Minimization of Submodular Functions - from Chapter 45 of Schrijver -

Azad Tasan

July 11, 2020

Azad Tasan **[Minimization of Submodular Functions](#page-27-0)** July 11, 2020 1/28

4日下

na m≊ э

 QQ

- **1** The goal
- 2 Building definitions and lemmas
- **3** The update rule
- **4** Termination and correctness of the algorithm
- **6** Outlook

4 0 8

→ 何 ▶ → ヨ ▶ → ヨ ▶

 QQ

The goal

Let f be a submodular function on the set $S = \{1, \ldots, n\}$ with rational values.

(i) Find

min $f(T)$
 $T \subset S$

(ii) Find

arg min $f(\mathcal{T})$ $T \subset S$

The algorithm we present will solve these problems, given an oracle for the value of f

Throughout we assume $f(\emptyset) = 0$.

KOD KAP KED KED E VAA

First some definitions

Definition

Let $S = \{1, \ldots, n\}$, f submodular on $P(S)$ and \prec an ordering on S. Then we define $b^\prec \in EP_f$ component-wise as

$$
b_v^{\prec} = f(\lbrace s \prec v \rbrace \cup \lbrace v \rbrace) - f(\lbrace s \prec v \rbrace)
$$

Definition

For a set U , we write

$$
b^\prec(U):=\sum_{i\in U}b_i^\prec
$$

- \bullet Orderings = Permutations.
- Compare: These are the vertices of EP_f as shown by Sandro.

 QQQ

イロト イ押ト イヨト イヨト

A useful lemma

Lemma

Let $S = \{1, \ldots, n\}$, f submodular on $P(S)$ and \prec an ordering on S. Let $U \subset S$ be downward closed with respect to \prec . Then

 $b^{\prec}(U) = f(U)$

Proof.

We get a telescoping sum and use $f(\emptyset) = 0$.

$$
b^{\prec}(U) = \sum_{s \in U} b_s^{\prec} = \sum_{s \in U} f(\{v \prec s\} \cup \{s\}) - f(\{v \prec s\})
$$

$$
= f(U) - f(\emptyset) = f(U)
$$

 $\left(\left\{ \bigoplus \right. \right. \left\{ \left. \bigoplus \right. \left. \left. \right. \right. \left. \left. \left. \right. \right. \right\} \left. \right. \left. \left. \right. \right. \left. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \left. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \left. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \left. \right. \left. \left. \right$

 200

A useful corollary

Corollary

For I orderings \prec_1,\ldots,\prec_l , and U downward closed with respect to all \prec_i , we have

$$
\lambda_1 b^{\prec_1}(U) + \cdots + \lambda_m b^{\prec_m}(U) = (\sum_i \lambda_i) f(U)
$$

In particular, if the combination is convex, we obtain $f(U)$.

Proof.

Immediate from the lemma.

- The algorithm will use the corollary.
- We construct a vector $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$.
- If the set U is downward closed with respect to all \prec_i and contains all negative and no positive entries of x
	- \rightarrow By the corollary we have a minimizer.

- We will update a vector as $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$.
- By means of adding orderings.
- Work on creating a U which is downward closed with respect to all \prec_i and contains all negative and no positive entries of x.
- $\bullet \rightarrow$ in the end we have a minimizer.

 QQQ

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m}

The associated graph

Definition (Associated graph)

Let $x = \lambda_1 b^{\lambda_1} + \cdots + \lambda_m b^{\lambda_m}$. Define a graph on S by $D = (S, A)$ and

$$
(v, w) \in A \iff \exists i : v \prec_i w
$$

Lemma

Let $x = \lambda_1 b^{\lambda_1} + \cdots + \lambda_m b^{\lambda_m}$. A set U is downward closed wrt. all λ_i if and only if there are no edges pointing into U considered as vertices in D.

Proof.

By definition of A.

Definition (P and N)

Let $x = \lambda_1 b^{\lambda_1} + \cdots + \lambda_m b^{\lambda_m}$. Then P contains all indices where x is positive and N all where x is negative.

Another lemma

Lemma

Let $x = \lambda_1 b^{\lambda_1} + \cdots + \lambda_m b^{\lambda_m}$. A set U downward closed with respect to all \prec_i containing N is a minimizer of f if $U \cap P = \emptyset$.

Proof.

By a previous lemma

$$
x(U)=f(U)
$$

 $x \in EP_f$ and thus $x(W) \le f(W)$ for all $W \subset S$. Also $x(U) \le x(W)$ for all $W \subset S$ as U contains all negative and no positive indices of x. In total

$$
f(U) = x(U) \leq x(W) \leq f(W)
$$

thus U minimizes f .

 200

イロト イ押ト イヨト イヨト

The stopping condition

Lemma

Let $x = \lambda_1 b^{\lambda_1} + \cdots + \lambda_m b^{\lambda_m}$ and $D = (S, A)$ the associated graph. If there is no path from P to N in D, then we have a minimizer by

 $U = \{s \in S : \text{there is a path from } s \text{ to } N\}$

Proof.

U is downward closed with respect to all \prec_i by a previous lemma. U contains N and is disjoint with P . By the previous lemma, U is a minimizer.

 QQQ

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

Definition

Let $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$ and $D = (S, A)$ the associated graph. We define d as the function giving distance from P in D. That is $d(s)$ is the minimal length of a path from P to s .

- Throughout the loop of the algorithm, d will not decrease for any $v \in S$ and will eventually increase for some.
- \bullet This works towards cutting connectivity from P to N.
- When this connectivity is cut, we have reached the stopping condition.

 Ω

The update rule

In every iteration we choose t and s as follows

Definition $(t \text{ and } s)$

Let x and D as previously. We choose $t \in N$ with $d(t)$ maximal among elements in N . To break the tie we choose t maximal among those maximizing $d(t)$.

We take s to be the predecessor to t on a shortest path from P to t. To break the tie we choose s maximal. This means $d(t) = d(s) + 1$.

Definition

Let \prec be an ordering on S. For any s, $u \in S$, we have the ordering $\prec^{s,u}$ where we moved u before s .

• Example: $S = \{1, 2, 3, 4, 5, 6\}$ with ordering \prec = 123456. We choose s = 2, u = 5 and get $\prec^{s,u}$ = 152346.

KEL KALIKI II YA ALIKI

The update rule

Definition

Let x and D as previously. For choice of s,t , and ordering \prec_i , we have the orderings $\prec^{s,u}_{i}$ $i_j^{s,u}$ for all $s \prec_i u \preceq_i t$.

Lemma

Let x and D as previously. For some $\delta > 0$, the vector

 $x + \lambda_1 \delta(\chi_t - \chi_s)$

can be written as a convex combination of the b $\preceq^{s,u}_i$ with $\prec^{s,u}_i$ $i^{s,u}$ as above.

Proof.

Without, see Schrijver Chapter 45.

The update rule

Lemma

Let x and D as previously. Also any point on the line between x and $x + \lambda_1 \delta(\chi_t - \chi_s)$ can be written as a convex combination of the b \preceq^{ι} and $b^{{s,u}$, for a fixed i. It

Proof.

The line between two points is their convex hull.

Definition (x')

We choose the next x, or x', to be the point closest to $x + \lambda_1 \delta(\chi_t - \chi_s)$ such that the value at t stays nonnegative.

We have to update P and N to reflect the new x^\prime , as well as the edges in D to reflect the new orderings.

It might be an idea to reduce the representation to less terms using linear algebra. OQ

- By construction, $P' \subset P$.
- We increase the connectivity in D.
- \bullet We can do this as long as there is a path from P to N.
- If there is no longer such a path we can terminate as shown previously.
- It remains to show this algorithm terminates.
- We will first show that d does not decrease

Lemma

Throughout the loop, we have that $d'(v) \geq d(v)$ for the distance from P function d. That is, distances from P never decrease.

Proof.

Each new edge added comes from an added ordering. Thus it comes from some $\prec_i^{s,u}$ $i^{s,u}$, $s \prec_i u \preceq_i$, where we moved u before s. The only change in ordering, i.e. added edge (v, w) is from when $v = u$. Thus

$$
s \preceq_i w \prec_i v \preceq_i t
$$

d does not decrease

Lemma

Throughout the loop, we have that $d'(v) \geq d(v)$ for the distance from P function d. That is, distances from P never decrease.

Proof.

Assume towards a contradiction $d(w)$ decreased for some w. Then there is a new edge (v, w) with $d(w) \ge d(v) + 2$. For this we use that

$$
d(w) - 1 \ge d'(w) = \min_{k \in (w, t]_{\prec_i}} d(k) + 1 = d(\tilde{k}) + 1
$$

We now rearrange to see

$$
d(w)\geq d(\tilde{k})+2
$$

 200

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

d does not decrease

Lemma

Throughout the loop, we have that $d'(v) \geq d(v)$ for the distance from P function d. That is, distances from P never decrease.

Proof.

We now have a new edge (v, w) with $d(w) \ge d(v) + 2$ and $s \prec_i w \prec_i v \prec_i t$. $s \prec_i w$ thus $d(w) \leq d(s) + 1$, the same argument for $d(t) \leq d(v) + 1$. By choice of s, t, we have $d(s) + 1 = d(t)$. Altogether

$$
d(w) \leq d(s) + 1 \leq d(t) \leq d(v) + 1
$$

and thus a contradiction

$$
d(v)+2\leq d(w)\leq d(v)+1
$$

α and β

Definition (α) Let $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$ and s and t chosen. We define $\alpha = \max_i |(s,t]_{\prec_i}|$

as the maximal length of an interval *stot* with respect to our orderings.

Definition (β) Let $x = \lambda_1 b^{\prec_1} + \cdots + \lambda_m b^{\prec_m}$ and s and t chosen. We define $\beta = \#i : (|(\mathsf{s},\mathsf{t}]_{\prec_i} | = \alpha)$

as the number of orderings achieving the maximum α .

KOD KAP KED KED E VAA

Lemma

For each step of the algorithm we have $x = \lambda_1 b^{\lambda_1} + \cdots + \lambda_m b^{\lambda_m}$, as well as choices of t, s. This yields α , β . With \prime denoting the values at the next iteration we have

$$
(d'(t'), t', s', \alpha', \beta') \prec_{\text{lex}} (d(t), t, s, \alpha, \beta)
$$

if $d'(v) = d(v)$ for all $v \in S$.

Proof.

Proof by case distinction: If the first entry does not decrease, the second must, etc.

By assumption, $d'(t') = d(t')$. By construction, $t' = s$ or $t' \in N$, as $t' \in N' \subset N \cup \{s\}$. If $t' = s$, $d'(t') = d(s) = d(t) - 1$, by choice of s. Otherwise, $t' \in N$, and thus $(d'(t'), t') = (d(t'), t') \prec_{\text{lex}} (d(t), t)$, by choice of t . This gives us the first two cases.

Lemma

$$
(d'(t'), t', s', \alpha', \beta') \prec_{\text{lex}} (d(t), t, s, \alpha, \beta)
$$

if $d'(v) = d(v)$ for all $v \in S$.

Proof.

We have seen that $(d'(t'),t') \prec_{\sf lex} (d(t),t)$. Thus we now assume $d(t') = d(t)$, $t' = t$, and look at s' . $(s', t') = (s', t) \in A'$, by choice of s' . There are no new edges into t. Thus $(s', t) \in A$ and s' would have been a valid choice for s. The choice s is maximal among valid choices, thus $\mathsf{s}'\leq \mathsf{s}.$

 QQQ

イロト イ押ト イヨト イヨト

Lemma

$$
(d'(t'), t', s', \alpha', \beta') \prec_{\text{lex}} (d(t), t, s, \alpha, \beta)
$$

if $d'(v) = d(v)$ for all $v \in S$.

Proof.

We are in the case $(d'(t'), t', s') = (d(t), t, s)$. α is next. As $t' = t$, $s'=s$, we are looking at

$$
\max_{i'}|(s,t]_{\prec_i}|
$$

But all added orderings have

$$
|(\pmb s, \pmb t]_{\prec_i^{\pmb s, \pmb u}}| < \alpha
$$

as we move u out of the interval. Thus $\alpha' \leq \alpha.$

 200

イロト イ部 トイモ トイモト

Lemma

$$
(d'(t'), t', s', \alpha', \beta') \prec_{\mathit{lex}} (d(t), t, s, \alpha, \beta)
$$

if $d'(v) = d(v)$ for all $v \in S$.

Proof.

Lastly, if $\alpha'=\alpha$, $\beta'<\beta$, as we do not need \prec_i to express x' , as shown previously, and \prec_i was chosen with $|(\boldsymbol{s},t]_{\prec_i}|=\alpha_+\ \beta$ counts the amount of those maximal ones. Thus $\beta' = \beta - 1$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 900

The Algorithm

- 1: **procedure** $(S = \{1, \ldots, n\}, f$, Oracle for values of f)
- 2: **initialize** $x = b^{\prec} \in \mathbb{R}$
- 3: while Path $P \rightarrow N$ in D do
- 4: Choose new $t \in N$, $s \in S$
- 5: Update A, P, N \leftarrow Update x
- $6:$ end while
- 7: return $U = \{s \in S : \exists s \to N\}$
- 8: end procedure

 Ω

⊳ Arbitrary choice of \prec

Theorem

The algorithm terminates.

Proof.

 $d(v)$ has to increase or stay equal for any iteration. Moreover, as $(d(t),t,s,\alpha,\beta)$ decreases for any iteration, we have that at some point $d(v)$ has to increase for some v. But $d(v) \leq |S|$. Thus the loop terminates after finite time.

We had the lemma

Lemma

Let $x = \lambda_1 b^{\lambda_1} + \cdots + \lambda_m b^{\lambda_m}$ and $D = (S, A)$ the associated graph. If there is no path from P to N in D , then we have a minimizer by

 $U = \{s \in S : \text{there is a path from } s \text{ to } N\}$

As we are now in said situation, the algorithm yields a minimizer.

- We did not discuss the running time or space complexity.
- Iwata showed that the running time of a modified algorithm can be reduced to $|S|^9 \log^2(|S|)$.
- There exist algorithms for minimizing submodular functions using a P_f polytope membership oracle instead of a value oracle.
- There exist purely combinatorial algorithms, i.e. only using comparison, addition \rightarrow extension to abelian group-valued functions.
- Adaptations can find non-trivial solutions, i.e. not empty and not everything. Important for e.g. minimum cut in a graph.

- Alexander Schrijver. (2003). Combinatorial Optimization. Submodular Functions and Polymatroids.
- Alexander Schrijver. (2003). Combinatorial Optimization. Submodular Function Minimization.
- Satoru Iwata. (2002). A Fully Combinatorial Algorithm for Submodular Function Minimization.