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Linear programming

Strong duality

If an LP has an optimal solution, so does its dual and the optimal values

are equal.
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Linear programming

Integral Polytope

A polytope P is called integral, if

every vertex of P is integral.

Example

x1 + x2 ≤ 1

x1, x2 ≥ 0
x1

x2

0 1

1
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Linear programming

Totally unimodular

A matrix A is called totally unimodular if each square submatrix of A

has determinant equal to +1, -1 or 0.

Integrality condition I

Let A be a totally unimodular mxn matrix and let r ∈ Zm. Then the

polyhedron defined by Ax ≤ r is integral.
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Linear programming

Totally dual integral

A system Ax ≤ r is called totally dual integral (TDI), if A and r are

rational and for each w ∈ Zn, the dual of

maximize wT x

subject to Ax ≤ r

has an integer optimum solution.

Integrality condition II

If Ax ≤ r is TDI and r integral, then Ax ≤ r defines an integral

polyhedron.
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The independent set polytope

The independent set polytope Pindependent set(M) of a matroid

M = (S , I) is defined as the convex hull of the incidence vectors of the

independent sets of M.

Example:

S={a,b}; I = {∅, {a}, {b}, {a, b}}
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The independent set polytope

Claim: Pindependent set(M) is fully determined by:

(1) xs ≥ 0 for s ∈ S

x(U) ≤ rM(U) for U ⊆ S

where x(U) :=
∑
u∈U

xu

Remarks:

• Incidence vectors of independent sets satisfy (1)

⇒ Each vector in Pindependent set(M) satisfies these

• x integer vector satisfying (1) ⇔ x incidence vector of a independent

set

8



The independent set polytope

Claim: Pindependent set(M) is fully determined by:

(1) xs ≥ 0 for s ∈ S

x(U) ≤ rM(U) for U ⊆ S

where x(U) :=
∑
u∈U

xu

Remarks:

• Incidence vectors of independent sets satisfy (1)

⇒ Each vector in Pindependent set(M) satisfies these

• x integer vector satisfying (1) ⇔ x incidence vector of a independent

set

8



The independent set polytope

Claim: Pindependent set(M) is fully determined by:

(1) xs ≥ 0 for s ∈ S

x(U) ≤ rM(U) for U ⊆ S

where x(U) :=
∑
u∈U

xu

Remarks:

• Incidence vectors of independent sets satisfy (1)

⇒ Each vector in Pindependent set(M) satisfies these

• x integer vector satisfying (1) ⇔ x incidence vector of a independent

set

8



The independent set polytope

Theorem 40.2 Let M = (S , I) be a matroid, with rank function r . Then

for any weight function w : S → R+:

max{w(I ) | I ∈ I} =
n∑

i=1

λi r(Ui ),

where U1 ⊂ · · · ⊂ Un ⊆ S and where λi ≥ 0 satisfy

w =
n∑

i=1

λiχ
Ui
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The independent set polytope

For w : S → R consider following linear programming problem

maximize wT x

subject to xs ≥ 0 (s ∈ S),

x(U) ≤ rM(U) (U ⊆ S)

and its dual:

minimize
∑
U⊆S

yU rM(U)

subject to yU ≥ 0 (U ⊆ S)∑
U⊆S

yUχ
U ≥ w
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The independent set polytope

Corollary 40.2a If w : S → Z, then the primal and dual have integer

optimal solutions.
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The independent set polytope

Primal:

maximize wT x

subject to xs ≥ 0 (s ∈ S),

x(U) ≤ rM(U) (U ⊆ S)

Dual:

minimize
∑
U⊆S

yU rM(U)

subject to yU ≥ 0 (U ⊆ S)∑
U⊆S

yUχ
U ≥ w

Thm. 40.2

max{w(I )|I ∈ I} =
∑n

i=1 λi r(Ui )

w =
∑n

i=1 λiχ
Ui
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The independent set polytope

Corollary 40.2a If w : S → Z, then the primal and dual have integer

optimal solutions.

Corollary 40.2b The independent set polytope is determined by

xs ≥ 0 for s ∈ S

x(U) ≤ rM(U) for U ⊆ S
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Intersection of the independent

set polytopes



Intersection of the independent set polytopes

Common independent set polytope

Let M1 = (S , I1) and M2 = (S , I2) be two Matroids. Then we define

Pcommon independent set(M1,M2) as the convex hull of the incidence vectors

of common independent sets of M1 and M2.
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Intersection of the independent set polytopes

Claim: Let M1 = (S , I) and M2 = (S , I) be two matroids, with rank

function r1 and r2. Then the common independent set polytope is fully

determined by following system,

(2) xs ≥ 0 for s ∈ S

x(U) ≤ ri (U) for i = 1, 2 and U ⊆ S

Remarks

• (2) contains the convex hull of incidence vectors of common

independent sets of M1 and M2

• Every integer vector satisfying (2) is an incidence vector of a

common independent set

• (2) determines Pindependent set(M1) ∩ Pindependent set(M2)
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Intersection of the independent set polytopes

Chain

A family of sets F is called a chain, if for any pair of subsets U,T ∈ F
holds, that either T ⊆ U or U ⊆ T

Laminar family

A family of sets C is called laminar, if

Y ⊆ Z or Z ⊆ Y or Y ∩ Z = ∅ for all Y ,Z ∈ C.
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Intersection of the independent set polytopes

Totally unimodular

A matrix A is called totally unimodular if each square submatrix of A

has determinant equal to +1, -1 or 0.
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Intersection of the independent set polytopes

Theorem 41.11 Let C be the union of two laminar families of subsets of

a set X . Let A be the C × X incidence matrix of C. Then A is totally

unimodular.
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Intersection of the independent set polytopes

Totally dual integral

A system Ax ≤ r is called totally dual integral (TDI), if A and r are

rational and for each w ∈ Zn, the dual of

maximize wT x

subject to Ax ≤ r

has an integer optimum solution.

Box-totally dual integral

The linear system Ax ≤ b is box-totally dual integral (box TDI), if for

every choice of rational vectors u and l the system Ax ≤ b; u ≤ x ≤ l is

TDI.
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Intersection of the independent set polytopes

Thm. 41.12 The system

(2) xs ≥ 0 for s ∈ S

x(U) ≤ ri (U) for i = 1, 2 and U ⊆ S

is box-totally dual integral.
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Intersection of the independent set polytopes

Choose w ∈ ZS

Primal

maximize wT x

subject to x(U) ≤ ri (U)

Dual

minimize
∑
U⊆S

(y1(U)r1(U) + y2(U)r2(U))

subject to y1, y2 ≥ 0∑
U⊆S

(y1(U) + y2(U))χU = w
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Intersection of the independent set polytopes

Corollary 41.12a Pcommon independent set(M1,M2) is determined by

(2) xs ≥ 0 for s ∈ S

x(U) ≤ ri (U) for i = 1, 2 and U ⊆ S

Corollary 41.12b

Pcommon independent set(M1,M2)=Pindependent set(M1) ∩ Pindependent set(M2)
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Cunningham

Theorem 40.3 Let M = (S , I) be a matroid and let x ∈ QS
+. Then

max{z(S)|z ∈ Pindependent set(M), z ≤ x}
= min{rM(U) + x(S \ U)|U ⊆ S}

23



The independent set polytope

given: a matroid M = (S , I), by an independence testing oracle, and a

x ∈ QS
+;

find: a z ∈ Pindependent set(M) with z ≤ x maximizing z(S), with a

decomposition of z as a convex combination of incidence vectors of

independent sets, and a subset U ⊆ S satisfying

z(S) = rM(U) + x(S \ U).
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Thank you for

your attention!
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