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Matroids have structure, presentations also

Classes of matroids
1 General discussion

Matroid
isomorphism

2 Theory: Representing matroids over a given field F

3 What mainly motivates the study of regular matroids?



Part 1

matroid
The Marvel universe



1 Graphic matroids M(G)

‘C Ground set E = set of all edges of the graph G
C e The circuit set C = set of cycles in G
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2 Vector matroids M[Q]
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3 Uniform matroids Un,m

Ground set E = arbitrary finite set of n elements

The set of bases B = the set of all m-element subsets of E



Fundamental Notion

Matroid
Equivalence



4 Matroids representable over a given field F

Those matroids that are isomorphic to the vector matroid of some matrix Q with coefficients in F
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4 Matroids representable over a given field F

Those matroids that are isomorphic to the vector matroid of some matrix Q with coefficients in F

5 Regular matroids

Those matroids that have a vector matroid representation over every field F

6 Unimodular matroids

Those matroids that have a vector matroid representation over the rational numbers by
a totally unimodular matrix P, i.e. any submatrix of P has determinant either 1, -1 or 0



Natural Question

How are the different matroid classes
related?
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Part 2

Representing matroids over
a given field F



Matroid M with
representation P over F

Wish

Make P nicer



M(G) represented by the matrix Q over the reals
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Theorem: Let P be a matrix with coefficients in F, M its associated vector

matroid. Applying the following operations to P produces a matrix P*' whose
vector matroid M’ is equivalent to M

1. Multiply each row/column by a nonzero element f of F
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Theorem: Let P be a matrix with coefficients in F, M its associated vector
matroid. Applying the following operations to P produces a matrix P*' whose
vector matroid M’ is equivalent to M

1. Multiply each row/column by a nonzero element f of F

2. Permute the rows

3. Permute the columns (with associated labels)

4. Delete trivial rows consisting of zeros only

5. Replace row i by row i + (nonzero constant) x row j (j =/=i)



Important consequence
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Lemma: Basic properties of determinants
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Another Lemma: Pivoting on a nonzero entry x.: of a totally unimodular
matrix X preserves total unimodularity
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Another Lemma: Pivoting on a nonzero entry x.: of a totally unimodular
matrix X preserves total unimodularity
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Important consequence
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Main Theorem
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Part 3

Graphic matroids



Two Main results

1 Graphic matroids are regular

2 Graphic matroids are unimodular

Both results follow easily from an "algorithmic™ method of generating
representations of a given graphic matroid



M(G) represented by the matrix Q over the reals
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M(G) represented by the matrix Q over the reals
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M(G) represented by the matrix Q over the reals
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Proof of regularity via concrete example



Proof of unimodularity via induction on |[E(G)|
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QED



