${\sf Greedoids}$

by Joris Wenzel

Technische Universität Berlin

Goal:

Greedoid: $(E,\mathcal{F}),\ \mathcal{F}\subseteq\mathcal{P}(E)$

• for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X - x \in \mathcal{F}$ (G1)

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

• for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X - x \in \mathcal{F}$ (G1)

• for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X - Y$ such that $Y + x \in \mathcal{F}$ (G2)

matroids

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

• for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X - x \in \mathcal{F}$ (G1)

• for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X - Y$ such that $Y + x \in \mathcal{F}$ (G2)

matroids

greedoids

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

• for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X - x \in \mathcal{F}$ (G1)

• for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X - Y$ such that $Y + x \in \mathcal{F}$ (G2)

matroids	greedoids
augmentation property	augmentation property (G2)

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

matroids	greedoids
augmentation property	augmentation property (G2)
bases have the same size	

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

matroids	greedoids
augmentation property	augmentation property (G2)
bases have the same size	bases have the same size

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

matroids	greedoids
augmentation property	augmentation property (G2)
bases have the same size	bases have the same size
${\mathcal I}$ independent sets	

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

matroids	greedoids
augmentation property	augmentation property (G2)
bases have the same size	bases have the same size
${\mathcal I}$ independent sets	${\cal F}$ feasible sets

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

matroids	greedoids
augmentation property	augmentation property (G2)
bases have the same size	bases have the same size
${\mathcal I}$ independent sets	${\cal F}$ feasible sets
hereditary	

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

matroids	greedoids
augmentation property	augmentation property (G2)
bases have the same size	bases have the same size
${\mathcal I}$ independent sets	${\cal F}$ feasible <code>sets</code>
hereditary	accessible(G1)

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

matroids	greedoids
augmentation property	augmentation property (G2)
bases have the same size	bases have the same size
${\mathcal I}$ independent sets	${\cal F}$ feasible sets
hereditary	accessible(G1)
	more general

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

matroids	greedoids
augmentation property	augmentation property (G2)
bases have the same size	bases have the same size
${\mathcal I}$ independent sets	${\cal F}$ feasible <code>sets</code>
hereditary	accessible(G1)
more specific	more genera

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)
Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

Greedoid: $(E, \mathcal{F}), \ \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

 $E := \{a, b, c, d, e\}$

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

$$\begin{split} & \mathcal{E} := \{a, b, c, d, e\} \\ & \mathcal{F} := \{T \subseteq \mathcal{E} : T \text{ is a subtree containing } r\} \end{split}$$

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

 $E := \{a, b, c, d, e\}$ $\mathcal{F} := \{T \subseteq E : T \text{ is a subtree containing } r\}$ undirected branching greedoid

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

 $E = \{1, 2, 3, 4\}$

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$E = \{1, 2, 3, 4\}$$
$$\mathcal{F} = \{A \subseteq E : M_{\{1, \dots, |A|\}, A} \text{ is invertible}\}$$

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$E = \{1, 2, 3, 4\}$$

$$\mathcal{F} = \{A \subseteq E : M_{\{1, \dots, |A|\}, A} \text{ is invertible}\}$$

 $\{1, 2, 3\}$

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

 $\{1, 2, 3\}$

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$egin{aligned} & E = \{1,2,3,4\} \ & \mathcal{F} = \{A \subseteq E : M_{\{1,\ldots,|A|\},A} ext{ is invertible} \} \end{aligned}$$

 $\{1,2,3\}\in\mathcal{F}$

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$E = \{1, 2, 3, 4\}$$
$$\mathcal{F} = \{A \subseteq E : M_{\{1, \dots, |A|\}, A} \text{ is invertible}\}$$

 $\begin{array}{l} \{1,2,3\} \in \mathcal{F} \\ \{1,2\} \end{array}$

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

 $\begin{array}{l} \{1,2,3\} \in \mathcal{F} \\ \{1,2\} \end{array}$

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$E = \{1, 2, 3, 4\}$$

 $\mathcal{F} = \{A \subseteq E : M_{\{1, \dots, |A|\}, A} \text{ is invertible}\}$

 $\begin{array}{l} \{1,2,3\} \in \mathcal{F} \\ \{1,2\} \notin \mathcal{F} \end{array}$

Greedoid: $(E, \mathcal{F}), \ \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$E = \{1, 2, 3, 4\}$$

$$\mathcal{F} = \{A \subseteq E : M_{\{1, \dots, |A|\}, A} \text{ is invertible}\}$$

 $\{1,2,3\} \in \mathcal{F}$ $\{1,2\} \notin \mathcal{F}$ Gaussian elimination greedoid

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

Greedoid: $(E, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

antimatroids

Greedoid: $(E, \mathcal{F}), \ \mathcal{F} \subseteq \mathcal{P}(E)$

- for every non-empty $X \in \mathcal{F}$ there is an $x \in X$ such that $X x \in \mathcal{F}$ (G1)
- for $X, Y \in \mathcal{F}$ with |X| > |Y|, there is an $x \in X Y$ such that $Y + x \in \mathcal{F}$ (G2)

antimatroids matroids

• alphabet: $E \neq \emptyset$

- alphabet: $E \neq \emptyset$
- words: E^*

- alphabet: $E \neq \emptyset$
- words: E^*
- language: $\mathcal{L} \subseteq E^*$

- alphabet: $E \neq \emptyset$
- words: E*
- language: $\mathcal{L} \subseteq E^*$
- **support**: $\tilde{\alpha}$, set of letters in α

- alphabet: $E \neq \emptyset$
- words: E^*
- language: $\mathcal{L} \subseteq E^*$
- **support**: $\tilde{\alpha}$, set of letters in α

•
$$\tilde{\mathcal{L}} = \{ \tilde{\alpha} | \alpha \in \mathcal{L} \}$$

- alphabet: $E \neq \emptyset$
- words: E^*
- language: $\mathcal{L} \subseteq E^*$
- support: $\tilde{\alpha}$, set of letters in α
- $\tilde{\mathcal{L}} = \{ \tilde{\alpha} | \alpha \in \mathcal{L} \}$
- a word is called simple if it does not contain the same letter twice

- alphabet: $E \neq \emptyset$
- words: E*
- language: $\mathcal{L} \subseteq E^*$
- support: $\tilde{\alpha}$, set of letters in α
- $\tilde{\mathcal{L}} = \{ \tilde{\alpha} | \alpha \in \mathcal{L} \}$
- a word is called **simple** if it does not contain the same letter twice
- a language is simple if all of its words are simple

- alphabet: $E \neq \emptyset$
- words: E*
- language: $\mathcal{L} \subseteq E^*$
- support: $\tilde{\alpha}$, set of letters in α
- $\tilde{\mathcal{L}} = \{ \tilde{\alpha} | \alpha \in \mathcal{L} \}$
- a word is called simple if it does not contain the same letter twice
- a language is simple if all of its words are simple
- set of simple words: E_s^*

- alphabet: $E \neq \emptyset$
- words: E*
- language: $\mathcal{L} \subseteq E^*$
- support: $\tilde{\alpha}$, set of letters in α
- $\tilde{\mathcal{L}} = \{ \tilde{\alpha} | \alpha \in \mathcal{L} \}$
- a word is called **simple** if it does not contain the same letter twice
- a language is simple if all of its words are simple
- set of simple words: E_s^*
- E finite $\Rightarrow E_s^*$ finite

Greedoid Languages - Definition

Greedoid Languages - Definition

 $E\neq \emptyset$
$E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is a greedoid language if

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is a greedoid language if • $\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$

(L1)

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

- (E, \mathcal{L}) is a greedoid language if
 - $\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$
 - $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is a greedoid language if

αβ ∈ L ⇒ α ∈ L
α, β ∈ L, |α| > |β| ⇒ there is an x ∈ α̃ such that βx ∈ L

(L1)

(L2)

 \bullet words in ${\cal L}$ are called feasible

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is a greedoid language if

αβ ∈ L ⇒ α ∈ L
α, β ∈ L, |α| > |β| ⇒ there is an x ∈ α̃ such that βx ∈ L

(L1)

- \bullet words in ${\cal L}$ are called feasible
- (L1): left hereditary

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is a greedoid language if

• $\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$

(L1)

- $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$
- \bullet words in ${\cal L}$ are called feasible
- (L1): left hereditary
- (L2): exchange property

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is a greedoid language if

• $\alpha\beta\in\mathcal{L}\Rightarrow\alpha\in\mathcal{L}$

• $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$

(L1)

- \bullet words in ${\cal L}$ are called feasible
- (L1): left hereditary
- (L2): exchange property
- \bullet maximal words in ${\cal L}$ are called $basic\ words$

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is a greedoid language if

• $\alpha\beta\in\mathcal{L}\Rightarrow\alpha\in\mathcal{L}$

- $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$
- \bullet words in ${\cal L}$ are called feasible
- (L1): left hereditary
- (L2): exchange property
- \bullet maximal words in ${\cal L}$ are called $basic\ words$
- \bullet pure: all basic words in ${\cal L}$ have the same length

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is a greedoid language if

• $\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$

- $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$
- \bullet words in ${\cal L}$ are called feasible
- (L1): left hereditary
- (L2): exchange property
- \bullet maximal words in ${\cal L}$ are called $basic\ words$
- \bullet pure: all basic words in ${\cal L}$ have the same length
- by (L2) all greedoid languages are pure

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is a greedoid language if

• $\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$

- $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$
- \bullet words in ${\cal L}$ are called feasible
- (L1): left hereditary
- (L2): exchange property
- \bullet maximal words in ${\cal L}$ are called $basic\ words$
- \bullet pure: all basic words in ${\cal L}$ have the same length
- by (L2) all greedoid languages are pure

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

- (E, \mathcal{L}) is a greedoid language if
 - $\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$
 - $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

- (E, \mathcal{L}) is a greedoid language if
 - $\bullet \ \alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$
 - $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$

(L1)

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

$({\it E}, {\it L})$ is a greedoid language if

- $\bullet \ \alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$
- $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$

 $E = \{a, b, c, d, e\}$

Greedoid Languages - Definition $E \neq \emptyset$, $\mathcal{L} \subseteq E^*_s$

- $({\it E}, {\it L})$ is a greedoid language if
 - $\alpha\beta\in\mathcal{L}\Rightarrow\alpha\in\mathcal{L}$
 - $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$

 $\begin{aligned} & \mathcal{E} = \{a, b, c, d, e\} \\ & \mathcal{L} = \{x_1 ... x_k \in E_s^* : \widehat{x_1 ... x_i} \text{ subtree containing } r \text{ for } 1 \leq i \leq k \} \end{aligned}$

Greedoid Languages - Definition $E \neq \emptyset$, $\mathcal{L} \subseteq E_s^*$

- (E, \mathcal{L}) is a greedoid language if
 - $\alpha\beta\in\mathcal{L}\Rightarrow\alpha\in\mathcal{L}$
 - $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$

(L1)

$$\begin{split} E &= \{a, b, c, d, e\} \\ \mathcal{L} &= \{x_1 ... x_k \in E_s^* : \widehat{x_1 ... x_i} \text{ subtree containing } r \text{ for } 1 \leq i \leq k\} \\ bcd \in \mathcal{L} \end{split}$$

Greedoid Languages - Definition $E \neq \emptyset$, $\mathcal{L} \subseteq E_s^*$

 $(\mathcal{E}, \mathcal{L})$ is a greedoid language if • $\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$ • $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$

 $E = \{a, b, c, d, e\}$ $\mathcal{L} = \{x_1...x_k \in E_s^* : \widehat{x_1...x_i} \text{ subtree containing } r \text{ for } 1 \le i \le k\}$ $bcd \in \mathcal{L}$ $dbc \notin \mathcal{L}$

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

- (E, \mathcal{L}) is a greedoid language if
 - $\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$
 - $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

(E, \mathcal{L}) is a greedoid language if

- $\bullet \ \alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$
- $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

 $E
eq \emptyset$, $\mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is a greedoid language if

• $\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$

• $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$

$$M = egin{pmatrix} 1 & 1 & 0 & 1 \ 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 \end{pmatrix}$$

 $E = \{1, 2, 3, 4\}$

 $E \neq \emptyset$, $\mathcal{L} \subseteq E^*_{s}$

- (E, \mathcal{L}) is a greedoid language if
- $\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$ (L1)(L2)
 - $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

 $E = \{1, 2, 3, 4\}$ \mathcal{L} : sequences of pivot elements of Gaussian elimination

(i) (E,\mathcal{L}) greedoid language \Rightarrow ($E,\mathcal{ ilde{L}}$) greedoid

(i) (E, \mathcal{L}) greedoid language $\Rightarrow (E, \tilde{\mathcal{L}})$ greedoid (ii) (E, \mathcal{F}) greedoid then

$$\mathcal{L}(\mathcal{F}) := \{x_1 ... x_k \in E_s^* | \{x_1, ..., x_i\} \in \mathcal{F} \text{ for } 1 \le i \le k\}$$

is a greedoid language

(i) (E, \mathcal{L}) greedoid language $\Rightarrow (E, \tilde{\mathcal{L}})$ greedoid (ii) (E, \mathcal{F}) greedoid then

$$\mathcal{L}(\mathcal{F}) := \{x_1...x_k \in E_s^* | \{x_1, ..., x_i\} \in \mathcal{F} \text{ for } 1 \le i \le k\}$$

is a greedoid language $(\text{iii}) \ \mathcal{L}(\tilde{\mathcal{L}}) = \mathcal{L} \text{ and } \widetilde{\mathcal{L}(\mathcal{F})} = \mathcal{F}$

(i) (E, \mathcal{L}) greedoid language $\Rightarrow (E, \tilde{\mathcal{L}})$ greedoid (ii) (E, \mathcal{F}) greedoid then

$$\mathcal{L}(\mathcal{F}) := \{x_1...x_k \in E_s^* | \{x_1, ..., x_i\} \in \mathcal{F} \text{ for } 1 \le i \le k\}$$

is a greedoid language (iii) $\mathcal{L}(\widetilde{\mathcal{L}}) = \mathcal{L}$ and $\widecheck{\mathcal{L}(\mathcal{F})} = \mathcal{F}$

 \Rightarrow we can use greedoids and greedoid languages interchangeably

 $\bullet \ \mathcal{L}$ simple hereditary language over a finite E

- $\bullet \ \mathcal{L}$ simple hereditary language over a finite E
- $\omega:\mathcal{L}\to\mathbb{R}$ objective function

- $\bullet \ \mathcal{L}$ simple hereditary language over a finite E
- $\omega:\mathcal{L}\rightarrow\mathbb{R}$ objective function

- $\mathcal L$ simple hereditary language over a finite E
- $\omega:\mathcal{L}\to\mathbb{R}$ objective function

- $\mathcal L$ simple hereditary language over a finite E
- $\omega:\mathcal{L}\to\mathbb{R}$ objective function

Goal: find a basic word α that maximizes $\omega(\alpha)$

(1) $\alpha_0 := \emptyset$ and i = 0

- $\mathcal L$ simple hereditary language over a finite E
- $\omega:\mathcal{L}\rightarrow\mathbb{R}$ objective function

Goal: find a basic word α that maximizes $\omega(\alpha)$

(1) $\alpha_0 := \emptyset$ and i = 0(2) given α_i choose x_{i+1} such that

- $\mathcal L$ simple hereditary language over a finite E
- $\omega:\mathcal{L}\to\mathbb{R}$ objective function

```
(1) \alpha_0 := \emptyset and i = 0
(2) given \alpha_i choose x_{i+1} such that
(i) \alpha_i x_{i+1} \in \mathcal{L}
```


- $\mathcal L$ simple hereditary language over a finite E
- $\omega:\mathcal{L}\to\mathbb{R}$ objective function

```
(1) \alpha_0 := \emptyset and i = 0
(2) given \alpha_i choose x_{i+1} such that
(i) \alpha_i x_{i+1} \in \mathcal{L}
```


- $\mathcal L$ simple hereditary language over a finite E
- $\omega:\mathcal{L}\to\mathbb{R}$ objective function

(1)
$$\alpha_0 := \emptyset$$
 and $i = 0$
(2) given α_i choose x_{i+1} such that
(i) $\alpha_i x_{i+1} \in \mathcal{L}$
(ii) $\omega(\alpha_i x_{i+1}) \ge \omega(\alpha_i y)$ for all $y \in E$ such that $\alpha_i y \in \mathcal{L}$

- $\mathcal L$ simple hereditary language over a finite E
- $\omega:\mathcal{L}\rightarrow\mathbb{R}$ objective function

(1)
$$\alpha_0 := \emptyset$$
 and $i = 0$
(2) given α_i choose x_{i+1} such that
(i) $\alpha_i x_{i+1} \in \mathcal{L}$
(ii) $\omega(\alpha_i x_{i+1}) \ge \omega(\alpha_i y)$ for all $y \in E$ such that $\alpha_i y \in \mathcal{L}$

- $\mathcal L$ simple hereditary language over a finite E
- $\omega:\mathcal{L}\rightarrow\mathbb{R}$ objective function

(1)
$$\alpha_0 := \emptyset$$
 and $i = 0$
(2) given α_i choose x_{i+1} such that
(i) $\alpha_i x_{i+1} \in \mathcal{L}$
(ii) $\omega(\alpha_i x_{i+1}) \ge \omega(\alpha_i y)$ for all $y \in E$ such that $\alpha_i y \in \mathcal{L}$
(3) $\alpha_{i+1} := \alpha_i x_{i+1}$

- $\mathcal L$ simple hereditary language over a finite E
- $\omega:\mathcal{L}\rightarrow\mathbb{R}$ objective function

(1)
$$\alpha_0 := \emptyset$$
 and $i = 0$
(2) given α_i choose x_{i+1} such that
(i) $\alpha_i x_{i+1} \in \mathcal{L}$
(ii) $\omega(\alpha_i x_{i+1}) \ge \omega(\alpha_i y)$ for all $y \in E$ such that $\alpha_i y \in \mathcal{L}$
(3) $\alpha_{i+1} := \alpha_i x_{i+1}$
(4) if α_{i+1} is not basic, $i := i + 1$ and go to (2)

- $\mathcal L$ simple hereditary language over a finite E
- $\omega:\mathcal{L}\rightarrow\mathbb{R}$ objective function

(1)
$$\alpha_0 := \emptyset$$
 and $i = 0$
(2) given α_i choose x_{i+1} such that
(i) $\alpha_i x_{i+1} \in \mathcal{L}$
(ii) $\omega(\alpha_i x_{i+1}) \ge \omega(\alpha_i y)$ for all $y \in E$ such that $\alpha_i y \in \mathcal{L}$
(3) $\alpha_{i+1} := \alpha_i x_{i+1}$
(4) if α_{i+1} is not basic, $i := i + 1$ and go to (2)

- $\mathcal L$ simple hereditary language over a finite E
- $\omega:\mathcal{L}\rightarrow\mathbb{R}$ objective function

$$\begin{array}{ll} (1) \ \alpha_0 := \emptyset \ \text{and} \ i = 0 \\ (2) \ \text{given} \ \alpha_i \ \text{choose} \ x_{i+1} \ \text{such that} \\ (i) \ \alpha_i x_{i+1} \in \mathcal{L} \\ (ii) \ \omega(\alpha_i x_{i+1}) \geq \omega(\alpha_i y) \ \text{for all} \ y \in E \ \text{such that} \ \alpha_i y \in \mathcal{L} \\ (3) \ \alpha_{i+1} := \alpha_i x_{i+1} \\ (4) \ \text{if} \ \alpha_{i+1} \ \text{is not basic,} \ i := i+1 \ \text{and go to} \ (2) \\ (5) \ \text{return} \ \alpha_{i+1} \end{array}$$

• $\mathcal L$ simple hereditary language over a finite E

• $\omega:\mathcal{L}\to\mathbb{R}$ objective function

Goal: find a basic word α that maximizes $\omega(\alpha)$

(1)
$$\alpha_0 := \emptyset$$
 and $i = 0$
(2) given α_i choose x_{i+1} such that
(i) $\alpha_i x_{i+1} \in \mathcal{L}$
(ii) $\omega(\alpha_i x_{i+1}) \ge \omega(\alpha_i y)$ for all $y \in E$ such that $\alpha_i y \in \mathcal{L}$
(3) $\alpha_{i+1} := \alpha_i x_{i+1}$
(4) if α_{i+1} is not basic, $i := i + 1$ and go to (2)
(5) return α_{i+1}

When does this work?

ω compatible with \mathcal{L} if for $\alpha x \in \mathcal{L}$ such that $\omega(\alpha x) \geq \omega(\alpha y)$ for all $y \in E$

 $\omega \text{ compatible with } \mathcal{L} \text{ if for } \alpha x \in \mathcal{L} \text{ such that } \omega(\alpha x) \ge \omega(\alpha y) \text{ for all } y \in E$ • $\alpha \beta x \gamma, \alpha \beta z \gamma \in \mathcal{L} \Rightarrow \omega(\alpha \beta x \gamma) \ge \omega(\alpha \beta z \gamma)$ (C1)

 ω compatible with \mathcal{L} if for $\alpha x \in \mathcal{L}$ such that $\omega(\alpha x) \ge \omega(\alpha y)$ for all $y \in E$

•
$$\alpha\beta x\gamma, \alpha\beta z\gamma \in \mathcal{L} \Rightarrow \omega(\alpha\beta x\gamma) \ge \omega(\alpha\beta z\gamma)$$
 (C1)

•
$$\alpha x \beta z \gamma, \alpha z \beta x \gamma \in \mathcal{L} \Rightarrow \omega(\alpha x \beta z \gamma) \ge \omega(\alpha z \beta x \gamma)$$
 (C2)

 ω compatible with \mathcal{L} if for $\alpha x \in \mathcal{L}$ such that $\omega(\alpha x) \ge \omega(\alpha y)$ for all $y \in E$

•
$$\alpha\beta x\gamma, \alpha\beta z\gamma \in \mathcal{L} \Rightarrow \omega(\alpha\beta x\gamma) \ge \omega(\alpha\beta z\gamma)$$
 (C1)

•
$$\alpha x \beta z \gamma, \alpha z \beta x \gamma \in \mathcal{L} \Rightarrow \omega(\alpha x \beta z \gamma) \ge \omega(\alpha z \beta x \gamma)$$
 (C2)

If x is an optimal choice after α

 ω compatible with $\mathcal L$ if for $\alpha x \in \mathcal L$ such that $\omega(\alpha x) \ge \omega(\alpha y)$ for all $y \in E$

•
$$\alpha\beta x\gamma, \alpha\beta z\gamma \in \mathcal{L} \Rightarrow \omega(\alpha\beta x\gamma) \ge \omega(\alpha\beta z\gamma)$$
 (C1)

•
$$\alpha x \beta z \gamma, \alpha z \beta x \gamma \in \mathcal{L} \Rightarrow \omega(\alpha x \beta z \gamma) \ge \omega(\alpha z \beta x \gamma)$$
 (C2)

If x is an optimal choice after α

• x is an optimal choice at any later stage

 ω compatible with \mathcal{L} if for $\alpha x \in \mathcal{L}$ such that $\omega(\alpha x) \geq \omega(\alpha y)$ for all $y \in E$

•
$$\alpha\beta x\gamma, \alpha\beta z\gamma \in \mathcal{L} \Rightarrow \omega(\alpha\beta x\gamma) \ge \omega(\alpha\beta z\gamma)$$
 (C1)

•
$$\alpha x \beta z \gamma, \alpha z \beta x \gamma \in \mathcal{L} \Rightarrow \omega(\alpha x \beta z \gamma) \ge \omega(\alpha z \beta x \gamma)$$
 (C2)

If x is an optimal choice after α

- x is an optimal choice at any later stage
- it is always better to choose x before z

Result

Result

 ${\cal L}$ a simple hereditary language over E

 ${\mathcal L}$ a simple hereditary language over E

 \Rightarrow (*E*, *L*) is a greedoid if and only if the greedy algorithm works for every compatible objective function on *L*

 $\mathcal L$ a simple hereditary language over E

 \Rightarrow (*E*, *L*) is a greedoid if and only if the greedy algorithm works for every compatible objective function on *L*

Korte & Lovász (1984). Greedoids, a structural framework for the greedy algorithm

 $E \neq \emptyset, \mathcal{L} \subseteq E^*_s$

- (E, \mathcal{L}) is a greedoid language if
 - $\alpha\beta\in\mathcal{L}\Rightarrow\alpha\in\mathcal{L}$
 - $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$

(L1) (L2)

 $E \neq \emptyset, \mathcal{L} \subseteq E_s^*$

 (E, \mathcal{L}) is an interval greedoid if

•
$$\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$$
 (L1)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$$
 there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$ (L2)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta|$$

 \Rightarrow there is a subword α' of length $|\alpha'| = |\alpha| - |\beta|$ in α such that $\beta \alpha' \in \mathcal{L}$ (L2')

 $E \neq \emptyset, \mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is an interval greedoid if

•
$$\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$$
 (L1)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$$
 there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$ (L2)

• $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta|$

 $\Rightarrow \text{ there is a subword } \alpha' \text{ of length } |\alpha'| = |\alpha| - |\beta| \text{ in } \alpha \text{ such that } \beta \alpha' \in \mathcal{L} \qquad (L2')$ greedoid

 $E \neq \emptyset, \mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is an interval greedoid if

•
$$\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$$
 (L1)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$$
 there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$ (L2)

• $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta|$

 $\Rightarrow \text{ there is a subword } \alpha' \text{ of length } |\alpha'| = |\alpha| - |\beta| \text{ in } \alpha \text{ such that } \beta \alpha' \in \mathcal{L} \qquad (L2')$ greedoid

 $E \neq \emptyset, \mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is an interval greedoid if

•
$$\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$$
 (L1)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$$
 there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$ (L2)

• $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta|$

 $\Rightarrow \text{ there is a subword } \alpha' \text{ of length } |\alpha'| = |\alpha| - |\beta| \text{ in } \alpha \text{ such that } \beta \alpha' \in \mathcal{L} \qquad (L2')$ greedoid \rightarrow greed

 $E \neq \emptyset, \mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is an interval greedoid if

•
$$\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$$
 (L1)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$$
 there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$ (L2)

• $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta|$

 $\Rightarrow \text{ there is a subword } \alpha' \text{ of length } |\alpha'| = |\alpha| - |\beta| \text{ in } \alpha \text{ such that } \beta \alpha' \in \mathcal{L} \qquad (L2')$ greedoid

 $E \neq \emptyset, \mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is an interval greedoid if

•
$$\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$$
 (L1)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$$
 there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$ (L2)

• $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta|$

 $\Rightarrow \text{ there is a subword } \alpha' \text{ of length } |\alpha'| = |\alpha| - |\beta| \text{ in } \alpha \text{ such that } \beta \alpha' \in \mathcal{L} \qquad (L2')$ greedoid \rightarrow red

 $E \neq \emptyset, \mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is an interval greedoid if

•
$$\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$$
 (L1)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$$
 there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$ (L2)

• $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta|$

 $\Rightarrow \text{ there is a subword } \alpha' \text{ of length } |\alpha'| = |\alpha| - |\beta| \text{ in } \alpha \text{ such that } \beta \alpha' \in \mathcal{L} \qquad (L2')$ greedoid

 $E \neq \emptyset, \mathcal{L} \subseteq E^*_s$

 (E, \mathcal{L}) is an interval greedoid if

•
$$\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$$
 (L1)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$$
 there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$ (L2)

• $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta|$

 $\Rightarrow \text{ there is a subword } \alpha' \text{ of length } |\alpha'| = |\alpha| - |\beta| \text{ in } \alpha \text{ such that } \beta \alpha' \in \mathcal{L} \qquad (L2')$ greedoid $\not\rightarrow$ dig

 $E \neq \emptyset, \mathcal{L} \subseteq E_s^*$

 (E, \mathcal{L}) is an interval greedoid if

•
$$\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$$
 (L1)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$$
 there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$ (L2)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta|$$

 \Rightarrow there is a subword α' of length $|\alpha'| = |\alpha| - |\beta|$ in α such that $\beta \alpha' \in \mathcal{L}$ (L2')

 $E \neq \emptyset, \mathcal{L} \subseteq E_s^*$

(E, \mathcal{L}) is an interval greedoid if

•
$$\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$$
 (L1)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$$
 there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$ (L2)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta|$$

 \Rightarrow there is a subword α' of length $|\alpha'| = |\alpha| - |\beta|$ in α such that $\beta \alpha' \in \mathcal{L}$ (L2')

undirected branching greedoids

 $E \neq \emptyset, \mathcal{L} \subseteq E_s^*$

(E, \mathcal{L}) is an interval greedoid if

•
$$\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$$
 (L1)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$$
 there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$ (L2)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta|$$

 \Rightarrow there is a subword α' of length $|\alpha'| = |\alpha| - |\beta|$ in α such that $\beta \alpha' \in \mathcal{L}$ (L2')

undirected branching greedoids antimatroids

 $E \neq \emptyset, \mathcal{L} \subseteq E_s^*$

(E, \mathcal{L}) is an interval greedoid if

•
$$\alpha\beta \in \mathcal{L} \Rightarrow \alpha \in \mathcal{L}$$
 (L1)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$$
 there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$ (L2)

•
$$\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta|$$

 \Rightarrow there is a subword α' of length $|\alpha'| = |\alpha| - |\beta|$ in α such that $\beta \alpha' \in \mathcal{L}$ (L2')

undirected branching greedoids antimatroids matroids

 (E, \mathcal{L}) is interval greedoid, ω compatible \Rightarrow greedy works:

 (E, \mathcal{L}) is interval greedoid, ω compatible \Rightarrow greedy works:

 $\bullet \ \gamma$ a greedy solution

 (E, \mathcal{L}) is interval greedoid, ω compatible \Rightarrow greedy works:

- $\bullet \ \gamma$ a greedy solution
- $\bullet~\delta$ an optimal solution so its common prefix with γ is of maximal length

 (E, \mathcal{L}) is interval greedoid, ω compatible \Rightarrow greedy works:

- $\bullet \ \gamma$ a greedy solution
- $\bullet~\delta$ an optimal solution so its common prefix with γ is of maximal length
- $\bullet \ \alpha$ this common prefix
- $\bullet \ \gamma$ a greedy solution
- $\bullet~\delta$ an optimal solution so its common prefix with γ is of maximal length
- ullet lpha this common prefix
- $\gamma = \alpha x \gamma'$ and $\delta = \alpha y_1 ... y_n$

 (E, \mathcal{L}) is interval greedoid, ω compatible \Rightarrow greedy works:

- $\bullet \ \gamma$ a greedy solution
- $\bullet~\delta$ an optimal solution so its common prefix with γ is of maximal length
- $\circ \alpha$ this common prefix

•
$$\gamma = \alpha x \gamma'$$
 and $\delta = \alpha y_1 \dots y_n$

 $\mathsf{claim} \colon \gamma = \delta = \alpha$

- $\bullet \ \gamma$ a greedy solution
- $\bullet~\delta$ an optimal solution so its common prefix with γ is of maximal length
- $\bullet~\alpha$ this common prefix

•
$$\gamma = \alpha x \gamma'$$
 and $\delta = \alpha y_1 \dots y_n$ claim: $\gamma = \delta = \alpha$ else:

 (E, \mathcal{L}) is interval greedoid, ω compatible \Rightarrow greedy works:

- $\bullet \ \gamma$ a greedy solution
- $\bullet~\delta$ an optimal solution so its common prefix with γ is of maximal length
- α this common prefix

•
$$\gamma = \alpha x \gamma'$$
 and $\delta = \alpha y_1...y_n$
claim: $\gamma = \delta = \alpha$
else:

• augment αx from δ using (L2')

- $\bullet \ \gamma$ a greedy solution
- $\bullet~\delta$ an optimal solution so its common prefix with γ is of maximal length
- α this common prefix

•
$$\gamma = \alpha x \gamma'$$
 and $\delta = \alpha y_1 ... y_n$ claim: $\gamma = \delta = \alpha$ else:

- augment αx from δ using (L2')
- obtain $\alpha xy_1...y_{k-1}y_{k+1}...y_n \in \mathcal{L}$

- $\bullet \ \gamma$ a greedy solution
- $\bullet~\delta$ an optimal solution so its common prefix with γ is of maximal length
- α this common prefix

•
$$\gamma = \alpha x \gamma'$$
 and $\delta = \alpha y_1 \dots y_n$
claim: $\gamma = \delta = \alpha$
else:

- augment αx from δ using (L2')
- obtain $\alpha xy_1...y_{k-1}y_{k+1}...y_n \in \mathcal{L}$
- $\beta_i := \alpha y_1 ... y_{i-1} x y_i ... y_{k-1} y_{k+1} ... y_n$

- $\bullet \ \gamma$ a greedy solution
- $\bullet~\delta$ an optimal solution so its common prefix with γ is of maximal length
- α this common prefix

•
$$\gamma = \alpha x \gamma'$$
 and $\delta = \alpha y_1 \dots y_n$
claim: $\gamma = \delta = \alpha$
else:

- augment αx from δ using (L2')
- obtain $\alpha xy_1...y_{k-1}y_{k+1}...y_n \in \mathcal{L}$
- $\beta_i := \alpha y_1 ... y_{i-1} x y_i ... y_{k-1} y_{k+1} ... y_n$
- $\beta_1 \in \mathcal{L}$

- $\bullet \ \gamma$ a greedy solution
- $\bullet~\delta$ an optimal solution so its common prefix with γ is of maximal length
- ullet α this common prefix

•
$$\gamma = \alpha x \gamma'$$
 and $\delta = \alpha y_1 \dots y_n$
claim: $\gamma = \delta = \alpha$
else:

- augment αx from δ using (L2')
- obtain $\alpha xy_1...y_{k-1}y_{k+1}...y_n \in \mathcal{L}$
- $\beta_i := \alpha y_1 ... y_{i-1} x y_i ... y_{k-1} y_{k+1} ... y_n$
- $eta_1 \in \mathcal{L}$, augmenting $lpha y_1 ... y_i$ from eta_i yields $eta_{i+1} \in \mathcal{L}$

 (E, \mathcal{L}) is interval greedoid, ω compatible \Rightarrow greedy works:

- γ a greedy solution
- ullet δ an optimal solution so its common prefix with γ is of maximal length
- α this common prefix

•
$$\gamma = \alpha x \gamma'$$
 and $\delta = \alpha y_1 ... y_n$
laim: $\gamma = \delta = \alpha$

clain else:

- augment αx from δ using (L2')
- obtain $\alpha xy_1...y_{k-1}y_{k+1}...y_n \in \mathcal{L}$
- $\beta_i := \alpha y_1 ... y_{i-1} x y_i ... y_{k-1} y_{k+1} ... y_n$
- $eta_1 \in \mathcal{L}$, augmenting $lpha y_1...y_i$ from eta_i yields $eta_{i+1} \in \mathcal{L}$

(C1): x is an optimal choice at any later stage (C2): it is always better to choose x before z

 (E, \mathcal{L}) is interval greedoid, ω compatible \Rightarrow greedy works:

- γ a greedy solution
- ullet δ an optimal solution so its common prefix with γ is of maximal length
- α this common prefix

•
$$\gamma = \alpha x \gamma'$$
 and $\delta = \alpha y_1 ... y_n$

claim: $\gamma = \delta = \alpha$

else:

- augment αx from δ using (L2')
- obtain $\alpha xy_1...y_{k-1}y_{k+1}...y_n \in \mathcal{L}$
- $\beta_i := \alpha y_1 ... y_{i-1} x y_i ... y_{k-1} y_{k+1} ... y_n$
- $eta_1 \in \mathcal{L}$, augmenting $lpha y_1 ... y_i$ from eta_i yields $eta_{i+1} \in \mathcal{L}$
- by (C1) x is a best choice after $\alpha y_1...y_{i-1}$

(C1): x is an optimal choice at any later stage (C2): it is always better to choose x before z

 (E, \mathcal{L}) is interval greedoid, ω compatible \Rightarrow greedy works:

- γ a greedy solution
- ullet δ an optimal solution so its common prefix with γ is of maximal length
- α this common prefix

•
$$\gamma = \alpha x \gamma'$$
 and $\delta = \alpha y_1 ... y_n$

claim: $\gamma = \delta = \alpha$

else:

- augment αx from δ using (L2')
- obtain $\alpha xy_1...y_{k-1}y_{k+1}...y_n \in \mathcal{L}$
- $\beta_i := \alpha y_1 ... y_{i-1} x y_i ... y_{k-1} y_{k+1} ... y_n$
- $eta_1 \in \mathcal{L}$, augmenting $lpha y_1 ... y_i$ from eta_i yields $eta_{i+1} \in \mathcal{L}$
- by (C1) x is a best choice after $\alpha y_1...y_{i-1}$
- so by (C2) $\omega(\beta_i) \ge \omega(\beta_{i+1})$

(C1): x is an optimal choice at any later stage (C2): it is always better to choose x before z

 (E, \mathcal{L}) is interval greedoid, ω compatible \Rightarrow greedy works:

- $\bullet \ \gamma$ a greedy solution
- ullet δ an optimal solution so its common prefix with γ is of maximal length
- α this common prefix

•
$$\gamma = \alpha x \gamma'$$
 and $\delta = \alpha y_1 ... y_n$

claim: $\gamma = \delta = \alpha$

else:

- augment αx from δ using (L2')
- obtain $\alpha xy_1...y_{k-1}y_{k+1}...y_n \in \mathcal{L}$
- $\beta_i := \alpha y_1 ... y_{i-1} x y_i ... y_{k-1} y_{k+1} ... y_n$
- $eta_1 \in \mathcal{L}$, augmenting $lpha y_1...y_i$ from eta_i yields $eta_{i+1} \in \mathcal{L}$
- by (C1) x is a best choice after $\alpha y_1...y_{i-1}$
- so by (C2) $\omega(\beta_i) \ge \omega(\beta_{i+1})$
- by (C1) $\omega(eta_k) \geq \omega(\delta)$

```
(C1): x is an optimal choice at any later stage (C2): it is always better to choose x before z
```

- $\bullet \ \gamma$ a greedy solution
- $\bullet~\delta$ an optimal solution so its common prefix with γ is of maximal length
- ullet α this common prefix

•
$$\gamma = \alpha x \gamma'$$
 and $\delta = \alpha y_1 ... y_n$
claim: $\gamma = \delta = \alpha$
else:

- augment αx from δ using (L2')
- obtain $\alpha xy_1...y_{k-1}y_{k+1}...y_n \in \mathcal{L}$
- $\beta_i := \alpha y_1 ... y_{i-1} x y_i ... y_{k-1} y_{k+1} ... y_n$
- $eta_1 \in \mathcal{L}$, augmenting $lpha y_1 ... y_i$ from eta_i yields $eta_{i+1} \in \mathcal{L}$
- by (C1) x is a best choice after $\alpha y_1...y_{i-1}$
- so by (C2) $\omega(\beta_i) \ge \omega(\beta_{i+1})$
- by (C1) $\omega(\beta_k) \geq \omega(\delta)$

- $\bullet \ \gamma$ a greedy solution
- $\bullet~\delta$ an optimal solution so its common prefix with γ is of maximal length
- α this common prefix

•
$$\gamma = \alpha x \gamma'$$
 and $\delta = \alpha y_1 ... y_n$
claim: $\gamma = \delta = \alpha$
clse:

- augment αx from δ using (L2')
- obtain $\alpha xy_1...y_{k-1}y_{k+1}...y_n \in \mathcal{L}$
- $\beta_i := \alpha y_1 ... y_{i-1} x y_i ... y_{k-1} y_{k+1} ... y_n$
- $eta_1 \in \mathcal{L}$, augmenting $lpha y_1 ... y_i$ from eta_i yields $eta_{i+1} \in \mathcal{L}$
- by (C1) x is a best choice after $\alpha y_1...y_{i-1}$
- so by (C2) $\omega(\beta_i) \ge \omega(\beta_{i+1})$
- by (C1) $\omega(\beta_k) \geq \omega(\delta)$
- so $\omega(eta_1) \geq \omega(\delta)$

 (E, \mathcal{L}) is interval greedoid, ω compatible \Rightarrow greedy works:

- $\bullet \ \gamma$ a greedy solution
- $\bullet~\delta$ an optimal solution so its common prefix with γ is of maximal length
- α this common prefix

•
$$\gamma = \alpha x \gamma'$$
 and $\delta = \alpha y_1...y_n$
claim: $\gamma = \delta = \alpha$
else:

- augment αx from δ using (L2')
- obtain $\alpha xy_1...y_{k-1}y_{k+1}...y_n \in \mathcal{L}$
- $\beta_i := \alpha y_1 ... y_{i-1} x y_i ... y_{k-1} y_{k+1} ... y_n$
- $eta_1 \in \mathcal{L}$, augmenting $lpha y_1 ... y_i$ from eta_i yields $eta_{i+1} \in \mathcal{L}$
- by (C1) x is a best choice after $\alpha y_1...y_{i-1}$
- so by (C2) $\omega(\beta_i) \ge \omega(\beta_{i+1})$
- by (C1) $\omega(eta_k) \geq \omega(\delta)$
- so $\omega(eta_1) \geq \omega(\delta)$

Contradiction!

greedy works for every ω compatible \Rightarrow (*E*, *L*) is a greedoid:

(L2): $\alpha, \beta \in \mathcal{L}, |\alpha| > |\beta| \Rightarrow$ there is an $x \in \tilde{\alpha}$ such that $\beta x \in \mathcal{L}$

greedy works for every ω compatible \Rightarrow (*E*, *L*) is a greedoid:

For $\alpha, \beta \in \mathcal{L}, |\alpha| = k > m = |\beta|$ define

For
$$\alpha, \beta \in \mathcal{L}, |\alpha| = k > m = |\beta|$$
 define
• $f_1(x) = \dots = f_k(x) = \begin{cases} 0 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 1 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$

For
$$\alpha, \beta \in \mathcal{L}, |\alpha| = k > m = |\beta|$$
 define
• $f_1(x) = \dots = f_k(x) = \begin{cases} 0 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 1 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $f_{k+1}(x) = \dots = f_r(x) = \begin{cases} 1 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 2 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$

For
$$\alpha, \beta \in \mathcal{L}, |\alpha| = k > m = |\beta|$$
 define
• $f_1(x) = ... = f_k(x) = \begin{cases} 0 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 1 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $f_{k+1}(x) = ... = f_r(x) = \begin{cases} 1 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 2 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $\omega(x_1...x_n) = \min\{f_1(x_1), ...f_n(x_n)\}$

greedy works for every ω compatible \Rightarrow (*E*, *L*) is a greedoid:

For
$$\alpha, \beta \in \mathcal{L}, |\alpha| = k > m = |\beta|$$
 define
• $f_1(x) = ... = f_k(x) = \begin{cases} 0 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 1 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $f_{k+1}(x) = ... = f_r(x) = \begin{cases} 1 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 2 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $\omega(x_1...x_n) = \min\{f_1(x_1), ...f_n(x_n)\}$

Let $\delta=\alpha\delta'$ be basic

greedy works for every ω compatible \Rightarrow (*E*, *L*) is a greedoid:

For
$$\alpha, \beta \in \mathcal{L}, |\alpha| = k > m = |\beta|$$
 define
• $f_1(x) = ... = f_k(x) = \begin{cases} 0 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 1 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $f_{k+1}(x) = ... = f_r(x) = \begin{cases} 1 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 2 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $\omega(x_1...x_n) = \min\{f_1(x_1), ...f_n(x_n)\}$

Let $\delta=lpha\delta'$ be basic and $\gamma=eta x_1...x_p$ be a greedy solution

greedy works for every ω compatible \Rightarrow (*E*, *L*) is a greedoid:

For
$$\alpha, \beta \in \mathcal{L}, |\alpha| = k > m = |\beta|$$
 define
• $f_1(x) = ... = f_k(x) = \begin{cases} 0 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 1 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $f_{k+1}(x) = ... = f_r(x) = \begin{cases} 1 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 2 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $\omega(x_1...x_n) = \min\{f_1(x_1), ...f_n(x_n)\}$

Let $\delta = \alpha \delta'$ be basic and $\gamma = \beta x_1...x_p$ be a greedy solution • $1 = \omega(\delta)$

greedy works for every ω compatible \Rightarrow (*E*, *L*) is a greedoid:

For
$$\alpha, \beta \in \mathcal{L}, |\alpha| = k > m = |\beta|$$
 define
• $f_1(x) = ... = f_k(x) = \begin{cases} 0 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 1 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $f_{k+1}(x) = ... = f_r(x) = \begin{cases} 1 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 2 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $\omega(x_1...x_n) = \min\{f_1(x_1), ...f_n(x_n)\}$

Let $\delta = \alpha \delta'$ be basic and $\gamma = \beta x_1...x_p$ be a greedy solution • $1 = \omega(\delta) \le \omega(\gamma)$

For
$$\alpha, \beta \in \mathcal{L}, |\alpha| = k > m = |\beta|$$
 define
• $f_1(x) = ... = f_k(x) = \begin{cases} 0 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 1 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $f_{k+1}(x) = ... = f_r(x) = \begin{cases} 1 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 2 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $\omega(x_1...x_n) = \min\{f_1(x_1), ...f_n(x_n)\}$

Let
$$\delta = \alpha \delta'$$
 be basic and $\gamma = \beta x_1...x_p$ be a greedy solution
• $1 = \omega(\delta) \le \omega(\gamma) \le f_{m+1}(x_1)$

For
$$\alpha, \beta \in \mathcal{L}, |\alpha| = k > m = |\beta|$$
 define
• $f_1(x) = ... = f_k(x) = \begin{cases} 0 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 1 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $f_{k+1}(x) = ... = f_r(x) = \begin{cases} 1 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 2 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $\omega(x_1...x_n) = \min\{f_1(x_1), ...f_n(x_n)\}$

Let
$$\delta = \alpha \delta'$$
 be basic and $\gamma = \beta x_1...x_p$ be a greedy solution
• $1 = \omega(\delta) \le \omega(\gamma) \le f_{m+1}(x_1)$
• $x_1 \in \tilde{\alpha} \cup \tilde{\beta}$

greedy works for every ω compatible \Rightarrow (*E*, *L*) is a greedoid:

For
$$\alpha, \beta \in \mathcal{L}, |\alpha| = k > m = |\beta|$$
 define
• $f_1(x) = \dots = f_k(x) = \begin{cases} 0 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 1 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $f_{k+1}(x) = \dots = f_r(x) = \begin{cases} 1 & \text{if } x \notin \tilde{\alpha} \cup \tilde{\beta} \\ 2 & \text{if } x \in \tilde{\alpha} \cup \tilde{\beta} \end{cases}$
• $\omega(x_1...x_n) = \min\{f_1(x_1), \dots f_n(x_n)\}$

Let $\delta = \alpha \delta'$ be basic and $\gamma = \beta x_1...x_p$ be a greedy solution • $1 = \omega(\delta) \le \omega(\gamma) \le f_{m+1}(x_1)$ • $x_1 \in \tilde{\alpha} \cup \tilde{\beta}$ • $x_1 \in \tilde{\alpha}$

Rank closure:

Rank closure:

•
$$r(A) := \max\{|X| : X \subseteq A, X \in \mathcal{F}\}$$

Rank closure:

Rank closure:

• A closed: $\sigma(A) = A$

Rank closure:

Hereditary closure:

Rank closure:

Hereditary closure:

 $H(\mathcal{F}) := \{Y \subseteq E : Y \subseteq X, X \in \mathcal{F}\}$

Rank closure:

Hereditary closure:

 $H(\mathcal{F}) := \{ Y \subseteq E : Y \subseteq X, X \in \mathcal{F} \}$

Greedy is optimal for every linear objective function if and only if $(E, H(\mathcal{F}))$ is a matroid and every set that is closed in (E, \mathcal{F}) is also closed in $(E, H(\mathcal{F}))$
Prim's minimizes $w(E') = \sum_{e \in E'} w(e), E' \in \mathcal{F}$ over (E, \mathcal{F})

```
Prim's minimizes w(E') = \sum_{e \in E'} w(e), E' \in \mathcal{F} over (E, \mathcal{F})
\omega(E') = -w(E')
```

Prim's minimizes $w(E') = \sum_{e \in E'} w(e), E' \in \mathcal{F}$ over (E, \mathcal{F}) $\omega(E') = -w(E') \Rightarrow \omega$ is linear

```
Prim's minimizes w(E') = \sum_{e \in E'} w(e), E' \in \mathcal{F} over (E, \mathcal{F})
\omega(E') = -w(E') \Rightarrow \omega is linear
```

 $(E, H(\mathcal{F}))$ is the graphic matroid

```
Prim's minimizes w(E') = \sum_{e \in E'} w(e), E' \in \mathcal{F} over (E, \mathcal{F})
\omega(E') = -w(E') \Rightarrow \omega is linear
```

 $(E, H(\mathcal{F}))$ is the graphic matroid

 \Rightarrow Prim's algorithm is optimal

Questions?