Rigidity Matroids

Karla Leipold

July 11, 2020

Kar	la -	l ei	no	Ы
i vai	i u		PU	^r u

э July 11, 2020 1/30

3

(日)

3

- 2 Rigidity Matroid
 - Definition of rigidity
 - Redundantly rigid and minimally rigid
 - Extensions
 - Rigidity matroid
 - Infinitesimally Rigidity
 - Infinitesamally rigid and the rigidity Matrix
 - Rigidity matroid
 - Isostatic plane frameworks
- 4 How are the rigidity definitions connected?

Motivation

K 2 K	n	.	20	
- Nati				
		_		

メロト メポト メヨト メヨト

Motivation

Many engineering problems deal with rigidity of frameworks. The fundamental problem is how to predict the rigidity of a structure by theoretical analysis, without having to build it.

Figure: Truss Bridge

KOK	0.1	20	
Nati			
		-	

Rigidity Matroids

July 11, 2020 4 / 30

Rigidity Matroid

_ K വ	10	0	no	
- I \ali	1 a	Lei	00	LU.

< □ > < □ > < □ > < □ > < □ >

Definition (d-Dimensional Frameworks)

- A d dimensional framework is a pair (G, p), where G = (V, E) is a graph and p is a map from V to \mathbb{R}^d .
- **2** We consider a framework to be a straight line realization of G in \mathbb{R}^d .
- A framework (*G*, *p*) is said to be *generic*, if all the coordinates of the points are algebraically independent over the rationals.

In the following we will consider straight line generic frameworks.

Definition (Congruent and equivalent frameworks)

- Two frameworks (G, p) and (G, q) are equivalent if
 ||p(u) - p(v)|| = ||q(u) - q(v)|| holds for all pairs u, v ∈ V with
 uv ∈ E.
- ② (G, p) and (G, q) are congruent if ||p(u) p(v)|| = ||q(u) q(v)||holds for all pairs $u, v \in V$.

< □ > < 同 > < 回 > < 回 > < 回 >

Definition (rigid frameworks)

The framework (G, p) is rigid if there exists an $\epsilon > 0$ such that if (G, p) is equivalent to (G, q) and $||q(v) - p(v)|| < \epsilon$ for all $v \in V$ then (G, q) is congruent to (G, p).

The rigidity of (G, p) only depends on the Graph G if (G, p) is generic. A graph G is rigid in \mathbb{R}^d if every generic realization of G in \mathbb{R}^d is rigid.

< □ > < □ > < □ > < □ > < □ > < □ >

Definition (Minimally rigid)

The graph G is said to be *minimally rigid* if G is rigid and G - e is not rigid for all $e \in E$.

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem

A graph G = (V, E) is minimally rigid in \mathbb{R}^2 if and only if |E| = 2|V| - 3and $|E_{[X]}| \le 2|X| - 3$ for all $X \subset V$ with $|X| \ge 2$

Note that every rigid graph has a minimally rigid spanning subgraph.

< □ > < □ > < □ > < □ > < □ > < □ >

Definition (Redundantly rigid)

A Graph *G* is *redundantly rigid* in \mathbb{R}^d if deleting any edge of *G* results in a Graph wich is rigid in \mathbb{R}^d . Graphs, which are redundantly rigid in \mathbb{R}^2 and have the minimum number of edges 2|V| - 2, we call *M*-ciruits.

Definition

- The operation 0 extension adds a new vertex v and two edges vu and vw with $u \neq w$.
- **②** The operation 1 extension subdivides an edge uw by a new vertex v and adds a new edge vz for some $z \neq v, w$.
- **3** An *extension* is either a 0-extension or a 1-extension.

Characterization of minimally rigid graphs

Theorem

Each of the following conditions on a Graph G = (V, E) is a characterization of minimally rigid graphs:

- **()** G can be produced from a single edge by a sequence of extensions
- ② for any two vertices $v \neq w$, with $vw \in E$ the (multi)-graph with edges $E \cup (v, w)$ is the union of two disjoint spanning trees.
- |E| = 2|V| 3 and $|E_{[X]}| \le 2|X| 3$ for all $X \subset V$ with $|X| \ge 2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof.

$(1 \Rightarrow 2)$

- Idea: Build trees T_1 and T_2 along extensions.
- 2 We start the extensions with the edge (v, w).
- So Let G_0 be the initial Graph, duplicate (v, w). $T_1 = \{(v, w)\}$, $T_2 = \{(v, w)\}$ are the spanning trees.
- Let G⁺ be the 0-extension of G, adding a new vertex v₀ and two new edges (v₀, v_i) and (v₀, v_j).
- $T_1^+ = T_1 \cup \{(v_0, v_i)\}$ and $T_2^+ = T_1 \cup \{(v_0, v_j)\}$ This is a partition of $E^+ \cup \{(v, w)\}$ into two spanning trees.

14 / 30

- Let $G^+ = (V \cup \{v_0\}, E \setminus \{(v_i, v_j)\} \cup \{(v_0, v_i), (v_0, v_j), (v_0, v_k)\}$ be a 1-extension of G.
- Assume E ∪ {(v, w)} is the union of two spanning trees and (v_i, v_j) ∈ T₁.
- **3** Let $T_1^+ = T_1 \setminus \{(v_i, v_j)\} \cup \{(v_0, v_i), (v_0, v_j)\}$ and $T_2^+ = T_2 \cup \{(v_0, v_k)\}.$
- 9 This is a partition of $E^+ \cup \{(v, w)\}$ in two spanning trees. Karla Leipold Rigidity Matroids July 11, 2020

Proof.

 $(3 \Rightarrow 1)$

- Define $b(X) = 2|X| 3 |E_{[X]}|$ which allows to state the Laman Property as b(V) = 0 and $b(X) \ge 0$ for all $X \subset V$.
- Let G be a Graph with the Laman property. By induction it is enauph to show there is a G' with one vertex less, s.t. G' has the Laman property and G can be optained from G' by extensions.
- A Graph with Laman property must have a vertex of deg 2 or 3.
- if deg(z) = 2, then removing z and the two incident edges gives G' with the Laman property. G is optained from G' by 0-extension.
- Suppose deg(z) = 3 and let N(z) = {u, v, w}. Observations:
 |E_[u,v,w]| = 2
 If {u, v, w} ⊂ X and z ∉ X then b(X) > 0

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Case 1: $|E_{[u,v,w]}| = 2$

- Let (u, v) and (u, w) be the edges. We claim the Graph G' obtained by deleting z and adding (v, w) has the Laman property.
- **2** Assume G' is not Laman. Then there is $X \subset V(G')$ s.t. $b_{G'}(X) < 0$.

• hence
$$v, w \in X$$
, $z \notin X$ and $b(X) = 0$

- Solution With observation 2 we obtain $u \notin X$
- It follows $b(X + u + z) = 2(|X| + 2) 3 |E_{[X]}| \#(edges in E_{[X+u+z]} incident to u or z) \le b(X) + 4 5 < 0$
- The contradiction b(X + u + z) < 0 shows that G' has the Laman property.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition (Rigidity Matroid)

Let G = (V, E) be a graph. Let $F \subset E$, $F \neq \emptyset$ U be the set of vertices incident with F, and H = (U, F) be a subgraph of G induced by F.

- We say that F is independent if $|E_{[X]}| \le 2|X| 3$ for all $X \subset U$ with $|X| \ge 2$.
- In the empty set is also independent.
- The rigidity matroid M(G) = (E, I) is defined on the edge set of G by

$$\mathcal{I} = \{ F \subset E | F \text{ is independent in } G \}$$
 (

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

Let G = (V, E) be a graph. Then $\mathcal{M}(G)$ is a matroid, in which the rank of a non-empty set $E' \subset E$ of edges is given by

$$r(E') = \min\left\{\sum_{i=1}^{t} (2|X_i| - 3)\right\}$$
(2)

where the minimum is taken over all collections of subsets $\{X_1, \dots, X_t\}$ of V such that $\{E_G(X_1), \dots E_G(X_t)\}$ partitions E'.

G = (V, E) is rigid if r(E) = 2|V| - 3 in $\mathcal{M}(G)$. The graph is minimally rigid if it is rigid and |E| = 2|V| - 3.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Circuits)

Given A Graph G = (V, E), a subgraph H = (W, C) is said to be an *M*-circuit in *G* if *C* is a minimal dependent set in $\mathcal{M}(G)$.

A graph G is redundantly rigid if and only if G is rigid and each edge of G belongs to a circuit in $\mathcal{M}(G)$. i.e. an *M*-circuit of G.

< □ > < □ > < □ > < □ > < □ > < □ >

Infinitesimally Rigidity

6 2 2	n		00	
- NAU				
		_		

2

Definition (infinitesimally rigid)

• An *infinitesimal motion* of a plane framework is an assignment of velocities $v_i \in \mathbb{R}^2$ to each vertex *i* such that for every edge $(i, j) \in E$

$$\langle p_i - p_j, v_i - v_j \rangle = 0$$
 for all $(i, j) \in E$ (3)

A trivial motion is a motion which comes from a rigid transformation of the hole plane. A plane framework is *infinitesimally rigid* if every infinitesimal motion is trivial.

Definition (Rigidity matrix)

The *rigidity matrix* of a plane framework G(p) is an |E|x2|V| matrix $\mathbf{R}_{G(p)}$. Each vertex has two columns in $\mathbf{R}_{G(p)}$ representing the two coordinates.

• This allows us to write the condition for infinitesimal motion $v: V \to \mathbb{R}^2$ as

$$\mathbf{R}_{G(p)} \cdot \mathbf{v} = \mathbf{0}. \tag{4}$$

- **2** Every infinitesimal motion is an element of the kernel of $\mathbf{R}_{G(p)}$.
- Since we have 3 trivial motions in the plane, the rank of $\mathbf{R}_{G(p)}$ from a rigid framework needs to be 2|V| 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Generic rigidity)

A Graph G is generically rigid, if for almost all embeddings p of G the rigidity matrix has rank 2|V| - 3.

An embedding is generic if for every point we can find an open neighbourhood in which the rank of the rigidity matrix is not changing.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition (Generic rigidity Matroid)

- The independence structure of the rows of the rigidity matrix defines a matroid on the edges of the complete graph on the vertices.
- It is matroid depends on the positions of the joints.
- There are generic positions that give a maximal collection of independent sets.
- At these points we have the generic rigidity matroid for |V| vertices in the plane.

Definition (Isostatic plane frameworks)

- Isostatic plane frameworks are minimal infinitisemally rigid frameworks.
- 2 Removing any one bar introduces a non-trivial infinitesmal motion.
- These graphs, of size |E| = 2|V| − 3, are the bases on the generic rigidity matroid of the complete graph on the set of vertices.

Thus an isostatic framework corresponds to a row basis for the rigidity matrix of any infinitesmally rigid framework extending the framework.

Theorem

For a Graph G, with at least two vertices the following are equivalent conditions:

- G has some positions G(p) as an isostatic plane framework;
- ② |E| = 2|V| 3 and for all proper subsets of edges |E'| incident with vertices |V|, |E'| ≤ 2|V'| 3
- adding any edge to E gives an edge set covered by two edge-disjoint spanning trees.

< ロト < 同ト < ヨト < ヨト

How are the rigidity definitions connected?

_ K വ	10	0	no	
- I \ali	1 a	Lei	00	LU.

Proposition

A non- rigid framework can not be infinitesamally rigid. The opposite is not true: many infinitesamlly motions are not the deriviative of an analytic path.

If the framework is generic, a graph is rigid if and only if it is infinitesamlly rigid.

Proposition

If G is a minimal generically rigid graph and p a generic embedding, G(p) is an isostatic framework.

(4) (日本)

- Rigidity in the plane is a property of a Graph if the embedding of the Graph is generic.
- There are different ways to characterize rigidity, and to define independence structures and Matroids
- For generic graph embeddings these rigidity definitions are equivalent