Independent set polytopes

Fritz Geis

11. July 2020

Seminar Matroide und verwandte Strukturen

maximize $w^T x$ subject to $Ax \le r$ $x \ge 0$

Strong duality

If an LP has an optimal solution, so does its dual and the optimal values are equal.

Integral Polytope

A polytope P is called **integral**, if every vertex of P is integral.

Example

$$x_1 + x_2 \le 1$$
$$x_1, x_2 \ge 0$$

Totally unimodular

A matrix A is called **totally unimodular** if each square submatrix of A has determinant equal to +1, -1 or 0.

Totally unimodular

A matrix A is called **totally unimodular** if each square submatrix of A has determinant equal to +1, -1 or 0.

Integrality condition I

Let A be a totally unimodular mxn matrix and let $r \in \mathbb{Z}^m$. Then the polyhedron defined by $Ax \leq r$ is integral.

Totally dual integral

A system $Ax \leq r$ is called **totally dual integral (TDI)**, if A and r are rational and for each $w \in \mathbb{Z}^n$, the dual of

maximize $w^T x$ subject to $Ax \le r$

has an integer optimum solution.

Totally dual integral

A system $Ax \leq r$ is called **totally dual integral (TDI)**, if A and r are rational and for each $w \in \mathbb{Z}^n$, the dual of

maximize $w^T x$ subject to $Ax \le r$

has an integer optimum solution.

Integrality condition II

If $Ax \leq r$ is TDI and r integral, then $Ax \leq r$ defines an integral polyhedron.

The independent set polytope

The independent set polytope $P_{independent set}(M)$ of a matroid $M = (S, \mathcal{I})$ is defined as the convex hull of the incidence vectors of the independent sets of M.

The **independent set polytope** $P_{independent set}(M)$ of a matroid $M = (S, \mathcal{I})$ is defined as the convex hull of the incidence vectors of the independent sets of M.

Example:

 $S{=}\{a,b\}; \ \mathcal{I} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$

Claim: $P_{independent set}(M)$ is fully determined by:

$$\begin{array}{ll} (1) & x_s \geq 0 & \text{for } s \in S \\ & x(U) \leq r_{\mathcal{M}}(U) & \text{for } U \subseteq S \end{array}$$

where $x(U) := \sum_{u \in U} x_u$

Claim: $P_{independent set}(M)$ is fully determined by:

$$\begin{array}{ll} (1) & x_s \geq 0 & \text{for } s \in S \\ & x(U) \leq r_{\mathcal{M}}(U) & \text{for } U \subseteq S \end{array}$$

where $x(U) := \sum_{u \in U} x_u$

Remarks:

Incidence vectors of independent sets satisfy (1)
 ⇒ Each vector in P_{independent set}(M) satisfies these

Claim: $P_{independent set}(M)$ is fully determined by:

$$\begin{array}{ll} (1) & x_s \geq 0 & \text{for } s \in S \\ & x(U) \leq r_{\mathcal{M}}(U) & \text{for } U \subseteq S \end{array}$$

where $x(U) := \sum_{u \in U} x_u$

Remarks:

- Incidence vectors of independent sets satisfy (1)
 ⇒ Each vector in P_{independent set}(M) satisfies these
- x integer vector satisfying (1) ⇔ x incidence vector of a independent set

Theorem 40.2 Let $M = (S, \mathcal{I})$ be a matroid, with rank function r. Then for any weight function $w : S \to \mathbb{R}_+$:

$$max\{w(I) \mid I \in \mathcal{I}\} = \sum_{i=1}^{n} \lambda_i r(U_i),$$

where $U_1 \subset \cdots \subset U_n \subseteq S$ and where $\lambda_i \geq 0$ satisfy

$$w = \sum_{i=1}^{n} \lambda_i \chi^{U_i}$$

For $w: S \to \mathbb{R}$ consider following linear programming problem

$$\begin{split} \text{maximize } & w^T x \\ \text{subject to } & x_s \geq 0 \qquad (s \in S), \\ & x(U) \leq r_M(U) \quad (U \subseteq S) \end{split}$$

and its dual:

$$\begin{array}{ll} \text{minimize} & \sum_{U \subseteq S} y_U r_M(U) \\ \text{subject to} & y_U \geq 0 & (U \subseteq S) \\ & \sum_{U \subseteq S} y_U \chi^U \geq w \end{array}$$

Corollary 40.2a If $w : S \to \mathbb{Z}$, then the primal and dual have integer optimal solutions.

Primal:

maximize $w^T x$

 $\begin{aligned} \text{subject to } x_s \geq 0 & (s \in S), \\ x(U) \leq r_{\mathcal{M}}(U) & (U \subseteq S) \end{aligned}$

$$max\{w(I)|I \in \mathcal{I}\} = \sum_{i=1}^{n} \lambda_i r(U_i)$$

Dual:

minimize
$$\sum_{U \subseteq S} y_U r_M(U) \qquad \qquad w = \sum_{i=1}^n \lambda_i \chi^U$$
subject to $y_U \ge 0 \qquad (U \subseteq S)$
$$\sum_{U \subseteq S} y_U \chi^U \ge w$$

Corollary 40.2a If $w : S \to \mathbb{Z}$, then the primal and dual have integer optimal solutions.

Corollary 40.2b The independent set polytope is determined by

$x_s \ge 0$	for $s \in S$
$x(U) \leq r_M(U)$	for $U \subseteq S$

Intersection of the independent set polytopes

Common independent set polytope

Let $M_1 = (S, \mathcal{I}_1)$ and $M_2 = (S, \mathcal{I}_2)$ be two Matroids. Then we define $P_{common independent set}(M_1, M_2)$ as the convex hull of the incidence vectors of common independent sets of M_1 and M_2 .

 $\begin{array}{ll} (2) & x_s \geq 0 & \text{for } s \in S \\ & x(U) \leq r_i(U) & \text{for } i=1,2 \text{ and } U \subseteq S \end{array}$

$$\begin{array}{ll} (2) & x_s \geq 0 & \text{for } s \in S \\ & x(U) \leq r_i(U) & \text{for } i=1,2 \text{ and } U \subseteq S \end{array}$$

Remarks

• (2) contains the convex hull of incidence vectors of common independent sets of M_1 and M_2

$$\begin{array}{ll} (2) & x_s \geq 0 & \text{for } s \in S \\ & x(U) \leq r_i(U) & \text{for } i=1,2 \text{ and } U \subseteq S \end{array}$$

Remarks

- (2) contains the convex hull of incidence vectors of common independent sets of M_1 and M_2
- Every integer vector satisfying (2) is an incidence vector of a common independent set

$$\begin{array}{ll} (2) & x_s \geq 0 & \text{for } s \in S \\ & x(U) \leq r_i(U) & \text{for } i=1,2 \text{ and } U \subseteq S \end{array}$$

Remarks

- (2) contains the convex hull of incidence vectors of common independent sets of M_1 and M_2
- Every integer vector satisfying (2) is an incidence vector of a common independent set
- (2) determines P_{independent set}(M₁) ∩ P_{independent set}(M₂)

Chain

A family of sets \mathcal{F} is called a **chain**, if for any pair of subsets $U, T \in \mathcal{F}$ holds, that either $T \subseteq U$ or $U \subseteq T$

Chain

A family of sets \mathcal{F} is called a **chain**, if for any pair of subsets $U, T \in \mathcal{F}$ holds, that either $T \subseteq U$ or $U \subseteq T$

Laminar family

A family of sets C is called **laminar**, if $Y \subseteq Z$ or $Z \subseteq Y$ or $Y \cap Z = \emptyset$ for all $Y, Z \in C$.

Totally unimodular

A matrix A is called **totally unimodular** if each square submatrix of A has determinant equal to +1, -1 or 0.

Theorem 41.11 Let C be the union of two laminar families of subsets of a set X. Let A be the $C \times X$ incidence matrix of C. Then A is totally unimodular.

Totally dual integral

A system $Ax \leq r$ is called **totally dual integral (TDI)**, if A and r are rational and for each $w \in \mathbb{Z}^n$, the dual of

maximize $w^T x$ subject to $Ax \le r$

has an integer optimum solution.

Totally dual integral

A system $Ax \leq r$ is called **totally dual integral (TDI)**, if A and r are rational and for each $w \in \mathbb{Z}^n$, the dual of

maximize $w^T x$ subject to $Ax \le r$

has an integer optimum solution.

Box-totally dual integral

The linear system $Ax \le b$ is **box-totally dual integral (box TDI)**, if for every choice of rational vectors u and l the system $Ax \le b$; $u \le x \le l$ is TDI.

Thm. 41.12 The system

$$\begin{array}{ll} (2) & x_s \geq 0 \\ & x(U) \leq r_i(U) \end{array}$$

)

for $s \in S$ for i = 1, 2 and $U \subseteq S$

is box-totally dual integral.

Choose $w \in \mathbb{Z}^S$

Primal

maximize $w^T x$ subject to $x(U) \le r_i(U)$

Dual

minimize
$$\sum_{U \subseteq S} (y_1(U)r_1(U) + y_2(U)r_2(U)$$
subject to $y_1, y_2 \ge 0$
$$\sum_{U \subseteq S} (y_1(U) + y_2(U))\chi^U = w$$

Corollary 41.12a $P_{common independent set}(M_1, M_2)$ is determined by

(2)
$$x_s \ge 0$$
 for $s \in S$
 $x(U) \le r_i(U)$ for $i = 1, 2$ and $U \subseteq S$

Corollary 41.12a $P_{common independent set}(M_1, M_2)$ is determined by

$$\begin{array}{ll} (2) & x_s \geq 0 & \text{for } s \in S \\ & x(U) \leq r_i(U) & \text{for } i=1,2 \text{ and } U \subseteq S \end{array}$$

Corollary 41.12b

 $P_{common independent set}(M_1, M_2) = P_{independent set}(M_1) \cap P_{independent set}(M_2)$

Theorem 40.3 Let $M = (S, \mathcal{I})$ be a matroid and let $x \in \mathbb{Q}_+^S$. Then

$$max\{z(S)|z \in P_{independent set}(M), z \le x\}$$
$$= min\{r_M(U) + x(S \setminus U)|U \subseteq S\}$$

given: a matroid $M = (S, \mathcal{I})$, by an independence testing oracle, and a $x \in \mathbb{Q}_+^S$;

find: a $z \in P_{independent set}(M)$ with $z \le x$ maximizing z(S), with a decomposition of z as a convex combination of incidence vectors of independent sets, and a subset $U \subseteq S$ satisfying $z(S) = r_M(U) + x(S \setminus U)$.

Thank you for your attention!