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What is an Oriented Matroid?

Matroid Circuits + Orientation
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Composition, Support, and Separation set of covectors

(C ◦ D)e :=

{
Ce if Ce 6= 0,

De otherwise
= (+,+,−,+,−,−,+,−)

C := {e ∈ E | Ce 6= 0} = {1, 2, 3, 4, 5}

S(C ,D) := {e ∈ E | Ce = −De 6= 0} = {3}



Definition of oriented matroid with covector axioms

An oriented matroid given in terms of its covectors is a pair
M := (E ,L), where L ⊂ {−, 0,+}E satisfies

(CV0) 0 ∈ L
(CV1) C ∈ L =⇒ −C ∈ L
(CV2) C ,D ∈ L =⇒ C ◦ D ∈ L
(CV3) C ,D ∈ L, e ∈ S(C ,D) =⇒ there is a Z ∈ L with

Ze = 0 and with Zf = (C ◦ D)f for f ∈ E \ S(C ,D).



Example: Hyperplane Arrangement

Figure: Line Arrangement[dCvO08]



Example: Hyperplane Arrangement

Figure: Oriented hyperplane arrangement[Hoc10]

H = {x ∈ R2 | aT x = c}
H+ = {x ∈ R2 | aT x > c}
H− = {x ∈ R2 | aT x < c}



Example: Linear Matroid

Figure: Oriented hyperplane arrangement[Hoc10]

SignVector(V ) = (+ + 0 +−0)

SignVector(W ) = (0 + +0 + +)

SignVector(Shaded Region) = (+ + + + ++)



Example: Hyperplane Arrangement

L = {±SignVector(x) | x ∈ R2} ∪ {0}
= {±SignVector(C ) | C cell of the arrangement} ∪ {0}



Example: Hyperplane Arrangement

(CV0) 0 ∈ L



Example: Hyperplane Arrangement

(CV1) C ∈ L =⇒ −C ∈ L



Example: Hyperplane Arrangement

(CV2) C ,D ∈ L =⇒ C ◦ D ∈ L



Example: Hyperplane Arrangement

(CV3) C ,D ∈ L, e ∈ S(C ,D) =⇒ there is a Z ∈ L with
Ze = 0 and with Zf = (C ◦ D)f for f ∈ E \ S(C ,D).



Recall: Cocircuit Axiom

A collection C∗ ⊂ {−, 0,+}E is the set of cocircuits of an oriented
matroid M if and only if it satisfies

(CC0) 0 6∈ C∗

(CC1) C ∈ C∗ =⇒ − C ∈ C∗

(CC2) for all C ,D ∈ C∗ we have C ⊂ D =⇒ C = D or
C = −D

(CC3) C ,D ∈ C∗, C 6= −D, and e ∈ S(C ,D) =⇒ there is a
Z ∈ C∗ with Z+ ⊂ (C+ ∪ D+) \ {e} and
Z− ⊂ (C− ∪ D−) \ {e}

e

(a) C

e

(b) D

e

(c) Z



Cocircuit and Covector

Covector C and e ∈ C =⇒ smallest M ∈ L
s.t. e ∈ M ⊂ C

e e

Covector C ⇐= Cocircuits M1, · · · ,Mm

C = M1 ◦ · · · ◦Mm S(Mi ,Mj) = ∅, for i 6= j



Example: Linear Matroid

Figure: Homogenized coordinates of points [RZ17]

E = {xi | i = 1, · · · , 6}
I = {linearly independent I ⊂ E}
B = {basis B ⊂ E of Rd = R3}
C = {minimal linearly dependent S ⊂ E}
C∗ = {minimal S ⊂ E that intersects each basis}



Example: Linear Matroid

x

X1 = (0, 3, 1)

y

z

x
y

z



Example: Linear Matroid

C∗ = {minimal S ⊂ E that intersects each basis}
= {minimal S ⊂ E such that dim(E \ S) < d = 3}
= {minimal S ⊂ E | dim(E \ S) = d − 1 = 2}
= {minimal S ⊂ E | dim (Ker(E \ S)) = 1}
= {S = E \ D | maximal D ⊂ E , dim(Ker(D)) = 1}
= {S = E \ D | D = SignVector(P)0,P vertex}
= {S = SignVector(P) | P vertex}



Example: Linear Matroid
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Figure: Hypersphere Arrangement[RZ17] from oriented hyperplanes



What is a Pseudosphere?

A pseudosphere is the image s ⊂ Sd−1 of the equator
{x ∈ Sd−1 | xd = 0} in the unit sphere under a
self-homeomorphism φ : Sd−1 → Sd−1. (Pseudospheres behave
“nicely” in the sense that they divide Sd−1 into two open sets, its
sides, that are homeomorphic to open (d − 1)-balls.)

+

−

Figure: pseudosphere and its sides, for d = 3



What is an Arrangement of Pseudospheres?

A finite collection P = (s1, s2, · · · , sn) of pseudospheres in Sd−1
is an arrangement of pseudospheres if the following conditions
hold (we set E := {1, 2, · · · , n}):

(PS1) For all A ⊂ E the set SA = ∩e∈Ase is a topological
sphere.

(PS2) If SA 6⊂ se , for A ⊂ E , e ∈ E , then SA ∩ se is a
pseudosphere in SA with sides SA ∩ s+e and SA ∩ s−e .



What is an Arrangement of Pseudospheres?

A finite collection P = (s1, s2, · · · , sn) of pseudospheres in Sd−1
is an arrangement of pseudospheres if the following conditions
hold (we set E := {1, 2, · · · , n}):

(PS1) For all A ⊂ E the set SA = ∩e∈Ase is a topological
sphere.

(PS2) If SA 6⊂ se , for A ⊂ E , e ∈ E , then SA ∩ se is a
pseudosphere in SA with sides SA ∩ s+e and SA ∩ s−e .



What is an Arrangement of Pseudospheres?

A finite collection P = (s1, s2, · · · , sn) of pseudospheres in Sd−1
is an arrangement of pseudospheres if the following conditions
hold (we set E := {1, 2, · · · , n}):

(PS1) For all A ⊂ E the set SA = ∩e∈Ase is a topological
sphere.

(PS2) If SA 6⊂ se , for A ⊂ E , e ∈ E , then SA ∩ se is a
pseudosphere in SA with sides SA ∩ s+e and SA ∩ s−e .

Figure: pseudoline arrangement [RZ17]



Oriented Matroids & Pseudosphere Arrangements

The Topological Representation Theorem

If P is an essential(SE = ∅) arrangement of pseudospheres on
Sd−1 then Γ(P) ∪ {0} forms the set of covectors of an oriented
matroid of rank d . Conversely, for every oriented matroid (E ,L) of
rank d (without loops) there exists an essential arrangement of
pseudospheres P on Sd−1 with Γ(P) = L \ {0}.

{
Essential arrangement

of pseudospheres on Sd−1
}
⇐⇒

{
Loopless oriented matroid

of rank d

}



Pseudospheres to Oriented Matroids{
Pseudosphere s

s ⊂ Sd−1
}

=⇒
{

Pseudohemispheres
hs = s+ and − hs = s−

}

C∗ := {minimal set C 6= ∅ of pseudohemispheres such that

C ∩ −C = ∅ and

∪h∈C h = Sd−1}



Oriented Matroids to Pseudospheres
(Induction on |E | for fixed rank d

- base case: E = [d ], I = 2[d ], C∗ = {±ei | i ∈ [d ]})

Pd := Conv({±e1, · · · ± ed})

ei = (0, 0, · · · , 0, 1, 0, · · · , 0)

x
y

z

Figure: 3-dimensional Pyramid

=⇒ Arrangement of ∂Pd



References I

[dCvO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and
Mark Overmars, Computational geometry, 3rd ed.,
p. 180, Springer, 2008.

[FL78] Jon Folkman and Jim Lawrence, Oriented matroids,
Journal of Combinatorial Theory, Series B 25 (1978),
no. 2, 199–236.

[Hoc10] Winfried Hochstättler, Oriented matroids - from matroids
to digraphs to polyhedral theory, Tech. report,
FernUniversität in Hagen, 2010.

[RZ17] Jürgen Richter-Gebert and Günter M. Ziegler, Handbook
of discrete and computational geometry, ch. 6 Oriented
Matroids, CRC Press, 2017.


