Oriented Matroid and pseudosphere arrangements

Tobias Reiter, Yujin Choi

Department of Mathematics, TU Berlin

July 2020

Table of Contents

- 1. What is an Oriented Matroid?
- 2. What is an Arrangement of Pseudospheres?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

3. How are they related?

What is an Oriented Matroid?

シック 単 (中本) (中本) (日)

What is an Oriented Matroid?

(a) C = (+, +, -, +, -, 0, 0, 0)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

What is an Oriented Matroid?

(a) C = (+, +, -, +, -, 0, 0, 0)

Composition, Support, and Separation set of covectors

$$(C \circ D)_{e} := \begin{cases} C_{e} & \text{if } C_{e} \neq 0, \\ D_{e} & \text{otherwise} \end{cases} = (+, +, -, +, -, -, +, -)$$

$$\underline{C} := \{e \in E \mid C_{e} \neq 0\} = \{1, 2, 3, 4, 5\}$$

$$S(C, D) := \{e \in E \mid C_{e} = -D_{e} \neq 0\} = \{3\}$$

Definition of oriented matroid with covector axioms

An **oriented matroid** given in terms of its covectors is a pair $\mathcal{M} := (E, \mathcal{L}), \text{ where } \mathcal{L} \subset \{-, 0, +\}^E \text{ satisfies}$ $(CV0) \ \mathbf{0} \in \mathcal{L}$ $(CV1) \ C \in \mathcal{L} \implies -C \in \mathcal{L}$ $(CV2) \ C, D \in \mathcal{L} \implies C \circ D \in \mathcal{L}$ $(CV3) \ C, D \in \mathcal{L}, \ e \in S(C, D) \implies \text{there is a } Z \in \mathcal{L} \text{ with}$ $Z_e = 0 \text{ and with } Z_f = (C \circ D)_f \text{ for } f \in E \setminus S(C, D).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure: Line Arrangement[dCvO08]

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Figure: Oriented hyperplane arrangement[Hoc10]

$$H = \{x \in \mathbb{R}^2 \mid a^T x = c\}$$
$$H^+ = \{x \in \mathbb{R}^2 \mid a^T x > c\}$$
$$H^- = \{x \in \mathbb{R}^2 \mid a^T x < c\}$$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Figure: Oriented hyperplane arrangement[Hoc10]

$$SignVector(V) = (+ + 0 + -0)$$
$$SignVector(W) = (0 + +0 + +)$$
$$SignVector(Shaded Region) = (+ + + + +)$$

$$\begin{aligned} \mathcal{L} &= \{\pm \mathsf{SignVector}(x) \mid x \in \mathbb{R}^2\} \cup \{\mathbf{0}\} \\ &= \{\pm \mathsf{SignVector}(C) \mid C \text{ cell of the arrangement}\} \cup \{\mathbf{0}\} \end{aligned}$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

(CV0) $\mathbf{0} \in \mathcal{L}$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

(CV1) $C \in \mathcal{L} \implies -C \in \mathcal{L}$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

(CV2) $C, D \in \mathcal{L} \implies C \circ D \in \mathcal{L}$

(CV3) $C, D \in \mathcal{L}, e \in S(C, D) \implies$ there is a $Z \in \mathcal{L}$ with $Z_e = 0$ and with $Z_f = (C \circ D)_f$ for $f \in E \setminus S(C, D)$.

Recall: Cocircuit Axiom

A collection $C^* \subset \{-, 0, +\}^E$ is the set of cocircuits of an oriented matroid \mathcal{M} if and only if it satisfies

$$\begin{array}{ll} (\mathsf{CC0}) \ \ \mathbf{0} \notin \mathcal{C}^* \\ (\mathsf{CC1}) \ \ \mathcal{C} \in \mathcal{C}^* \implies -\mathcal{C} \in \mathcal{C}^* \\ (\mathsf{CC2}) \ \text{for all } \mathcal{C}, \mathcal{D} \in \mathcal{C}^* \ \text{we have } \underline{\mathsf{C}} \subset \underline{\mathsf{D}} \Longrightarrow \mathcal{C} = \mathcal{D} \ \text{or} \\ \mathcal{C} = -\mathcal{D} \\ (\mathsf{CC3}) \ \ \mathcal{C}, \mathcal{D} \in \mathcal{C}^*, \ \mathcal{C} \neq -\mathcal{D}, \ \text{and} \ e \in \mathcal{S}(\mathcal{C}, \mathcal{D}) \Longrightarrow \ \text{there is a} \\ \mathbb{Z} \in \mathcal{C}^* \ \text{with} \ \mathbb{Z}^+ \subset (\mathcal{C}^+ \cup \mathcal{D}^+) \setminus \{e\} \ \text{and} \\ \mathbb{Z}^- \subset (\mathcal{C}^- \cup \mathcal{D}^-) \setminus \{e\} \end{array}$$

Cocircuit and Covector

Covector C and $e \in C \implies$

Covector C $C = M_1 \circ \cdots \circ M_m$

smallest $M \in \mathcal{L}$ s.t. $e \in M \subset C$

Cocircuits M_1, \dots, M_m $S(M_i, M_j) = \emptyset$, for $i \neq j$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure: Homogenized coordinates of points [RZ17]

$$E = \{x_i \mid i = 1, \dots, 6\}$$

$$\mathcal{I} = \{\text{linearly independent } I \subset E\}$$

$$\mathcal{B} = \{\text{basis } B \subset E \text{ of } \mathbb{R}^d = \mathbb{R}^3\}$$

$$\mathcal{C} = \{\text{minimal linearly dependent } S \subset E\}$$

$$\mathcal{C}^* = \{\text{minimal } S \subset E \text{ that intersects each basis}\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 $C^* = \{ \text{minimal } S \subset E \text{ that intersects each basis} \}$ $= \{ \text{minimal } S \subset E \text{ such that } \dim(E \setminus S) < d = 3 \}$ $= \{ \text{minimal } S \subset E \mid \dim(E \setminus S) = d - 1 = 2 \}$ $= \{ \text{minimal } S \subset E \mid \dim(\text{Ker}(E \setminus S)) = 1 \}$ $= \{ S = E \setminus D \mid \text{maximal } D \subset E, \dim(\text{Ker}(D)) = 1 \}$ $= \{ S = E \setminus D \mid D = \underline{SignVector}(P)^0, P \text{ vertex} \}$ $= \{ S = \underline{SignVector}(P) \mid P \text{ vertex} \}$

Figure: Hypersphere Arrangement[RZ17] from oriented hyperplanes

What is a Pseudosphere?

A **pseudosphere** is the image $s \,\subset \, S^{d-1}$ of the equator $\{x \in S^{d-1} \mid x_d = 0\}$ in the unit sphere under a self-homeomorphism $\phi : S^{d-1} \to S^{d-1}$. (Pseudospheres behave "nicely" in the sense that they divide S^{d-1} into two open sets, its **sides**, that are homeomorphic to open (d-1)-balls.)

Figure: pseudosphere and its sides, for d = 3

What is an Arrangement of Pseudospheres?

A finite collection $\mathcal{P} = (s_1, s_2, \dots, s_n)$ of pseudospheres in \mathcal{S}^{d-1} is an **arrangement of pseudospheres** if the following conditions hold (we set $E := \{1, 2, \dots, n\}$):

- (PS1) For all $A \subset E$ the set $S_A = \bigcap_{e \in A} s_e$ is a topological sphere.
- (PS2) If $S_A \not\subset s_e$, for $A \subset E$, $e \in E$, then $S_A \cap s_e$ is a pseudosphere in S_A with sides $S_A \cap s_e^+$ and $S_A \cap s_e^-$.

What is an Arrangement of Pseudospheres?

A finite collection $\mathcal{P} = (s_1, s_2, \dots, s_n)$ of pseudospheres in \mathcal{S}^{d-1} is an **arrangement of pseudospheres** if the following conditions hold (we set $E := \{1, 2, \dots, n\}$):

(PS1) For all $A \subset E$ the set $S_A = \bigcap_{e \in A} s_e$ is a topological sphere.

(PS2) If $S_A \not\subset s_e$, for $A \subset E$, $e \in E$, then $S_A \cap s_e$ is a pseudosphere in S_A with sides $S_A \cap s_e^+$ and $S_A \cap s_e^-$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What is an Arrangement of Pseudospheres?

A finite collection $\mathcal{P} = (s_1, s_2, \dots, s_n)$ of pseudospheres in \mathcal{S}^{d-1} is an **arrangement of pseudospheres** if the following conditions hold (we set $E := \{1, 2, \dots, n\}$):

- (PS1) For all $A \subset E$ the set $S_A = \bigcap_{e \in A} s_e$ is a topological sphere.
- (PS2) If $S_A \not\subset s_e$, for $A \subset E$, $e \in E$, then $S_A \cap s_e$ is a pseudosphere in S_A with sides $S_A \cap s_e^+$ and $S_A \cap s_e^-$.

Figure: pseudoline arrangement [RZ17]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Oriented Matroids & Pseudosphere Arrangements

The Topological Representation Theorem

If \mathcal{P} is an essential $(S_E = \emptyset)$ arrangement of pseudospheres on \mathcal{S}^{d-1} then $\Gamma(\mathcal{P}) \cup \{\mathbf{0}\}$ forms the set of covectors of an oriented matroid of rank d. Conversely, for every oriented matroid (E, \mathcal{L}) of rank d (without loops) there exists an essential arrangement of pseudospheres \mathcal{P} on \mathcal{S}^{d-1} with $\Gamma(\mathcal{P}) = \mathcal{L} \setminus \{\mathbf{0}\}$.

 $\begin{cases} \text{Essential arrangement} \\ \text{of pseudospheres on } \mathcal{S}^{d-1} \end{cases} \iff \begin{cases} \text{Loopless oriented matroid} \\ \text{of rank } d \end{cases}$

Pseudospheres to Oriented Matroids

$$\begin{cases} \mathsf{Pseudosphere} \ s \\ s \subset \mathcal{S}^{d-1} \end{cases} \Longrightarrow \begin{cases} \mathsf{Pseudohemispheres} \\ h_s = s^+ \ \mathsf{and} \ -h_s = s^- \end{cases}$$

 $\mathcal{C}^* := \{ \text{minimal set } C \neq \emptyset \text{ of pseudohemispheres such that} \\ C \cap -C = \emptyset \text{ and} \\ \cup_{h \in C} h = \mathcal{S}^{d-1} \}$

Oriented Matroids to Pseudospheres

(Induction on |E| for fixed rank d - base case: $E = [d], \mathcal{I} = 2^{[d]}, \mathcal{C}^* = \{\pm e_i \mid i \in [d]\})$ $P_d := Conv(\{\pm e_1, \cdots \pm e_d\})$ $e_i = (0, 0, \cdots, 0, 1, 0, \cdots, 0)$ х Figure: 3-dimensional Pyramid

 $\implies \text{Arrangement of } \partial P_d$

References I

[dCvO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars, *Computational geometry*, 3rd ed., p. 180, Springer, 2008.

- [FL78] Jon Folkman and Jim Lawrence, Oriented matroids, Journal of Combinatorial Theory, Series B 25 (1978), no. 2, 199–236.
- [Hoc10] Winfried Hochstättler, Oriented matroids from matroids to digraphs to polyhedral theory, Tech. report, FernUniversität in Hagen, 2010.
- [RZ17] Jürgen Richter-Gebert and Günter M. Ziegler, Handbook of discrete and computational geometry, ch. 6 Oriented Matroids, CRC Press, 2017.