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Motivation

Many engineering problems deal with rigidity of frameworks. The
fundamental problem is how to predict the rigidity of a structure by
theoretical analysis, without having to build it.

Figure: Truss Bridge
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Rigidity Matroid
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What is a rigid Framework?

Definition (d-Dimensional Frameworks)

1 A d − dimensional framework is a pair (G , p), where G = (V ,E ) is a
graph and p is a map from V to Rd .

2 We consider a framework to be a straight line realization of G in Rd .

3 A framework (G , p) is said to be generic , if all the coordinates of the
points are algebraically independent over the rationals.

In the following we will consider straight line generic frameworks.
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What is a rigid Framework?

Definition (Congruent and equivalent frameworks)

1 Two frameworks (G , p) and (G , q) are equivalent if
‖p(u)− p(v)‖ = ‖q(u)− q(v)‖ holds for all pairs u, v ∈ V with
uv ∈ E .

2 (G , p) and (G , q) are congruent if ‖p(u)− p(v)‖ = ‖q(u)− q(v)‖
holds for all pairs u, v ∈ V .
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What is a rigid Framework?

Definition (rigid frameworks)

The framework (G , p) is rigid if there exists an ε > 0 such that if (G , p) is
equivalent to (G , q) and ‖q(v)− p(v)‖ < ε for all v ∈ V then (G , q) is
congruent to (G , p).

The rigidity of (G , p) only depends on the Graph G if (G , p) is generic.
A graph G is rigid in Rd if every generic realization of G in Rd is rigid.
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Minimally rigid

Definition (Minimally rigid)

The graph G is said to be minimally rigid if G is rigid and G − e is not
rigid for all e ∈ E .
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Theorem of Laman

Theorem

A graph G = (V ,E ) is minimally rigid in R2 if and only if |E | = 2|V | − 3
and
|E[X ]| ≤ 2|X | − 3 for all X ⊂ V with |X | ≥ 2

Note that every rigid graph has a minimally rigid spanning subgraph.
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Redundantly rigid

Definition (Redundantly rigid)

A Graph G is redundantly rigid in Rd if deleting any edge of G results in a
Graph wich is rigid in Rd .
Graphs, which are redundantly rigid in R2 and have the minimum number
of edges 2|V | − 2, we call M-ciruits.
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Graph extensions

Definition
1 The operation 0− extension adds a new vertex v and two edges vu

and vw with u 6= w .

2 The operation 1− extension subdivides an edge uw by a new vertex v
and adds a new edge vz for some z 6= v ,w .

3 An extension is either a 0-extension or a 1-extension.
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Characterization of minimally rigid graphs

Theorem

Each of the following conditions on a Graph G = (V ,E ) is a
characterization of minimally rigid graphs:

1 G can be produced from a single edge by a sequence of extensions

2 for any two vertices v 6= w , with vw ∈ E the (multi)-graph with
edges E ∪ (v ,w) is the union of two disjoint spanning trees.

3 |E | = 2|V | − 3 and
|E[X ]| ≤ 2|X | − 3 for all X ⊂ V with |X | ≥ 2
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Proof.

(1⇒ 2)

1 Idea: Build trees T1 and T2 along extensions.

2 We start the extensions with the edge (v ,w).

3 Let G0 be the initial Graph, duplicate (v ,w). T1 = {(v ,w)},
T2 = {(v ,w)} are the spanning trees.

4 Let G+ be the 0-extension of G , adding a new vertex v0 and two new
edges (v0, vi ) and (v0, vj).

5 T+
1 = T1 ∪ {(v0, vi )} and T+

2 = T1 ∪ {(v0, vj)} This is a partition of
E+ ∪ {(v ,w)} into two spanning trees.

6 Let G+ = (V ∪ {v0},E\{(vi , vj)} ∪ {(v0, vi ), (v0, vj), (v0, vk)} be a
1-extension of G .

7 Assume E ∪ {(v ,w)} is the union of two spanning trees and
(vi , vj) ∈ T1.

8 Let T+
1 = T1\{(vi , vj)} ∪ {(v0, vi ), (v0, vj)} and

T+
2 = T2 ∪ {(v0, vk)}.

9 This is a partition of E+ ∪ {(v ,w)} in two spanning trees.
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Proof.

(3⇒ 1)

1 Define b(X ) = 2|X | − 3− |E[X ]| which allows to state the Laman
Property as b(V ) = 0 and b(X ) ≥ 0 for all X ⊂ V .

2 Let G be a Graph with the Laman property. By induction it is enauph
to show there is a G ′ with one vertex less, s.t. G ′ has the Laman
property and G can be optained from G ′ by extensions.

3 A Graph with Laman property must have a vertex of deg 2 or 3.

4 if deg(z) = 2, then removing z and the two incident edges gives G ′

with the Laman property. G is optained from G ′ by 0-extension.
5 Suppose deg(z) = 3 and let N(z) = {u, v ,w}. Observations:

1 |E[u,v ,w ]| = 2
2 If {u, v ,w} ⊂ X and z /∈ X then b(X ) > 0
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Case 1: |E[u,v ,w ]| = 2

1 Let (u, v) and (u,w) be the edges. We claim the Graph G ′ obtained
by deleting z and adding (v ,w) has the Laman property.

2 Assume G ′ is not Laman. Then there is X ⊂ V (G ′) s.t. bG ′(X ) < 0.

3 ⇒ bG ′(X ) 6= b(X )

4 hence v ,w ∈ X , z /∈ X and b(X ) = 0

5 With observation 2 we obtain u /∈ X

6 It follows b(X + u + z) = 2(|X |+ 2)− 3− |E[X ]| −
#(edges in E[X+u+z] incident to u or z) ≤ b(X ) + 4− 5 < 0

7 The contradiction b(X + u + z) < 0 shows that G ′ has the Laman
property.
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Rigidity Matroid

Definition (Rigidity Matroid)

Let G = (V ,E ) be a graph. Let F ⊂ E , F 6= ∅ U be the set of vertices
incident with F , and H = (U,F ) be a subgraph of G induced by F .

1 We say that F is independent if |E[X ]| ≤ 2|X | − 3 for all X ⊂ U with
|X | ≥ 2.

2 The empty set is also independent.

3 The rigidity matroid M(G ) = (E , I) is defined on the edge set of G
by

I = {F ⊂ E |F is independent in G} (1)
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Rank of a rigidity matroid

Lemma

Let G = (V ,E ) be a graph. Then M(G ) is a matroid, in which the rank
of a non-empty set E ′ ⊂ E of edges is given by

r(E ′) = min

{ t∑
i=1

(2|Xi | − 3)

}
(2)

where the minimum is taken over all collections of subsets {X1, · · · ,Xt} of
V such that {EG (X1), · · ·EG (Xt)} partitions E ′.

G = (V ,E ) is rigid if r(E ) = 2|V | − 3 in M(G ). The graph is minimally
rigid if it is rigid and |E | = 2|V | − 3.
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Circuit

Definition (Circuits)

Given A Graph G = (V ,E ), a subgraph H = (W ,C ) is said to be an
M-circuit in G if C is a minimal dependent set in M(G ).

A graph G is redundantly rigid if and only if G is rigid and each edge of G
belongs to a circuit in M(G ). i.e. an M-circuit of G .
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Infinitesimally Rigidity
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Infinitesimally rigididty

Definition (infinitesimally rigid)

1 An infinitesimal motion of a plane framework is an assignment of
velocities vi ∈ R2 to each vertex i such that for every edge (i , j) ∈ E

〈pi − pj , vi − vj〉 = 0 for all (i , j) ∈ E (3)

2 A trivial motion is a motion which comes from a rigid transformation
of the hole plane. A plane framework is infinitesimally rigid if every
infinitesimal motion is trivial.
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Rigidity Matrix

Definition (Rigidity matrix)

The rigidity matrix of a plane framework G (p) is an |E |x2|V | matrix
RG(p). Each vertex has two columns in RG(p) representing the two
coordinates.

1 This allows us to write the condition for infinitesimal motion
v : V → R2 as

RG(p) · v = 0. (4)

2 Every infinitesimal motion is an element of the kernel of RG(p).

3 Since we have 3 trivial motions in the plane, the rank of RG(p) from a
rigid framework needs to be 2|V | − 3
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Generic rigidity

Definition (Generic rigidity)

A Graph G is generically rigid , if for almost all embeddings p of G the
rigidity matrix has rank 2|V | − 3.

An embedding is generic if for every point we can find an open
neighbourhood in which the rank of the rigidity matrix is not changing.
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Generic rigidity Matroid

Definition (Generic rigidity Matroid)

1 The independence structure of the rows of the rigidity matrix defines
a matroid on the edges of the complete graph on the vertices.

2 This matroid depends on the positions of the joints.

3 There are generic positions that give a maximal collection of
independent sets.

4 At these points we have the generic rigidity matroid for |V | vertices
in the plane.
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Isostatic plane frameworks

Definition (Isostatic plane frameworks)

1 Isostatic plane frameworks are minimal infinitisemally rigid
frameworks.

2 Removing any one bar introduces a non-trivial infinitesmal motion.

3 These graphs, of size |E | = 2|V | − 3, are the bases on the generic
rigidity matroid of the complete graph on the set of vertices.

Thus an isostatic framework corresponds to a row basis for the rigidity
matrix of any infinitesmally rigid framework extending the framework.
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Characterizations of an isostatic framework

Theorem

For a Graph G , with at least two vertices the following are equivalent
conditions:

1 G has some positions G (p) as an isostatic plane framework;

2 |E | = 2|V | − 3 and for all proper subsets of edges |E ′| incident with
vertices |V |, |E ′| ≤ 2|V ′| − 3

3 adding any edge to E gives an edge set covered by two edge-disjoint
spanning trees.
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How are the rigidity definitions connected?
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Rigidity and infinitesamally rigid

Proposition

A non- rigid framework can not be infinitesamally rigid. The opposite is
not true: many infinitesamlly motions are not the deriviative of an analytic
path.
If the framework is generic, a graph is rigid if and only if it is infinitesamlly
rigid.
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Generic rigidity Matroid

Proposition

If G is a minimal generically rigid graph and p a generic embedding, G (p)
is an isostatic framework.
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Roundup

1 Rigidity in the plane is a property of a Graph if the embedding of the
Graph is generic.

2 There are different ways to characterize rigidity, and to define
independence structures and Matroids

3 For generic graph embeddings these rigidity definitions are equivalent
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