
Minimization of Submodular Functions
- from Chapter 45 of Schrijver -

Azad Tasan

July 11, 2020

Azad Tasan Minimization of Submodular Functions July 11, 2020 1 / 28

Outline

1 The goal

2 Building definitions and lemmas

3 The update rule

4 Termination and correctness of the algorithm

5 Outlook

Azad Tasan Minimization of Submodular Functions July 11, 2020 2 / 28

The goal

Let f be a submodular function on the set S = {1, . . . , n} with rational
values.

(i) Find

min
T⊂S

f (T)

(ii) Find

arg min
T⊂S

f (T)

The algorithm we present will solve these problems, given an oracle for the
value of f .
Throughout we assume f (∅) = 0.

Azad Tasan Minimization of Submodular Functions July 11, 2020 3 / 28

First some definitions

Definition

Let S = {1, . . . , n}, f submodular on P(S) and ≺ an ordering on S . Then
we define b≺ ∈ EPf component-wise as

b≺v = f ({s ≺ v} ∪ {v})− f ({s ≺ v})

Definition

For a set U, we write
b≺(U) :=

∑
i∈U

b≺i

Orderings = Permutations.

Compare: These are the vertices of EPf as shown by Sandro.

Azad Tasan Minimization of Submodular Functions July 11, 2020 4 / 28

A useful lemma

Lemma

Let S = {1, . . . , n}, f submodular on P(S) and ≺ an ordering on S . Let
U ⊂ S be downward closed with respect to ≺. Then

b≺(U) = f (U)

Proof.

We get a telescoping sum and use f (∅) = 0.

b≺(U) =
∑
s∈U

b≺s =
∑
s∈U

f ({v ≺ s} ∪ {s})− f ({v ≺ s})

= f (U)− f (∅) = f (U)

Azad Tasan Minimization of Submodular Functions July 11, 2020 5 / 28

A useful corollary

Corollary

For l orderings ≺1, . . . ,≺l , and U downward closed with respect to all ≺i ,
we have

λ1b
≺1(U) + · · ·+ λmb

≺m(U) = (
∑
i

λi)f (U)

In particular, if the combination is convex, we obtain f (U).

Proof.

Immediate from the lemma.

The algorithm will use the corollary.

We construct a vector x = λ1b
≺1 + · · ·+ λmb

≺m .

If the set U is downward closed with respect to all ≺i and contains all
negative and no positive entries of x
→ By the corollary we have a minimizer.

Azad Tasan Minimization of Submodular Functions July 11, 2020 6 / 28

On the algorithm

We will update a vector as x = λ1b
≺1 + · · ·+ λmb

≺m .

By means of adding orderings.

Work on creating a U which is downward closed with respect to all
≺i and contains all negative and no positive entries of x .

→ in the end we have a minimizer.

Azad Tasan Minimization of Submodular Functions July 11, 2020 7 / 28

The associated graph

Definition (Associated graph)

Let x = λ1b
≺1 + · · ·+ λmb

≺m . Define a graph on S by D = (S ,A) and

(v ,w) ∈ A ⇐⇒ ∃i : v ≺i w

Lemma

Let x = λ1b
≺1 + · · ·+ λmb

≺m . A set U is downward closed wrt. all ≺i if
and only if there are no edges pointing into U considered as vertices in D.

Proof.

By definition of A.

Definition (P and N)

Let x = λ1b
≺1 + · · ·+ λmb

≺m . Then P contains all indices where x is
positive and N all where x is negative.

Azad Tasan Minimization of Submodular Functions July 11, 2020 8 / 28

Another lemma

Lemma

Let x = λ1b
≺1 + · · ·+ λmb

≺m . A set U downward closed with respect to
all ≺i containing N is a minimizer of f if U ∩ P = ∅.

Proof.

By a previous lemma
x(U) = f (U)

x ∈ EPf and thus x(W) ≤ f (W) for all W ⊂ S . Also x(U) ≤ x(W) for
all W ⊂ S as U contains all negative and no positive indices of x . In total

f (U) = x(U) ≤ x(W) ≤ f (W)

thus U minimizes f .

Azad Tasan Minimization of Submodular Functions July 11, 2020 9 / 28

The stopping condition

Lemma

Let x = λ1b
≺1 + · · ·+ λmb

≺m and D = (S ,A) the associated graph. If
there is no path from P to N in D, then we have a minimizer by

U = {s ∈ S : there is a path from s to N}

Proof.

U is downward closed with respect to all ≺i by a previous lemma.
U contains N and is disjoint with P.
By the previous lemma, U is a minimizer.

Azad Tasan Minimization of Submodular Functions July 11, 2020 10 / 28

More definitions

Definition

Let x = λ1b
≺1 + · · ·+ λmb

≺m and D = (S ,A) the associated graph. We
define d as the function giving distance from P in D. That is d(s) is the
minimal length of a path from P to s.

Throughout the loop of the algorithm, d will not decrease for any
v ∈ S and will eventually increase for some.

This works towards cutting connectivity from P to N.

When this connectivity is cut, we have reached the stopping condition.

Azad Tasan Minimization of Submodular Functions July 11, 2020 11 / 28

The update rule

In every iteration we choose t and s as follows

Definition (t and s)

Let x and D as previously. We choose t ∈ N with d(t) maximal among
elements in N. To break the tie we choose t maximal among those
maximizing d(t).
We take s to be the predecessor to t on a shortest path from P to t. To
break the tie we choose s maximal. This means d(t) = d(s) + 1.

Definition

Let ≺ be an ordering on S . For any s, u ∈ S , we have the ordering ≺s,u

where we moved u before s.

Example: S = {1, 2, 3, 4, 5, 6} with ordering ≺= 123456. We choose
s = 2, u = 5 and get ≺s,u= 152346.

Azad Tasan Minimization of Submodular Functions July 11, 2020 12 / 28

The update rule

Definition

Let x and D as previously. For choice of s, t, and ordering ≺i , we have the
orderings ≺s,u

i for all s ≺i u �i t.

Lemma

Let x and D as previously. For some δ ≥ 0, the vector

x + λ1δ(χt − χs)

can be written as a convex combination of the b≺
s,u
i with ≺s,u

i as above.

Proof.

Without, see Schrijver Chapter 45.

Azad Tasan Minimization of Submodular Functions July 11, 2020 13 / 28

The update rule

Lemma

Let x and D as previously. Also any point on the line between x and
x + λ1δ(χt − χs) can be written as a convex combination of the b≺l and
b≺

s,u
i , for a fixed i . If

Proof.

The line between two points is their convex hull.

Definition (x ′)

We choose the next x , or x ′, to be the point closest to x + λ1δ(χt − χs)
such that the value at t stays nonnegative.

We have to update P and N to reflect the new x ′, as well as the edges in
D to reflect the new orderings.
It might be an idea to reduce the representation to less terms using linear
algebra.

Azad Tasan Minimization of Submodular Functions July 11, 2020 14 / 28

Observations

By construction, P ′ ⊂ P.

We increase the connectivity in D.

We can do this as long as there is a path from P to N.

If there is no longer such a path we can terminate as shown previously.

It remains to show this algorithm terminates.

We will first show that d does not decrease.

Azad Tasan Minimization of Submodular Functions July 11, 2020 15 / 28

d does not decrease

Lemma

Throughout the loop, we have that d ′(v) ≥ d(v) for the distance from P
function d . That is, distances from P never decrease.

Proof.

Each new edge added comes from an added ordering. Thus it comes from
some ≺s,u

i , s ≺i u �i , where we moved u before s. The only change in
ordering, i.e. added edge (v ,w) is from when v = u. Thus

s �i w ≺i v �i t

Azad Tasan Minimization of Submodular Functions July 11, 2020 16 / 28

d does not decrease

Lemma

Throughout the loop, we have that d ′(v) ≥ d(v) for the distance from P
function d . That is, distances from P never decrease.

Proof.

Assume towards a contradiction d(w) decreased for some w . Then there
is a new edge (v ,w) with d(w) ≥ d(v) + 2. For this we use that

d(w)− 1 ≥ d ′(w) = min
k∈(w ,t]≺i

d(k) + 1 = d(k̃) + 1

We now rearrange to see

d(w) ≥ d(k̃) + 2

Azad Tasan Minimization of Submodular Functions July 11, 2020 17 / 28

d does not decrease

Lemma

Throughout the loop, we have that d ′(v) ≥ d(v) for the distance from P
function d . That is, distances from P never decrease.

Proof.

We now have a new edge (v ,w) with d(w) ≥ d(v) + 2 and
s �i w ≺i v �i t. s �i w thus d(w) ≤ d(s) + 1, the same argument for
d(t) ≤ d(v) + 1. By choice of s, t, we have d(s) + 1 = d(t). Altogether

d(w) ≤ d(s) + 1 ≤ d(t) ≤ d(v) + 1

and thus a contradiction

d(v) + 2 ≤ d(w) ≤ d(v) + 1

Azad Tasan Minimization of Submodular Functions July 11, 2020 18 / 28

α and β

Definition (α)

Let x = λ1b
≺1 + · · ·+ λmb

≺m and s and t chosen. We define

α = max
i
|(s, t]≺i |

as the maximal length of an interval stot with respect to our orderings.

Definition (β)

Let x = λ1b
≺1 + · · ·+ λmb

≺m and s and t chosen. We define

β = #i : (|(s, t]≺i | = α)

as the number of orderings achieving the maximum α.

Azad Tasan Minimization of Submodular Functions July 11, 2020 19 / 28

(d(t), t, s, α, β) decreases lexicographically

Lemma

For each step of the algorithm we have x = λ1b
≺1 + · · ·+ λmb

≺m , as well
as choices of t, s. This yields α, β. With ′ denoting the values at the next
iteration we have

(d ′(t ′), t ′, s ′, α′, β′) ≺lex (d(t), t, s, α, β)

if d ′(v) = d(v) for all v ∈ S .

Proof.

Proof by case distinction: If the first entry does not decrease, the second
must, etc.
By assumption, d ′(t ′) = d(t ′). By construction, t ′ = s or t ′ ∈ N, as
t ′ ∈ N ′ ⊂ N ∪ {s}. If t ′ = s, d ′(t ′) = d(s) = d(t)− 1, by choice of s.
Otherwise, t ′ ∈ N, and thus (d ′(t ′), t ′) = (d(t ′), t ′) ≺lex (d(t), t), by
choice of t. This gives us the first two cases.

Azad Tasan Minimization of Submodular Functions July 11, 2020 20 / 28

(d(t), t, s, α, β) decreases lexicographically

Lemma

(d ′(t ′), t ′, s ′, α′, β′) ≺lex (d(t), t, s, α, β)

if d ′(v) = d(v) for all v ∈ S .

Proof.

We have seen that (d ′(t ′), t ′) ≺lex (d(t), t). Thus we now assume
d(t ′) = d(t), t ′ = t, and look at s ′. (s ′, t ′) = (s ′, t) ∈ A′, by choice of s ′.
There are no new edges into t. Thus (s ′, t) ∈ A and s ′ would have been a
valid choice for s. The choice s is maximal among valid choices, thus
s ′ ≤ s.

Azad Tasan Minimization of Submodular Functions July 11, 2020 21 / 28

(d(t), t, s, α, β) decreases lexicographically

Lemma

(d ′(t ′), t ′, s ′, α′, β′) ≺lex (d(t), t, s, α, β)

if d ′(v) = d(v) for all v ∈ S .

Proof.

We are in the case (d ′(t ′), t ′, s ′) = (d(t), t, s). α is next. As t ′ = t,
s ′ = s, we are looking at

max
i ′
|(s, t]≺i |

But all added orderings have

|(s, t]≺s,u
i
| < α

as we move u out of the interval. Thus α′ ≤ α.

Azad Tasan Minimization of Submodular Functions July 11, 2020 22 / 28

(d(t), t, s, α, β) decreases lexicographically

Lemma

(d ′(t ′), t ′, s ′, α′, β′) ≺lex (d(t), t, s, α, β)

if d ′(v) = d(v) for all v ∈ S .

Proof.

Lastly, if α′ = α, β′ < β, as we do not need ≺i to express x ′, as shown
previously, and ≺i was chosen with |(s, t]≺i | = α. β counts the amount of
those maximal ones. Thus β′ = β − 1.

Azad Tasan Minimization of Submodular Functions July 11, 2020 23 / 28

The Algorithm

1: procedure (S = {1, . . . , n}, f , Oracle for values of f)
2: initialize x = b≺ ∈ RS . Arbitrary choice of ≺
3: while Path P → N in D do
4: Choose new t ∈ N, s ∈ S
5: Update A, P, N ← Update x
6: end while
7: return U = {s ∈ S : ∃s → N}
8: end procedure

Azad Tasan Minimization of Submodular Functions July 11, 2020 24 / 28

The algorithm terminates

Theorem

The algorithm terminates.

Proof.

d(v) has to increase or stay equal for any iteration. Moreover, as
(d(t), t, s, α, β) decreases for any iteration, we have that at some point
d(v) has to increase for some v . But d(v) ≤ |S |. Thus the loop
terminates after finite time.

Azad Tasan Minimization of Submodular Functions July 11, 2020 25 / 28

The algorithm is correct

We had the lemma

Lemma

Let x = λ1b
≺1 + · · ·+ λmb

≺m and D = (S ,A) the associated graph. If
there is no path from P to N in D, then we have a minimizer by

U = {s ∈ S : there is a path from s to N}

As we are now in said situation, the algorithm yields a minimizer.

Azad Tasan Minimization of Submodular Functions July 11, 2020 26 / 28

Outlook

We did not discuss the running time or space complexity.

Iwata showed that the running time of a modified algorithm can be
reduced to |S |9 log2(|S |).

There exist algorithms for minimizing submodular functions using a
Pf polytope membership oracle instead of a value oracle.

There exist purely combinatorial algorithms, i.e. only using
comparison, addition → extension to abelian group-valued functions.

Adaptations can find non-trivial solutions, i.e. not empty and not
everything. Important for e.g. minimum cut in a graph.

Azad Tasan Minimization of Submodular Functions July 11, 2020 27 / 28

References

Alexander Schrijver. (2003). Combinatorial Optimization.
Submodular Functions and Polymatroids.

Alexander Schrijver. (2003). Combinatorial Optimization.
Submodular Function Minimization.

Satoru Iwata. (2002). A Fully Combinatorial Algorithm for
Submodular Function Minimization.

Azad Tasan Minimization of Submodular Functions July 11, 2020 28 / 28

