Antimatroids and a curious relation to the k-SAT problem

Maximilian Wittmann

Technische Universität Berlin

• Let $M = (E, \mathcal{I})$ be a Matroid. Define $\tau : \mathcal{P}(E) \to \mathcal{P}(E), A \mapsto \{x \in E | \operatorname{rk}(A \cup x) = \operatorname{rk}(A)\}$

• Let $M = (E, \mathcal{I})$ be a Matroid. Define $\tau : \mathcal{P}(E) \to \mathcal{P}(E), A \mapsto \{x \in E | \operatorname{rk}(A \cup x) = \operatorname{rk}(A)\}$

•
$$\tau$$
 now fulfills
i) $A \subseteq \tau(A)$
ii) $A \subseteq B \implies \tau(A) \subseteq \tau(B)$
iii) $\tau(\tau(A)) = \tau(A)$

Any such function is a *closure operator*.

• Let $M = (E, \mathcal{I})$ be a Matroid. Define $\tau : \mathcal{P}(E) \to \mathcal{P}(E), A \mapsto \{x \in E | \operatorname{rk}(A \cup x) = \operatorname{rk}(A)\}$

iv) If
$$x, y \notin \tau(A)$$
 then $y \in \tau(A \cup x) \implies x \in \tau(A \cup y)$

• Let $M = (E, \mathcal{I})$ be a Matroid. Define $\tau : \mathcal{P}(E) \to \mathcal{P}(E), A \mapsto \{x \in E | \operatorname{rk}(A \cup x) = \operatorname{rk}(A)\}$

•
$$\tau$$
 now fulfills
i) $A \subseteq \tau(A)$
ii) $A \subseteq B \implies \tau(A) \subseteq \tau(B)$
iii) $\tau(\tau(A)) = \tau(A)$

Any such function is a *closure operator*.

In particular au also has the property

 $\text{iv) If } x,y \notin \tau(A) \text{ then } y \in \tau(A \cup x) \implies x \in \tau(A \cup y)$

Any such operator also defines a Matroid!

Introducing Convex Geometries

The closure operator $\boldsymbol{\tau}$ defining a Matroid fulfills

- i) $A \subseteq \tau(A)$
- ii) $A \subseteq B \implies \tau(A) \subseteq \tau(B)$
- iii) $\tau(\tau(A)) = \tau(A)$
- $\text{iv) If } x,y \notin \tau(A) \text{ then } y \in \tau(A \cup x) \implies x \in \tau(A \cup y)$

Convex Geometries

Definition

Let $\tau : \mathcal{P}(E) \to \mathcal{P}(E)$ be a closure operator. (τ, E) is a *convex geometry* if

$$x,y \notin au(A) ext{ and } (y \in au(A \cup x)) \implies x \notin au(A \cup y)$$

Convex Geometries

Definition

Let $\tau : \mathcal{P}(E) \to \mathcal{P}(E)$ be a closure operator. (τ, E) is a *convex geometry* if

$$x, y \notin au(A) \text{ and } (y \in au(A \cup x)) \implies x \notin au(A \cup y)$$

• Call A closed if $\tau(A) = A$

Convex Geometries

Definition

Let $\tau : \mathcal{P}(E) \to \mathcal{P}(E)$ be a closure operator. (τ, E) is a *convex geometry* if

$$x, y \notin \tau(A) \text{ and } (y \in \tau(A \cup x)) \implies x \notin \tau(A \cup y)$$

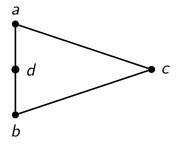
• Call A closed if
$$\tau(A) = A$$

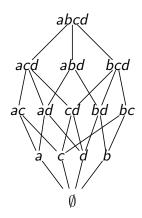
Closed sets N of a convex geometry fulfill i) E ∈ N ii) A, B ∈ N ⇒ A ∩ B ∈ N iii) For A ∈ N with A ≠ E there exists x ∈ E \ A s.t. A ∪ {x} ∈ N

 \blacksquare For a set system describing a convex geometry ${\mathcal N}$ define

$$\tau(D) = \bigcap_{C \supseteq D: C \in \mathcal{N}} C$$

Convex Geometries Example





Antimatroids

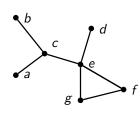
Definition

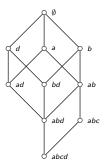
A set system (\mathcal{L}, E) is an antimatroid if $\{E \setminus X | X \in \mathcal{L}\}$ is a convex geometry.

The set system ${\mathcal L}$ of an antimatroid has properties

i)
$$\emptyset \in \mathcal{L}$$

ii) $A, B \in \mathcal{L} \implies A \cup B \in \mathcal{L}$
iii) For $S \in \mathcal{L}$ with $A \neq \emptyset$ exists $x \in S$ s.t. $S \setminus \{x\} \in$





L

Pruning Processes

Pruning Process:

- Remove Elements from a ground set one at a time
- Removable Elements always stay removable at every following step

Pruning Processes are characterised by antimatroids.

Pruning Processes

Pruning Process:

- Remove Elements from a ground set one at a time
- Removable Elements always stay removable at every following step

Pruning Processes are characterised by antimatroids.

Antimatroids:

i) $\emptyset \in \mathcal{L}$

ii) $A, B \in \mathcal{L} \implies A \cup B \in \mathcal{L}$

iii) For $S \in \mathcal{L}$ with $A \neq \emptyset$ exists $x \in S$ s.t. $S \setminus \{x\} \in \mathcal{L}$

A new characterization for convex geometries

For a set system ${\mathcal N}$ for ${\boldsymbol A} \in {\mathcal N}$ define

$$ex(A) := \{x \in A | A - x \in \mathcal{N}\}$$

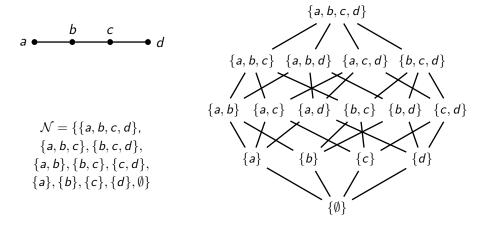
Theorem (Ardila, Maneva)

These three Statements are equivalent:

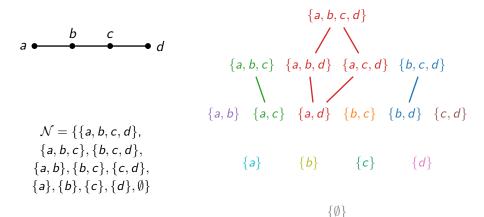
- i) $\ensuremath{\mathcal{N}}$ is the collection of closed sets of a convex geometry
- ii) As A ranges over \mathcal{N} the intervals [ex(A), A] partition the Boolean lattice 2^{E}
- iii) For any p_i , q_i for $i \in E$ with $p_i + q_i = 1$, we have

$$\sum_{A \in \mathcal{N}} \prod_{i \notin A} p_i \prod_{j \in \mathsf{ex}(A)} q_j = 1$$

A new characterization of convex geometries Example



A new characterization of convex geometries Example



A new characterization for convex geometries

For a set system ${\mathcal N}$ for ${\boldsymbol A} \in {\mathcal N}$ define

$$ex(A) := \{x \in A | A - x \in \mathcal{N}\}$$

Theorem (Ardila, Maneva)

These three Statements are equivalent:

- i) $\ensuremath{\mathcal{N}}$ is the collection of closed sets of a convex geometry
- ii) As A ranges over \mathcal{N} the intervals [ex(A), A] partition the Boolean lattice 2^{E}
- iii) For any p_i , q_i for $i \in E$ with $p_i + q_i = 1$, we have

$$\sum_{A \in \mathcal{N}} \prod_{i \notin A} p_i \prod_{j \in \mathsf{ex}(A)} q_j = 1$$

Main theorem $i \rightarrow ii$

Let \mathcal{N} be subsets of closed geometry. Show that intervals [ex(A), A] partition the boolean lattice.

1.Uniqueness: First recognize that $\tau(ex(A)) = A$.

 $\begin{array}{l} \text{Main theorem} \\ i) \implies ii) \end{array}$

Let \mathcal{N} be subsets of closed geometry. Show that intervals [ex(A), A] partition the boolean lattice.

1.Uniqueness: First recognize that $\tau(ex(A)) = A$. If $A \in \mathcal{N}$ with $ex(A) \subseteq D \subseteq A$ we have

$$A = \tau(\operatorname{ex}(A)) \subseteq \tau(D) \subseteq \tau(A) = A$$

Main theorem $i \rightarrow ii$

Let \mathcal{N} be subsets of closed geometry. Show that intervals [ex(A), A] partition the boolean lattice.

1.Uniqueness: First recognize that $\tau(ex(A)) = A$. If $A \in \mathcal{N}$ with $ex(A) \subseteq D \subseteq A$ we have

$$A = \tau(\operatorname{ex}(A)) \subseteq \tau(D) \subseteq \tau(A) = A$$

2.Existence: Clearly $D \subseteq \tau(D) =: A$. ex(A) is minimal among sets
 $A = \tau(B)$. Therefore $D \supseteq \operatorname{ex}(A)$

 $ii) \implies i)$

Let $\mathcal{N} \subseteq \mathcal{P}(E)$ such that for each $D \in 2^E$ there is exactly one $A \in \mathcal{N}$ with $D \in [ex(A), A]$. Show three axioms for convex geometry 1. $E \in \mathcal{N}$

2. $A, B \in \mathcal{N} \implies A \cap B \in \mathcal{N}$

3. For $A \in \mathcal{N}$ with $A \neq E$ there exists $x \in E \setminus A$ s.t. $A \cup \{x\} \in \mathcal{N}$

 $ii) \implies i)$

Let $\mathcal{N} \subseteq \mathcal{P}(E)$ such that for each $D \in 2^E$ there is exactly one $A \in \mathcal{N}$ with $D \in [ex(A), A]$. Show three axioms for convex geometry 1. $E \in \mathcal{N}$

2. $A, B \in \mathcal{N} \implies A \cap B \in \mathcal{N}$

3. For $A \in \mathcal{N}$ with $A \neq E$ there exists $x \in E \setminus A$ s.t. $A \cup \{x\} \in \mathcal{N}$

Proof: E has to be covered by E.

 $ii) \implies i)$

Let $\mathcal{N} \subseteq \mathcal{P}(E)$ such that for each $D \in 2^E$ there is exactly one $A \in \mathcal{N}$ with $D \in [ex(A), A]$. Show three axioms for convex geometry 1. $E \in \mathcal{N}$

2. $A, B \in \mathcal{N} \implies A \cap B \in \mathcal{N}$

3. For $A \in \mathcal{N}$ with $A \neq E$ there exists $x \in E \setminus A$ s.t. $A \cup \{x\} \in \mathcal{N}$

Proof:

- Define $\phi(D)$ as A s.t. $D \in [ex(A), A]$.
- Show for $A \in \mathcal{N}$, $D \subseteq A \implies \phi(D) \subseteq A$.

 $ii) \implies i)$

Let $\mathcal{N} \subseteq \mathcal{P}(E)$ such that for each $D \in 2^E$ there is exactly one $A \in \mathcal{N}$ with $D \in [ex(A), A]$. Show three axioms for convex geometry 1. $E \in \mathcal{N}$

2. $A, B \in \mathcal{N} \implies A \cap B \in \mathcal{N}$

3. For $A \in \mathcal{N}$ with $A \neq E$ there exists $x \in E \setminus A$ s.t. $A \cup \{x\} \in \mathcal{N}$

Proof:

- Define $\phi(D)$ as A s.t. $D \in [ex(A), A]$.
- Show for $A \in \mathcal{N}$, $D \subseteq A \implies \phi(D) \subseteq A$.

 $\phi(A \cap B) \subseteq A \text{ and } \phi(A \cap B) \subseteq B \implies \phi(A \cap B) \subseteq A \cap B$ $\implies \phi(A \cap B) = A \cap B$

 $ii) \implies i)$

Let $\mathcal{N} \subseteq \mathcal{P}(E)$ such that for each $D \in 2^E$ there is exactly one $A \in \mathcal{N}$ with $D \in [ex(A), A]$. Show three axioms for convex geometry 1. $E \in \mathcal{N}$

2. $A, B \in \mathcal{N} \implies A \cap B \in \mathcal{N}$

3. For $A \in \mathcal{N}$ with $A \neq E$ there exists $x \in E \setminus A$ s.t. $A \cup \{x\} \in \mathcal{N}$

Proof:

Let $A, B \in \mathcal{N}$ with $A \subseteq B$. We show that there is $x \in B \setminus A$ with $x \in ex(B)$:

 $\begin{array}{l} \text{Main theorem} \\ \text{ii)} \implies \text{iii)} \end{array}$

Recall we want to prove

 $\sum_{A \in \mathcal{N}} \prod_{i \notin A} p_i \prod_{j \in \mathsf{ex}(A)} q_j = 1$

 $\begin{array}{l} \text{Main theorem} \\ \text{ii)} \implies \text{iii)} \end{array}$

Recall we want to prove

$$\sum_{A \in \mathcal{N}} \prod_{i \notin A} p_i \prod_{j \in \mathsf{ex}(A)} q_j = 1$$

Observe that for any E we have

$$\sum_{D\subseteq E}\prod_{i
otin D} p_i \prod_{j\in D} q_j = \prod_{h\in E} (p_h+q_h) = 1$$

 $\begin{array}{l} \text{Main theorem} \\ \text{ii)} \implies \text{iii)} \end{array}$

Recall we want to prove

$$\sum_{A \in \mathcal{N}} \prod_{i \notin A} p_i \prod_{j \in \mathsf{ex}(A)} q_j = 1$$

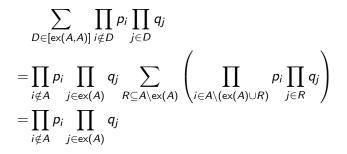
Observe that for any E we have

$$\sum_{D\subseteq E}\prod_{i\notin D}p_i\prod_{j\in D}q_j=\prod_{h\in E}(p_h+q_h)=1$$

Therefore it is enough to show

$$\prod_{i\notin A} p_i \prod_{j\in ex(A)} q_j = \sum_{D\in [ex(A),A]} \prod_{i\notin D} p_i \prod_{j\in D} q_j$$

 $\begin{array}{l} \text{Main theorem} \\ \text{ii)} \implies \text{ii)} \end{array}$



 $\begin{array}{l} \text{Main theorem} \\ \text{ii)} \implies \text{ii)} \end{array}$

$$\sum_{D \in [ex(A,A)]} \prod_{i \notin D} p_i \prod_{j \in D} q_j$$

= $\prod_{i \notin A} p_i \prod_{j \in ex(A)} q_j \sum_{R \subseteq A \setminus ex(A)} \left(\prod_{i \in A \setminus (ex(A) \cup R)} p_i \prod_{j \in R} q_j \right)$
= $\prod_{i \notin A} p_i \prod_{j \in ex(A)} q_j$

Overall leading to:

$$\sum_{A \in \mathcal{N}} \prod_{i \notin A} p_i \prod_{j \in \mathsf{ex}(A)} q_j = \sum_{A \in \mathcal{N}} \sum_{D \in [\mathsf{ex}(A,A)]} \prod_{i \notin D} p_i \prod_{j \in D} q_j$$
 $= \sum_{D \subseteq E} \prod_{i \notin D} p_i \prod_{j \in D} q_j = 1$

 $\begin{array}{l} \text{Main theorem} \\ \text{iii)} \implies \text{ii)} \end{array}$

• For any assignment of p_i , q_i with $p_i + q_i = 1$ we have

$$\sum_{A \in \mathcal{N}} \prod_{i \notin A} p_i \prod_{j \in \mathsf{ex}(A)} q_j = 1$$

 $\begin{array}{l} \text{Main theorem} \\ \text{iii)} \implies \text{ii)} \end{array}$

For any assignment of p_i, q_i with $p_i + q_i = 1$ we have

$$\sum_{A \in \mathcal{N}} \prod_{i \notin A} p_i \prod_{j \in ex(A)} q_j = 1$$

• Show that 2^E is partitioned into intervals [ex(A), A]

Main theorem $iii) \implies ii)$

For any assignment of p_i , q_i with $p_i + q_i = 1$ we have

$$\sum_{A \in \mathcal{N}} \prod_{i
otin A} p_i \prod_{j \in ext{ex}(A)} q_j = 1$$

Show that 2^E is partitioned into intervals [ex(A), A]
Pick D ⊆ E, set p_a = 0 if a ∈ D and p_a = 1 otherwise, then we have

$$1 = \sum_{A \in \mathcal{N}} \prod_{i \notin A} p_i \prod_{j \in ex(A)} q_j = \sum_{A \in \mathcal{N}} \sum_{D \in [ex(A),A]} \prod_{i \in D} p_i \prod_{j \in D} q_j$$

The k-SAT Problem

Goal: find a valid assignment for boolean formula

$$egin{aligned} & (ar{x}_1 ee ar{x}_2 ee ar{x}_3) \land (x_2 ee ar{x}_3 ee ar{x}_4) \land (ar{x}_1 ee x_3 ee x_4) \ & x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1 \ & igcup_{} \ & igcup_{$$

Partial Assignments

Call an assignment of the variables $\mathbf{a} = (a_1, \ldots, a_n)$ with $a_1, \ldots a_n \in \{0, 1, *\}$ an invalid partial assignment if

Applying **a** to the formula results in 0

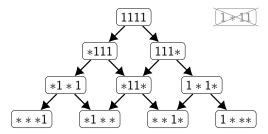
• One clause is of the form $(0 \land \cdots \land 0 \land * \land 0 \land \cdots \land 0)$

Partial Assignments

Call an assignment of the variables $\mathbf{a} = (a_1, \ldots, a_n)$ with $a_1, \ldots a_n \in \{0, 1, *\}$ an invalid partial assignment if

- Applying **a** to the formula results in 0
- One clause is of the form $(0 \land \cdots \land 0 \land * \land 0 \land \cdots \land 0)$

Poset on valid partial assignments



Poset on valid partial assignments for $(\bar{x}_1 \lor \bar{x}_2 \lor x_3) \land (x_2 \lor \bar{x}_3 \lor \bar{x}_4)$ and (1, 1, 1, 1)

A curious property of valid assignments

For any partial assignment **a** let $S(\mathbf{a})$ be the set of variables which are stars and $U(\mathbf{a})$ the set of unconstrained variables.

Theorem (Maneva, Mossel, Wainwright)

For any valid assignment a and $p \in [0,1], \ q = 1-p$ holds

$$\sum_{\mathbf{b} \leq \mathbf{a}} p^{|S(\mathbf{b})|} q^{|U(\mathbf{b})|} = 1$$

A curious property of valid assignments

For any partial assignment **a** let $S(\mathbf{a})$ be the set of variables which are stars and $U(\mathbf{a})$ the set of unconstrained variables.

Theorem (Maneva, Mossel, Wainwright)

For any valid assignment a and $p \in [0,1], \ q = 1-p$ holds

$$\sum_{\mathbf{b} \leq \mathbf{a}} p^{|S(\mathbf{b})|} q^{|U(\mathbf{b})|} = 1$$

Theorem (Ardila, Maneva)

For the set of Variables V and any $p_i \in [0,1]$, $q_i = 1 - p_i$ for $i \in V$ we get

 $\sum_{\mathbf{b} \leq \mathbf{a}} \prod_{i \in S(\mathbf{b})} q_i \prod_{U(\mathbf{b})} p_j = 1$

A curious property of valid assignments ${\scriptstyle \mathsf{Proof}}$

Natural pruning process arising on the poset of valid assignments:

