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alphabet: E # ()

words: E*

language: £ C E*

support: &, set of letters in «
L= {alaecL}

a word is called simple if it does not contain the same letter twice

a language is simple if all of its words are simple

set of simple words: E;

E finite = E/ finite
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E={1,234}
L: sequences of pivot elements of Gaussian elimination

(L1)
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(i) (E,L) greedoid language = (E, £) greedoid
(i) (E,F) greedoid then

L(F) :i={x1..xk € El|{x1,...,xi} € F for 1 <<k}

is a greedoid language

(i) £(E) = £ and L(F) = F

= we can use greedoids and greedoid languages interchangeably
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Greedy Algorithm

o L simple hereditary language over a finite E
@ w: L — R objective function

Goal: find a basic word o that maximizes w(c)

(1) ap:=0and i=0
(2) given «; choose xj41 such that

(i) aixiy1 € L

(i) w(aixiy1) > w(oyy) for all y € E such that oyy € £
(3) @iy1 = aixin

T i, i=i
(4) if ajy1 is not basic, i := i+ 1 and go to (2)
(5) return a1

When does this work?
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If x is an optimal choice after «
@ x is an optimal choice at any later stage

@ it is always better to choose x before z
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objective function on £

Korte & Lovasz (1984). Greedoids, a structural framework for the greedy algorithm



Interval Greedoids



Interval Greedoids

E+#0,LCE;

(E, L) is a greedoid language if
eafeLlL=>acl (L1)
e a,B € L,|al > |B] = there is an x € & such that Bx € L (L2)



Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if
eafeLlL=acl (L1)
o afB-cLfel>f=—theredsanscasuch-that Sxc£ (L2)

°a,f€ [',|a‘ > ‘6|
= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2



Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
°a,f€ [',|a‘ > ‘6|

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

greedoid



Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
° o, B € [',|a‘ > ‘ﬁl

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

greedoid



Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
°a,f€ [',|a‘ > ‘6|

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

greedoid — greed



Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
°a,f€ [',|a‘ > ‘6|

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

greedoid



Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
°a,f€ [',|a‘ > ‘6|

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

greedoid — red



Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
°a,f€ [',|a‘ > ‘6|

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

greedoid



Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
°a,f€ [',|a‘ > ‘6|

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

greedoid - dig



Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if
eafeLlL=acl (L1)
o afB-cLfel>f=—theredsanscasuch-that Sxc£ (L2)

°a,f€ [',|a‘ > ‘6|
= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2



Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
° a,BELal > B

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

undirected branching greedoids



Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if
eafeLlL=acl (L1)
o oL et 1B =thereisanxca-such-that e £ (L2)
°a,f €L lal>|f|
= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

undirected branching greedoids
antimatroids



Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
° a,BELal > B

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

undirected branching greedoids
antimatroids
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@ x1 €EQ
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Application to Prim’s

Greedy is optimal for every linear objective function if and only if (E, H(F)) is a matroid
and every set that is closed in (E, F) is also closed in (E, H(F))

Prim’s minimizes w(E') = Y,z w(e),E’ € F over (E,F)
w(E") = —w(E') = w is linear

(E, H(F)) is the graphic matroid

= Prim’s algorithm is optimal



Questions?



