Rigidity Matroids

Karla Leipold

July 11, 2020

 $Right$ Matroids July 11, 2020 $1/30$

重

 299

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

[Rigidity Matroid](#page-4-0)

- [Definition of rigidity](#page-5-0)
- [Redundantly rigid and minimally rigid](#page-8-0)
- **•** [Extensions](#page-11-0)
- **•** [Rigidity matroid](#page-16-0)
- [Infinitesimally Rigidity](#page-19-0)
	- **•** [Infinitesamally rigid and the rigidity Matrix](#page-20-0)
	- **•** [Rigidity matroid](#page-23-0)
	- [Isostatic plane frameworks](#page-24-0)

[Motivation](#page-2-0)

メロトメ 倒 トメ ミトメ ミト

 299

Motivation

Many engineering problems deal with rigidity of frameworks. The fundamental problem is how to predict the rigidity of a structure by theoretical analysis, without having to build it.

Figure: Truss Bridge

[Rigidity Matroids](#page-0-0) July 11, 2020 4 / 30

[Rigidity Matroid](#page-4-0)

 299

イロト イ部 トイモ トイモト

Definition (d-Dimensional Frameworks)

- A d dimensional framework is a pair (G, p) , where $G = (V, E)$ is a graph and ρ is a map from V to \mathbb{R}^d .
- \bullet We consider a framework to be a straight line realization of G in \mathbb{R}^d .
- \bullet A framework (G, p) is said to be *generic*, if all the coordinates of the points are algebraically independent over the rationals.

In the following we will consider straight line generic frameworks.

 200

Definition (Congruent and equivalent frameworks)

- **1** Two frameworks (G, p) and (G, q) are equivalent if $||p(u) - p(v)|| = ||q(u) - q(v)||$ holds for all pairs $u, v \in V$ with $uv \in E$.
- **2** (G, p) and (G, q) are congruent if $||p(u) p(v)|| = ||q(u) q(v)||$ holds for all pairs $u, v \in V$.

 200

イロト イ押ト イヨト イヨト

Definition (rigid frameworks)

The framework (G, p) is rigid if there exists an $\epsilon > 0$ such that if (G, p) is equivalent to (G, q) and $||q(v) - p(v)|| < \epsilon$ for all $v \in V$ then (G, q) is congruent to (G, p) .

The rigidity of (G, p) only depends on the Graph G if (G, p) is generic. A graph G is rigid in \mathbb{R}^d if every generic realization of G in \mathbb{R}^d is rigid.

 200

イロト イ押ト イヨト イヨト

Definition (Minimally rigid)

The graph G is said to be minimally rigid if G is rigid and $G - e$ is not rigid for all $e \in E$.

 QQ

 $A \Box B$ A

Theorem

A graph $G=(V,E)$ is minimally rigid in \mathbb{R}^2 if and only if $|E|=2|V|-3$ and $|E_{[X]}|\leq 2|X|-3$ for all $X\subset V$ with $|X|\geq 2$

Note that every rigid graph has a minimally rigid spanning subgraph.

 Ω

イロト イ押ト イヨト イヨ

Definition (Redundantly rigid)

A Graph *G* is *redundantly rigid* in \mathbb{R}^d if deleting any edge of *G* results in a Graph wich is rigid in \mathbb{R}^d . Graphs, which are redundantly rigid in \mathbb{R}^2 and have the minimum number of edges $2|V| - 2$, we call *M-ciruits*.

Definition

- **1** The operation $0 -$ extension adds a new vertex v and two edges vu and vw with $u \neq w$.
- **2** The operation $1 -$ *extension* subdivides an edge uw by a new vertex v and adds a new edge vz for some $z \neq v, w$.
- **3** An extension is either a 0-extension or a 1-extension.

Characterization of minimally rigid graphs

Theorem

Each of the following conditions on a Graph $G = (V, E)$ is a characterization of minimally rigid graphs:

- **1** G can be produced from a single edge by a sequence of extensions
- 2 for any two vertices $v \neq w$, with vw $\in E$ the (multi)-graph with edges $E \cup (v, w)$ is the union of two disjoint spanning trees.
- $|E| = 2|V| 3$ and $|E_{[X]}|\leq 2|X|-3$ for all $X\subset V$ with $|X|\geq 2$

 Ω

イロト イ押ト イヨト イヨト

Proof.

$(1 \Rightarrow 2)$

- \bullet Idea: Build trees T_1 and T_2 along extensions.
- \bullet We start the extensions with the edge (v, w) .
- **3** Let G_0 be the initial Graph, duplicate (v, w) . $T_1 = \{(v, w)\}\$, $T_2 = \{ (v, w) \}$ are the spanning trees.
- \bullet Let G^+ be the 0-extension of G , adding a new vertex v_0 and two new edges (v_0, v_i) and (v_0, v_i) .
- $\mathbf{5}$ $\mathcal{T}_1^+=\mathcal{T}_1\cup\{(\mathsf{v}_0,\mathsf{v}_i)\}$ and $\mathcal{T}_2^+=\mathcal{T}_1\cup\{(\mathsf{v}_0,\mathsf{v}_j)\}$ This is a partition of $E^+ \cup \{ (v, w) \}$ into two spanning trees.
- 0 Let $G^{+}=(V\cup \{v_0\},E\backslash \{(v_i,v_j)\}\cup \{(v_0,v_i),(v_0,v_j),(v_0,v_k)\}$ be a 1-extension of G.
- **4** Assume $E \cup \{(v, w)\}\$ is the union of two spanning trees and $(v_i,v_j)\in \mathcal{T}_1$.
- **8** Let $T_1^+ = T_1 \setminus \{(v_i, v_j)\} \cup \{(v_0, v_i), (v_0, v_j)\}$ and $T_2^+ = T_2 \cup \{ (v_0, v_k) \}.$
- **Thi[s](#page-16-0) is a partition of** $E^+ \cup \{(v, w)\}$ **in two [sp](#page-12-0)[an](#page-14-0)[ni](#page-12-0)[ng](#page-13-0) [tr](#page-10-0)[e](#page-15-0)es[.](#page-3-0)** Karla Leipold [Rigidity Matroids](#page-0-0) July 11, 2020 14 / 30

Proof

 $(3 \Rightarrow 1)$

- \bullet Define $b(X)=2|X|-3-|E_{[X]}|$ which allows to state the Laman Property as $b(V) = 0$ and $b(X) > 0$ for all $X \subset V$.
- **2** Let G be a Graph with the Laman property. By induction it is enauph to show there is a G' with one vertex less, s.t. $\,G'$ has the Laman property and G can be optained from G' by extensions.
- **3** A Graph with Laman property must have a vertex of deg 2 or 3.
- **•** if $deg(z) = 2$, then removing z and the two incident edges gives G' with the Laman property. G is optained from G' by 0-extension.
- **•** Suppose $deg(z) = 3$ and let $N(z) = \{u, v, w\}$. Observations: **0** $|E_{[u,v,w]}| = 2$ **2** If $\{u, v, w\} \subset X$ and $z \notin X$ then $b(X) > 0$

 Ω

イロト イ何 トイヨト イヨト ニヨ

Case 1: $\left|E_{\left[u,v,w\right]} \right|=2$

- \bullet Let (u, v) and (u, w) be the edges. We claim the Graph G' obtained by deleting z and adding (v, w) has the Laman property.
- 2 Assume G' is not Laman. Then there is $X\subset V(G')$ s.t. $b_{G'}(X)< 0.$

$$
\bullet \Rightarrow b_{G'}(X) \neq b(X)
$$

• hence
$$
v, w \in X
$$
, $z \notin X$ and $b(X) = 0$

- **5** With observation 2 we obtain $u \notin X$
- $\bullet \ \,$ It follows $\, b (X + u + z) = 2(|X| + 2) 3 |E_{[X]}| 1 \,$ $\#(\mathsf{edges}\; \mathsf{in}\; E_{\left[X+u+z\right]}\; \mathsf{incident}\; \mathsf{to}\; u\;\mathsf{or}\; z) \leq b(X) + 4 - 5 < 0$
- **7** The contradiction $b(X + u + z) < 0$ shows that G' has the Laman property.

 Ω

イロト イ押ト イヨト イヨト

Definition (Rigidity Matroid)

Let $G = (V, E)$ be a graph. Let $F \subset E$, $F \neq \emptyset$ U be the set of vertices incident with F, and $H = (U, F)$ be a subgraph of G induced by F.

- ${\mathbf D}$ We say that ${\mathcal F}$ is *independent* if $|E_{[X]}|\leq 2|X|-3$ for all $X\subset U$ with $|X| > 2$.
- **2** The empty set is also independent.
- **3** The rigidity matroid $M(G) = (E, \mathcal{I})$ is defined on the edge set of G by

$$
\mathcal{I} = \{ F \subset E | F \text{ is independent in } G \}
$$
 (1)

KED KARD KED KED E VOOR

Lemma

Let $G = (V, E)$ be a graph. Then $\mathcal{M}(G)$ is a matroid, in which the rank of a non-empty set $E' \subset E$ of edges is given by

$$
r(E') = min\left\{\sum_{i=1}^{t} (2|X_i| - 3)\right\}
$$
 (2)

where the minimum is taken over all collections of subsets $\{X_1, \dots, X_t\}$ of V such that $\{E_G(X_1), \cdots E_G(X_t)\}$ partitions E'.

 $G = (V, E)$ is rigid if $r(E) = 2|V| - 3$ in $\mathcal{M}(G)$. The graph is minimally rigid if it is rigid and $|E| = 2|V| - 3$.

KED KARD KED KED E VOOR

Definition (Circuits)

Given A Graph $G = (V, E)$, a subgraph $H = (W, C)$ is said to be an M-circuit in G if C is a minimal dependent set in $M(G)$.

A graph G is redundantly rigid if and only if G is rigid and each edge of G belongs to a circuit in $\mathcal{M}(G)$. i.e. an M-circuit of G.

æ.

 Ω

[Infinitesimally Rigidity](#page-19-0)

 299

Definition (infinitesimally rigid)

4 An *infinitesimal motion* of a plane framework is an assignment of velocities $\mathsf{v}_i \in \mathbb{R}^2$ to each vertex i such that for every edge $(i,j) \in E$

$$
\langle p_i - p_j, v_i - v_j \rangle = 0 \text{ for all } (i,j) \in E \tag{3}
$$

2 A trivial motion is a motion which comes from a rigid transformation of the hole plane. A plane framework is infinitesimally rigid if every infinitesimal motion is trivial.

Definition (Rigidity matrix)

The *rigidity matrix* of a plane framework $G(p)$ is an $|E|x^2|V|$ matrix $\mathsf{R}_{G(\rho)}.$ Each vertex has two columns in $\mathsf{R}_{G(\rho)}$ representing the two coordinates.

1 This allows us to write the condition for infinitesimal motion $v:V\rightarrow\mathbb{R}^2$ as

$$
\mathbf{R}_{G(p)} \cdot \mathbf{v} = 0. \tag{4}
$$

- \bullet Every infinitesimal motion is an element of the kernel of $\mathsf{R}_{G(p)}.$
- \bullet Since we have 3 trivial motions in the plane, the rank $of{\bf R}_{G(\rho)}$ from a rigid framework needs to be $2|V| - 3$

KED KARD KED KED E VOOR

Definition (Generic rigidity)

A Graph G is generically rigid, if for almost all embeddings p of G the rigidity matrix has rank $2|V| - 3$.

An embedding is generic if for every point we can find an open neighbourhood in which the rank of the rigidity matrix is not changing.

Definition (Generic rigidity Matroid)

- **1** The independence structure of the rows of the rigidity matrix defines a matroid on the edges of the complete graph on the vertices.
- **2** This matroid depends on the positions of the joints.
- **3** There are generic positions that give a maximal collection of independent sets.
- \bullet At these points we have the generic rigidity matroid for $|V|$ vertices in the plane.

Definition (Isostatic plane frameworks)

- **1** Isostatic plane frameworks are minimal infinitisemally rigid frameworks.
- ² Removing any one bar introduces a non-trivial infinitesmal motion.
- **3** These graphs, of size $|E| = 2|V| 3$, are the bases on the generic rigidity matroid of the complete graph on the set of vertices.

Thus an isostatic framework corresponds to a row basis for the rigidity matrix of any infinitesmally rigid framework extending the framework.

Theorem

For a Graph G, with at least two vertices the following are equivalent conditions:

- \bullet G has some positions $G(p)$ as an isostatic plane framework;
- $2 \mid E \mid = 2|V|-3$ and for all proper subsets of edges $|E'|$ incident with vertices $|V|, |E'| \leq 2|V'| - 3$
- **3** adding any edge to E gives an edge set covered by two edge-disjoint spanning trees.

[How are the rigidity definitions connected?](#page-26-0)

4 0 8

造

 299

Proposition

A non- rigid framework can not be infinitesamally rigid. The opposite is not true: many infinitesamlly motions are not the deriviative of an analytic path.

If the framework is generic, a graph is rigid if and only if it is infinitesamlly rigid.

Proposition

If G is a minimal generically rigid graph and p a generic embedding, $G(p)$ is an isostatic framework.

目

- ¹ Rigidity in the plane is a property of a Graph if the embedding of the Graph is generic.
- 2 There are different ways to characterize rigidity, and to define independence structures and Matroids
- ³ For generic graph embeddings these rigidity definitions are equivalent

 QQ