Antimatroids and a curious relation to the k-SAT problem

Maximilian Wittmann

Technische Universität Berlin

Let $M = (E, \mathcal{I})$ be a Matroid. Define $\tau : \mathcal{P}(E) \to \mathcal{P}(E), A \mapsto \{x \in E | \text{ rk}(A \cup x) = \text{ rk}(A) \}$

Let $M = (E, \mathcal{I})$ be a Matroid. Define $\tau : \mathcal{P}(E) \to \mathcal{P}(E), A \mapsto \{x \in E | \text{ rk}(A \cup x) = \text{ rk}(A) \}$

■
$$
\tau
$$
 now fulfills
\ni) $A \subseteq \tau(A)$
\nii) $A \subseteq B \implies \tau(A) \subseteq \tau(B)$
\niii) $\tau(\tau(A)) = \tau(A)$

Any such function is a closure operator.

Let $M = (E, \mathcal{I})$ be a Matroid. Define $\tau : \mathcal{P}(E) \to \mathcal{P}(E), A \mapsto \{x \in E | \text{ rk}(A \cup x) = \text{ rk}(A) \}$ $\mathbf{r} = \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{r}$

i)
$$
A \subseteq \tau(A)
$$

\nii) $A \subseteq B \implies \tau(A) \subseteq \tau(B)$
\niii) $\tau(\tau(A)) = \tau(A)$

Any such function is a closure operator.

In particular τ also has the property iv) If $x, y \notin \tau(A)$ then $y \in \tau(A \cup x) \implies x \in \tau(A \cup y)$

Let $M = (E, \mathcal{I})$ be a Matroid. Define $\tau : \mathcal{P}(E) \to \mathcal{P}(E), A \mapsto \{x \in E | \text{ rk}(A \cup x) = \text{ rk}(A) \}$

■
$$
\tau
$$
 now fulfills
\ni) $A \subseteq \tau(A)$
\nii) $A \subseteq B \implies \tau(A) \subseteq \tau(B)$
\niii) $\tau(\tau(A)) = \tau(A)$

Any such function is a *closure operator*.

In particular τ also has the property iv) If $x, y \notin \tau(A)$ then $y \in \tau(A \cup x) \implies x \in \tau(A \cup y)$

Any such operator also defines a Matroid!

Introducing Convex Geometries

The closure operator τ defining a Matroid fulfills

i) $A \subset \tau(A)$ ii) $A \subseteq B \implies \tau(A) \subseteq \tau(B)$ iii) $\tau(\tau(A)) = \tau(A)$ iv) If $x, y \notin \tau(A)$ then $y \in \tau(A \cup x) \implies x \in \tau(A \cup y)$

Convex Geometries

Definition

Let $\tau : \mathcal{P}(E) \to \mathcal{P}(E)$ be a closure operator. (τ, E) is a convex geometry if

$$
x, y \notin \tau(A) \text{ and } (y \in \tau(A \cup x)) \implies x \notin \tau(A \cup y)
$$

Convex Geometries

Definition

Let $\tau : \mathcal{P}(E) \to \mathcal{P}(E)$ be a closure operator. (τ, E) is a convex geometry if

$$
x, y \notin \tau(A) \text{ and } (y \in \tau(A \cup x)) \implies x \notin \tau(A \cup y)
$$

Call A closed if $\tau(A) = A$

Convex Geometries

Definition

Let $\tau : \mathcal{P}(E) \to \mathcal{P}(E)$ be a closure operator. (τ, E) is a convex geometry if

$$
x, y \notin \tau(A) \text{ and } (y \in \tau(A \cup x)) \implies x \notin \tau(A \cup y)
$$

1 Call A closed if
$$
\tau(A) = A
$$

Glosed sets $\mathcal N$ of a convex geometry fulfill i) $E \in \mathcal{N}$ ii) $A, B \in \mathcal{N} \implies A \cap B \in \mathcal{N}$ iii) For $A \in \mathcal{N}$ with $A \neq E$ there exists $x \in E \setminus A$ s.t. $A \cup \{x\} \in \mathcal{N}$

For a set system describing a convex geometry $\mathcal N$ define

$$
\tau(D)=\bigcap_{C\supseteq D:C\in\mathcal{N}}C
$$

Convex Geometries Example

Antimatroids

Definition

A set system (\mathcal{L}, E) is an antimatroid if $\{E \setminus X | X \in \mathcal{L}\}$ is a convex geometry.

The set system $\mathcal L$ of an antimatroid has properties

i)
$$
\emptyset \in \mathcal{L}
$$

\nii) $A, B \in \mathcal{L} \implies A \cup B \in \mathcal{L}$

iii) For $S \in \mathcal{L}$ with $A \neq \emptyset$ exists $x \in S$ s.t. $S \setminus \{x\} \in \mathcal{L}$

Pruning Processes

Pruning Process:

- Remove Elements from a ground set one at a time
- **Removable Elements always stay removable at every following step**

Pruning Processes are characterised by antimatroids.

Pruning Processes

Pruning Process:

- Remove Elements from a ground set one at a time
- **Removable Elements always stay removable at every following step**

Pruning Processes are characterised by antimatroids.

Antimatroids:

i) $\emptyset \in \mathcal{L}$

- ii) $A, B \in \mathcal{L} \implies A \cup B \in \mathcal{L}$
- iii) For $S \in \mathcal{L}$ with $A \neq \emptyset$ exists $x \in S$ s.t. $S \setminus \{x\} \in \mathcal{L}$

A new characterization for convex geometries

For a set system $\mathcal N$ for $A \in \mathcal N$ define

$$
\mathsf{ex}(A) := \{x \in A | A - x \in \mathcal{N}\}
$$

Theorem (Ardila, Maneva)

These three Statements are equivalent:

- i) N is the collection of closed sets of a convex geometry
- ii) As A ranges over N the intervals $[\text{ex}(A), A]$ partition the Boolean lattice 2^E
- iii) For any p_i,q_i for $i\in E$ with $p_i+q_i=1$, we have

$$
\sum_{A\in\mathcal{N}}\prod_{i\notin A}\rho_i\prod_{j\in {\sf ex}(A)}q_j=1
$$

A new characterization of convex geometries Example

A new characterization of convex geometries Example

A new characterization for convex geometries

For a set system $\mathcal N$ for $A \in \mathcal N$ define

$$
\mathsf{ex}(A) := \{x \in A | A - x \in \mathcal{N}\}
$$

Theorem (Ardila, Maneva)

These three Statements are equivalent:

- i) N is the collection of closed sets of a convex geometry
- ii) As A ranges over N the intervals $[\text{ex}(A), A]$ partition the Boolean lattice 2^E
- iii) For any p_i,q_i for $i\in E$ with $p_i+q_i=1$, we have

$$
\sum_{A\in\mathcal{N}}\prod_{i\notin A}\rho_i\prod_{j\in {\sf ex}(A)}q_j=1
$$

Main theorem $i) \implies ii)$

Let N be subsets of closed geometry. Show that intervals $[\text{ex}(A), A]$ partition the boolean lattice.

1. Uniqueness: First recognize that τ (ex(A)) = A.

Main theorem $i) \implies ii)$

Let N be subsets of closed geometry. Show that intervals $[\exp(A), A]$ partition the boolean lattice.

1. Uniqueness: First recognize that τ (ex(A)) = A. If $A \in \mathcal{N}$ with $ex(A) \subseteq D \subseteq A$ we have

$$
A = \tau(\mathrm{ex}(A)) \subseteq \tau(D) \subseteq \tau(A) = A
$$

Main theorem $i) \implies ii)$

Let N be subsets of closed geometry. Show that intervals $[\exp(A), A]$ partition the boolean lattice.

1. Uniqueness: First recognize that τ (ex(A)) = A. If $A \in \mathcal{N}$ with $ex(A) \subseteq D \subseteq A$ we have

$$
A = \tau(\text{ex}(A)) \subseteq \tau(D) \subseteq \tau(A) = A
$$

2. Existence: Clearly $D \subseteq \tau(D) =: A$. $\text{ex}(A)$ is minimal among sets
 $A = \tau(B)$. Therefore $D \supseteq \text{ex}(A)$

 $ii) \implies i$

Let $\mathcal{N}\subseteq\mathcal{P}(E)$ such that for each $D\in 2^\mathsf{E}$ there is exactly one $\mathcal{A}\in\mathcal{N}$ with $D \in [\text{ex}(A), A]$. Show three axioms for convex geometry

- 1. $E \in \mathcal{N}$
- 2. $A, B \in \mathcal{N} \implies A \cap B \in \mathcal{N}$
- 3. For $A \in \mathcal{N}$ with $A \neq E$ there exists $x \in E \setminus A$ s.t. $A \cup \{x\} \in \mathcal{N}$

 $ii) \implies i$

Let $\mathcal{N}\subseteq\mathcal{P}(E)$ such that for each $D\in 2^\mathsf{E}$ there is exactly one $\mathcal{A}\in\mathcal{N}$ with $D \in [ex(A), A]$. Show three axioms for convex geometry 1. $E \in \mathcal{N}$

2. $A, B \in \mathcal{N} \implies A \cap B \in \mathcal{N}$

3. For $A \in \mathcal{N}$ with $A \neq E$ there exists $x \in E \setminus A$ s.t. $A \cup \{x\} \in \mathcal{N}$

Proof: E has to be covered by E.

 $ii) \implies i$

Let $\mathcal{N}\subseteq\mathcal{P}(E)$ such that for each $D\in 2^\mathsf{E}$ there is exactly one $\mathcal{A}\in\mathcal{N}$ with $D \in [\text{ex}(A), A]$. Show three axioms for convex geometry 1. $E \in \mathcal{N}$

2. $A, B \in \mathcal{N} \implies A \cap B \in \mathcal{N}$

3. For $A \in \mathcal{N}$ with $A \neq E$ there exists $x \in E \setminus A$ s.t. $A \cup \{x\} \in \mathcal{N}$

Proof:

Define $\phi(D)$ as A s.t. $D \in [\text{ex}(A), A]$.

Show for $A \in \mathcal{N}$, $D \subseteq A \implies \phi(D) \subseteq A$.

 $ii) \implies i$

Let $\mathcal{N}\subseteq\mathcal{P}(E)$ such that for each $D\in 2^\mathsf{E}$ there is exactly one $\mathcal{A}\in\mathcal{N}$ with $D \in [\text{ex}(A), A]$. Show three axioms for convex geometry 1. $E \in \mathcal{N}$

2. $A, B \in \mathcal{N} \implies A \cap B \in \mathcal{N}$

3. For $A \in \mathcal{N}$ with $A \neq E$ there exists $x \in E \setminus A$ s.t. $A \cup \{x\} \in \mathcal{N}$

Proof:

Define $\phi(D)$ as A s.t. $D \in [\text{ex}(A), A]$.

■ Show for $A \in \mathcal{N}$, $D \subseteq A \implies \phi(D) \subseteq A$.

 $\phi(A \cap B) \subseteq A$ and $\phi(A \cap B) \subseteq B \implies \phi(A \cap B) \subseteq A \cap B$ $\implies \phi(A \cap B) = A \cap B$

 $ii) \implies i$

Let $\mathcal{N}\subseteq\mathcal{P}(E)$ such that for each $D\in 2^\mathsf{E}$ there is exactly one $\mathcal{A}\in\mathcal{N}$ with $D \in [\text{ex}(A), A]$. Show three axioms for convex geometry 1. $E \in \mathcal{N}$

2. $A, B \in \mathcal{N} \implies A \cap B \in \mathcal{N}$

3. For $A \in \mathcal{N}$ with $A \neq E$ there exists $x \in E \setminus A$ s.t. $A \cup \{x\} \in \mathcal{N}$

Proof:

Let $A, B \in \mathcal{N}$ with $A \subseteq B$. We show that there is $x \in B \setminus A$ with $x \in \text{ex}(B)$:

Main theorem $ii) \implies iii)$

Recall we want to prove

 \sum A∈N Π i∈/A p_i \prod j∈ex(A) $q_j = 1$

Main theorem $ii) \implies iii)$

Recall we want to prove

$$
\sum_{A\in\mathcal{N}}\prod_{i\notin A}\rho_i\prod_{j\in {\sf ex}(A)}q_j=1
$$

Observe that for any E we have

$$
\sum_{D \subseteq E} \prod_{i \notin D} p_i \prod_{j \in D} q_j = \prod_{h \in E} (p_h + q_h) = 1
$$

Main theorem $ii) \implies iii)$

Recall we want to prove

$$
\sum_{A\in\mathcal{N}}\prod_{i\notin A}\rho_i\prod_{j\in {\sf ex}(A)}q_j=1
$$

Observe that for any E we have

$$
\sum_{D \subseteq E} \prod_{i \notin D} p_i \prod_{j \in D} q_j = \prod_{h \in E} (p_h + q_h) = 1
$$

Therefore it is enough to show

$$
\prod_{i \notin A} p_i \prod_{j \in \text{ex}(A)} q_j = \sum_{D \in [\text{ex}(A), A]} \prod_{i \notin D} p_i \prod_{j \in D} q_j
$$

Main theorem $\mathsf{ii}) \implies \mathsf{ii}$

Main theorem ii) \implies ii)

$$
\sum_{D \in [ex(A,A)]} \prod_{i \notin D} p_i \prod_{j \in D} q_j
$$
\n
$$
= \prod_{i \notin A} p_i \prod_{j \in ex(A)} q_j \sum_{R \subseteq A \setminus ex(A)} \left(\prod_{i \in A \setminus (ex(A) \cup R)} p_i \prod_{j \in R} q_j \right)
$$
\n
$$
= \prod_{i \notin A} p_i \prod_{j \in ex(A)} q_j
$$

Overall leading to:

$$
\sum_{A \in \mathcal{N}} \prod_{i \notin A} p_i \prod_{j \in \text{ex}(A)} q_j = \sum_{A \in \mathcal{N}} \sum_{D \in [\text{ex}(A,A)]} \prod_{i \notin D} p_i \prod_{j \in D} q_j
$$

$$
= \sum_{D \subseteq E} \prod_{i \notin D} p_i \prod_{j \in D} q_j = 1
$$

Main theorem iii) \implies ii)

For any assignment of p_i, q_i with $p_i+q_i=1$ we have

$$
\sum_{A \in \mathcal{N}} \prod_{i \notin A} p_i \prod_{j \in \text{ex}(A)} q_j = 1
$$

Main theorem iii) \implies ii)

For any assignment of p_i, q_i with $p_i+q_i=1$ we have

$$
\sum_{A \in \mathcal{N}} \prod_{i \notin A} p_i \prod_{j \in \textsf{ex}(A)} q_j = 1
$$

Show that 2^E is partitioned into intervals $[\mathrm{ex}(A),A]$

Main theorem $\overline{\mathsf{iii}}$) \implies $\overline{\mathsf{ii}}$)

For any assignment of p_i, q_i with $p_i+q_i=1$ we have

$$
\sum_{A\in\mathcal{N}}\prod_{i\notin A}\rho_i\prod_{j\in {\sf ex}(A)}q_j=1
$$

Show that 2^E is partitioned into intervals $[\mathrm{ex}(A),A]$ ■ Pick $D \subseteq E$, set $p_a = 0$ if $a \in D$ and $p_a = 1$ otherwise, then we have

$$
1 = \sum_{A \in \mathcal{N}} \prod_{i \notin A} p_i \prod_{j \in ex(A)} q_j = \sum_{A \in \mathcal{N}} \sum_{D \in [ex(A),A]} \prod_{i \in D} p_i \prod_{j \in D} q_j
$$

The k-SAT Problem

Goal: find a valid assignment for boolean formula

$$
(\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3) \wedge (x_2 \vee \bar{x}_3 \vee \bar{x}_4) \wedge (\bar{x}_1 \vee x_3 \vee x_4) \\[.2cm] x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1 \\[.2cm] \begin{cases} \begin{matrix} \bar{0} \vee \bar{1} \vee 0 \end{matrix} \vee \begin{matrix} 1 \vee \bar{0} \vee \bar{1} \end{matrix} \end{cases} \wedge \begin{pmatrix} 1 \vee \bar{0} \vee \bar{1} \end{pmatrix} \wedge (\bar{1} \vee 0 \vee 1) = 1 \end{cases}
$$

Partial Assignments

Call an assignment of the variables $a = (a_1, \ldots, a_n)$ with $a_1, \ldots, a_n \in \{0, 1, *\}$ an invalid partial assignment if

Applying a to the formula results in 0

One clause is of the form $(0 \land \cdots \land 0 \land * \land 0 \land \cdots \land 0)$

Partial Assignments

Call an assignment of the variables $a = (a_1, \ldots, a_n)$ with $a_1, \ldots, a_n \in \{0, 1, *\}$ an invalid partial assignment if

- **Applying a to the formula results in 0**
- One clause is of the form $(0 \land \cdots \land 0 \land * \land 0 \land \cdots \land 0)$

Poset on valid partial assignments

Poset on valid partial assignments for $(\bar{x}_1 \vee \bar{x}_2 \vee x_3) \wedge (x_2 \vee \bar{x}_3 \vee \bar{x}_4)$ and $(1, 1, 1, 1)$

A curious property of valid assignments

For any partial assignment a let $S(a)$ be the set of variables which are stars and $U(a)$ the set of unconstrained variables.

Theorem (Maneva, Mossel, Wainwright)

For any valid assignment a and $p \in [0,1]$, $q = 1 - p$ holds

$$
\sum_{\mathbf{b}\leq \mathbf{a}}p^{|S(\mathbf{b})|}q^{|U(\mathbf{b})|}=1
$$

A curious property of valid assignments

For any partial assignment a let $S(a)$ be the set of variables which are stars and $U(a)$ the set of unconstrained variables.

Theorem (Maneva, Mossel, Wainwright)

For any valid assignment a and $p \in [0, 1]$, $q = 1 - p$ holds

$$
\sum_{\mathbf{b}\leq \mathbf{a}}\rho^{|S(\mathbf{b})|}q^{|U(\mathbf{b})|}=1
$$

Theorem (Ardila, Maneva)

For the set of Variables V and any $p_i \in [0,1]$, $q_i = 1 - p_i$ for $i \in V$ we get

 $\sum \prod q_i \prod p_j = 1$ $\mathbf{b} \leq \mathbf{a}$ i $\in S(\mathbf{b})$ U(b)

A curious property of valid assignments Proof

Natural pruning process arising on the poset of valid assignments:

