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Closure Operator for Matroids

Let M = (E , I) be a Matroid. Define

τ : P(E )→ P(E ),A 7→ {x ∈ E | rk(A ∪ x) = rk(A)}

τ now fulfills
i) A ⊆ τ(A)
ii) A ⊆ B =⇒ τ(A) ⊆ τ(B)
iii) τ(τ(A)) = τ(A)

Any such function is a closure operator.
In particular τ also has the property
iv) If x , y /∈ τ(A) then y ∈ τ(A ∪ x) =⇒ x ∈ τ(A ∪ y)

Any such operator also defines a Matroid!
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Introducing Convex Geometries
The closure operator τ defining a Matroid fulfills
i) A ⊆ τ(A)

ii) A ⊆ B =⇒ τ(A) ⊆ τ(B)

iii) τ(τ(A)) = τ(A)

iv) If x , y /∈ τ(A) then y ∈ τ(A ∪ x) =⇒ x ∈ τ(A ∪ y)



Convex Geometries

Definition
Let τ : P(E )→ P(E ) be a closure operator. (τ,E ) is a convex geometry if

x , y /∈ τ(A) and (y ∈ τ(A ∪ x)) =⇒ x /∈ τ(A ∪ y)

Call A closed if τ(A) = A

Closed sets N of a convex geometry fulfill
i) E ∈ N
ii) A,B ∈ N =⇒ A ∩ B ∈ N
iii) For A ∈ N with A 6= E there exists x ∈ E \ A s.t. A ∪ {x} ∈ N
For a set system describing a convex geometry N define

τ(D) =
⋂

C⊇D:C∈N
C
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Convex Geometries
Example
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Antimatroids
Definition
A set system (L,E ) is an antimatroid if {E \ X |X ∈ L} is a convex
geometry.

The set system L of an antimatroid has properties
i) ∅ ∈ L
ii) A,B ∈ L =⇒ A ∪ B ∈ L
iii) For S ∈ L with A 6= ∅ exists x ∈ S s.t. S \ {x} ∈ L
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Pruning Processes
Pruning Process:

Remove Elements from a ground set one at a time
Removable Elements always stay removable at every following step

Pruning Processes are characterised by antimatroids.

Antimatroids:

i) ∅ ∈ L

ii) A,B ∈ L =⇒ A ∪ B ∈ L

iii) For S ∈ L with A 6= ∅ exists
x ∈ S s.t. S \ {x} ∈ L
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A new characterization for convex geometries

For a set system N for A ∈ N define

ex(A) := {x ∈ A|A− x ∈ N}

Theorem (Ardila, Maneva)
These three Statements are equivalent:
i) N is the collection of closed sets of a convex geometry
ii) As A ranges over N the intervals [ex(A),A] partition the Boolean

lattice 2E

iii) For any pi , qi for i ∈ E with pi + qi = 1, we have∑
A∈N

∏
i /∈A

pi
∏

j∈ex(A)

qj = 1



A new characterization of convex geometries
Example
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Main theorem
i) =⇒ ii)

Let N be subsets of closed geometry. Show that intervals [ex(A),A]
partition the boolean lattice.
1.Uniqueness: First recognize that τ(ex(A)) = A.

If A ∈ N with ex(A) ⊆ D ⊆ A we have

A = τ(ex(A)) ⊆ τ(D) ⊆ τ(A) = A

2.Existence: Clearly D ⊆ τ(D) =: A. ex(A) is minimal among sets
A = τ(B). Therefore D ⊇ ex(A)
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Main theorem
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Let N ⊆ P(E ) such that for each D ∈ 2E there is exactly one A ∈ N with
D ∈ [ex(A),A]. Show three axioms for convex geometry
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2. A,B ∈ N =⇒ A ∩ B ∈ N
3. For A ∈ N with A 6= E there exists x ∈ E \ A s.t. A ∪ {x} ∈ N
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Main theorem
ii) =⇒ i)

Let N ⊆ P(E ) such that for each D ∈ 2E there is exactly one A ∈ N with
D ∈ [ex(A),A]. Show three axioms for convex geometry
1. E ∈ N
2. A,B ∈ N =⇒ A ∩ B ∈ N
3. For A ∈ N with A 6= E there exists x ∈ E \ A s.t. A ∪ {x} ∈ N

Proof:
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The k-SAT Problem

Goal: find a valid assignment for boolean formula

(x̄1 ∨ x̄2 ∨ x̄3) ∧ (x2 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x3 ∨ x4)

x1 = 0, x2 = 1, x3 = 0, x4 = 1

↓
(0̄ ∨ 1̄ ∨ 0) ∧ (1 ∨ 0̄ ∨ 1̄) ∧ (1̄ ∨ 0 ∨ 1) = 1



Partial Assignments
Call an assignment of the variables a = (a1, . . . , an) with
a1, . . . an ∈ {0, 1, ∗} an invalid partial assignment if

Applying a to the formula results in 0
One clause is of the form (0 ∧ · · · ∧ 0 ∧ ∗ ∧ 0 ∧ · · · ∧ 0)

Poset on valid partial assignments

1111

∗111 111∗

∗1 ∗ 1 ∗11∗ 1 ∗ 1∗

∗ ∗ ∗1 ∗1 ∗ ∗ ∗ ∗ 1∗ 1 ∗ ∗∗

1 ∗ 11

Poset on valid partial assignments for
(x̄1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x̄4) and (1, 1, 1, 1)
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A curious property of valid assignments

For any partial assignment a let S(a) be the set of variables which are stars
and U(a) the set of unconstrained variables.

Theorem (Maneva, Mossel, Wainwright)
For any valid assignment a and p ∈ [0, 1], q = 1− p holds∑

b≤a

p|S(b)|q|U(b)| = 1

Theorem (Ardila, Maneva)
For the set of Variables V and any pi ∈ [0, 1], qi = 1− pi for i ∈ V we get∑

b≤a

∏
i∈S(b)

qi
∏
U(b)

pj = 1
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A curious property of valid assignments
Proof

Natural pruning process arising on the poset of valid assignments:
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