*$

\n(CC2) for all $C, D \in \mathcal{C}^*$ we have $\underline{C} \subset \underline{D} \implies C = D$ or $C = -D$

\n(CC3) $C, D \in \mathcal{C}^*, C \neq -D$, and $e \in S(C, D) \implies$ there is a $Z \in \mathcal{C}^*$ with $Z^+ \subset (C^+ \cup D^+) \setminus \{e\}$ and $Z^- \subset (C^- \cup D^-) \setminus \{e\}$

Cocircuit and Covector

Covector C and $e \in C$ \implies smallest $M \in \mathcal{L}$

 $C = M_1 \circ \cdots \circ M_m$

s.t. $e \in M \subset C$

Covector C \leftarrow Cocircuits M_1, \cdots, M_m $S(M_i, M_i) = \emptyset$, for $i \neq j$

KORK EXTERNE PROVIDE

Figure: Homogenized coordinates of points [\[RZ17\]](#page-27-2)

$$
E = \{x_i \mid i = 1, \dots, 6\}
$$

\n
$$
\mathcal{I} = \{\text{linearly independent } I \subset E\}
$$

\n
$$
\mathcal{B} = \{\text{basis } B \subset E \text{ of } \mathbb{R}^d = \mathbb{R}^3\}
$$

\n
$$
\mathcal{C} = \{\text{minimal linearly dependent } S \subset E\}
$$

\n
$$
\mathcal{C}^* = \{\text{minimal } S \subset E \text{ that intersects each basis}\}
$$

イロトメ 倒 トメ きょくきょうき

 $\mathcal{C}^* = \{$ minimal $S \subset E$ that intersects each basis $\}$ $=$ {minimal $S \subset E$ such that dim($E \setminus S$) < $d = 3$ } $=$ {minimal $S \subset E$ | dim($E \setminus S$) = $d - 1 = 2$ } $=$ {minimal $S \subset E$ | dim (Ker($E \setminus S$)} = 1} $= \{S = E \setminus D \mid \text{maximal } D \subset E, \text{dim}(\text{Ker}(D)) = 1\}$ $=\{S = E \setminus D \mid D = \mathit{SignVector}(P)^0, P \text{ vertex}\}$ $= \{S = SignVector(P) | P$ vertex $\}$ $\qquad \qquad \exists x \in \{x \in \mathbb{R} \mid x \in \mathbb{R} \} \text{ and } \qquad x \in \mathbb{R} \text{ and } \qquad x \in \mathbb{$

Figure: Hypersphere Arrangement[\[RZ17\]](#page-27-2) from oriented hyperplanes

イロト イ母 トイミト イミト ニヨー りんぺ

What is a Pseudosphere?

A **pseudosphere** is the image $s \subset S^{d-1}$ of the equator ${x \in S^{d-1} \mid x_d = 0}$ in the unit sphere under a self-homeomorphism $\phi:~\mathcal{S}^{d-1}~\to~\mathcal{S}^{d-1}.$ (Pseudospheres behave "nicely" in the sense that they divide S^{d-1} into two open sets, its sides, that are homeomorphic to open $(d - 1)$ -balls.)

Figure: pseudosphere and its sides, for $d = 3$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

What is an Arrangement of Pseudospheres?

A finite collection $\mathcal{P}=(s_1,~s_2,~\cdots,~s_n)$ of pseudospheres in \mathcal{S}^{d-1} is an arrangement of pseudospheres if the following conditions hold (we set $E := \{1, 2, \dots, n\}$):

- (PS1) For all $A \subset E$ the set $S_A = \bigcap_{e \in A} S_e$ is a topological sphere.
- (PS2) If $S_A \not\subset s_{\epsilon}$, for $A \subset E$, $e \in E$, then $S_A \cap s_{\epsilon}$ is a pseudosphere in S_A with sides $S_A \cap s_e^+$ and $S_A \cap s_e^-$.

What is an Arrangement of Pseudospheres?

A finite collection $\mathcal{P}=(s_1,~s_2,~\cdots,~s_n)$ of pseudospheres in \mathcal{S}^{d-1} is an arrangement of pseudospheres if the following conditions hold (we set $E := \{1, 2, \dots, n\}$):

- (PS1) For all $A \subset E$ the set $S_A = \bigcap_{e \in A} S_e$ is a topological sphere.
- (PS2) If $S_A \not\subset s_{\sigma}$, for $A \subset E$, $e \in E$, then $S_A \cap s_{\sigma}$ is a pseudosphere in S_A with sides $S_A \cap s_e^+$ and $S_A \cap s_e^-$.

KORKARYKERKER POLO

What is an Arrangement of Pseudospheres?

A finite collection $\mathcal{P}=(s_1, \; s_2, \; \cdots, \; s_n)$ of pseudospheres in \mathcal{S}^{d-1} is an arrangement of pseudospheres if the following conditions hold (we set $E := \{1, 2, \dots, n\}$):

- (PS1) For all $A \subset E$ the set $S_A = \bigcap_{e \in A} S_e$ is a topological sphere.
- (PS2) If $S_A \not\subset s_{\epsilon}$, for $A \subset E$, $e \in E$, then $S_A \cap s_{\epsilon}$ is a pseudosphere in S_A with sides $S_A \cap s_{e}^+$ and $S_A \cap s_{e}^-$.

Figure: pseudoline arrangement [\[RZ17\]](#page-27-2)

KORKARYKERKER POLO

Oriented Matroids & Pseudosphere Arrangements

The Topological Representation Theorem

If P is an essential($S_E = \emptyset$) arrangement of pseudospheres on \mathcal{S}^{d-1} then $\mathsf{\Gamma}(\mathcal{P})\cup \{\mathbf{0}\}$ forms the set of covectors of an oriented matroid of rank d. Conversely, for every oriented matroid (E, \mathcal{L}) of rank d (without loops) there exists an essential arrangement of pseudospheres $\mathcal P$ on $\mathcal S^{d-1}$ with $\mathsf \Gamma(\mathcal P)=\mathcal L\setminus\{\mathbf 0\}.$

 Essential arrangement of pseudospheres on \mathcal{S}^{d-1} $\Big\} \Longleftrightarrow \Big\{$ Loopless oriented matroid of rank *d* \mathcal{L}

KID KA KERKER E VOOR

Pseudospheres to Oriented Matroids

$$
\begin{Bmatrix} \text{Pseudosphere } s \\ s \subset \mathcal{S}^{d-1} \end{Bmatrix} \Longrightarrow \begin{Bmatrix} \text{Pseudohemispheres} \\ h_s = s^+ \text{ and } -h_s = s^- \end{Bmatrix}
$$

 $\mathcal{C}^*:=\{$ minimal set $\mathcal{C}\neq\emptyset$ of pseudohemispheres such that $C \cap -C = \emptyset$ and $\cup_{h\in C} h = S^{d-1}$ }

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Oriented Matroids to Pseudospheres

(Induction on $|E|$ for fixed rank d - base case: $E = [d]$, $\mathcal{I} = 2^{[d]}$, $\mathcal{C}^* = \{\pm e_i \mid i \in [d]\})$ $P_d := Conv(\{\pm e_1, \dots \pm e_d\})$ $e_i = (0, 0, \cdots, 0, 1, 0, \cdots, 0)$ z

x

Figure: 3-dimensional Pyramid

y

 000

 \implies Arrangement of ∂P_d ∂P_d

References I

[dCvO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars, Computational geometry, 3rd ed., p. 180, Springer, 2008.

- [FL78] Jon Folkman and Jim Lawrence, Oriented matroids, Journal of Combinatorial Theory, Series B 25 (1978), no. 2, 199–236.
- [Hoc10] Winfried Hochstättler, Oriented matroids - from matroids to digraphs to polyhedral theory, Tech. report, FernUniversität in Hagen, 2010.
- [RZ17] Jürgen Richter-Gebert and Günter M. Ziegler, Handbook of discrete and computational geometry, ch. 6 Oriented Matroids, CRC Press, 2017.

KORKARYKERKER OQO