Minimization of Submodular Functions - from Chapter 45 of Schrijver -

Azad Tasan

July 11, 2020

Azad Tasan

Minimization of Submodular Functions

July 11, 2020 1 / 28

- The goal
- Building definitions and lemmas 2
- O The update rule
- 4 Termination and correctness of the algorithm
- Outlook

3

The goal

Let f be a submodular function on the set $S = \{1, ..., n\}$ with rational values.

(i) Find

 $\min_{\boldsymbol{T}\subset\boldsymbol{S}}f(\boldsymbol{T})$

(ii) Find

$\arg\min_{T\subset S} f(T)$

The algorithm we present will solve these problems, given an oracle for the value of f.

Throughout we assume $f(\emptyset) = 0$.

イロト 不得 トイヨト イヨト 二日

First some definitions

Definition

Let $S = \{1, ..., n\}$, f submodular on P(S) and \prec an ordering on S. Then we define $b^{\prec} \in EP_f$ component-wise as

$$b_{v}^{\prec} = f(\{s \prec v\} \cup \{v\}) - f(\{s \prec v\})$$

Definition

For a set U, we write

$$b^{\prec}(U) := \sum_{i \in U} b_i^{\prec}$$

- Orderings = Permutations.
- Compare: These are the vertices of EP_f as shown by Sandro.

(日)

A useful lemma

Lemma

Let $S = \{1, ..., n\}$, f submodular on P(S) and \prec an ordering on S. Let $U \subset S$ be downward closed with respect to \prec . Then

 $b^{\prec}(U) = f(U)$

Proof.

We get a telescoping sum and use $f(\emptyset) = 0$.

$$b^{\prec}(U) = \sum_{s \in U} b_s^{\prec} = \sum_{s \in U} f(\{v \prec s\} \cup \{s\}) - f(\{v \prec s\})$$
$$= f(U) - f(\emptyset) = f(U)$$

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A useful corollary

Corollary

For I orderings \prec_1, \ldots, \prec_I , and U downward closed with respect to all \prec_i , we have

$$\lambda_1 b^{\prec_1}(U) + \cdots + \lambda_m b^{\prec_m}(U) = (\sum_i \lambda_i) f(U)$$

In particular, if the combination is convex, we obtain f(U).

Proof.

Immediate from the lemma.

- The algorithm will use the corollary.
- We construct a vector $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$.
- If the set U is downward closed with respect to all ≺_i and contains all negative and no positive entries of x
 - \rightarrow By the corollary we have a minimizer.

- We will update a vector as $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$.
- By means of adding orderings.
- Work on creating a U which is downward closed with respect to all ≺_i and contains all negative and no positive entries of x.
- ullet ightarrow in the end we have a minimizer.

The associated graph

Definition (Associated graph)

Let $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$. Define a graph on S by D = (S, A) and

$$(v, w) \in A \iff \exists i : v \prec_i w$$

Lemma

Let $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$. A set U is downward closed wrt. all \prec_i if and only if there are no edges pointing into U considered as vertices in D.

Proof.

By definition of A.

Definition (P and N)

Let $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$. Then *P* contains all indices where *x* is positive and *N* all where *x* is negative.

Another lemma

Lemma

Let $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$. A set U downward closed with respect to all \prec_i containing N is a minimizer of f if $U \cap P = \emptyset$.

Proof.

By a previous lemma

$$x(U)=f(U)$$

 $x \in EP_f$ and thus $x(W) \le f(W)$ for all $W \subset S$. Also $x(U) \le x(W)$ for all $W \subset S$ as U contains all negative and no positive indices of x. In total

$$f(U) = x(U) \le x(W) \le f(W)$$

thus U minimizes f.

< □ > < □ > < □ > < □ > < □ > < □ >

The stopping condition

Lemma

Let $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$ and D = (S, A) the associated graph. If there is no path from P to N in D, then we have a minimizer by

 $U = \{s \in S : there is a path from s to N\}$

Proof.

U is downward closed with respect to all \prec_i by a previous lemma. *U* contains *N* and is disjoint with *P*. By the previous lemma, *U* is a minimizer.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

Let $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$ and D = (S, A) the associated graph. We define d as the function giving distance from P in D. That is d(s) is the minimal length of a path from P to s.

- Throughout the loop of the algorithm, d will not decrease for any $v \in S$ and will eventually increase for some.
- This works towards cutting connectivity from P to N.
- When this connectivity is cut, we have reached the stopping condition.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

The update rule

In every iteration we choose t and s as follows

Definition (t and s)

Let x and D as previously. We choose $t \in N$ with d(t) maximal among elements in N. To break the tie we choose t maximal among those maximizing d(t).

We take s to be the predecessor to t on a shortest path from P to t. To break the tie we choose s maximal. This means d(t) = d(s) + 1.

Definition

Let \prec be an ordering on S. For any $s, u \in S$, we have the ordering $\prec^{s,u}$ where we moved u before s.

• Example: $S = \{1, 2, 3, 4, 5, 6\}$ with ordering $\prec = 123456$. We choose s = 2, u = 5 and get $\prec^{s,u} = 152346$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The update rule

Definition

Let x and D as previously. For choice of s, t, and ordering \prec_i , we have the orderings $\prec_i^{s,u}$ for all $s \prec_i u \preceq_i t$.

Lemma

Let x and D as previously. For some $\delta \ge 0$, the vector

 $x + \lambda_1 \delta(\chi_t - \chi_s)$

can be written as a convex combination of the $b_{i}^{s,u}$ with $\prec_{i}^{s,u}$ as above.

Proof.

Without, see Schrijver Chapter 45.

・ロト ・ 同ト ・ ヨト ・ ヨト

The update rule

Lemma

Let x and D as previously. Also any point on the line between x and $x + \lambda_1 \delta(\chi_t - \chi_s)$ can be written as a convex combination of the b^{\prec_i} and $b^{\prec_i^{s,u}}$, for a fixed *i*. If

Proof.

The line between two points is their convex hull.

Definition (x')

We choose the next x, or x', to be the point closest to $x + \lambda_1 \delta(\chi_t - \chi_s)$ such that the value at t stays nonnegative.

We have to update P and N to reflect the new x', as well as the edges in D to reflect the new orderings.

It might be an idea to reduce the representation to less terms using linear algebra.

- By construction, $P' \subset P$.
- We increase the connectivity in *D*.
- We can do this as long as there is a path from P to N.
- If there is no longer such a path we can terminate as shown previously.
- It remains to show this algorithm terminates.
- We will first show that *d* does not decrease.

Lemma

Throughout the loop, we have that $d'(v) \ge d(v)$ for the distance from P function d. That is, distances from P never decrease.

Proof.

Each new edge added comes from an added ordering. Thus it comes from some $\prec_i^{s,u}$, $s \prec_i u \preceq_i$, where we moved u before s. The only change in ordering, i.e. added edge (v, w) is from when v = u. Thus

$$s \preceq_i w \prec_i v \preceq_i t$$

(4) (日本)

d does not decrease

Lemma

Throughout the loop, we have that $d'(v) \ge d(v)$ for the distance from P function d. That is, distances from P never decrease.

Proof.

Assume towards a contradiction d(w) decreased for some w. Then there is a new edge (v, w) with $d(w) \ge d(v) + 2$. For this we use that

$$d(w)-1\geq d'(w)=\min_{k\in(w,t]_{\prec_i}}d(k)+1=d(ilde{k})+1$$

We now rearrange to see

$$d(w) \geq d(\tilde{k}) + 2$$

A D N A B N A B N A B N

d does not decrease

Lemma

Throughout the loop, we have that $d'(v) \ge d(v)$ for the distance from P function d. That is, distances from P never decrease.

Proof.

We now have a new edge (v, w) with $d(w) \ge d(v) + 2$ and $s \le_i w \prec_i v \le_i t$. $s \le_i w$ thus $d(w) \le d(s) + 1$, the same argument for $d(t) \le d(v) + 1$. By choice of s, t, we have d(s) + 1 = d(t). Altogether

$$d(w) \leq d(s) + 1 \leq d(t) \leq d(v) + 1$$

and thus a contradiction

$$d(v) + 2 \le d(w) \le d(v) + 1$$

α and β

Definition (α) Let $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$ and s and t chosen. We define $\alpha = \max_i |(s, t]_{\prec_i}|$

as the maximal length of an interval stot with respect to our orderings.

Definition (β) Let $x = \lambda_1 b^{\prec_1} + \dots + \lambda_m b^{\prec_m}$ and s and t chosen. We define $\beta = \#i : (|(s, t]_{\prec_i}| = \alpha)$

as the number of orderings achieving the maximum α .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Lemma

For each step of the algorithm we have $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$, as well as choices of t, s. This yields α , β . With ' denoting the values at the next iteration we have

$$(d'(t'), t', s', \alpha', \beta') \prec_{\mathit{lex}} (d(t), t, s, \alpha, \beta)$$

if d'(v) = d(v) for all $v \in S$.

Proof.

Proof by case distinction: If the first entry does not decrease, the second must, etc.

By assumption, d'(t') = d(t'). By construction, t' = s or $t' \in N$, as $t' \in N' \subset N \cup \{s\}$. If t' = s, d'(t') = d(s) = d(t) - 1, by choice of s. Otherwise, $t' \in N$, and thus $(d'(t'), t') = (d(t'), t') \prec_{\mathsf{lex}} (d(t), t)$, by choice of t. This gives us the first two cases.

Lemma

$$(d'(t'), t', s', \alpha', \beta') \prec_{lex} (d(t), t, s, \alpha, \beta)$$

if d'(v) = d(v) for all $v \in S$.

Proof.

We have seen that $(d'(t'), t') \prec_{\text{lex}} (d(t), t)$. Thus we now assume d(t') = d(t), t' = t, and look at $s'. (s', t') = (s', t) \in A'$, by choice of s'. There are no new edges into t. Thus $(s', t) \in A$ and s' would have been a valid choice for s. The choice s is maximal among valid choices, thus $s' \leq s$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

$$(d'(t'), t', s', \alpha', \beta') \prec_{\mathit{lex}} (d(t), t, s, \alpha, \beta)$$

if d'(v) = d(v) for all $v \in S$.

Proof.

We are in the case (d'(t'), t', s') = (d(t), t, s). α is next. As t' = t, s' = s, we are looking at

$$\max_{i'} |(s, t]_{\prec_i}|$$

But all added orderings have

$$|(s,t]_{\prec_i^{s,u}}| < \alpha$$

as we move u out of the interval. Thus $\alpha' \leq \alpha$.

イロト イポト イヨト イヨト

Lemma

$$(d'(t'), t', s', \alpha', \beta') \prec_{lex} (d(t), t, s, \alpha, \beta)$$

if d'(v) = d(v) for all $v \in S$.

Proof.

Lastly, if $\alpha' = \alpha$, $\beta' < \beta$, as we do not need \prec_i to express x', as shown previously, and \prec_i was chosen with $|(s, t]_{\prec_i}| = \alpha$. β counts the amount of those maximal ones. Thus $\beta' = \beta - 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Algorithm

- 1: procedure ($S = \{1, ..., n\}, f$, Oracle for values of f)
- 2: initialize $x = b^{\prec} \in \mathbb{R}^{S}$
- 3: while Path $P \rightarrow N$ in D do
- 4: Choose new $t \in N$, $s \in S$
- 5: Update A, P, N \leftarrow Update x
- 6: end while
- 7: **return** $U = \{s \in S : \exists s \to N\}$
- 8: end procedure

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 \triangleright Arbitrary choice of \prec

Theorem

The algorithm terminates.

Proof.

d(v) has to increase or stay equal for any iteration. Moreover, as $(d(t), t, s, \alpha, \beta)$ decreases for any iteration, we have that at some point d(v) has to increase for some v. But $d(v) \leq |S|$. Thus the loop terminates after finite time.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

We had the lemma

Lemma

Let $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$ and D = (S, A) the associated graph. If there is no path from P to N in D, then we have a minimizer by

 $U = \{s \in S : there is a path from s to N\}$

As we are now in said situation, the algorithm yields a minimizer.

- We did not discuss the running time or space complexity.
- Iwata showed that the running time of a modified algorithm can be reduced to $|S|^9 \log^2(|S|)$.
- There exist algorithms for minimizing submodular functions using a P_f polytope membership oracle instead of a value oracle.
- There exist purely combinatorial algorithms, i.e. only using comparison, addition → extension to abelian group-valued functions.
- Adaptations can find non-trivial solutions, i.e. not empty and not everything. Important for e.g. minimum cut in a graph.

- Alexander Schrijver. (2003). Combinatorial Optimization. Submodular Functions and Polymatroids.
- Alexander Schrijver. (2003). Combinatorial Optimization. Submodular Function Minimization.
- Satoru Iwata. (2002). A Fully Combinatorial Algorithm for Submodular Function Minimization.