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Short proofs of two theorems are given: (i) Whitney's 2-isomorphism theorem characterizing all 
graphs with the same cycle matroid, and (ii) Tutte's excluded minor characterization of those 
binary matroids that are graphic. Graph connectivity plays an important role in both proofs. 

1. Introduction 

Familiarity with graph and matroid theory is assumed; see [1] and [10]. Where 
G is a graph with S ~ E(G), G[S] denotes the subgraph induced by S. A partition 
{S, T} of E(G) is a k-separation of G, for k a positive integer, if Isl>  k <~ITI and 
IV(G[S]) N V(G[T])I<~ k, A graph is n-connected, for n a positive integer, if it has 
no k-separation for k < n; a 2-connected graph is nonseparable. 

Let G be a nonseparable graph with 2-separation {S, T} and let V(G[S])fq 
V(G[T]) = {x, y}. Let G'  be the graph obtained from G by interchanging in G[S] 
the incidences of the edges at x and y. Then G'  is obtained from G by reversing 
G[S]. A graph obtainable from G by a sequence of reversals is 2-isomorphic to 

G. 
Let M(G) denote the cycle matroid of G. Whitney [12] proved the following 

result. 

(1.1) Let G and G' be nonseparable graphs. Then M(G) = M(G') if and only if G 
and G' are 2-isomorphic. 

Let K5 and /(3,3 denote the Kuratowski graphs and let F7 denote the Fano 
matroid. Denote the dual of a matroid M by M*. 

Tutte [8] proved the following result. 

(1.2) Let M be a binary matroid. Then M is graphic if and only if M has no F7, 

F~7, M*(Ks) or M*(K3,3) minor. 

The purpose of this paper is to provide new short proofs of (1.1) and (1.2). It is 
hoped the present proofs will be more accessible and will provide additional 
insight into the results. Graph connectivity plays an important role in both proofs. 

The paper is outlined as follows: (1.1) is proved in Section 2, some preliminary 
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results needed to prove (1.2) are contained in Section 3, and the proof of (1.2) is 
in Section 4. 

2. Whitney's theorem 

Let st6(u),  called the star of u in G, be the set of edges in G incident to a 
vertex u. If a graph G'  is obtained from a graph G by simply renaming the 
vertices, then these graphs are regarded as equal, denoted G = G'. Deletion in 
both matroids and graphs is denoted by ' \ '  and contraction by '/'. The edge-sets of 
forests and cycles are equated with the subgraphs they induce. 

Tutte generalized graph connectivity to matroids. Given a matroid M on E, a 
k-separation of M, for k a positive integer, is a partition {S, T} of E such that 

ISl> k< lTI and r (S)+r(T) -r (E)<~k-1;  M is n-connected, for n a positive 
integer, if it has no k-separation for k < n. Tutte [9] proved the following result; 
for a simpler proof see Cunningham [2]. 

(2.1) For a connected graph G, G is n-connected if and only if M(G) is 
n-connected. 

The following result is due to Whitney [11]; the proof is essentially that of 
Sachs [4]. 

(2.2) Let G and G'  be graphs with M(G)= M(G'). If G is 3-connected, then 
G = G ' .  

Proof. Let u ~ V(G). Since G is 3-connected, G[E(G)-s t6(u)]  is nonseparable. 
Since M(G)=M(G' ) ,  st6(u) is a cocircuit of M(G') and by (2.1) G'[E(G)-  
st6(u)] is nonseparable.  If st6(u) is not the star of some vertex of G',  then 
G'[E(G)-s t6(u)]  has a 1-separation, a contradiction. Thus G and G'  have 
exactly the same stars, i.e., G = G'. [] 

Let C be a cycle of G. The edge-sets of the blocks (i.e., the maximal 

nonseparable subgraphs) of G/C are the bridges of C. Evidently the set of bridges 
is a partition of E ( G ) - C .  Equivalently, bridges are defined by the equivalence 
relation on E ( G ) - C :  e l - e 2  if and only if el  = e2 or there exists a path P of G 
containing el and e2, and no internal vertex of P is a vertex of C. A bridge B is a 
k-bridge if {B, E ( G ) - B }  is a k-separation. Thus, if B is a k-bridge of C and G is 

k-connected, then I V(G[B ]) tq V(C)I = k. 
A bond is a connected loopless graph on two vertices and a polygon is a 

connected graph every vertex of which has degree 2. 

(2.3) Let G be a nonseparable graph that is not a bond or polygon. If G has a 
2-separation, then some cycle of G has a 2-bridge. 



On theorems of Whitney and Turte 149 

Proof. Let  {S, T} be a 2-separation of G. Since G is not a polygon either G[S] or 
G[T] has a block H that contains a cycle. Further, {E(H) ,E (G) -E(H)}  is a 
2-separation of G. Let K = G[E(G) - E(H)]  and let V(H) n V(K) = {x, y}. Since 
H is nonseparable,  it contains a cycle C containing x and y. Further, there exists 
bridges of C, say B 1 ,  • • . ,  B t ,  such that E(K) = B1U. •. U B,. If [B~[ I> 2 for some i, 
then B~ is the desired 2-bridge. Thus, IB~I = 1 for 1 ~<i~ < t. It follows that K is a 
bond. 

Since K is a bond and O is not a bond, H is not a bond. Thus, by the above 
argument,  there exists a (two-edge) cycle of K that has a 2-bridge. [] 

One half of (1.1) is easy. The hard half is: 

(2.4) If G and G'  are nonseparable graphs with M(G)= M(G'), then G and G'  
are 2-isomorphic. 

Proof. Clearly the result is true if IE(G)I = 1. The proof proceeds by induction. 
By (2.2) it may be assumed that G has 2-separation. Further, if G is a bond or 
polygon, then the result is easily verified. Thus, by (2.3) G has a cycle C that has 
2-bridge B. 

Since M(G)= M(G'), C is a cycle of G'. In addition, B is a bridge of C in G'.  
(This follows from the first definition of a bridge and (2.1).) Moreover, it is 
claimed that B is a 2-bridge of C in G'. All of G[B], G'[B], G [ E ( G ) - B ]  and 
G ' [ E ( G ) - B ]  are connected. (This follows easily from the second definition of a 
bridge.) Therefore 

IV(G[B])I=IV(G'[B])I and IV(G[E(G)-B])I=IV(G'[E(G)-B])I, 

since [V(G)I = [V(G')I, it follows that B is a 2-bridge of C in G'. 

Now { B , E ( G ) - B }  is a 2-separation of G and G'. Let V(G[B])A 
V ( G [ E ( G ) - B ] ) = { x ,  y}. Add an edge e~:E(G) to both G[B] and G [ E ( G ) - B ]  
joining x and y to create graphs H and K, respectively. Then H and K are 
nonseparable and have fewer edges than G. Let H '  and K'  be obtained from 
G'[B] and G ' [ E ( G ) - B ] ,  respectively, in the same way. Then M(H)= M(H') and 
M(K) = M(K'). By induction H is 2-isomorphic to H '  and K is 2-isomorphic to 

K'. It follows that G is 2-isomorphic to G'. []  

Truemper  [7] has strengthened (2.4) by showing G can be obtained from G' by 
at most I V(G)I-2 reversals. Such a bound is easily obtained from the above 
method of proof. 

A set of P of edges of a nonseparable graph G is a hypopath of G if P is a path 
in some graph 2-isomorphic to G. A n  easy consequence of (1.1) is a result due to 
L6fgren [ 3 ]. 

(2.5) Let M be a 2-connected binary matroid such that for some element e, 

l ~ e  = M(G) for some graph G. Let  C be a circuit of M containing e and let 

P = C - { e } .  Then M is graphic if and only if P is a hypopath of G. 
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3. Graphic minors o|  a nongraphic matroid 

Where e is in a two-element cocircuit of a matroid M, M/e is a series 
contraction of M. If N is a matroid obtained by a sequence of series contractions 
from M and N has no two-element cocircuit, then define N = [M]. Define [MI 
by replacing 'cocircuit' by 'circuit', 'series' by 'parallel '  and 'contraction' by 
'deletion'.  (Thus, [M] = [ M * ] * . ) T h e  graphs [G] and [G] are defined in the 
obvious way. Seymour [5] and Cunningham [2] have the following result. 

(3.1) If M is a 3-connected matroid, then there exists an element e such that 
[M\e] is 3-connected. 

Throughout the remainder of the section the following notation is used. M is a 
3-connected nongraphic binary matroid. For every element f, M \ f  and M/f are 
graphic, and for a fixed element e, [MkeJ is 3-connected. Also C is a circuit of M 
containing e and P = C-{e}. Finally, G is a graph such that M(G)= Mke. By 
(2.1) either G or [GJ is 3-connected. In graphic minors of M subsets of C are 
equated with the subgraphs they induce. 

By (2.5) P is not a hypopath of G. Clearly P is acyclic in G and so P must have 
at least four vertices of odd degree in any graph 2-isomorphic to G. 

(3.2) For any f~ E(G) there exists a graph 2-isomorphic to G/f in which P'  has 

exactly two vertices of odd degree, where P ' =  P -{ f} .  (Note P need not contain 

{f}.) 

Proot. For any f ~  F(G),  M/f is graphic. Since M is binary, P 'U{e} is the 
edge-disjoint union of circuits of M/f. Let G' be a graph such that M(G')= M/f. 
Then every vertex of P 'U  {e} is of even degree. Thus P' has exactly two vertices 
of odd degree in G'\e. By (2.4) G'ke and G/f are 2-isomorphic. [] 

An arc S of a graph H is a maximal  path with at least two edges such that the 
set V(S)NV(H[E(H)-S])  is precisely the set of ends of S. If G is not 3- 
connected, bu t [G]  is, then it is straightforward to show that every two-edge 
cocycle (i.e., a cocircuit of M(G)) is contained in some arc of G, and so to obtain 
[G[ from G one needs only to replace each arc by a single edge. Further, every 
graph 2-isomorphic to G can be obtained by reversing subgraphs contained in 
arcs of G, and if f is an edge of an arc of G, then [G/f] is 3-connected. 

(3.3) If G is not 3-connected, then G contains exactly three arcs, each one 

containing exactly two edges, exactly one of which is from P. Moreover, these are 
all the edges of P. 

Proof. It is first shown that every arc contains exactly two edges, exactly one of 
which is from P. Let  S be an arc of G containing more than one edge from P and 
let f ~ S O P. Since, in every graph 2-isomorphic to G, P has at least four vertices 
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of odd degree, it follows that in every graph 2-isomorphic to G/f, P -{ f }  has at 
least four vertices of odd degree, a contradiction to (3.2). A similar argument 
shows that S has at most one edge not from P. 

Next it is shown that  G has at most three arcs. Suppose G has more than three 

arcs, and let f ~ S f3 P, where S is an arc of G. Then G/f has at least three arcs, 
and the degree 2 vertex of each of these arcs is a vertex of odd degree of P - { f }  in 
every graph 2-isomorphic to G/f, a contradiction to (3.2). 

Now, if G has at most two arcs, and these arcs contain all the edges of P, then it 

is easy to see that  either P is a hypopath of G, which is a contradiction, or in 
every graph 2-isomorphic to G/f, where f ~ S - P and S is an arc of G, P has four 
vertices of odd degree,  which is a contradiction to (3.2). 

Thus it may be assumed that G has at most three arcs and that there exists an 

edge of P not in an arc of G. Let f ~ S f3 P, where S is an arc of G. Then P -  {f} is 
a hypopath of G/f. It follows that the edges of P not in an arc of G/f form a path 
P '  of G/f, and thus of G. Moreover, every arc of G/f contains a vertex that is an 

end of P'.  It follows that every arc of G contains such a vertex. Since P is not a 

hypopath of G, G has at least two arcs, and at least two of the arcs of G contain 

the same end, say v, of P'.  Now it is easy to check that by contracting an edge not 

in P, but contained in some arc containing v, that a contradiction to (3.2) is 

obtained. []  

(3.4) If G is not 3-connected, then G is either 2-isomorphic to the graph of Fig. 

l(a) or  to the graph of Fig. l(b). 

Proof.  Let f ~ P. Then  by (2.5) P - { f }  is a hypopath of G/f. This together with 
(3.3) implies that  each pair of arcs of G has at least one vertex in common. This 

leads to three cases. 

First, two of the arcs could form a four-edge cycle. But this contradicts the fact 

that  [GJ is 3-connected unless G is 2-isomorphic to the graph of Fig. l(a). 
Second, all three arcs could form a six-edge cycle. It is then straightforward to 

deduce that G has as a minor a graph H 2-isomorphic to the graph of Fig. l(b). If 
H is a proper minor  of G, that is, H =  G\X/Y  with Xt_J Y nonempty, then it is 

claimed that M '  = M~X/Y is not graphic, which is a contradiction since all proper  
minors of M are assumed to be graphic. Suppose M ' =  M(H') for some graph H ' .  
By (2.4) H and H'\e are 2-isomorphic. Since M is binary, C is edge-disjoint 
union of cycles of H ' .  It follows that in H'\e, P must have exactly two vertices of 

odd degree. But  this is a contradiction since, deafly,  H is not 2-isomorphic to a 
graph in which P has exactly two vertices of odd degree. 

Finally, the three arcs could satisfy neither of the above but have exactly one 
vertex in common. In this case a contradiction to (3.2) is obtained by choosing 

f ~ S - P ,  where S is an arc of G. [ ]  

An  edge f of a 3-connected graph H is deletable if [H\f] is 3-connected and 

contractable if [H/f] is 3-connected. Seymour [5] proved: 
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(a) 

(b) 

Fig. 1. The edges of P are marked. 

(3.5) In a 3-connected graph every edge is either deletable or contractable. 

Note that if G is 3-connected and f is a contractable edge of G, then every 
graph 2-isomorphic to G/f actually equals G/f. This fact together with (3.2) imply: 

(3.6) If G is 3-connected, then every contractable edge of G joins two odd 
degree vertices of P. 

A triad is the set of edges incident to a vertex of degree 3. 

(3.7)  If G is a 3-connected graph and f is a deletable edge of G not in P, then 
there exists a triad T of G, containing f, such that I TnPI = 1. Further, if 
T = {f, g, h} (with g ~ P) is the only such triad, then both ends of g and h are odd 
degree vertices of P. 

Proof. Since f is deletable every arc of G\f  has exactly two edges. The matroid 
M~f  is graphic and so by (2.5) P is a hypopath of G\f. Since P is not a hypopath 
of G, there exists an arc S of G\f such that [S N PI = 1. The first statement follows 
by taking T = S O ~f}. 

Now suppose T = ~f, g, h} is the only triad of G containing f and exactly one 
edge from P, say g. Then P is a path of the graph obtained from G\f  by reversing 
G[T-{f}], and so P - { g }  is a path of G with h incident to one end. The result 
follows easily. []  

For a circuit C'  of M containing e, denote by Oc, the set of odd degree vertices 
in G of (the subgraph induced by) C'-{e}. In particular, 0¢ is the set of odd 
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degree vertices of P. Let  N be a vertex-edge incidence matrix of G. Then a binary 

representation for M can be obtained from N by appending a column, corres- 
ponding to element e, having a 1 in precisely the rows corresponding to Oc,. As a 
consequence: 

(3.8) For any circuit C'  of M, Oc = Oc,. 

(3.9) If G is 3-connected, then every edge of G is incident to a vertex of O o  

Proof. Suppose f is not incident to a vertex of Oc. Since M is 3-connected, there 
exists a circuit C' of M containing e but not f (for otherwise {e, f} is a 
'2-separator').  By (3.5)-(3.7) (with C'  replacing C) f is incident to a vertex of Oc,, 
a contradiction to (3.8). [] 

(3.10) If G is 3-connected, then G is one of the graphs of Fig. 2. 

>( 
Fig. 2. The  edges of P are marked. 

Proof.  By (3.1) and duality there exists a contractable edge of G. If P has more 

than four odd degree vertices in G, then P - { f }  has more than two odd degree 
vertices in G/f, a contradiction to (3.2). Thus lOci =4.  

Suppose ul and u2 are distinct vertices not in O o  By (3.9) and the 3- 
connectivity of G each of ul and u2 is adjacent to at least three vertices of O o  
Thus there exist distinct vertices vl, v2~ Oc adjacent to both ul and u2. Since P is 
acyclic, it may be assumed that f =  uxvx is not in P. By (3.5) and (3.6) f is 
deletable. By (3.7) v~ has degree 3 and is adjacent (via edges g and h) to at least 
two vertices of O o  a contradiction. 

Thus IV(G)I~<5 and the result follows by case checking. [] 

4. Tutte's theorem 

Since FT, F~7, M*(Ks) and M*(K3,3) are nongraphic and minors of a graphic 
matroid are graphic, one half of (1.2) is easy. The converse is: 



154 D.K. Wagner 

(4.1) If M is a nongraphic binary matroid, then M has as a minor one of FT, F~7, 

M(Ks) or M*(K3.3). 

Proof. Let M be a counterexample with as few elements as possible. Then for any 
element f, M ~ f  and M/f are graphic. Further, M is 3-connected, for if M has a 
2-separation, then it is well known (see Seymour [ 5, 6 ], for example) that M has a 
proper minor that is not graphic, a contradiction. 

By the results of Section 3 there exists an element e of M such that M~e = 
M(G), where G is one of the graphs of Figs. 1 or 2, and P U {e} is a circuit of M. 
It is straightforward to check that M must be one of F7, F~7, M*(Ks) or 

M*(K3.3).  [ ]  

It should be noted that Seymour [6] has given a similar proof of Tutte's 
Theorem. His proof makes use of (3.1) and his theory of 'grafts', which are 
defined in terms of vertices, whereas the present proof makes use of 'hypopaths ' ,  
which are edge-sets. Because cycle matroids are defined in terms of edges, the 
latter approach seems more natural. Seymour also considers two cases implied by 
(3.1): (i) M\e is 3-connected, and (ii) M~e is not 3-connected and thus, [M\eJ is 
3-connected. The present t reatment of (i) is similar to Seymour's, however, the 
present t reatment of (ii) is different and simpler. 
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