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Unimodular Matroids

NEIL WHITE

3.1. Equivalent Conditions for Unimodularity

Unimodular matroids were defined in Chapter 1 as the class of matroids
which may be coordinatized over every field. In Theorem 3.1.1 we give a
number of equivalent characterizations of this class. Certainly the two most
striking and powerful of these are Tutte’s excluded minor characterization and
Seymour’s decomposition [conditions (8) and (9) of Theorem 3.1.1]. We first
need some definitions and notation.

A coordinatization of M(S) over Q given by n x N matrix A with integer
entries, and n < N, is said to be totally unimodular if every k x k submatrix has
determinant equal to 0 or + 1, for all k, 1 <k < n, and is said to be locally
unimodular if every n x n submatrix has determinant equal to O or + 1.

Let D be the bond-element incidence matrix of M(S). That is, if
R, R,,...,R, arc the bonds of M and S = {x;, x,,..., Xy}, then D = (b;)), with
b;;=11if x;eR;, and b;; = 0 otherwise. Similarly, let E be the circuit-element
incidence matrix of M. Suppose that it is possible to change some of the entries
of D from 1 to — 1 to get a matrix D', and similarly, change E to E’, so that
D'(E'} = 0 over Q (where t denotes transpose). Then we say that M is signable.
[This is closely related to the notion of orientability, considered in a chapter of
White (1988).]

In Section 7.6 of White (1986) 1-sums, 2-sums, or (for binary matroids) 3-
sums of two matroids M,(E,) and M,(E,) were defined as P (M, M,) — x,
where P, (M, M ,)is the generalized parallel connection across a flat x, and x is
empty, a point, or a 3-point line (respectively). To avoid triviality we insist that
P (M,, M,)— x have larger cardinality than M, or M,. For binary matroids,
with which we are concerned here, an equivalent definition is to say that each
of these three sums is the matroid M, A M, on the symmetric difference
E, A E, which has as its cycles (i.e., disjoint unions of circuits) all subsets of the
form C; A C,, where C; is a cycle of M;. Then
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(A) M; AM, is the 1-sum of M, and M, if E,nE,=( and E, # J,
E, # .

(B) M, A M, isthe2-sumof M; and M, if E; nE, = {e}, e is neither a loop
nor an isthmus of M, or of M,, and |E,| =3, [E,| = 3.

(C) M, AM,isthe3-sumof M, and M, ifE,nE,=L,where|L|=3,Lisa
line (and therefore L is a circuit) in each of M| and M, L includes no
bond of M, or M,, and |E,| =7, |E,|=7.

In fact, the 1-sum is just direct sum. The 2-sum is just pasting together of M,
and M, at the common element e, followed by the deletion of e, so that the
rank of M; AM, is as large as possible, namely rM, + rM, — 1. The 3-sumisa
similar pasting together along a common line, again keeping the rank as large
as possible, namely rM, +rM, — 2.

The matroid R, in the following theorem is given in Exercise 1.7. U, 4 is the
4-point line, F, the 7-point Fano plane, and F* the orthogonal dual of F,.

A matroid is called unimodular (or regular) if it satisfies any of the conditions
of the following theorem.

3.1.1. Theorem. The following conditions are equivalent, for a matroid M(S).

(1) M has a totally unimodular coordinatization over Q.

(2) M has a locally unimodular coordinatization over Q.

(3) The brackets for M may be assigned the values 0, + 1 in Q so that the
syzygies of Proposition 1.6.1 are satisfied.

(4) M may be coordinatized over K, for every field K.

(5) M may be coordinatized over GF(2) and over K, for some K with char
K#2.

(6) M is signable.

(7) For every hyperplane H of M there exists a function Fy:S — Q such that
kernel F,, = H for every H, image Fy ={0,1, — 1}, and for every three
hyperplanes H,, H,, and H; containing a common coline, there exists
oy, 00, and aye{l, — 1} such that o, Fy, + a,Fy, +03Fy, =0.

(8) M has no minor isomorphic to U, 4, F,, or F%.

(9) M may be constructed by 1-,2-, and 3-sums from graphic matroids,
cographic matroids, and matroids isomorphic to R .

Proof of the equivalent of (1) through (5). (1)=(2) and (4)=-(5) are trivial, and
(2)=>(3)=(4) are immediate from Proposition 1.6.1, where the bracket values
0, + 1eQ are simply regarded as elements of the field K. Since the syzygies
hold over Q, they also hold mod p, where p = char K.

We now have only to prove (5)=>(1). This proof is due to Brylawski (1975).
Let A =(I,|L) be a coordinatization of M(S) over K, where M(S) is binary and
char K #2. We assume that A4 is in (B, T)-canonical form, where T is a
spanning tree of the bipartite graph I' whose adjacency matrix is determined
by L (see Section 1.2). We now claim that each entry in L (and hence in 4)is 0
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or +1. Let w be a non-zero entry of L, other than one of the entries
corresponding to T. Then w corresponds to an edge of I — T, and hence has a
basic circuit C in I'. We will prove that w = + 1 by induction on the size of C.
It is not difficult to see that the edges of C correspond to a cyclic sequence of
2k non-zero entries of L, for some k > 2, with the property that each odd-
numbered entry in the sequence is in the same column as its predecessor, and
each even-numbered entry in the same row as its predecessor. For example, the
submatrix containing the sequence of entries may look like the following:

0110
1100
1 0 0 1°
0 0 1 w

Now either these 2k entries are the only non-zero entries in a k x k
submatrix of L, or if there are other entries, w forms a circuit of size less than 2k
with entries which are either in T or themselves have basic circuits of size < 2k.
By the induction hypothesis, these other entries are all + 1, hence in any case
we get a j x j submatrix J of L having exactly 2 j non-zero entries, with 2 in
each row and column, and each entry except w equal to + 1. But then J is
uniquely the sum of two permutation matrices, so det J = + 1 £+ w. But since
M(S) is binary, it may also be coordinatized over GF(2) by replacing each non-
zero entry in A by 1 in GF(2), since basic circuits of M must be preserved. But
then over GF(2), det J =0, hence we must also have det J=0 over K to
preserve dependence. Therefore w= + 1.

The proof of (1)—(5) will now be complete if we prove the following lemma, by
regarding A as a matrix over Q, since the operations in the proof of the lemma
do not depend on the characteristic.

3.1.2. Lemma. Let M(S) be a binary matroid which is coordinatized by a matrix
A in echelon form over Q, with every entry of A equal to 0 or + 1. Then A is
totally unimodular.

Proof. Let W be a square submatrix of A. We now do row operations on W to
reduce it to echelon form. Given w;; # 0, since w;; = + 1, weadd — w;;w,,; times
row i to row h for each h, to get w;; to be the only non-zero entry in column j.
Now consider an entry wy, in the original submatrix W, where h # i,k #j.
Then the above row operations replace wy, by wy, — w;;w, ;w,, which is 0 or
+ 1 unless wy, = —w;;w,;w; #0. But then the following 2 x 4 submatrix

existed in the matrix A4:
I 0wy wy
0 1 wy wy |

This submatrix coordinatizes a minor of M(S) which is isomorphic to L, a
contradiction to the assumption that M(S) is binary.
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Thus the reduction of W to echelon form may be completed while keeping
all entries 0 or + 1. Thus det W =0 or + 1, and A4 is totally unimodular
d

Proof of equivalence of (1) through (7). First we will show (1)=(6)=(5).

Let 4 be a totally unimodular matrix over @ coordinatizing M(S) and in
echelon form with respect to the basis B. Then the i-th row of 4 is non-zero on
precisely the elements of the basic bond § — B — {b;} corresponding to the i-th
element of B. Furthermore, by row operations, we may bring 4 into echelon
form A’ with respect to any other basis B', thus obtaining a row for any bond of
M. Furthermore, A’ must still be totally unimodular, since n x n determinants
are preserved by the row operations, and any k x k determinant of A’ may be
augmented by columns from B’ to obtain an n x n determinant, at most
changing the sign of the determinant.

Now let D’ be a matrix obtained by taking such a row for each bond of M.
D’ is then just the bond-element incidence matrix with some 1’s changed to
—1I’s, and the row-space of D' is the same as the row-space of 4. By
Proposition 1.3.1, M*(S) also has a coordinatization A* obtained from 4 by
transposing. It is very easy to check that A4* is also totally unimodular.
Letting E’ be the matrix obtained for the bonds of M* as D’ was for M, we
see that E’ is just the circuit-element incidence matrix of M with some 1’s
changed to — U’s. Furthermore, the rows of D' and the rows of E' are
orthogonal, again by Proposition 1.3.1, hence D'(E’) =0, proving (1)=(6).

Now suppose that we are given D’ and E’ as above, with D'(E’)' =0. Since
each row of D" is orthogonal to each row of E’, we see immediately thatif Risa
bond and C a circuit of M(S), then |[R ~ C|is even. Thus from Theorem 2.2.1, M
is binary.

Let B be a basis of M(S) and assume the elements of S have been ordered so
that the elements of B come first. The basic bonds S — B — {b;} for b;e B give us
a submatrix D" of D,

D" =(I'lU),

where I is the matrix of columns corresponding to the elements of B', and I' is
an n x n identity matrix with some of the entries possibly changed from 1 to
— 1. Now, the dimension of the row-space of D’ is at least n, the dimension of
the row-space of D”.

Similarly, by taking the rows of E’ corresponding to the basic circuits of B,
we have

E'=(V|D),

where 1" is the matrix of columns corresponding to S — B, and [” isan (N —n)
x (N — n) identity matrix with some of the entries possibly changed from
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1 to — 1. The dimension of the row-space of E’ is at least N — n, the dimension
of the row-space of E". Since the row-spaces of D’ and E’ are orthogonal
subspaces of an N-dimensional vector-space over Q, we have equality in both
cases, that is, row-rank (D')=n and row-rank (E')=N —n.

We will now show that D” is a totally unimodular matrix coordinatizing
M(S). Let B’ be any basis of M. If we construct D” from the basic bonds of B’ as
we did D” from B (but keeping the ordering of the elements of S fixed), we see
that D" and D" are row-equivalent, since the rows of each are a basis of the row
space of D’. Thus the columns of D” corresponding to B’ are linearly
independent.

Let C be a circuit of M(S). Then C corresponds to a row e, of E’ which is
orthogonal to the rows of D", and hence the entries of e, are the coefficients of a
linear dependence of the columns of D” corresponding to the elements of C.
Thus D" is a coordinatization of M, and by Lemma 3.1.2 it is also unimodular.

Thus (1)-(6) are equivalent. The equivalence of these with (7) now follows
casily by noting that the functions f; correspond to rows of the signed bond-
element matrix D', with f in particular corresponding to the row for the bond
S—H.

Proof of conditions (8) and (9). The implication (5)=>(8) is easy, since L,
cannot be a minor if M is binary, and F, or F% cannot be coordinatized over
any field whose characteristic is not 2 (see Exercise 1.9). The converse was
proved by Tutte using his very deep Homotopy Theorem {Tutte 1958), and is
certainly one of the most beautiful and important results in matroid theory.
We state the Homotopy Theorem and sketch the proof of (8)=>(7) in the next
section.

The implication (9)=(5) is easy by observing that 1-sums, 2-sums, and 3-
sums preserve coordinatizability over GF(2) and GF(3) [see p. 186 of White
(1986)]. Seymour’s Theorem (1980) is (8)=>(9). The proof is much too long to
be included here. One advantage of this result is that it includes Tutte’s
Theorem as a corollary. O

3.2 Tutte’s Homotopy Theorem and Excluded Minor
Characterization

We now give a careful statement of Tutte’s Homotopy Theorem, and sketch its
use to prove Tutte’s excluded minor characterization of unimodular matroids.
There are several reasons why we choose to do so. The first is the historical
importance of Tutte’s work, despite the fact that his excluded minor
characterization can now also be proved by Seymour’s method. The second is
the importance of the ideas involved for further work in coordinatizations.
This importance seems restricted by Tutte’s heavy use of the crucial property
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of binary matroids that coline is contained in at most three distinct
hyperplanes (or copoints). Nevertheless, both Reid (unpublished) and Bixby
(1979) were able to extend Tutte’s methods to obtain the excluded minor
characterization of ternary matroids. The third reason is that such a sketch of
Tutte’s ideas is not available in accessible form elsewhere, except in Tutte’s
own writing. Although Tutte’s terminology and notation are perhaps suitable
for someone who is interested primarily in the graph-theoretical aspects of
matroid theory, they are quite confusing to the large majority of matroid
theorists who use terminology similar to that used in these volumes. For
example, what Tutte calls a point is in our terminology a bond, and for our
purposes is best complemented to get a hyperplane. It is hoped that the
translation provided here will be useful not only as an overview of Tutte’s
methods, but also as an entry point to Tutte’s papers for those who wish to
study them in detail.

We first need some definitions. A copoint (or hyperplane), coline, or coplane
in a matroid M(E) of rank nis a flat of rank n — 1,n — 2, or n — 3 (respectively).
A flat Y is T-connected if M(E)/Y is connected. A path in M is a sequence
(X1, X5,...,X,) of copoints such that for 1<i<k—1, X;nX;,,is a T-
connected coline. Thus each such coline X;n X, , is contained in a third
copoint distinct from X; and X, ,. A collection ¥ of copoints of M is a linear
subclass of copoints (see White 1986, Exercise 7.8} if whenever X |, X ,, and X,
are distinct copoints all containing a common coline, and X, €% and X ,€%,
then X;€%. A path is off € if no copoint of the path is a member of €. A path is
closed if the first and last copoints in the path are identical. We now describe
four types of closed paths which will be called elementary paths off €, for a
particular linear subclass €.

(1) (X, Y, X), an arbitrary closed path of length 2 off ¥.

(2) (X,Y,Z, X),aclosed path of length 3 off € such that X n Y n Ziseithera

coline or a coplane.

(3) (X,Y,Z,T,X), a closed path of four distinct copoints off 4, where
XnYnZnTisacoplane P, XnY and Zn T spana copoint A, XN T
and Y nZ span a copoint B, A€¥, Be¥, and every T-connected coline
containing P is contained either in A or in B.

4) (A,X,B,Y,A), a closed path of four distinct copoints off ¥ where
AnXnBnY =D and the contraction M(E)/D is a matroid of rank 4
containing six distinct points Py, P,,...,P¢ with A/D spanned by
{P,,P3,Ps, Pg}, B/D by {P,,P3,P,,Ps}, X/D by {P2,P3,P,}, Y/D by
{P,,P,,P¢},and with {P,, P,, P,, P} spanning another copoint off ¢/D,
where 4/D ={X/D:Xe%¥}. Furthermore, {P,,P,,P;}, {P,,Ps, Ps},
{P,,P,, Pg},and {P;, P,, P5} all span copoints which are in €/D, and all
other points of M/D are on the three lines P, P,, P,Ps, and P,Pq.

Now, if P=(X,,X,,...,X,) and R=(X,, Xy +1,...,X,,) are two paths, we
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define their product PR as the path (X, X5,..., X,,... X,). [0 =(X,,..., X})
is one of the elementary paths defined above, we say that PQR and PR are
elementary deformations of each other with respect to . Two paths P and P’ off
% are homotopic with respect to € if one may be obtained from the other by a
finite sequence of elementary deformations with respect to ¥. Homotopy is
clearly an equivalence relation.

3.2.1 Proposition. Let ¥ be a linear subclass of copoints in a connected matroid

M(E), and let X and Y be copoints of M such that Y ¢ €. Then there exists a path

from X to Y which is off € with the possible exception of the first copoint X.
A proof of this in our notation may be found in Crapo & Rota (1970).

3.2.2. Proposition. (Tutte’s Homotopy Theorem). Let € be any linear subclass
of the matroid M(E), and let P be any closed path off €. Then P is homotopic to a
trivial path with respect to €.

We omit the proof of Proposition 3.2.2 since it is fairly long and technical.
We prefer instead to show how it is applied to prove the excluded minor
characterization for unimodular matroids.

3.2.3. Theorem. A matroid M is unimodular if and only if M is binary and has no
minor isomorphic to the Fano plane F, or the orthogonal matroid F%.

Proof. We have already observed that the necessity is easy. To prove the
sufficiency, suppose that M is a minimal matroid such that M is binary with no
minor isomorphic to F, or F¥ and yet M is not unimodular. Then for arbitrary
aeE,M — a = M’ is unimodular. Let € be the linear subclass of copoints X of
M’ such that aecl(X) in M.

Now we fix a unimodular coordinatization of M’, given by fy:E—
{0, + 1} = Q for every copoint X of M’, as in Proposition 1.5.5. Our task is
to construct such an fy for every copoint X of M.

Let X and Y be copoints of M’ on a T-connected coline, with X and Y off %.
Then there exists xeE — (X U Yu{a}). Let ¢(X, Y) = fx(x) fy(x). Then t(X, Y)
is independent of the choice of x, for if yeE—(XuYu{a}) and
IxxX) fy(x) # fx(¥) fy(»), then the coordinatizing matrix can easily be shown
to have a submatrix

10 fx(x) fx()
0 1 fylx) fr(w)

which implies a minor L, of M’, a contradiction.

Now let R=(X,,X,,...,X,) be any path in M’ off ¥. We define w(R) =
T2 i4(X,, X, ;)= + 1, and claim that u(R) = 1 for every closed path off €.
To prove this claim, it suffices by the Homotopy Theorem to prove that
u(R) =1 for each of the four elementary paths off %.
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(1) Let R=(X,Y,X), then (R)=t(X,Y)?=1.

(2) Let R=(X,Y,Z,X). Then X, Y, Z cannot contain a common coline L,
since none of them contains the point a, and the binary matroid M
cannot have four copoints on L. Therefore X, Y, and Z intersect in a
coplane P. If there is a point x¢XuYuZ, then wR)=
Fx () () fy(%) f2(x) f2(x) fx(x) = 1. If there is no such point x, then for
R to be a path, we must have eeX —(YUZ), feY — (X uZ),geZ
— (X uY).Since YnZisacoline, theremustalsobe be(Y nZ) — X, and
similarly ce(X nZ)— Y,de(X nY) — Z. Then these six points together
with the point ¢ induce a Fano configuration in M/P, a contradiction.

(3) In this case, we have fy, fy, f2, fr and it is easy to see from Lemma 1.5.6
that these four functionals are linearly dependent, since XnYnNZn T is
a coplane P. This dependence implies that the following determinant is
zero, where be(XNY)—P, ce(YNnZ)—P, de(ZnT)— P, ee(TNnX)
—P:

0 0 fzb) fr(b)
Ao 00 fa] g
xd) fr@d O 0

0 fyle fie) 0

which implies u(R) = 1.

(4) This case leads directly to F¥ when we include the point ¢ and contract

by D, again a contradiction.

Now we are ready to construct the coordinatization of M, by defining fy for
every copoint X of M. For each copoint X, either

(A) a¢X and X is a copoint of M’ (with X ¢%),

(B) aeX and X —a is a copoint of M’ (with X — ae¥), or

(C) aeX and X —a is a coline of M.

In cases (A) and (B), we already have f defined on E — {a}. We fix a copoint
X, satisfying case (4), and set fy (@) = 1. Then for every copoint X in case (4),
there must be a path R in M’ from X to X off €, by Proposition 3.2.1. Let
fx(a) =u(R). Since we have already shown that u(R)=1 when R is a closed
path, we see that f,(a) is well-defined.

In case (B), set fy(a)=0. In case (C), X —a=L must be a disconnected
coline of M’ (since M is binary), that is, there are copoints Y and Z of M’
containing L, with E = Y U Z u {a}. Simply define fx = fy + f, choosing the
coefficient of f; so that fx(a)=0.

To complete the proof, we need to show that for every three copoints
X,Y,Z onacoline L, fy, fy, and f, are linearly dependent. Suppose first that
a¢ L. Then ae X, without loss of generality. If X — a = L, then X is of type (C)
above, and by the construction of fy, we have the required linear dependence.
If X —az L, then there exists beX —L,b#a. In M’, we have afy_,+
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Bfy+7vfz=0. Since fy(a)=fx(b)=0 by case (B), and fy(a)fAa)=u(R)=
1(Y,Z) follows from case (4) using the path R=(Y,Z) off ¢, and since
1Y, Z)= fy(b)fz(b), we have that afy(a)+Bfxla)+vfda)=£(BfAb)+
7f2b)) =0, hence afx + Bfy+7/,=0.

The remaining case is ae L. If L — a is still a coline in M, then fy, fy,and f,
are dependent on E — {a}, and take the value zero on 4, hence are dependent
on E.If L — ais a coplane, it is necessary to construct some additional copoints
and use dependences among their f’s to deduce the desired dependency. We
omit the details, which are in Tutte (1958). |

3.3. Applications of Unimodularity

An important application of Seymour’s characterization of unimodular
matroids [condition (9) in Theorem 3.1.1] is a polynomial algorithm for
recognizing whether a matrix is totally unimodular, or more generally,
whether an arbitrary matroid M is unimodular. In the general case, the
number of independent sets in the matroid may be exponential compared to
the rank and cardinality of the matroid, so for the problem to make sense we
must assume that M is given by an independence oracle, a ‘black box’ that tells
us in one step whether a given subset is independent in M. In the case of a
vector matroid, for example, the independence oracle is simply a subroutine
for checking linear independence. The algorithm proceeds roughly as follows:

3.3.1. Algorithm.

(1) Check for decompositions into 1-sums, 2-sums, or 3-sums, using algorithms
by Bixby and Cunningham (1981) and Cunningham and Edmonds
(unpublished) for k-separations.

(2) Taking indecomposable matroids resulting from (1), check for graphic-
ness by Bixby and Cunningham (1980), for cographicness by taking the
orthogonal dual and checking for graphicness, and for isomorphism with
Ry,

This algorithm may be modified to check whether a given matrix A is

unimodular as follows:

3.3.2. Algorithm.

(1) Check that all entries of A are 0, + 1.

(2) Letting M be the binary matroid on the columns of Ay, the binary matrix
obtained by changing — I's to I's in A, apply Algorithm 3.31 to determine
whether M is unimodular (where we note that Algorithm 3.3.1 is easier to
implement for binary matroids).

(3) If M is unimodular, determine a unimodular signing A, of A, (whichmay be
determined from such signings of the graphic, cographic, and R, pieces,
which are easy to sign).
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(4) Applying Proposition 1.2.5, we check whether A, is projectively equivalent
to A, using only scalar multiplications of + 1.

A second application of unimodularity is in linear programming.

3.3.3. Proposition. (Heller 1957). The linear program

maximize ¢'x
subject to Ax<b, x=0

has a solution x with integer coordinates, for every choice of a vector b with
integer coordinates, if and only if A is totally unimodular.

In fact many of the most efficiently solved combinatorial optimization
problems, such as matroid intersection and bipartite matching, may be
realized as unimodular programming problems. Indeed, this proposition
makes the distinction between integer programming and linear programming
no longer an issue for such problems.

There is a polynomial algorithm for solving unimodular programming
problems, according to Bland and Edmonds (unpublished); see Bixby and
Cunningham (1980). This algorithm uses the Seymour decomposition to
reduce to the case that A4 is graphic or cographic. However, this case is
essentially a network flow problem or its dual. One might regard this
algorithm to be of no interest because of the recent highly publicized
polynomial algorithms for the general linear programming problem. How-
ever, network flow problems are so efficiently solved that one can still hope for
more efficient algorithms for the unimodular case than the general one.

As a third application, we consider the integer max-flow-min-cut property.
This is a well-known property of directed graphs (networks), but Seymour
(1977) has characterized an interesting generalization to matroids. A special
element e of M(FE) is singled out (corresponding to an auxiliary edge from sink
to source in the network case). A capacity is assigned to each element of M(E)
— e and a flow is an assignment of a scalar to each circuit of M, such that the
flow summed over all circuits containing an element x does not exceed the
capacity of x. Then M has the integer max-flow-min-cut property if for every
choice of ¢ and an integer-valued capacity, there exists a non-negative integer-
valued flow whose total value at e equals the minimum capacity of a cocircuit
(‘cut-set’) of M containing e. Gallai (1959) and Minty (1966) proved
independently that unimodular matroids have this property. However,
Seymour{1977) has completely characterized the connected matroids with this
property: they are the binary matroids with no minor isomorphic to F*. This
class of matroids is dual to that denoted by #’ in Table 7.1 of White (1986).
Thus they are either unimodular or contain an F, minor. But more is true.
Matroids in £’ must always be 2-sums of unimodular matroids and copies of
F,. This remarkable fact is an example of Seymour’s concept of a splitter: a
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matroid N belonging to a hereditary class # which fits so tightly in % that any
matroid M in & having N as a proper minor has a l-sum or 2-sum
decomposition. Thus any matroid in & is composed by 1-sums and 2-sums
from copies of N and matroids in &% having no minor isomorphic to N. This
concept pilays an important role in Seymour’s proof of his characterization of
unimodular matroids, in that R,, is a splitter for the class of unimodular
matroids. Thus a stronger version of Seymour’s theorem may be stated: a
unimodular matroid may always be realized by 1-sums and 2-sums of copies of
R, and additional matroids which are 1-sums, 2-sums, and 3-sums of graphic
and cographic matroids.

Finally, we mention one more application of unimodular matroids, namely,
the characterization of zonotopes which pack n-dimensional Euclidean space
E" Let & = {xy,Xy,..., xq} be a set of vectors in E”. Without loss of generality
we may assume that these vectors are non-zero and distinct up to scalar
multiple, that is, that the vector matroid given by & is actually a combinatorial
geometry. The zonotope determined by % is the set of vectors

9
Z= {v:v = Y ax;, where —1<o;<1 forall i}.
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Equivalently, we may say that Z is the vector sum of the g line segments L, =
convex hull (— x;,x;). We call & the vector star of Z. Zonotopes are convex,
centrally symmetric polytopes with many interesting properties. A three-
dimensional example is given in Figure 3.1. In this example, abc and bde are
chosen to be collinear. The vertices of the zonotope are vectors with each
o; = + 1, and we have labelled each vertex by the vectors having a; = + 1 at
that vertex.

An interesting question is whether Z packs E”, (where n is the dimension of
Z), that is, whether translates of Z may be placed to fill up E” while intersecting
each other only on their exterior faces. Shephard (1974) and McMullen (1975)
have completely answered this question, via the following proposition. We
assume that & spans E".

3.3.4. Proposition. A zonotope packs E" if and only if its vector star is a binary
matroid.

But, in fact, the vector star is given as a vector matroid over the field R.
Hence by Theorem 3.1.1. condition (5), the vector star is binary if and only if it
is unimodular.

The zonotope pictured in Figure 3.1 does satisfy the conditions of
Proposition 3.3.4. so it does pack E3.

Exercises

3.1. Show that graphic and cographic matroids are signable.

3.2. Provethatamatroid M(E) may be decomposed as a 2-sum of two matroids if and
only if M has a 2-separation, that is, a partition (X, X,) of E with
1 X122,|X,|22,r X, +rX, <rE+1.

3.3, Show that the class of unimodular matroids is not filtered in the sense of
Brylawski and Kelly (1980), that is, that there exist unimodular matroids of the
same rank »n which are not both submatroids of any unimodular matroid of rank
n.

3.4. (Aigner 1979) If A is a locally unimodular coordinatization (over @) of a
unimodular matroid M(E), A is n x N where n=rank M,N =|E|, then det
(AA) = the number of bases of M.

3.5. Provethat 1-,2-, and 3-sums of unimodular matroids are unimodular. What are
the corresponding operations on coordinatizing matrices?

3.6. Show that the binary coordinatization for R, described in Exercise 1.7 is
projectively equivalent to one in which each column has the same number of
zeros. Thus determine that this matroid has a doubly transitive group of
automorphisms. Use this information to show that R, is unimodular, but
neither graphic nor cographic.

3.7. If M(E) is unimodular, eeE, such that M — e is isomorphic to R,,, show that e
must be a loop, isthmus, or parallel element [i.e., M is the parallel extension of
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some element of M — e: see White (1986), p. 180)]. This is essentially all that is
needed to check that R, is a splitter for the class of unimodular matroids (see
White 1986, Exercise 7.50).

3.8. Prove that for each vector v in the vector star of a zonotope Z, the set of edges
of Z parallel to v form a ‘zone’, or minimal cut-set of the graph G determined by
the edge-skeleton of Z, i.e., a bond in M(G).

3.9. Prove that a zonotope in E? is space-filling if and only if all of its projections
onto a plane orthogonal to a vector in its star yield tessalations (quadrilateral or
hexagonal) of the plane.

3.10. Let C, ,denote the binary matroid determined by the binary matrix consisting of
the n x nidentity matrix next to an n x n matrix consisting of all cyclic shifts of a
column of k ones followed by n — k zeros. Show that C, , is always graphic, that
C;.518 Ry, and Cj;, is not unimodular for all n> 5.

3.11. Is C,, unimodular for any k > 4,n > k?
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