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E 6= ∅ , L ⊆ E∗s

(E ,L) is a greedoid language if

αβ ∈ L ⇒ α ∈ L (L1)

α, β ∈ L, |α| > |β| ⇒ there is an x ∈ α̃ such that βx ∈ L (L2)

M =

1 1 0 1
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E = {1, 2, 3, 4}
L: sequences of pivot elements of Gaussian elimination
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ω : L → R objective function
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(5) return αi+1

When does this work?



Greedy Algorithm

L simple hereditary language over a �nite E

ω : L → R objective function

Goal: �nd a basic word α that maximizes ω(α)

(1) α0 := ∅ and i = 0

(2) given αi choose xi+1 such that
(i) αixi+1 ∈ L
(ii) ω(αixi+1) ≥ ω(αiy) for all y ∈ E such that αiy ∈ L

(3) αi+1 := αixi+1

(4) if αi+1 is not basic, i := i + 1 and go to (2)

(5) return αi+1

When does this work?



Greedy Algorithm

L simple hereditary language over a �nite E

ω : L → R objective function

Goal: �nd a basic word α that maximizes ω(α)

(1) α0 := ∅ and i = 0

(2) given αi choose xi+1 such that
(i) αixi+1 ∈ L
(ii) ω(αixi+1) ≥ ω(αiy) for all y ∈ E such that αiy ∈ L

(3) αi+1 := αixi+1

(4) if αi+1 is not basic, i := i + 1 and go to (2)

(5) return αi+1

When does this work?



Greedy Algorithm

L simple hereditary language over a �nite E

ω : L → R objective function

Goal: �nd a basic word α that maximizes ω(α)

(1) α0 := ∅ and i = 0

(2) given αi choose xi+1 such that
(i) αixi+1 ∈ L
(ii) ω(αixi+1) ≥ ω(αiy) for all y ∈ E such that αiy ∈ L

(3) αi+1 := αixi+1

(4) if αi+1 is not basic, i := i + 1 and go to (2)

(5) return αi+1

When does this work?



Greedy Algorithm

L simple hereditary language over a �nite E

ω : L → R objective function

Goal: �nd a basic word α that maximizes ω(α)

(1) α0 := ∅ and i = 0
(2) given αi choose xi+1 such that

(i) αixi+1 ∈ L
(ii) ω(αixi+1) ≥ ω(αiy) for all y ∈ E such that αiy ∈ L

(3) αi+1 := αixi+1

(4) if αi+1 is not basic, i := i + 1 and go to (2)

(5) return αi+1

r
1

3

45
2

r

When does this work?



Greedy Algorithm

L simple hereditary language over a �nite E

ω : L → R objective function

Goal: �nd a basic word α that maximizes ω(α)

(1) α0 := ∅ and i = 0

(2) given αi choose xi+1 such that
(i) αixi+1 ∈ L
(ii) ω(αixi+1) ≥ ω(αiy) for all y ∈ E such that αiy ∈ L

(3) αi+1 := αixi+1

(4) if αi+1 is not basic, i := i + 1 and go to (2)

(5) return αi+1

r
1

3

45
2

r

When does this work?



Greedy Algorithm

L simple hereditary language over a �nite E

ω : L → R objective function

Goal: �nd a basic word α that maximizes ω(α)

(1) α0 := ∅ and i = 0
(2) given αi choose xi+1 such that

(i) αixi+1 ∈ L
(ii) ω(αixi+1) ≥ ω(αiy) for all y ∈ E such that αiy ∈ L

(3) αi+1 := αixi+1

(4) if αi+1 is not basic, i := i + 1 and go to (2)

(5) return αi+1

r
1

3

45
2

r

When does this work?



Greedy Algorithm

L simple hereditary language over a �nite E

ω : L → R objective function

Goal: �nd a basic word α that maximizes ω(α)

(1) α0 := ∅ and i = 0
(2) given αi choose xi+1 such that

(i) αixi+1 ∈ L

(ii) ω(αixi+1) ≥ ω(αiy) for all y ∈ E such that αiy ∈ L
(3) αi+1 := αixi+1

(4) if αi+1 is not basic, i := i + 1 and go to (2)

(5) return αi+1

r
1

3

45
2

r

When does this work?



Greedy Algorithm

L simple hereditary language over a �nite E

ω : L → R objective function

Goal: �nd a basic word α that maximizes ω(α)

(1) α0 := ∅ and i = 0
(2) given αi choose xi+1 such that

(i) αixi+1 ∈ L

(ii) ω(αixi+1) ≥ ω(αiy) for all y ∈ E such that αiy ∈ L
(3) αi+1 := αixi+1

(4) if αi+1 is not basic, i := i + 1 and go to (2)

(5) return αi+1

r
1

3

45
2

r

When does this work?



Greedy Algorithm

L simple hereditary language over a �nite E

ω : L → R objective function

Goal: �nd a basic word α that maximizes ω(α)

(1) α0 := ∅ and i = 0
(2) given αi choose xi+1 such that

(i) αixi+1 ∈ L
(ii) ω(αixi+1) ≥ ω(αiy) for all y ∈ E such that αiy ∈ L

(3) αi+1 := αixi+1

(4) if αi+1 is not basic, i := i + 1 and go to (2)

(5) return αi+1

r
1

3

45
2

r

When does this work?



Greedy Algorithm

L simple hereditary language over a �nite E

ω : L → R objective function

Goal: �nd a basic word α that maximizes ω(α)

(1) α0 := ∅ and i = 0
(2) given αi choose xi+1 such that

(i) αixi+1 ∈ L
(ii) ω(αixi+1) ≥ ω(αiy) for all y ∈ E such that αiy ∈ L

(3) αi+1 := αixi+1

(4) if αi+1 is not basic, i := i + 1 and go to (2)

(5) return αi+1

r
1

3

45
2

r

When does this work?



Greedy Algorithm

L simple hereditary language over a �nite E

ω : L → R objective function

Goal: �nd a basic word α that maximizes ω(α)

(1) α0 := ∅ and i = 0
(2) given αi choose xi+1 such that

(i) αixi+1 ∈ L
(ii) ω(αixi+1) ≥ ω(αiy) for all y ∈ E such that αiy ∈ L

(3) αi+1 := αixi+1

(4) if αi+1 is not basic, i := i + 1 and go to (2)

(5) return αi+1

r
1

3

45
2

r

When does this work?



Greedy Algorithm

L simple hereditary language over a �nite E

ω : L → R objective function

Goal: �nd a basic word α that maximizes ω(α)

(1) α0 := ∅ and i = 0
(2) given αi choose xi+1 such that

(i) αixi+1 ∈ L
(ii) ω(αixi+1) ≥ ω(αiy) for all y ∈ E such that αiy ∈ L

(3) αi+1 := αixi+1

(4) if αi+1 is not basic, i := i + 1 and go to (2)

(5) return αi+1

r
1

3

45
2

r

When does this work?



Greedy Algorithm

L simple hereditary language over a �nite E

ω : L → R objective function

Goal: �nd a basic word α that maximizes ω(α)

(1) α0 := ∅ and i = 0
(2) given αi choose xi+1 such that

(i) αixi+1 ∈ L
(ii) ω(αixi+1) ≥ ω(αiy) for all y ∈ E such that αiy ∈ L

(3) αi+1 := αixi+1

(4) if αi+1 is not basic, i := i + 1 and go to (2)

(5) return αi+1

r
1

3

45
2

r

When does this work?



Greedy Algorithm

L simple hereditary language over a �nite E

ω : L → R objective function

Goal: �nd a basic word α that maximizes ω(α)

(1) α0 := ∅ and i = 0
(2) given αi choose xi+1 such that

(i) αixi+1 ∈ L
(ii) ω(αixi+1) ≥ ω(αiy) for all y ∈ E such that αiy ∈ L

(3) αi+1 := αixi+1

(4) if αi+1 is not basic, i := i + 1 and go to (2)

(5) return αi+1

r
1

3

45
2

r

When does this work?



Greedy Algorithm

L simple hereditary language over a �nite E

ω : L → R objective function

Goal: �nd a basic word α that maximizes ω(α)

(1) α0 := ∅ and i = 0

(2) given αi choose xi+1 such that
(i) αixi+1 ∈ L
(ii) ω(αixi+1) ≥ ω(αiy) for all y ∈ E such that αiy ∈ L

(3) αi+1 := αixi+1

(4) if αi+1 is not basic, i := i + 1 and go to (2)

(5) return αi+1

When does this work?



Compatible Functions

ω compatible with L if for αx ∈ L such that ω(αx) ≥ ω(αy) for all y ∈ E
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If x is an optimal choice after α

x is an optimal choice at any later stage

it is always better to choose x before z
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Proof

(E ,L) is interval greedoid, ω compatible ⇒ greedy works:

γ a greedy solution

δ an optimal solution so its common pre�x with γ is of maximal length

α this common pre�x

γ = αxγ′ and δ = αy1...yn

claim: γ = δ = α
else:

augment αx from δ using (L2')

obtain αxy1...yk−1yk+1...yn ∈ L
βi := αy1...yi−1xyi ...yk−1yk+1...yn

β1 ∈ L , augmenting αy1...yi from βi yields βi+1 ∈ L
by (C1) x is a best choice after αy1...yi−1

so by (C2) ω(βi ) ≥ ω(βi+1)

by (C1) ω(βk) ≥ ω(δ)
so ω(β1) ≥ ω(δ)

Contradiction!
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Proof

greedy works for every ω compatible ⇒ (E ,L) is a greedoid:

For α, β ∈ L, |α| = k > m = |β| de�ne

f1(x) = ... = fk(x) =

{
0 if x /∈ α̃ ∪ β̃
1 if x ∈ α̃ ∪ β̃

fk+1(x) = ... = fr (x) =

{
1 if x /∈ α̃ ∪ β̃
2 if x ∈ α̃ ∪ β̃

ω(x1...xn) = min{f1(x1), ...fn(xn)}

Let δ = αδ′ be basic and γ = βx1...xp be a greedy solution

1 = ω(δ) ≤ ω(γ) ≤ fm+1(x1)

x1 ∈ α̃ ∪ β̃
x1 ∈ α̃
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2 if x ∈ α̃ ∪ β̃

ω(x1...xn) = min{f1(x1), ...fn(xn)}

Let δ = αδ′ be basic and γ = βx1...xp be a greedy solution

1 = ω(δ) ≤ ω(γ) ≤ fm+1(x1)

x1 ∈ α̃ ∪ β̃
x1 ∈ α̃
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Closure

Rank closure:

r(A) := max{|X | : X ⊆ A,X ∈ F}
σ(A) := {x ∈ E : r(A ∪ x) = r(A)}
A closed: σ(A) = A

Hereditary closure:

H(F) := {Y ⊆ E : Y ⊆ X ,X ∈ F}

Greedy is optimal for every linear objective function if and only if (E ,H(F)) is a matroid
and every set that is closed in (E ,F) is also closed in (E ,H(F))
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Application to Prim's

Greedy is optimal for every linear objective function if and only if (E ,H(F)) is a matroid
and every set that is closed in (E ,F) is also closed in (E ,H(F))

Prim's minimizes w(E ′) =
∑

e∈E ′ w(e),E ′ ∈ F over (E ,F)
ω(E ′) = −w(E ′) ⇒ ω is linear

(E ,H(F)) is the graphic matroid

⇒ Prim's algorithm is optimal
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Questions?


