Regular Matroids

Alex Nedev Janis Bakker

Matroids have structure, presentations also

Classes of matroids

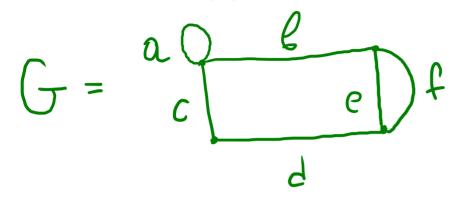
Matroid isomorphism

2 Theory: Representing matroids over a given field F

3 What mainly motivates the study of regular matroids?

Part 1 matroid The Marvel universe

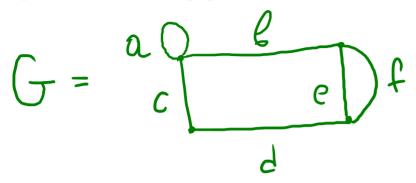
1 Graphic matroids M(G)



Ground set E = set of all edges of the graph G

The circuit set C = set of cycles in G

1 Graphic matroids M(G)



Ground set E = set of all edges of the graph G

The circuit set C = set of cycles in G

2 Vector matroids M[Q]

$$Q = \begin{bmatrix} A & B & C & D & E & F \\ 0 & 3 & D & 0 & e^{T} & sin(3) \\ 0 & 0 & 4 & 0 & e^{T} & sin(3) \\ 0 & 0 & 5 & e^{T} & sin(3) \end{bmatrix}$$

E = set of all column labels

I = { subsets of the label set, s.t. the corresponding columns are linearly independent }

3 Uniform matroids Un,m

Ground set E = arbitrary finite set of n elements

The set of bases B = the set of all m-element subsets of E

Fundamental Notion

Matroid Equivalence

$$M_{1} = (E_{1}, \mathcal{I}_{1}) \qquad M_{2} = (E_{2}, \mathcal{I}_{2})$$

$$M_{1} \quad \text{isomorphic to } M_{2}$$

$$iff$$

$$J \quad \text{bijection} \quad f: E_{1} \rightarrow E_{2} \quad \text{such that}$$

$$A \in \mathcal{I}_{1} \quad \langle = \rangle \quad f(A) \in \mathcal{I}_{2} \quad \forall A < E_{1}$$

4 Matroids representable over a given field F

Those matroids that are isomorphic to the vector matroid of some matrix Q with coefficients in F

4 Matroids representable over a given field F

Those matroids that are isomorphic to the vector matroid of some matrix Q with coefficients in F

5 Regular matroids

Those matroids that have a vector matroid representation over every field F

4 Matroids representable over a given field F

Those matroids that are isomorphic to the vector matroid of some matrix Q with coefficients in F

5 Regular matroids

Those matroids that have a vector matroid representation over every field F

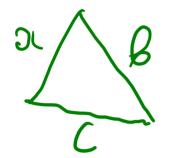
6 Unimodular matroids

Those matroids that have a vector matroid representation over the rational numbers by a totally unimodular matrix P, i.e. any submatrix of P has determinant either 1, -1 or 0

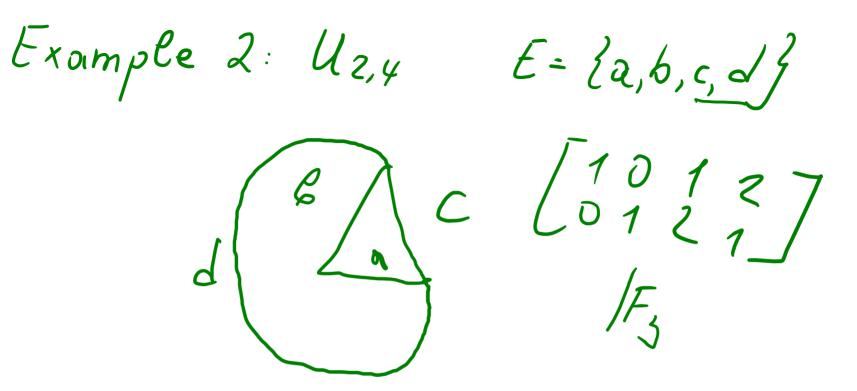
Natural Question

How are the different matroid classes related?

Example 1: U2,3 E= {a,b,c}



Eraphic $Q = \begin{bmatrix} 1 & p & 1 \\ 0 & p & 1 \end{bmatrix} H$



Part 2

Representing matroids over a given field F

Matroid M with representation P over F

Wish

Make P nicer

G = c e

 $Q = \begin{bmatrix} A & B & C & D & E & F \\ 0 & 3 & D & 0 & e^{T} & sin(3) \\ 0 & 0 & 4 & 0 & e^{T} & sin(3) \\ 0 & 0 & 5 & e^{T} & sin(3) \end{bmatrix}$

1. Multiply each row/column by a nonzero element f of F

- **1. Multiply each row/column by a nonzero element f of F**
- 2. Permute the rows

- **1. Multiply each row/column by a nonzero element f of F**
- 2. Permute the rows
- **3. Permute the columns (with associated labels)**

- **1. Multiply each row/column by a nonzero element f of F**
- 2. Permute the rows
- 3. Permute the columns (with associated labels)
- 4. Delete trivial rows consisting of zeros only

- **1. Multiply each row/column by a nonzero element f of F**
- **2. Permute the rows**
- **3. Permute the columns (with associated labels)**
- **4. Delete trivial rows consisting of zeros only**
- 5. Replace row i by row i + (nonzero constant) x row j (j =/= i)

Important consequence

Let M=(E, D) be a matroid of rank r.D., representable over F., then I a representation of M of the form Ir D =) Uz, y not representable over IF2

Lemma: Basic properties of determinants

Lemma: Basic properties of determinants

1) Multiply some row of P by a constant c to obtain D => det(D) = c. det(P) 2) Interchange two rows or columns of P to obtain D => det(D) = - det(P)

Lemma: Basic properties of determinants

1) Multiply some row of P by a constant c to obtain $D = \det(D) = c \cdot \det(P)$ 2) Interchange two rows or columns of P to obtain D => det(D) = - det(P) 3) Replace row i of P with row i+ constant * row J $J \neq i \Rightarrow det(D) = det(P)$

Another Lemma: Pivoting on a nonzero entry x_{st} of a totally unimodular matrix X preserves total unimodularity

 \times

Another Lemma: Pivoting on a nonzero entry x_{st} of a totally unimodular matrix X preserves total unimodularity

Important consequence

A Matroid M of rank rod is unimodular iff Maan be represented by a totally unimodular Matrix P of the form $P = \left[Ir / D \right]$

Main Theorem

If M has a unimodular representation X over Q, then X also represents M over an arbitrary field F Proof: $\Gamma(M) > 0$ $\chi = [Ir | D]$ Let B be a set r columns of χ det (B) $\neq 0$ $\xi - 1 + \xi n + \xi R$

Part 3

Graphic matroids

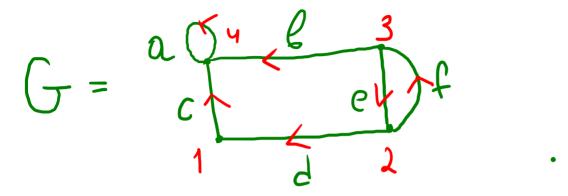
Two Main results

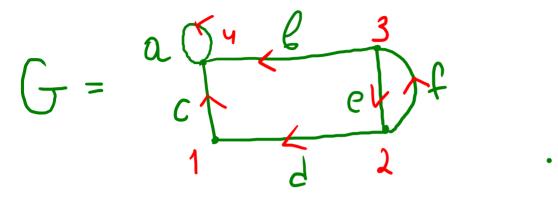
- **1** Graphic matroids are regular
- **2** Graphic matroids are unimodular

Both results follow easily from an "algorithmic" method of generating representations of a given graphic matroid

G = c e

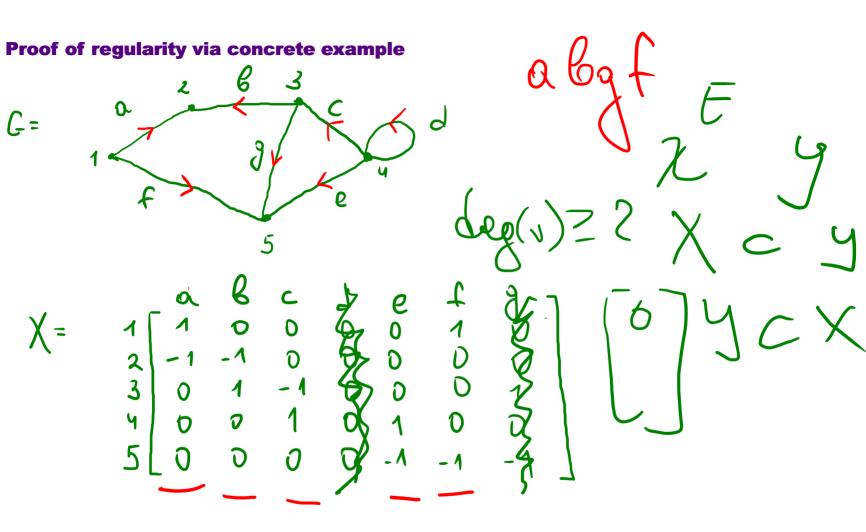
 $Q = \begin{bmatrix} A & B & C & D & E & F \\ 0 & 3 & D & 0 & e^{T} & sin(3) \\ 0 & 0 & 4 & 0 & e^{T} & sin(3) \\ 0 & 0 & 5 & e^{T} & sin(3) \end{bmatrix}$





$$Q = \frac{1001 - 100}{4001 - 100}$$

$$Q = \frac{10001 - 100}{30001 - 100}$$



Proof of unimodularity via induction on |E(G)|

Prost Assume |E(G)| = n The hold for E(C) Kn me $\begin{bmatrix} -101 \end{bmatrix} \begin{bmatrix} -101 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -101 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -101 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -101 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -101 \end{bmatrix} \begin{bmatrix} -101 \end{bmatrix} \begin{bmatrix} -101 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -101 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -101 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -101 \end{bmatrix} \begin{bmatrix} -101 \end{bmatrix} \begin{bmatrix} -10$ ಲ

 $X = \left(\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ x'' \end{array} \right)$ Ul Trivial row -> det X'=D 2 No trivial rows (1) Just one ^f (1) is some row 2) Eesch row has at Censt 2 honzeru

