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Formalization

Input: Connected graph with edge weights
Output: Maximum weight spanning tree
Initalization: | := (;
while Exist edge E s. t. | U{E} is a forest do
Choose such E with maximal weight;
put | :=1U{E};
end
return /
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Independence System

Def. (S,Z) is an independence system iff
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m ZCP(S)
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Independence System

Def. (S,Z) is an independence system iff
m ZCP(S)
mleZ
ml/lel = P(I)CZT
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Greedy Algorithm

Input: (S,7) with weight function w : S — R>o
Output: | € Z with w(/) := > w(i) maximal
iel
Initalization: | := (;
while Exist s€ S's. t. |U{s} € Z do
Choose such s with maximal weight;
put [ :=1U{s};

end
return /
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Counterexample for Greedy Algorithm

Task Find maximum weight independent edge set

O—~0O~-0"0O
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Counterexample for Greedy Algorithm

Task Find maximum weight independent edge set
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Greedy Theorem

For all Independence Systems (S,Z) it holds:

(S,7) is a matroid iff the greedy algorithm returns a maximum
weight independent set for all non-negative weight functions
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Proof " ="

Loop invariant: / is contained in a maximum weight base B
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Proof " ="

Loop invariant: / is contained in a maximum weight base B

m Assume [ is contained in a maximum weight base B

m Let y be the element the greedy algorithm chose to add to /
mCasel: I+yCB
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Proof " ="

Loop invariant: / is contained in a maximum weight base B

m Assume [ is contained in a maximum weight base B

m Let y be the element the greedy algorithm chose to add to /
mCasel: I+yCB

mCase2: | +y ¢ B
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Proof " ="

Base B’
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Proof " ="

w(B') —w(B) = w(y) —w(z) 20
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Proof " ="

w(B') — w(B) = w(y) — w(z) > 0, since the greedy algorithm
chose y over zand | +z C B
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Counterexample for Greedy Algorithm
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Proof " <"

Assume (S,Z) is not a matroid.Then there exist independent / and
J such that
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Proof " <"

Assume (S,Z) is not a matroid.Then there exist independent / and
J such that

m|J|>|l]=k

by Yan Alves Radtke
Greedy Algorithm and Matroid Intersections



Proof " <"

Assume (S,Z) is not a matroid.Then there exist independent / and
J such that

m|J|>|l]=k
m/+z¢Zforallze J\I
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Proof " <"

k+2 ifsel
w(s) =< k+1 ifseJ\!
0 else
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Proof " <"

k+2 ifsel
w(s) =< k+1 ifseJ\!
0 else

After first k iterations /, then only 0 weight elements
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Proof " <"

k+2 ifsel
w(s) =< k+1 ifseJ\!
0 else

After first k iterations /, then only 0 weight elements
Greedy returns G with
w(G) = w(l) = k(k+2)
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Proof " <"

k+2 ifsel
w(s) =< k+1 ifseJ\!
0 else

After first k iterations /, then only 0 weight elements
Greedy returns G with
w(G) =w(l)=k(k+2)< (k+1)(k+1)
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Proof " <"

k+2 ifsel
w(s) =< k+1 ifseJ\!
0 else

After first k iterations /, then only 0 weight elements
Greedy returns G with
w(G)=w(l)=k(k+2)< (k+1)(k+ 1)< w(J)
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Matroid Intersections

m Two matroids M; = (S,Z1) and My = (5,1,)
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Matroid Intersections

m Two matroids M; = (S,Z1) and My = (5,1,)
m Set of common independent sets
m (S,71 N1I,) is called the intersection of M; and Mj
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Matroid Intersections

Two matroids M; = (S,Z1) and My = (5,1»)

Set of common independent sets

(8,71 N1y) is called the intersection of Mj and M5
(8,71 N1y) is generally not a matroid
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Matroid Intersections

Two matroids M; = (S,Z1) and My = (5,1»)

Set of common independent sets

(8,71 N1y) is called the intersection of Mj and M5
(8,71 N1y) is generally not a matroid

But it is a independence system
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DMl«,M2(/)

For given M1, M and common independent set /, Dag, am,(1) is
/

s OO
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For given M1, M and common independent set /, Dag, am,(1) is
/

Il —x+yely
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DMl«,M2(/)

For given M1, M and common independent set /, Dag, am,(1) is
/

S\ / O

I —u+vel
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Paths in D, a1, (1)

O—O—O—O—0O—O

Performing swaps along Path P on [/ gives us IAVP
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Paths in D, a1, (1)

O—O—O—O—0O—O

Performing swaps along Path P on [/ gives us IAVP

This isn't necessary a common independent set!
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Maximum weight algorithm

For a given weight function w we can define:

) w(x)ifxel
0 = {W(X) if xeS\ I/
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Maximum weight algorithm

For a given weight function w we can define:

0x) = {W(X) el UP) = 3 £(x)

—w(x)ifxeS\/ x€VP
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Maximum weight algorithm

For a given weight function w we can define:

—w(x)ifxeS\/ x€VP

0x) = {W(X) el UP) = 3 £(x)

— w(J) = w(IAVP) = w(l) — ((P)
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Maximum weight algorithm for matroid intersections

Input: M; and Moy, an extreme common independent set /
and a weight function w
Output: An extreme common independent set J with
|J| = |I| + 1 if any exists, else /

Construct D, am,(1);
Define Xj := {x € S\ |/ U {x} € T;};
if X1-Xo Path exists in D, pm,(1) then

P:=minimal weight X3-X> Path with minimal number of

arcs;
return /A VP

else
| return /

end
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Matchings

S\
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Perfect Matchings

S\
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Not Perfect Matchings

S\
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Properties of perfect matchings

If J €Z; and |J| = |/|, there exists a series of swaps that transform
Jinto /
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Properties of perfect matchings

If J €Z; and |J| = |/|, there exists a series of swaps that transform
Jinto /

=> D, M, (1) has a perfect matching with only downward
edges on IAJ
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Properties of perfect matchings

If J €Z; and |J| = |/|, there exists a series of swaps that transform
Jinto /

=> D, M, (1) has a perfect matching with only downward
edges on IAJ

If |J| = |/] and Day, m,(/) has a unique perfect matching on IAJ
with only downward edges
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Properties of perfect matchings

If J €Z; and |J| = |/|, there exists a series of swaps that transform
Jinto /

=> D, M, (1) has a perfect matching with only downward
edges on IAJ

If |J| = |/] and Day, m,(/) has a unique perfect matching on IAJ
with only downward edges

— Jel
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Lemma

Let C = « be a circuit s.t. /AVC is not a common independent set

o el
o
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Lemma

Let C = « be a circuit s.t. /AVC is not a common independent set

Then there exists:
Negative length circuit C' with VC' C VC
or C' 3 ast ¢(C') <L(C) with VC' C VC
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Proof of Lemma

Matching
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Proof of Lemma

- ~
- ~

O
O @,
O
Matching
Since not independent: another matching
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Proof of Lemma

Matching
Since not independent: another matching
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Proof of Lemma

Eulerian Graph == decomposition into circuits (1, C..., G;
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Proof of Lemma

Eulerian Graph = decomposition into circuits (1, C>..., (; s.t.

> UG)=2(C)

i=1,....j
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Proof of Lemma

Eulerian Graph = decomposition into circuits (1, C>..., (; s.t.

> UG)=2(C)

i=1,....j

if there is no negative weight circuit, it follows, if t € G, Co:
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Proof of Lemma

Eulerian Graph = decomposition into circuits (1, C>..., (; s.t.

if there is no negative weight circuit, it follows, if t € G, Co:

UC)+UG) < S UC) =26(C)

i=1,...J
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Proof of Lemma

Eulerian Graph = decomposition into circuits (1, C>..., (; s.t.

if there is no negative weight circuit, it follows, if t € G, Co:

UC)+UG) < S UC) =26(C)

i=1,...,j

— 0(C1) < U(C) or /(C2) < £(C)
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Extreme set - negative circuit theorem

Statement: Dag,,am,(/) has no negative length circuit < [ is an
extreme set
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Proof =

Let J be a common independet set with |J| = |/|
I\ J

I\
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Proof =

w(J) = w(l) = L(IAT) = w(l) =D UC) < w(l)
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Proof =

w(J) = w(l) = L(IAT) = w(l) =D UC) < w(l)

— w(J) < w(/)
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Proof =

w(J) = w(l) = L(I1AT) = w(l) =) UC)

— w(J) < w(/)

=— [ is an extreme set
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Proof «

Let C negative length circuit minimal nodes and | extreme set
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Proof «

Let C negative length circuit minimal nodes and | extreme set
Then w(IAVC) = w(l)—£(VC) > w(l)
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Proof «

Let C negative length circuit minimal nodes and | extreme set
Then w(IAVC) = w(l)—£(VC) > w(l)

Then IAVC is not a commmon independent set
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Reminder of Lemma

Let C > t be a circuit s.t. /IAVC is not a common independent set

Then there exists:
Negative length circuit C' with VC' C VC
or C' 3 ast ¢(C") <L(C) with VC' C VC
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Reminder of Lemma

Let C > t be a circuit s.t. IAVC is not a common independent set

Since ¢(C) < 0 this implies:
Negative length circuit C' with VC' C VC
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Proof <

Let C negative length circuit minimal nodes and / extreme set
Then w(IAVC) = w(l)—£(VC) > w(l)
Then IAVC is not a commmon independent set

m By Lemma (' is a negative length circuit with less nodes %
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Maximum weight algorithm

Input: M; and Moy, an extreme common independent set /
and a weight function w
Output: An extreme common independent set J with
|J| = |I| + 1 if any exists, else /

Construct D, am,(1);
Define Xj := {x € S\ |/ U {x} € T;};
if X1-Xo Path exists in D, pm,(1) then

P:=minimal weight X3-X> Path with minimal number of

arcs;
return /A VP

else
| return /

end
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Auxiliary Matroid

Def. Ml:=(S+t,{UCS+t|U—-teI})
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Auxiliary Matroid

Def. Ml:=(S+t,{UCS+t|U—-teI})
Claim Dy (1 + DIS] = Daey air(1)
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Auxiliary Matroid

Def. Ml:=(S+t,{UCS+t|U—-teI})
Claim Dy (! + )IS] = Dagy (1)
Proof I+t—x+yeZl el —x+yel

by Yan Alves Radtke
Greedy Algorithm and Matroid Intersections



Auxiliary Matroid

Def. Ml:=(S+t,{UCS+t|U—-teI})
Claim DM’I,MQ(I + l‘)[S] = DMl,Mz(I)
Proof I+t—x+yeZl el —x+yel
Claim N(t) = X1 U X3
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Auxiliary Matroid

Def. Ml:=(S+t,{UCS+t|U—-teI})
Claim DM’I,MQ(/_Ft)[S] = DMl,Mz(I)
Proof I+t—x+yeZl el —x+yel
Claim N(t) = X1 U X3
Proof I+t—t+xellel+xellsl+xeljexeX
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Proof of extremity of IAVP
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Proof of extremity of IAVP

w(l +t) = w(l)+ w(t) = w(l) — {(P) = w(lAP) = w(J)
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Proof of extremity of IAVP

w(l +t) = w(l)+ w(t) = w(l) — {(P) = w(lAP) = w(J)

A relaxation of our original problem has a maximum weight of
w(J)
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Proof of extremity of IAVP

w(l +t) = w(l)+ w(t) = w(l) — {(P) = w(lAP) = w(J)
A relaxation of our original problem has a maximum weight of
w(J)

J common independent = J is extreme common independent
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Proof of independency of IAVP




Reminder of Lemma

Let C > t be a circuit s.t. /IAVC is not a common independent set

Then there exists:
/ H /

or C'> tst. £(C') < £(C) with VC' C VC
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Proof of independence of /A VP
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Reminder of Lemma

Let C = « be a circuit s.t. /AVC is not a common independent set

Then there exists:

/ H /
=

or

— =
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Reminder of Lemma

Let C = « be a circuit s.t. |AVC isnet-a—commen-independentset
O

Then there exists:

/ H /

=

or

— =
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Proof of independence

(I + tAVP +t) =IAVP is a common independent set
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Proof of independence

(I + tAVP +t) =IAVP is a common independent set

= J = IAVP is an extreme common independent set
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Maximum weight algorithm

Input: M; and Moy, an extreme common independent set /
and a weight function w
Output: An extreme common independent set J with
|J| = |I| + 1 if any exists, else /

Construct D, am,(1);
Define Xj := {x € S\ |/ U {x} € T;};
if X1-Xo Path exists in D, pm,(1) then

P:=minimal weight X3-X> Path with minimal number of

arcs;
return /A VP

else
| return /

end
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Matroid Intersection Theorem

The maximum size of a set in 71 N1 is

{jnglg* ri(U) 4+ n(S\ V)
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Matroid Intersection Theorem

The maximum size of a set in 71 N1 is

{jnglg* ri(U) 4+ n(S\ V)

Use Case: Partition of base set can certify an upper bound
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Proof " <"

For any common independent set / and any U C S

[ =1nuf+[I\ U
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Proof " <"

For any common independent set / and any U C S

| =[INU[+|I\U=n({nNnU)+nrn(l\U)
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For any common independent set / and any U C S

| =[InU+|I\U=n(INU)+nrn(l\U)<nU)+n(S\V)
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Ildea of Proof " >"

Proof by induction over |S]|
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Ildea of Proof " >"

Proof by induction over |S]|

m |S| =1 just 3 cases
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Idea of Proof " >"

Proof by induction over |S]|
m |S| =1 just 3 cases

m Use restrictions and contractions to construct submatroids on
Uand S\ U
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Idea of Proof " >"

Proof by induction over |S]|
m |S| =1 just 3 cases

m Use restrictions and contractions to construct submatroids on
Uand S\ U

m Get common independent sets of size r;(U) and r(S\ U) on
Uand S\ U
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Case 2

Claim n(U)+ rn(S\ U) <|/|
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Case 2

Claim n(U)+ n(S\ U) <|/|
[ | rl(U) < ‘/ N U‘
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Case 2

Claim n(U)+ n(S\ U) <|/|
[ | rl(U) < ‘/ N U‘
Suppose r(U) > |I N U]
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Case 2

(U)+r(S\U) <[/
[ rl(U) < ‘/ﬁ U‘
Suppose r(U) > |I N U]

= Thereisxe U\Ilst. INU+x€T;

Claim n
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Case 2

Claim n(U)+ n(S\ U) <|/|
m (V) <|INnU|
Suppose r(U) > |I N U]
= Thereisxe U\Ilst. INU+x€T;
= x¢ X1 = l+x¢1;
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Case 2

Claim n(U)+ n(S\ U) <|/|
m (V) <|INnU|
Suppose r(U) > |I N U]
= Thereisxe U\Ilst. INU+x€T;
— x¢X1 = l+x¢1;
= Thereisyel\Ust. | —y+x€ely
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Case 2

Claim n(U)+ n(S\ U) <|/|
m (V) <|INnU|
Suppose r(U) > |I N U]
= Thereisxe U\Ilst. INU+x€T;
— x¢X1 = l+x¢1;
= Thereisyel\Ust. | —y+x€ely
— (y,x) enters U %
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Case 2

Claim n(U)+ n(S\ U) <|/|
m (V) <|INnU|
Suppose r(U) > |I N U]
= Thereisxe U\Ilst. INU+x€T;
— x¢X1 = l+x¢1;
= Thereisyel\Ust. | —y+x€ely
— (y,x) enters U %
Similarly n(S\ U) < |I'\ U|

m So it follows: / is a maximum cardinality common independet
set
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Thank you for your attention
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