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Introducing Convex Geometries
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Convex Geometries

Definition

Let 7: P(E) — P(E) be a closure operator. (7, E) is a convex geometry if

x,y ¢ 7(A)and (y e T(AUX)) = x ¢ 7(AUY)

m Call A closed if 7(A) = A

m Closed sets N of a convex geometry fulfill
) EeN
i) ABeN = ANBeN
i) For A€ N with A # E there exists x € E\ Ast. AU{x} e N

m For a set system describing a convex geometry N define

(D)= () ¢

COD:CeN






Antimatroids

Definition
A set system (L, E) is an antimatroid if {E \ X|X € L} is a convex
geometry.

The set system L of an antimatroid has properties
) Del
i) ABe L = AUBeL
i) For S € L with A# () exists x € Ssit. S\ {x} € L




Pruning Processes

Pruning Process:
m Remove Elements from a ground set one at a time
m Removable Elements always stay removable at every following step

Pruning Processes are characterised by antimatroids.



Pruning Processes

Pruning Process:
m Remove Elements from a ground set one at a time

m Removable Elements always stay removable at every following step

Pruning Processes are characterised by antimatroids.
Antimatroids:

) 0ecl

i) ABe L = AUBeL

i) For S € L with A # () exists
xeSst S\{x}eL



A new characterization for convex geometries

For a set system N for A € N define

ex(A) :={x € AlA—x e N}

Theorem (Ardila, Maneva)
These three Statements are equivalent:
i) N is the collection of closed sets of a convex geometry

i) As A ranges over N the intervals [ex(A), A] partition the Boolean
lattice 2F

iii) For any p;, q; for i € E with p; + q; = 1, we have

IR

AeN i¢gA  jeex(A)




A new characterization of convex geometries

Example

{a,b,c,d}
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A new characterization

Example

N ={{a, b,c,d},
{a,b,c},{b,c,d},
{a, b}, {b,c},{c,d},
{a} {b},{c},{d},0}

of convex geometries

{a, b, c,d}
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{a} {c} {d}
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Main theorem
N = i)

Let V be subsets of closed geometry. Show that intervals [ex(A), A]
partition the boolean lattice.

1.Uniqueness: First recognize that 7(ex(A)) =
If Ae N with ex(A) C DgAwe have

A=rT1(ex(A) C7(D)C1(A)=A
2.Existence: Clearly D C 7(D) =: A. ex(A) is minimal among sets
A = 7(B). Therefore D D ex(A)
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Main theorem

i) = i)

Let N' C P(E) such that for each D € 2F there is exactly one A € N with
D € [ex(A), A]. Show three axioms for convex geometry

2. ABeN = ANBeN

Proof:
m Define ¢(D) as As.t. D € [ex(A), A].
m Show for Ae N, DC A = ¢(D) C A

»(ANB)C Aand 9(ANB)C B = ¢(ANB)C ANB
= ¢(ANB)=ANB



Main theorem

i) = i)

Let N' C P(E) such that for each D € 2F there is exactly one A € N with
D € [ex(A), A]. Show three axioms for convex geometry

3. For A€ N with A # E there exists x € E\ Ast. AU{x} e N

Proof:
Let A, B € N with AC B. We show that there is x € B\ A with
x € ex(B):
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Main theorem
i) = i)

Recall we want to prove
> 1Ie II a=1
AeN igA  jeex(A)

Observe that for any E we have

S IIeiI]ai=1In+an=1

DCE i¢D jeD heE

Therefore it is enough to show

IEBIE Z Hp,HqJ

i¢A  jeex(A) Delex(A),A] i¢ jeb
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Main theorem
i) = i)

> TIellae

Delex(A,A)] i¢D  jeD

=1Ir II & . ( 11 PiHCIj)

i¢A  jeex(A) RCA\ex(A) \icA\(ex(A)UR) JER

:Hpi H qj

igA  jeex(A)
Overall leading to:

D e IT =2 > 1lella

AeN igA  jeex(A) AeN Delex(AA)] i¢D  jeD

NIDICE

DCEi¢D jeD
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Main theorem
i) = i)

m For any assignment of p;, g; with p; + g; = 1 we have

> e 11 w=1

AeN i¢A  jeex(A)

m Show that 2F is partitioned into intervals [ex(A), A]
m Pick DC E, set p,=01if a€ D and p, = 1 otherwise, then we have

1= TIr II =Y. > Ilr]lla&

AeN igA  jeex(A) AeN Dclex(A),AlieD  jeD



The k-SAT Problem

Goal: find a valid assignment for boolean formula
iV Vx3)A(e VX3V A(XVx3Vxa)

x1=0x=1,x3=0,x2=1

!

(OVIVOA(LVOVI)A(IVOV1)=1



Partial Assignments
Call an assignment of the variables a = (ay,. .., a,) with
ai,...ap € {0,1,*} an invalid partial assignment if

m Applying a to the formula results in 0

m One clause is of the form (OA---AOA*AOA---A0)



Partial Assignments

Call an assignment of the variables a = (ay,. .., a,) with
ai,...ap € {0,1,*} an invalid partial assignment if
m Applying a to the formula results in 0

m One clause is of the form (OA---AOA*AOA---A0)

Poset on valid partial assignments

[***1] [*1**} [**1*] [1***]

Poset on valid partial assignments for
()_(1 \/)_<2\/X3)/\(X2\/)_<3\/)_<4) and (1 1,1 1)

) ) )




A curious property of valid assignments

For any partial assignment a let S(a) be the set of variables which are stars
and U(a) the set of unconstrained variables.

Theorem (Maneva, Mossel, Wainwright)
For any valid assignment a and p € [0,1], g =1 — p holds

Zpls(b)lqu(b)l -1
b<a




A curious property of valid assignments
For any partial assignment a let S(a) be the set of variables which are stars
and U(a) the set of unconstrained variables.

Theorem (Maneva, Mossel, Wainwright)
For any valid assignment a and p € [0,1], g =1 — p holds

ZPIS(b)IqIU(b)I -1
b<a

Theorem (Ardila, Maneva)
For the set of Variables V and any p; € [0,1], gj =1 — p; fori € V we get

> I alln=

b<aicS(b) U(b)




A curious property of valid assignments
Proof

Natural pruning process arising on the poset of valid assignments:

[1]

*1 %1 *11%

[***1] [*1 **] [** 1*} [1 ***J

Poset on valid partial assignments for
()_(1 V Xo V X3) A\ (X2 V X3V )_(4) and (1, 1,1, 1)
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