Greedoids

by Joris Wenzel

Technische Universitit Berlin

Prim’s algorithm

Prim’s algorithm

Goal:

Prim’s algorithm

Goal: find a minimum spanning tree

Prim’s algorithm

Goal: find a minimum spanning tree

a

\/

15

Prim’s algorithm

Goal: find a minimum spanning tree

a

\/

15

Prim’s algorithm

Goal: find a minimum spanning tree

a

\/

15

Prim’s algorithm

Goal: find a minimum spanning tree

a

\/

15

Prim’s algorithm

Goal: find a minimum spanning tree

a

\/

15

Prim’s algorithm

Goal: find a minimum spanning tree

a

\/

15

Prim’s algorithm

Goal: find a minimum spanning tree

a

\/

15

Prim’s algorithm

Goal: find a minimum spanning tree

15

a
\
5
9
d

Prim’s algorithm

Goal: find a minimum spanning tree

15

a
\
5
9
d

Prim’s algorithm

Goal: find a minimum spanning tree
a
\
5

Prim’s algorithm

Goal: find a minimum spanning tree
a
\
5

Prim’s algorithm

Goal: find a minimum spanning tree

Prim’s algorithm

Goal: find a minimum spanning tree

Prim’s algorithm

Goal: find a minimum spanning tree

Definition

Definition

Greedoid: (E,F), F C P(E)

Definition

Greedoid: (E,F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F (G1)

Definition

Greedoid: (E,F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F (G1)
e for X, Y € F with |[X| > |Y], thereis an x € X — Y such that Y + x € F (G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F (G1)
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F (G2)

matroids

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F (G1)
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F (G2)

matroids ‘ greedoids

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F (G1)
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F (G2)

matroids \ greedoids

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F (G1)
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F (G2)

matroids \ greedoids
augmentation property

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F (G1)
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F (G2)

matroids ‘ greedoids
augmentation property ‘ augmentation property (G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F (G1)
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F (G2)

matroids ‘ greedoids
augmentation property ‘ augmentation property (G2)
bases have the same size

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F

matroids ‘ greedoids
augmentation property augmentation property (G2)
bases have the same size bases have the same size

(G1)
(G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F

matroids ‘ greedoids
augmentation property augmentation property (G2)
bases have the same size bases have the same size

7 independent sets

(G1)
(G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F (G1)
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F (G2)

matroids ‘ greedoids
augmentation property augmentation property (G2)
bases have the same size bases have the same size

7 independent sets F feasible sets

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F (G1)
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F (G2)

matroids ‘ greedoids
augmentation property augmentation property (G2)
bases have the same size bases have the same size
7 independent sets F feasible sets

hereditary

Definition

Greedoid: (E, F), F C P(E)

o for every non-empty X € F there is an x € X such that X — x € F
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F

matroids ‘

augmentation property
bases have the same size
7 independent sets
hereditary

augmentation property (G2)
bases have the same size

F feasible sets
accessible(G1)

(G1)
(G2)

Definition

Greedoid: (E, F), F C P(E)

o for every non-empty X € F there is an x € X such that X — x € F
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F

matroids ‘

augmentation property
bases have the same size
7 independent sets
hereditary

augmentation property (G2)
bases have the same size

F feasible sets
accessible(G1)

(G1)
(G2)

Definition

Greedoid: (E, F), F C P(E)

o for every non-empty X € F there is an x € X such that X — x € F
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F

matroids

augmentation property
bases have the same size
7 independent sets
hereditary

more specific

augmentation property (G2)
bases have the same size

F feasible sets
accessible(G1)

(G1)
(G2)

Definition

Greedoid: (E,F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F (G1)
e for X, Y € F with |[X| > |Y], thereis an x € X — Y such that Y + x € F (G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F

(G1)
(G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F

E :={a, b,c,d, e}

(G1)
(G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F
o for X, Y € F with |X| > |Y]|, there is an x € X — Y such that Y +x € F

(G1)
(G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F (G1)
o for X, Y € F with |[X| > |Y], there isan x € X — Y such that Y + x € F (G2)

r a
b|\|d
E :={a, b,c,d, e}

F:={T C E: Tis a subtree containing r}

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F (G1)
o for X, Y € F with |[X| > |Y], there isan x € X — Y such that Y + x € F (G2)

r a
E :={a, b,c,d, e}

F:={T C E: Tis a subtree containing r}

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F (G1)
o for X, Y € F with |X| > |Y]|, there is an x € X — Y such that Y +x € F (G2)

r
a
b|\ d
C
e

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F
o for X, Y € F with |X| > |Y]|, there is an x € X — Y such that Y +x € F

(G1)
(G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F (G1)
o for X, Y € F with |[X| > |Y], there isan x € X — Y such that Y + x € F (G2)

r a
b|\|d
E :={a, b,c,d, e}

F:={T C E: Tis a subtree containing r}

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F (G1)
o for X, Y € F with |[X| > |Y], there isan x € X — Y such that Y + x € F (G2)

r a
b|\|d
E :={a, b,c,d, e}

F:={T C E: Tis a subtree containing r}

Definition

Greedoid: (E,F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F
o for X, Y € F with |[X| > |Y], there is an x € X — Y such that Y +x € F

E:={a,b,c,d, e}
F:={T CE:Tis a subtree containing r}
undirected branching greedoid

(G1)
(G2)

Definition

Greedoid: (E,F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F (G1)
e for X, Y € F with |[X| > |Y], thereis an x € X — Y such that Y + x € F (G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F (G1)
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F (G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F

i)

E ={1,2,3,4}

1 1 0
0 0 1
1 0 0

(G1)
(G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F
o for X, Y € F with |X| > |Y]|, there is an x € X — Y such that Y +x € F

E={1,2,3,4}
F={ACE: My, a},a is invertible}

(G1)
(G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F

E=1{1,2,3,4}
F={AC E: M, aj3,ais invertible}

{1,2,3}

(G1)
(G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F

E=1{1,2,3,4}
F={AC E: M, aj3,ais invertible}

{1,2,3}

(G1)
(G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F

E=1{1,2,3,4}
F={AC E: M, aj3,ais invertible}

{1,2,3} e F

(G1)
(G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F
o for X, Y € F with |X| > |Y]|, there is an x € X — Y such that Y +x € F

E={1,2,3,4}
F={ACE: Mgy

,,,,,

{1,2,3} ¢ F
{1,2}

(G1)
(G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F
o for X, Y € F with |X| > |Y]|, there is an x € X — Y such that Y +x € F

E={1,2,3,4}
F={ACE: Mgy

,,,,,

{1,2,3} ¢ F
{1,2}

(G1)
(G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F
o for X, Y € F with |X| > |Y]|, there is an x € X — Y such that Y +x € F

E={1,2,3,4}
F={ACE: Mgy

,,,,,

{1,2,3} ¢ F
{1,2} ¢ F

(G1)
(G2)

Definition

Greedoid: (E,F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F
o for X, Y € F with |[X| > |Y], thereis an x € X — Y such that Y +x € F

E={1,2,3,4}
F={ACE: Mgy

,,,,,

{1,2,3} e F
{1,2} ¢ F

Gaussian elimination greedoid

(G1)
(G2)

Definition

Greedoid: (E,F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F (G1)
e for X, Y € F with |[X| > |Y], thereis an x € X — Y such that Y + x € F (G2)

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X — x € F (G1)
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F (G2)

antimatroids

Definition

Greedoid: (E, F), F C P(E)
o for every non-empty X € F there is an x € X such that X —x € F (G1)
o for X, Y € F with |[X| > |Y], thereisan x € X — Y such that Y + x € F (G2)

antimatroids
matroids

Greedoid Languages - Notation

Greedoid Languages - Notation

o alphabet: E # ()

Greedoid Languages - Notation

o alphabet: £ # ()

e words: E*

Greedoid Languages - Notation

o alphabet: £ # ()
o words: E”

o language: £L C E*

Greedoid Languages - Notation

alphabet: E # ()

words: E*

language: £ C E*

@ support: &, set of letters in o

Greedoid Languages - Notation

alphabet: E # ()

words: E*

language: £ C E*
@ support: &, set of letters in o
L= {alaecL}

Greedoid Languages - Notation

alphabet: E # ()

words: E*

language: £ C E*
@ support: &, set of letters in o
L= {alaecL}

@ a word is called simple if it does not contain the same letter twice

Greedoid Languages - Notation

alphabet: E # ()

words: E*

language: £ C E*
@ support: &, set of letters in o
L= {alaecL}

a word is called simple if it does not contain the same letter twice

a language is simple if all of its words are simple

Greedoid Languages - Notation

alphabet: E # ()

words: E*

language: £ C E*
@ support: &, set of letters in o
L= {alaecL}

a word is called simple if it does not contain the same letter twice

a language is simple if all of its words are simple

set of simple words: E;

Greedoid Languages - Notation

alphabet: E # ()

words: E*

language: £ C E*

support: &, set of letters in «
L= {alaecL}

a word is called simple if it does not contain the same letter twice

a language is simple if all of its words are simple

set of simple words: E;

E finite = E/ finite

Greedoid Languages - Definition

Greedoid Languages - Definition

E+0

Greedoid Languages - Definition

E+0,LCE:

Greedoid Languages - Definition

E+0,LCE:

(E, L) is a greedoid language if

Greedoid Languages - Definition

E+0,LCE:

(E, L) is a greedoid language if
esafelL=>acl (L1)

Greedoid Languages - Definition

E+0,LCE:

(E, L) is a greedoid language if
esafelL=>acl (L1)
® o, € L,|a| > |B| = there is an x € & such that fx € £ (L2)

Greedoid Languages - Definition

E#0,LCE

(E, L) is a greedoid language if
eafeLlL=acLl
° o, € L,]a| > |B| = there is an x € & such that Bx € L

@ words in £ are called feasible

(L1)
(L2)

Greedoid Languages - Definition

E#0,LCE

(E, L) is a greedoid language if
eafeLlL=acLl
° o, € L,]a| > |B| = there is an x € & such that Bx € L

@ words in L are called feasible
o (L1): left hereditary

(L1)
(L2)

Greedoid Languages - Definition

E#0,LCE

(E, L) is a greedoid language if
eafeLlL=acLl
° o, € L,]a| > |B| = there is an x € & such that Bx € L

@ words in L are called feasible
o (L1): left hereditary
o (L2): exchange property

(L1)
(L2)

Greedoid Languages - Definition

E#0,LCE

(E, L) is a greedoid language if
eafeLlL=acLl
° o, € L,]a| > |B| = there is an x € & such that Bx € L

@ words in L are called feasible
o (L1): left hereditary
o (L2): exchange property

@ maximal words in £ are called basic words

(L1)
(L2)

Greedoid Languages - Definition

E#0,LCE

(E, L) is a greedoid language if
eafeLlL=acl (L1)
° a,B € L,|al > |B] = there is an x € & such that 8x € L (L2)

@ words in L are called feasible

o (L1): left hereditary

o (L2): exchange property

@ maximal words in £ are called basic words

@ pure: all basic words in £ have the same length

Greedoid Languages - Definition

E#0,LCE

(E, L) is a greedoid language if
eafeLlL=acl (L1)
° a,B € L,|al > |B] = there is an x € & such that 8x € L (L2)

@ words in £ are called feasible

o (L1): left hereditary

o (L2): exchange property

e maximal words in £ are called basic words

@ pure: all basic words in £ have the same length

@ by (L2) all greedoid languages are pure

Greedoid Languages - Definition

E#0,LCE

(E, L) is a greedoid language if
eafeLlL=acl (L1)
° a,B € L,|al > |B] = there is an x € & such that 8x € L (L2)

@ words in £ are called feasible

o (L1): left hereditary

o (L2): exchange property

e maximal words in £ are called basic words

@ pure: all basic words in £ have the same length

@ by (L2) all greedoid languages are pure

Greedoid Languages - Definition

E+0,LCE:

(E, L) is a greedoid language if
esafelL=>acl (L1)
® o, € L,|a| > |B| = there is an x € & such that fx € £ (L2)

Greedoid Languages - Definition
E#0,LCES

(E, L) is a greedoid language if
eafeLlL=acLl
e a,f € L, |a| > |B] = there is an x € & such that Bx € L

(L1)
(L2)

Greedoid Languages - Definition
E#0,LCES
(E, L) is a greedoid language if

eafeLlL=acl
° o, € L,]a| > |B|] = there is an x € & such that Bx € L

E={ab,c,d, e}

(L1)
(L2)

Greedoid Languages - Definition
E+0.LCE;

(E, L) is a greedoid language if
eafeLlL=acl
° a,f € L, |a| > |B| = there is an x € & such that Bx € L

E ={ab,c,d, e}
L ={x1..xk € E] : X1..x; subtree containing r for 1 < i < k}

(L1)
(L2)

Greedoid Languages - Definition
E+£0,LCE;

(E, L) is a greedoid language if
eafeL=>acLl
e o,B € L,|al > |B| = thereis an x € & such that 8x € L

E={ab,c,d, e}
L={x1..xk € EJ : X1...%; subtree containing r for 1 </ < k}
bed € L

(L1)
(L2)

Greedoid Languages - Definition
E+£0,LCE;

(E, L) is a greedoid language if
eafeLlL=>acl
o o,B € L,|al > |B| = thereis an x € & such that 8x € L

E ={a,b,c,d, e}

L ={x1..xk € E : X1...x; subtree containing r for 1 <i < k}
bed € L

dbc ¢ L

(L1)
(L2)

Greedoid Languages - Definition

E+0,LCE:

(E, L) is a greedoid language if
esafelL=>acl (L1)
® o, € L,|a| > |B| = there is an x € & such that fx € £ (L2)

Greedoid Languages - Definition

E+0,LCE:

(E, L) is a greedoid language if
eafeLlL=acl
e a,B € L, |al > |B| = there is an x € & such that Bx € £

(L1)
(L2)

Greedoid Languages - Definition

E#0,LCE

(E, L) is a greedoid language if
eafeLlL=acl
e a,B € L, |al > |B| = there is an x € & such that Bx € £

1 1 01
M=1[0 0 1 0
1 0 0O

E ={1,2,3,4}

(L1)
(L2)

Greedoid Languages - Definition

E#0,LCE

(E, L) is a greedoid language if
eafelL=>acl
o «o,B € L,|a| > |B| = there is an x € & such that 8x € L

E={1,234}
L: sequences of pivot elements of Gaussian elimination

(L1)
(L2)

Greedoid Languages - Equivalence

Greedoid Languages - Equivalence

(i) (E,L) greedoid language = (E, £) greedoid

Greedoid Languages - Equivalence

(i) (E,L) greedoid language = (E, £) greedoid
(i) (E,F) greedoid then

L(F) :i={x1..xk € El|{x1,...,xi} € F for 1 <<k}

is a greedoid language

Greedoid Languages - Equivalence

(i) (E,L) greedoid language = (E, £) greedoid
(i) (E,F) greedoid then

L(F) :i={x1..xk € El|{x1,...,xi} € F for 1 <<k}

is a greedoid language

(i) £(E) = £ and L(F) = F

Greedoid Languages - Equivalence

(i) (E,L) greedoid language = (E, £) greedoid
(i) (E,F) greedoid then

L(F) :i={x1..xk € El|{x1,...,xi} € F for 1 <<k}

is a greedoid language

(i) £(E) = £ and L(F) = F

= we can use greedoids and greedoid languages interchangeably

Greedy Algorithm

Greedy Algorithm

o L simple hereditary language over a finite E

Greedy Algorithm

o L simple hereditary language over a finite E
@ w: L — R objective function

Greedy Algorithm

o L simple hereditary language over a finite E
@ w: L — R objective function

Goal: find a basic word o that maximizes w(c)

Greedy Algorithm

o L simple hereditary language over a finite E
@ w: L — R objective function

Goal: find a basic word « that maximizes w(«)

Greedy Algorithm

o L simple hereditary language over a finite E
@ w: L — R objective function

Goal: find a basic word « that maximizes w(«)

(1) ap:=0and i=0

Greedy Algorithm
o L simple hereditary language over a finite E
@ w: L — R objective function

Goal: find a basic word « that maximizes w(«)

(1) ap:=0and i=0
(2) given «; choose x;+1 such that

Greedy Algorithm
o L simple hereditary language over a finite E
@ w: L — R objective function
Goal: find a basic word « that maximizes w(«)
(1) ap:=0and i=0

(2) given «; choose x;+1 such that
(i) aixiy1 € L

Greedy Algorithm

o L simple hereditary language over a finite E
@ w: L — R objective function
Goal: find a basic word « that maximizes w(«)
(1) ap:=0and i=0

(2) given «; choose x;+1 such that
(i) aixiy1 € L

r*
5|\4
2
3

Greedy Algorithm
o L simple hereditary language over a finite E
@ w: L — R objective function
Goal: find a basic word « that maximizes w(«)
(1) ap:=0and i=0
(2) given «; choose x;+1 such that

(i) aixiy1 € L
(i) w(aixiy1) > w(eyy) for all y € E such that ayy € £

I’*
5|\4
2
3

Greedy Algorithm
o L simple hereditary language over a finite E
@ w: L — R objective function

Goal: find a basic word « that maximizes w(«)

(1) ap:=0and i=0
(2) given «; choose x;+1 such that
(i) cixip1 € L
(i) w(aixiy1) > w(eyy) for all y € E such that ayy € £

Greedy Algorithm

o L simple hereditary language over a finite E
@ w: L — R objective function

Goal: find a basic word « that maximizes w(«)

(1) ap:=0and i=0
(2) given «; choose x;+1 such that

(i) cixip1 € L

(i) w(aixiy1) > w(eyy) for all y € E such that ayy € £
(3) i1 = aixXipa

Greedy Algorithm

o L simple hereditary language over a finite E
@ w: L — R objective function

Goal: find a basic word « that maximizes w(«)

(1) ap:=0and i=0
(2) given «; choose x;+1 such that

(i) cixip1 € L

(i) w(aixiy1) > w(eyy) for all y € E such that ayy € £
(3) i1 = aixXipa

(4) if ajy1 is not basic, i := i+ 1 and go to (2)

Greedy Algorithm

o L simple hereditary language over a finite E
@ w: L — R objective function

Goal: find a basic word « that maximizes w(«)

(1) ap:=0and i=0
(2) given «; choose x;+1 such that

(i) cixip1 € L

(i) w(aixiy1) > w(eyy) for all y € E such that ayy € £
(3) i1 = aixXipa

(4) if ajy1 is not basic, i := i+ 1 and go to (2)

Greedy Algorithm

o L simple hereditary language over a finite E
@ w: L — R objective function

Goal: find a basic word « that maximizes w(«)

(1) ap:=0and i=0
(2) given «; choose x;+1 such that
(i) aixiy1 € L
(i) w(aixiy1) > w(eyy) for all y € E such that ayy € £
(3) ait1 = aixiy1
(4) if ajy1 is not basic, i := i+ 1 and go to (2)
(5) return a1

Greedy Algorithm

o L simple hereditary language over a finite E
@ w: L — R objective function

Goal: find a basic word o that maximizes w(c)

(1) ap:=0and i=0
(2) given «; choose xj41 such that

(i) aixiy1 € L

(i) w(aixiy1) > w(oyy) for all y € E such that oyy € £
(3) @iy1 = aixin

T i, i=i
(4) if ajy1 is not basic, i := i+ 1 and go to (2)
(5) return a1

When does this work?

Compatible Functions

Compatible Functions

w compatible with £ if for ax € £ such that w(ax) > w(ay) forall y € E

Compatible Functions

w compatible with £ if for ax € £ such that w(ax) > w(ay) forall y € E
o afxy,afzy € L = w(afxy) > w(afzy) (C1)

Compatible Functions

w compatible with £ if for ax € £ such that w(ax) > w(ay) forall y € E
o afxy,afzy € L = w(afxy) > w(afzy) (C1)
o axfzy,azfxy € L = w(axpfzy) > w(azfBxy) (C2)

Compatible Functions

w compatible with £ if for ax € £ such that w(ax) > w(ay) forall y € E
o afxy,afzy € L = w(afxy) > w(afzy) (C1)
o axfzy,azfxy € L = w(axpfzy) > w(azfBxy) (C2)

If x is an optimal choice after «

Compatible Functions

w compatible with £ if for ax € £ such that w(ax) > w(ay) forall y € E
o afxy,afzy € L = w(afxy) > w(afzy) (C1)
o axfzy,azfxy € L = w(axpfzy) > w(azfBxy) (C2)

If x is an optimal choice after «

@ x is an optimal choice at any later stage

Compatible Functions

w compatible with £ if for ax € £ such that w(ax) > w(ay) forall y € E
o afxy,afzy € L = w(afxy) > w(afzy) (C1)
o axfzy,azfxy € L = w(axpfzy) > w(azfBxy) (C2)

If x is an optimal choice after «
@ x is an optimal choice at any later stage

@ it is always better to choose x before z

Result

Result

L a simple hereditary language over E

Result

L a simple hereditary language over E

= (E, L) is a greedoid if and only if the greedy algorithm works for every compatible
objective function on £

Result

L a simple hereditary language over E

= (E, L) is a greedoid if and only if the greedy algorithm works for every compatible
objective function on £

Korte & Lovasz (1984). Greedoids, a structural framework for the greedy algorithm

Interval Greedoids

Interval Greedoids

E+#0,LCE;

(E, L) is a greedoid language if
eafeLlL=>acl (L1)
e a,B € L,|al > |B] = there is an x € & such that Bx € L (L2)

Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if
eafeLlL=acl (L1)
o afB-cLfel>f=—theredsanscasuch-that Sxc£ (L2)

°a,f€ [',|a‘ > ‘6|
= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
°a,f€ [',|a‘ > ‘6|

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

greedoid

Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
° o, B € [',|a‘ > ‘ﬁl

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

greedoid

Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
°a,f€ [',|a‘ > ‘6|

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

greedoid — greed

Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
°a,f€ [',|a‘ > ‘6|

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

greedoid

Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
°a,f€ [',|a‘ > ‘6|

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

greedoid — red

Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
°a,f€ [',|a‘ > ‘6|

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

greedoid

Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
°a,f€ [',|a‘ > ‘6|

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

greedoid - dig

Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if
eafeLlL=acl (L1)
o afB-cLfel>f=—theredsanscasuch-that Sxc£ (L2)

°a,f€ [',|a‘ > ‘6|
= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
° a,BELal > B

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

undirected branching greedoids

Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if
eafeLlL=acl (L1)
o oL et 1B =thereisanxca-such-that e £ (L2)
°a,f €L lal>|f|
= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

undirected branching greedoids
antimatroids

Interval Greedoids

E#0,LCES

(E, L) is an interval greedoid if

eafeLlL=acl (L1)
0 arfcE£ ot > =thereisanxcasuchthat SxecL£ (L2)
° a,BELal > B

= there is a subword o’ of length |a’| = |a| — |B] in « such that Ba’ € £ (L2

undirected branching greedoids
antimatroids
matroids

Proof

Proof

(E, L) is interval greedoid, w compatible = greedy works:

Proof

(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution

Proof

(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution

@ § an optimal solution so its common prefix with ~ is of maximal length

Proof

(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution
@ § an optimal solution so its common prefix with ~ is of maximal length

@ « this common prefix

Proof

(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution
@ § an optimal solution so its common prefix with ~ is of maximal length
@ « this common prefix

e y=oaxy and § = ayi...ya

Proof

(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution

@ § an optimal solution so its common prefix with ~ is of maximal length
@ « this common prefix

e y=oaxy and § = ayi...yn

claim:y=d=«

Proof

(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution

@ § an optimal solution so its common prefix with ~ is of maximal length
@ « this common prefix

e y=oaxy and § = ayi...ya

claim:y=d=«
else:

Proof

(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution
@ § an optimal solution so its common prefix with ~ is of maximal length
@ « this common prefix
e y=oaxy and § = ayi...ya
claim:y=d=«
else:

@ augment ax from § using (L2')

Proof

(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution
@ § an optimal solution so its common prefix with ~ is of maximal length
@ « this common prefix
e y=oaxy and § = ayi...ya
claim:y=d=«
else:
@ augment ax from § using (L2')

@ obtain axyi...yk—1Yk+1---Yn € L

Proof

(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution
@ § an optimal solution so its common prefix with ~ is of maximal length
@ « this common prefix
e y=oaxy and § = ayi...ya
claim:y=d=«
else:
@ augment ax from § using (L2')
@ obtain axyi...yk—1Yk+1---Yn € L
0 fi = ayi...Yi—1XYi---Yk—1Yk+1---Yn

Proof

(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution
@ § an optimal solution so its common prefix with ~ is of maximal length
@ « this common prefix
e y=oaxy and § = ayi...ya
claim:y=d=«
else:
@ augment ax from § using (L2')
@ obtain axyi...yk—1Yk+1---Yn € L
0 fi = ayi...Yi—1XYi---Yk—1Yk+1---Yn
e /el

Proof

(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution
@ § an optimal solution so its common prefix with ~ is of maximal length
@ « this common prefix
e y=oaxy and § = ayi...ya
claim:y=d=«
else:
@ augment ax from § using (L2')
@ obtain axyi...yk—1Yk+1---Yn € L
0 fi = ayi...Yi—1XYi---Yk—1Yk+1---Yn
@ 31 € L, augmenting ayi...y; from j; yields 511 € L

Proof
(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution
@ § an optimal solution so its common prefix with ~ is of maximal length
@ « this common prefix
e y=oaxy and § = ayi...yn
claim:y ==«
else:
@ augment ax from § using (L2')
@ obtain axyi...yk—1Yk+1---Yn € L
0 f[i = ayi...Yi—1XYi---Yk—1Yk+1---Yn
@ 31 € L, augmenting ayi...y; from [; yields 511 € L

(C1): x is an optimal choice at any later stage
(C2): it is always better to choose x before z

Proof
(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution
@ § an optimal solution so its common prefix with ~ is of maximal length
@ « this common prefix
e y=oaxy and § = ayi...yn
claim:y ==«
else:
@ augment ax from § using (L2')
@ obtain axyi...yk—1Yk+1---Yn € L
0 f[i = ayi...Yi—1XYi---Yk—1Yk+1---Yn
@ 31 € L, augmenting ayi...y; from [; yields 511 € L
@ by (C1) x is a best choice after ayi...yi—1

(C1): x is an optimal choice at any later stage
(C2): it is always better to choose x before z

Proof
(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution
@ § an optimal solution so its common prefix with ~ is of maximal length
@ « this common prefix
e y=oaxy and § = ayi...yn
claim:y ==«
else:
@ augment ax from § using (L2')
@ obtain axyi...yk—1Yk+1---Yn € L
0 f[i = ayi...Yi—1XYi---Yk—1Yk+1---Yn
@ 31 € L, augmenting ayi...y; from [; yields 511 € L
@ by (C1) x is a best choice after ayi...yi—1
@ so by (C2) w(Bi) > w(Bit+1)

(C1): x is an optimal choice at any later stage
(C2): it is always better to choose x before z

Proof
(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution
@ § an optimal solution so its common prefix with ~ is of maximal length
@ « this common prefix
e y=oaxy and § = ayi...yn
claim:y ==«
else:
@ augment ax from § using (L2')
@ obtain axyi...yk—1Yk+1---Yn € L
0 f[i = ayi...Yi—1XYi---Yk—1Yk+1---Yn
@ 31 € L, augmenting ayi...y; from [; yields 511 € L

by (C1) x is a best choice after ays...yi—1
so by (C2) w(Bi) = w(Bit1)
by (C1) w(B) = w(d)

(C1): x is an optimal choice at any later stage
(C2): it is always better to choose x before z

Proof

(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution
@ § an optimal solution so its common prefix with ~ is of maximal length
@ « this common prefix
e y=oaxy and § = ayi...ya
claim:y=d=«
else:
@ augment ax from § using (L2')
@ obtain axyi...yk—1Yk+1---Yn € L
0 fi = ayi...Yi—1XYi---Yk—1Yk+1---Yn
@ 31 € L, augmenting ayi...y; from j; yields 511 € L

by (C1) x is a best choice after ay;...yi—1
so by (C2) w(Bi) > w(Bis1)
by (C1) w(Bk) = w(9)

Proof

(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution
@ § an optimal solution so its common prefix with ~ is of maximal length
@ « this common prefix
e y=oaxy and § = ayi...ya
claim:y=d=«
else:
@ augment ax from § using (L2')
@ obtain axyi...yk—1Yk+1---Yn € L
0 fi = ayi...Yi—1XYi---Yk—1Yk+1---Yn
@ 31 € L, augmenting ayi...y; from j; yields 511 € L

by (C1) x is a best choice after ay;...yi—1
so by (C2) w(Bi) > w(Bi+1)

by (C1) w(B) > w(6)

so w(f1) > w(d)

Proof

(E, L) is interval greedoid, w compatible = greedy works:

@ v a greedy solution
@ § an optimal solution so its common prefix with ~ is of maximal length
@ « this common prefix
e y=oaxy and § = ayi...ya
claim:y=d=«
else:
@ augment ax from § using (L2')
@ obtain axyi...yk—1Yk+1---Yn € L
0 fi = ayi...Yi—1XYi---Yk—1Yk+1---Yn
@ 31 € L, augmenting ayi...y; from j; yields 511 € L

by (C1) x is a best choice after ay;...yi—1
so by (C2) w(Bi) > w(Bi+1)

by (C1) w(Bk) = w(d)

so w(f1) > w(d)

Contradiction!

Proof

greedy works for every w compatible = (E, L) is a greedoid:

Proof

greedy works for every w compatible = (E, L) is a greedoid:

(L2): a, B € L, |a| > |B] = there is an x € & such that Bx € L

Proof

greedy works for every w compatible = (E, L) is a greedoid:

For a,8 € L, |a| = k > m = || define

Proof

greedy works for every w compatible = (E, L) is a greedoid:

For a,8 € L, |a| = k > m = || define

0ifx¢aup
0 A(x) = . = fi(x) = {1 :fiigig

Proof

greedy works for every w compatible = (E, L) is a greedoid:

For a, B8 € L, |a| = k > m = |3]| define
Oifx¢ aup
f(x) = ... = fi(x) = "
° Al «(x) {1wxeauﬁ

lifx¢aug

°ﬂ“&)_”"_ﬂ@)_{2ﬁxedu5

Proof

greedy works for every w compatible = (E, L) is a greedoid:

For a,8 € L, |a| = k > m = || define

0ifx¢aup
0 A(x) = . = fi(x) = {1 :fiigig

SR (e
@ w(x1...xn) = min{fi(x1),...fa(xn)}

Proof

greedy works for every w compatible = (E, L) is a greedoid:

For a,8 € L, |a| = k > m = || define

0ifx¢aup
0 A(x) = . = fi(x) = {1 :fiigig

SR (e
@ w(x1...xn) = min{fi(x1),...fa(xn)}

Let 6 = ad’ be basic

Proof

greedy works for every w compatible = (E, L) is a greedoid:

For a,8 € L, |a| = k > m = || define

0ifx¢aup
0 A(x) = . = fi(x) = {1 :fiigig

SR (e
@ w(x1...xn) = min{fi(x1),...fa(xn)}

Let § = ad’ be basic and v = Bx1...x, be a greedy solution

Proof

greedy works for every w compatible = (E, L) is a greedoid:

For a,8 € L, |a| = k > m = || define

0ifx¢aup
0 A(x) = . = fi(x) = {1 :fiigig

SR (e
@ w(x1...xn) = min{fi(x1),...fa(xn)}

Let § = ad’ be basic and v = Bx1...x, be a greedy solution
o 1=uw()

Proof

greedy works for every w compatible = (E, L) is a greedoid:

For a,8 € L, |a| = k > m = || define

0ifx¢aup
0 A(x) = . = fi(x) = {1 :fiigig

SR (e
@ w(x1...xn) = min{fi(x1),...fa(xn)}

Let § = ad’ be basic and v = Bx1...x, be a greedy solution
o 1=w(d) < w(y)

Proof

greedy works for every w compatible = (E, L) is a greedoid:

For a,8 € L, |a| = k > m = || define

0ifx¢aup
0 A(x) = . = fi(x) = {1 :fiigig

SR (e
@ w(x1...xn) = min{fi(x1),...fa(xn)}

Let § = ad’ be basic and v = Bx1...x, be a greedy solution
o 1=w(8) <w(y) < fma(x1)

Proof

greedy works for every w compatible = (E, L) is a greedoid:

For a,8 € L, |a| = k > m = || define
L _Joifx¢aup
o fi(x)=..="f(x)= {1 ifxEo”zUB
o _Jrifx¢aup
® fira() = =) = {2 if x €auf
@ w(x1...xn) = min{fi(x1),...fa(xn)}

Let § = ad’ be basic and v = Bx1...x, be a greedy solution
o 1=w(8) <w(y) < fma(x1)
e x1 €EauU B

Proof

greedy works for every w compatible = (E, L) is a greedoid:

For a,8 € L, |a| = k > m = || define
L _Joifx¢aup
o fi(x)=..="f(x)= {1 ifxEo”zUB
o _Jrifx¢aup
® fira() = =) = {2 if x €auf
@ w(x1...xn) = min{fi(x1),...fa(xn)}

Let § = ad’ be basic and v = Bx1...x, be a greedy solution
o 1=w(8) <w(y) < fma(x1)
e x1 €EauU B

@ x1 €EQ

Closure

Closure

Rank closure:

Closure

Rank closure:

o r(A):=max{|X|: X CA X € F}

Closure

Rank closure:

o r(A):=max{|X|: X CA X e F}
o o(A):={xe E:r(AUx)=r(A)}

Closure

Rank closure:

o r(A):=max{|X|: X CA X e F}
o o(A):={xe E:r(AUx)=r(A)}
o Aclosed: 6c(A)=A

Closure

Rank closure:
o r(A):=max{|X|: X CA X e F}
o o(A):={xe E:r(AUx)=r(A)}
o Aclosed: 6c(A)=A

Hereditary closure:

Closure

Rank closure:

o r(A):=max{|X|: X CA X e F}
o o(A):={xe E:r(AUx)=r(A)}
o Aclosed: 6c(A)=A

Hereditary closure:

H(F) ={YCE:YCX,XeF}

Closure

Rank closure:

o r(A):=max{|X|: X CA X e F}
o o(A):={xe E:r(AUx)=r(A)}
o Aclosed: 6c(A)=A

Hereditary closure:

H(F):={YCE:YCX,XeF}

Greedy is optimal for every linear objective function if and only if (E, H(F)) is a matroid
and every set that is closed in (E,F) is also closed in (E, H(F))

Application to Prim’s

Greedy is optimal for every linear objective function if and only if (E, H(F)) is a matroid
and every set that is closed in (E, F) is also closed in (E, H(F))

Application to Prim’s

Greedy is optimal for every linear objective function if and only if (E, H(F)) is a matroid
and every set that is closed in (E, F) is also closed in (E, H(F))

Prim’s minimizes w(E') = Y,z w(e),E’ € F over (E,F)

Application to Prim’s

Greedy is optimal for every linear objective function if and only if (E, H(F)) is a matroid
and every set that is closed in (E, F) is also closed in (E, H(F))

Prim’s minimizes w(E') = Y,z w(e),E’ € F over (E,F)
w(E") = —w(E")

Application to Prim’s

Greedy is optimal for every linear objective function if and only if (E, H(F)) is a matroid
and every set that is closed in (E, F) is also closed in (E, H(F))

Prim’s minimizes w(E') = Y,z w(e),E’ € F over (E,F)
w(E") = —w(E') = w is linear

Application to Prim’s

Greedy is optimal for every linear objective function if and only if (E, H(F)) is a matroid
and every set that is closed in (E, F) is also closed in (E, H(F))

Prim’s minimizes w(E') = Y,z w(e),E’ € F over (E,F)
w(E") = —w(E') = w is linear

(E, H(F)) is the graphic matroid

Application to Prim’s

Greedy is optimal for every linear objective function if and only if (E, H(F)) is a matroid
and every set that is closed in (E, F) is also closed in (E, H(F))

Prim’s minimizes w(E') = Y,z w(e),E’ € F over (E,F)
w(E") = —w(E') = w is linear

(E, H(F)) is the graphic matroid

= Prim’s algorithm is optimal

Questions?

