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Greedy

Task Find a maximum weight spanning tree!
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Formalization

Input: Connected graph with edge weights
Output: Maximum weight spanning tree
Initalization: I := ∅;
while Exist edge E s. t. I ∪ {E} is a forest do

Choose such E with maximal weight;
put I := I ∪ {E};

end
return I

by Yan Alves Radtke
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Independence System

Def. (S, I) is an independence system iff

I ⊆ P(S)

∅ ∈ I
I ∈ I =⇒ P(I ) ⊆ I
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Greedy Algorithm

Input: (S, I) with weight function w : S → R≥0
Output: I ∈ I with w(I ) :=

∑
i∈I

w(i) maximal

Initalization: I := ∅;
while Exist s ∈ S s. t. I ∪ {s} ∈ I do

Choose such s with maximal weight;
put I := I ∪ {s};

end
return I

by Yan Alves Radtke
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Counterexample for Greedy Algorithm

Task Find maximum weight independent edge set

4 5 4
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Greedy Theorem

For all Independence Systems (S, I) it holds:

(S, I) is a matroid iff the greedy algorithm returns a maximum
weight independent set for all non-negative weight functions

by Yan Alves Radtke
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Proof ”⇒”

Loop invariant: I is contained in a maximum weight base B

Assume I is contained in a maximum weight base B

Let y be the element the greedy algorithm chose to add to I

Case 1: I + y ⊆ B

Case 2: I + y * B
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Proof ”⇒”

B

I

y

Base B ′

z
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Proof ”⇒”

w(B ′)− w(B) = w(y)− w(z) ≥ 0

, since the greedy algorithm
chose y over z and I + z ⊆ B
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Counterexample for Greedy Algorithm

4 5 4
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Proof ”⇐”

Assume (S, I) is not a matroid.Then there exist independent I and
J such that

|J| > |I | =: k

I + z /∈ I for all z ∈ J \ I
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Proof ”⇐”

w(s) :=


k + 2 if s ∈ I

k + 1 if s ∈ J \ I
0 else

After first k iterations I , then only 0 weight elements
Greedy returns G with

w(G ) = w(I ) = k(k + 2)< (k + 1)(k + 1)≤ w(J)
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Matroid Intersections

Two matroids M1 = (S, I1) and M2 = (S , I2)

Set of common independent sets

(S, I1 ∩ I2) is called the intersection of M1 and M2

(S, I1 ∩ I2) is generally not a matroid

But it is a independence system
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DM1,M2
(I )

For given M1,M2 and common independent set I , DM1,M2(I ) is

x

y

I

S \ I

I − x + y ∈ I1

by Yan Alves Radtke

Greedy Algorithm and Matroid Intersections



DM1,M2
(I )

For given M1,M2 and common independent set I , DM1,M2(I ) is

x

y

I

S \ I
I − x + y ∈ I1

by Yan Alves Radtke

Greedy Algorithm and Matroid Intersections



DM1,M2
(I )

For given M1,M2 and common independent set I , DM1,M2(I ) is

u

v y

I

S \ I
I − u + v ∈ I2
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Paths in DM1,M2
(I )

in I in Iin S \ I in S \ I

Performing swaps along Path P on I gives us I4VP

This isn’t necessary a common independent set!
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Maximum weight algorithm

For a given weight function w we can define:

`(x) :=

{
w(x) if x ∈ I

−w(x) if x ∈ S \ I

`(P) :=
∑

x∈VP
`(x)

=⇒ w(J) = w(I4VP) = w(I )− `(P)
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Maximum weight algorithm for matroid intersections

Input: M1 and M2, an extreme common independent set I
and a weight function w

Output: An extreme common independent set J with
|J| = |I |+ 1 if any exists, else I

Construct DM1,M2(I );
Define Xi := {x ∈ S \ I |I ∪ {x} ∈ Ii};
if X1-X2 Path exists in DM1,M2(I ) then

P:=minimal weight X1-X2 Path with minimal number of
arcs;
return I4VP

else
return I

end

by Yan Alves Radtke
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Matchings

I

S \ I
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Perfect Matchings

I

S \ I
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Not Perfect Matchings

I

S \ I
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Properties of perfect matchings

If J ∈ I1 and |J| = |I |, there exists a series of swaps that transform
J into I

=⇒ DM1,M2(I ) has a perfect matching with only downward
edges on I4J

If |J| = |I | and DM1,M2(I ) has a unique perfect matching on I4J
with only downward edges

=⇒ J ∈ I1
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Lemma

Let C 3 α be a circuit s.t. I4VC is not a common independent set

α

Then there exists:
Negative length circuit C ′ with VC ′ ( VC

or C ′ 3 α s.t. `(C ′) ≤ `(C ) with VC ′ ( VC
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Proof of Lemma

α

Matching

Since not independent: another matching

by Yan Alves Radtke

Greedy Algorithm and Matroid Intersections



Proof of Lemma

α

Matching

Since not independent: another matching

by Yan Alves Radtke

Greedy Algorithm and Matroid Intersections



Proof of Lemma

α

Matching

Since not independent: another matching

by Yan Alves Radtke

Greedy Algorithm and Matroid Intersections



Proof of Lemma

Eulerian Graph =⇒ decomposition into circuits C1,C2...,Cj

s.t.∑
i=1,...,j

`(Ci ) = 2`(C )

if there is no negative weight circuit, it follows, if t ∈ C1,C2:

`(C1) + `(C2) ≤
∑

i=1,...,j
`(Ci ) = 2`(C )

=⇒ `(C1) ≤ `(C ) or `(C2) ≤ `(C )
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Extreme set - negative circuit theorem

Statement: DM1,M2(I ) has no negative length circuit ⇔ I is an
extreme set
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Proof ⇒

Let J be a common independet set with |J| = |I |
I \ J

J \ I

by Yan Alves Radtke

Greedy Algorithm and Matroid Intersections



Proof ⇒

w(J) = w(I )− `(I4J) = w(I )−
∑

`(Ci ) ≤ w(I )

=⇒ w(J) ≤ w(I )

=⇒ I is an extreme set
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Proof ⇒
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Proof ⇐

Let C negative length circuit minimal nodes and I extreme set

Then w(I4VC ) = w(I )− `(VC ) > w(I )

Then I4VC is not a commmon independent set
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Reminder of Lemma

Let C 3 t be a circuit s.t. I4VC is not a common independent set

α

Then there exists:
Negative length circuit C ′ with VC ′ ( VC

or C ′ 3 α s.t. `(C ′) ≤ `(C ) with VC ′ ( VC
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Reminder of Lemma

Let C 3 t be a circuit s.t. I4VC is not a common independent set

α

Since `(C ) < 0 this implies:

Negative length circuit C ′ with VC ′ ( VC
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Proof ⇐

Let C negative length circuit minimal nodes and I extreme set

Then w(I4VC ) = w(I )− `(VC ) > w(I )

Then I4VC is not a commmon independent set

By Lemma C ′ is a negative length circuit with less nodes �
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Maximum weight algorithm

Input: M1 and M2, an extreme common independent set I
and a weight function w

Output: An extreme common independent set J with
|J| = |I |+ 1 if any exists, else I

Construct DM1,M2(I );
Define Xi := {x ∈ S \ I |I ∪ {x} ∈ Ii};
if X1-X2 Path exists in DM1,M2(I ) then

P:=minimal weight X1-X2 Path with minimal number of
arcs;
return I4VP

else
return I

end

by Yan Alves Radtke
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Auxiliary Matroid

Def. M′i := (S + t, {U ⊆ S + t|U − t ∈ Ii})

Claim DM′
1,M′

2
(I + t)[S] = DM1,M2(I )

Proof I + t − x + y ∈ I ′i ⇔ I − x + y ∈ Ii
Claim N(t) = X1 ∪ X2

Proof I + t − t + x ∈ I ′i ⇔ I + x ∈ I ′i ⇔ I + x ∈ Ii ⇔ x ∈ Xi
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Proof of extremity of I4VP

x1

x ′1

x ′1

I I x2

x ′2

x ′2

t

w(t) := −`(P)

`(P ′) ≥ `(P)
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Proof of extremity of I4VP

w(I + t) = w(I ) + w(t) = w(I )− `(P) = w(I4P) = w(J)

A relaxation of our original problem has a maximum weight of
w(J)

J common independent =⇒ J is extreme common independent
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Proof of independency of I4VP

x1

x ′1

x ′1

I I x2

x ′2

x ′2

t w(t) := −`(P)
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Reminder of Lemma

Let C 3 t be a circuit s.t. I4VC is not a common independent set

α

Then there exists:
Negative length circuit C ′ with VC ′ ( VC

or C ′ 3 t s.t. `(C ′) ≤ `(C ) with VC ′ ( VC
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t w(t) := −`(P)
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Proof of independence

(I + t4VP + t) = I4VP is a common independent set

=⇒ J = I4VP is an extreme common independent set
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Proof of independence
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Maximum weight algorithm

Input: M1 and M2, an extreme common independent set I
and a weight function w

Output: An extreme common independent set J with
|J| = |I |+ 1 if any exists, else I

Construct DM1,M2(I );
Define Xi := {x ∈ S \ I |I ∪ {x} ∈ Ii};
if X1-X2 Path exists in DM1,M2(I ) then

P:=minimal weight X1-X2 Path with minimal number of
arcs;
return I4VP

else
return I

end
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Case 2

X1

X2

S \ U U
X1 ∩ U = ∅, X2 ⊆ U
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Matroid Intersection Theorem

The maximum size of a set in I1 ∩ I2 is

min
U⊆S

r1(U) + r2(S \ U)

Use Case: Partition of base set can certify an upper bound
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Proof ”≤”

For any common independent set I and any U ⊆ S

|I | = |I ∩ U|+ |I \ U|

= r1(I ∩ U) + r2(I \ U)≤ r1(U) + r2(S \ U)
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Idea of Proof ”≥”

Proof by induction over |S|

|S| = 1 just 3 cases

Use restrictions and contractions to construct submatroids on
U and S \ U
Get common independent sets of size r1(U) and r2(S \ U) on
U and S \ U
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Case 2

Claim r1(U) + r2(S \ U) ≤ |I |

r1(U) ≤ |I ∩ U|
Suppose r1(U) > |I ∩ U|

=⇒ There is x ∈ U \ I s.t. I ∩ U + x ∈ I1
=⇒ x /∈ X1 =⇒ I + x /∈ I1
=⇒ There is y ∈ I \ U s.t. I − y + x ∈ I1
=⇒ (y , x) enters U �

Similarly r2(S \ U) ≤ |I \ U|
So it follows: I is a maximum cardinality common independet
set
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Thank you for your attention
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