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What is an Oriented Matroid?

Matroid Circuits + Orientation
_.I_



What is an Oriented Matroid?

(a) C - (+7+7 _7+7_707070) (b) D - (+707+70707_7+7_)



What is an Oriented Matroid?
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(a) C= (+7 +7 ) +7 _707070) (b) D= (+’0’+’070’ _7+7 _)

Composition, Support, and Separation set of covectors

C. if C.#0,
(COD)e = © I e% :(+a+7_1+7_7_7+7_)
D. otherwise

C:={ecE|C.#0}={1,23,45)
S(C,D):={e€ E|C.=—D.#0}={3}



Definition of oriented matroid with covector axioms

An oriented matroid given in terms of its covectors is a pair
M = (E, L), where £ C {—,0,+}F satisfies

(CV0) 0 L

(CV1) Ce L = —-CeL
(CV2) C,De L = CoDeL
(CV3)

CV3) C,De L, ec S(C,D) = thereisa Z € L with
Ze =0 and with Zr = (C o D) for f € E\ S(C, D).



Example: Hyperplane Arrangement

vertex

Figure: Line Arrangement[dCvOO08]



Example: Hyperplane Arrangement

Figure: Oriented hyperplane arrangement[Hoc10]

H={xeR?|a'x=c}
HT ={xeR?|a’x>c}
H  ={xcR?*|a"x<c}



Example: Linear Matroid

Figure: Oriented hyperplane arrangement[Hoc10]

SignVector(V) = (++ 0+ —0)
SignVector(W) = (0 4+ 40 + +)
SignVector(Shaded Region) = (+ + + + ++)



Example: Hyperplane Arrangement

£ = {+SignVector(x) | x € R?} U {0}
= {£SignVector(C) | C cell of the arrangement} U {0}



Example: Hyperplane Arrangement

(CV0) 0 L



Example: Hyperplane Arrangement

(CV1) Ce L = —-CeL



Example: Hyperplane Arrangement

(CV2) C,DeL = CoDeL



Example: Hyperplane Arrangement

(CV3) C,De L, ee S(C,D) = thereis a Z € L with
Ze. =0 and with Zr = (C o D) for f € E\ S(C, D).



Recall: Cocircuit Axiom

A collection C* C {—,0,+}E is the set of cocircuits of an oriented
matroid M if and only if it satisfies
(CCo) o¢gc
(CC1) CeC* = —Cec
(CC2) forall C,DeC*wehave CCD = C=Dor
C=-D
(CC3) C,DeC*, C#—D, and e € S(C,D) = thereis a
Z € C* with Zt c (CTuD™)\ {e} and
Z-Cc(CuD)\{e}



Cocircuit and Covector

Covector C and ec C — smallest M € L
st.eeMcCC

Covector C <— Cocircuits My, -+, M,
C:M10~--0Mm S(M;,Mj):®,fori7éj



Example: Linear Matroid
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Figure: Homogenized coordinates of points [RZ17]

E={x|i=1, ---,6}

Z = {linearly independent | C E}

B = {basis B C E of R = R%}

C = {minimal linearly dependent S C E}

C* = {minimal S C E that intersects each basis}



Example: Linear Matroid




Example: Linear Matroid

C* = {minimal S C E that intersects each basis}
= {minimal S C E such that dim(E \ S) < d =3}
= {minimal S C E |dim(E\ S)=d —-1=2}
= {minimal § C E | dim (Ker(E \ S)) =1}
={S=E\ D | maximal D C E,dim(Ker(D)) = 1}
={S=E\ D| D = SignVector(P)°, P vertex}
= {S = SignVector(P) | P vertex}



Example: Linear Matroid

6 1

Figure: Hypersphere Arrangement[RZ17] from oriented hyperplanes



What is a Pseudosphere?

A pseudosphere is the image s € S9! of the equator

{x € 8971 | x4 = 0} in the unit sphere under a
self-homeomorphism ¢ : S971 — S971. (Pseudospheres behave
“nicely” in the sense that they divide S~ into two open sets, its
sides, that are homeomorphic to open (d — 1)-balls.)

Figure: pseudosphere and its sides, for d =3



What is an Arrangement of Pseudospheres?

A finite collection P = (s1, s», ---, s,) of pseudospheres in S9~1
is an arrangement of pseudospheres if the following conditions
hold (we set E :={1,2,--- ,n}):
(PS1) For all A C E the set Sp = Necase is a topological
sphere.

(PS2) If Spg Z se, for AC E, e € E, then Sp N se is a
pseudosphere in Sa with sides SaNs} and SpNs; .

&
Ny



What is an Arrangement of Pseudospheres?

A finite collection P = (s1, s», ---, s,) of pseudospheres in S9~1
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What is an Arrangement of Pseudospheres?

A finite collection P = (s1, s», ---, s,) of pseudospheres in S9~1
is an arrangement of pseudospheres if the following conditions
hold (we set E :={1,2,--- ,n}):
(PS1) For all A C E the set Sp = NecaSe is a topological
sphere.
(PS2) If Spg & se, for AC E, e € E, then SpNse is a
pseudosphere in Sa with sides S4N'sf and SpNs; .

Figure: pseudoline arrangement [RZ17]



Oriented Matroids & Pseudosphere Arrangements

The Topological Representation Theorem

If P is an essential(Sg = () arrangement of pseudospheres on
S971 then I'(P) U {0} forms the set of covectors of an oriented
matroid of rank d. Conversely, for every oriented matroid (E, L) of
rank d (without loops) there exists an essential arrangement of
pseudospheres P on S9! with I'(P) = £\ {0}.

Essential arrangement — Loopless oriented matroid
of pseudospheres on S9! of rank d



Pseudospheres to Oriented Matroids

Pseudosphere s . Pseudohemispheres
sc 891 hs =sT and — hs = s~

C* := {minimal set C # () of pseudohemispheres such that
Cn—-C=(and
Unec h= 891}



Oriented Matroids to Pseudospheres

(Induction on |E]| for fixed rank d
- base case: E =[d], T =2l C* = {+xe /| i€ [d]})

Py := Conv({te1, -t eq})
€ = (0707 5071707'” )0)

V4

Figure: 3-dimensional Pyramid

= Arrangement of 0Py
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